llvm-project/lldb/source/Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.cpp

4262 lines
146 KiB
C++

//===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "RenderScriptRuntime.h"
#include "lldb/Breakpoint/StoppointCallbackContext.h"
#include "lldb/Core/ConstString.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/ValueObjectVariable.h"
#include "lldb/DataFormatters/DumpValueObjectOptions.h"
#include "lldb/Expression/UserExpression.h"
#include "lldb/Host/StringConvert.h"
#include "lldb/Interpreter/Args.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/CommandObjectMultiword.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Interpreter/Options.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
using namespace lldb;
using namespace lldb_private;
using namespace lldb_renderscript;
namespace {
// The empirical_type adds a basic level of validation to arbitrary data
// allowing us to track if data has been discovered and stored or not.
// An empirical_type will be marked as valid only if it has been explicitly
// assigned to.
template <typename type_t> class empirical_type {
public:
// Ctor. Contents is invalid when constructed.
empirical_type() : valid(false) {}
// Return true and copy contents to out if valid, else return false.
bool get(type_t &out) const {
if (valid)
out = data;
return valid;
}
// Return a pointer to the contents or nullptr if it was not valid.
const type_t *get() const { return valid ? &data : nullptr; }
// Assign data explicitly.
void set(const type_t in) {
data = in;
valid = true;
}
// Mark contents as invalid.
void invalidate() { valid = false; }
// Returns true if this type contains valid data.
bool isValid() const { return valid; }
// Assignment operator.
empirical_type<type_t> &operator=(const type_t in) {
set(in);
return *this;
}
// Dereference operator returns contents.
// Warning: Will assert if not valid so use only when you know data is valid.
const type_t &operator*() const {
assert(valid);
return data;
}
protected:
bool valid;
type_t data;
};
// ArgItem is used by the GetArgs() function when reading function arguments
// from the target.
struct ArgItem {
enum { ePointer, eInt32, eInt64, eLong, eBool } type;
uint64_t value;
explicit operator uint64_t() const { return value; }
};
// Context structure to be passed into GetArgsXXX(), argument reading functions
// below.
struct GetArgsCtx {
RegisterContext *reg_ctx;
Process *process;
};
bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
Error error;
// get the current stack pointer
uint64_t sp = ctx.reg_ctx->GetSP();
for (size_t i = 0; i < num_args; ++i) {
ArgItem &arg = arg_list[i];
// advance up the stack by one argument
sp += sizeof(uint32_t);
// get the argument type size
size_t arg_size = sizeof(uint32_t);
// read the argument from memory
arg.value = 0;
Error error;
size_t read =
ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), error);
if (read != arg_size || !error.Success()) {
if (log)
log->Printf("%s - error reading argument: %" PRIu64 " '%s'",
__FUNCTION__, uint64_t(i), error.AsCString());
return false;
}
}
return true;
}
bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
// number of arguments passed in registers
static const uint32_t c_args_in_reg = 6;
// register passing order
static const std::array<const char *, c_args_in_reg> c_reg_names{
{"rdi", "rsi", "rdx", "rcx", "r8", "r9"}};
// argument type to size mapping
static const std::array<size_t, 5> arg_size{{
8, // ePointer,
4, // eInt32,
8, // eInt64,
8, // eLong,
4, // eBool,
}};
Error error;
// get the current stack pointer
uint64_t sp = ctx.reg_ctx->GetSP();
// step over the return address
sp += sizeof(uint64_t);
// check the stack alignment was correct (16 byte aligned)
if ((sp & 0xf) != 0x0) {
if (log)
log->Printf("%s - stack misaligned", __FUNCTION__);
return false;
}
// find the start of arguments on the stack
uint64_t sp_offset = 0;
for (uint32_t i = c_args_in_reg; i < num_args; ++i) {
sp_offset += arg_size[arg_list[i].type];
}
// round up to multiple of 16
sp_offset = (sp_offset + 0xf) & 0xf;
sp += sp_offset;
for (size_t i = 0; i < num_args; ++i) {
bool success = false;
ArgItem &arg = arg_list[i];
// arguments passed in registers
if (i < c_args_in_reg) {
const RegisterInfo *rArg =
ctx.reg_ctx->GetRegisterInfoByName(c_reg_names[i]);
RegisterValue rVal;
if (ctx.reg_ctx->ReadRegister(rArg, rVal))
arg.value = rVal.GetAsUInt64(0, &success);
}
// arguments passed on the stack
else {
// get the argument type size
const size_t size = arg_size[arg_list[i].type];
// read the argument from memory
arg.value = 0;
// note: due to little endian layout reading 4 or 8 bytes will give the
// correct value.
size_t read = ctx.process->ReadMemory(sp, &arg.value, size, error);
success = (error.Success() && read == size);
// advance past this argument
sp -= size;
}
// fail if we couldn't read this argument
if (!success) {
if (log)
log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
__FUNCTION__, uint64_t(i), error.AsCString("n/a"));
return false;
}
}
return true;
}
bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
// number of arguments passed in registers
static const uint32_t c_args_in_reg = 4;
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
Error error;
// get the current stack pointer
uint64_t sp = ctx.reg_ctx->GetSP();
for (size_t i = 0; i < num_args; ++i) {
bool success = false;
ArgItem &arg = arg_list[i];
// arguments passed in registers
if (i < c_args_in_reg) {
const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
RegisterValue rVal;
if (ctx.reg_ctx->ReadRegister(rArg, rVal))
arg.value = rVal.GetAsUInt32(0, &success);
}
// arguments passed on the stack
else {
// get the argument type size
const size_t arg_size = sizeof(uint32_t);
// clear all 64bits
arg.value = 0;
// read this argument from memory
size_t bytes_read =
ctx.process->ReadMemory(sp, &arg.value, arg_size, error);
success = (error.Success() && bytes_read == arg_size);
// advance the stack pointer
sp += sizeof(uint32_t);
}
// fail if we couldn't read this argument
if (!success) {
if (log)
log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
__FUNCTION__, uint64_t(i), error.AsCString("n/a"));
return false;
}
}
return true;
}
bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
// number of arguments passed in registers
static const uint32_t c_args_in_reg = 8;
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
for (size_t i = 0; i < num_args; ++i) {
bool success = false;
ArgItem &arg = arg_list[i];
// arguments passed in registers
if (i < c_args_in_reg) {
const RegisterInfo *rArg = ctx.reg_ctx->GetRegisterInfoAtIndex(i);
RegisterValue rVal;
if (ctx.reg_ctx->ReadRegister(rArg, rVal))
arg.value = rVal.GetAsUInt64(0, &success);
}
// arguments passed on the stack
else {
if (log)
log->Printf("%s - reading arguments spilled to stack not implemented",
__FUNCTION__);
}
// fail if we couldn't read this argument
if (!success) {
if (log)
log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__,
uint64_t(i));
return false;
}
}
return true;
}
bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
// number of arguments passed in registers
static const uint32_t c_args_in_reg = 4;
// register file offset to first argument
static const uint32_t c_reg_offset = 4;
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
Error error;
// find offset to arguments on the stack (+16 to skip over a0-a3 shadow space)
uint64_t sp = ctx.reg_ctx->GetSP() + 16;
for (size_t i = 0; i < num_args; ++i) {
bool success = false;
ArgItem &arg = arg_list[i];
// arguments passed in registers
if (i < c_args_in_reg) {
const RegisterInfo *rArg =
ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset);
RegisterValue rVal;
if (ctx.reg_ctx->ReadRegister(rArg, rVal))
arg.value = rVal.GetAsUInt64(0, &success);
}
// arguments passed on the stack
else {
const size_t arg_size = sizeof(uint32_t);
arg.value = 0;
size_t bytes_read =
ctx.process->ReadMemory(sp, &arg.value, arg_size, error);
success = (error.Success() && bytes_read == arg_size);
// advance the stack pointer
sp += arg_size;
}
// fail if we couldn't read this argument
if (!success) {
if (log)
log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
__FUNCTION__, uint64_t(i), error.AsCString("n/a"));
return false;
}
}
return true;
}
bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) {
// number of arguments passed in registers
static const uint32_t c_args_in_reg = 8;
// register file offset to first argument
static const uint32_t c_reg_offset = 4;
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
Error error;
// get the current stack pointer
uint64_t sp = ctx.reg_ctx->GetSP();
for (size_t i = 0; i < num_args; ++i) {
bool success = false;
ArgItem &arg = arg_list[i];
// arguments passed in registers
if (i < c_args_in_reg) {
const RegisterInfo *rArg =
ctx.reg_ctx->GetRegisterInfoAtIndex(i + c_reg_offset);
RegisterValue rVal;
if (ctx.reg_ctx->ReadRegister(rArg, rVal))
arg.value = rVal.GetAsUInt64(0, &success);
}
// arguments passed on the stack
else {
// get the argument type size
const size_t arg_size = sizeof(uint64_t);
// clear all 64bits
arg.value = 0;
// read this argument from memory
size_t bytes_read =
ctx.process->ReadMemory(sp, &arg.value, arg_size, error);
success = (error.Success() && bytes_read == arg_size);
// advance the stack pointer
sp += arg_size;
}
// fail if we couldn't read this argument
if (!success) {
if (log)
log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s",
__FUNCTION__, uint64_t(i), error.AsCString("n/a"));
return false;
}
}
return true;
}
bool GetArgs(ExecutionContext &context, ArgItem *arg_list, size_t num_args) {
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
// verify that we have a target
if (!context.GetTargetPtr()) {
if (log)
log->Printf("%s - invalid target", __FUNCTION__);
return false;
}
GetArgsCtx ctx = {context.GetRegisterContext(), context.GetProcessPtr()};
assert(ctx.reg_ctx && ctx.process);
// dispatch based on architecture
switch (context.GetTargetPtr()->GetArchitecture().GetMachine()) {
case llvm::Triple::ArchType::x86:
return GetArgsX86(ctx, arg_list, num_args);
case llvm::Triple::ArchType::x86_64:
return GetArgsX86_64(ctx, arg_list, num_args);
case llvm::Triple::ArchType::arm:
return GetArgsArm(ctx, arg_list, num_args);
case llvm::Triple::ArchType::aarch64:
return GetArgsAarch64(ctx, arg_list, num_args);
case llvm::Triple::ArchType::mipsel:
return GetArgsMipsel(ctx, arg_list, num_args);
case llvm::Triple::ArchType::mips64el:
return GetArgsMips64el(ctx, arg_list, num_args);
default:
// unsupported architecture
if (log) {
log->Printf(
"%s - architecture not supported: '%s'", __FUNCTION__,
context.GetTargetRef().GetArchitecture().GetArchitectureName());
}
return false;
}
}
} // anonymous namespace
// The ScriptDetails class collects data associated with a single script
// instance.
struct RenderScriptRuntime::ScriptDetails {
~ScriptDetails() = default;
enum ScriptType { eScript, eScriptC };
// The derived type of the script.
empirical_type<ScriptType> type;
// The name of the original source file.
empirical_type<std::string> resName;
// Path to script .so file on the device.
empirical_type<std::string> scriptDyLib;
// Directory where kernel objects are cached on device.
empirical_type<std::string> cacheDir;
// Pointer to the context which owns this script.
empirical_type<lldb::addr_t> context;
// Pointer to the script object itself.
empirical_type<lldb::addr_t> script;
};
// This Element class represents the Element object in RS,
// defining the type associated with an Allocation.
struct RenderScriptRuntime::Element {
// Taken from rsDefines.h
enum DataKind {
RS_KIND_USER,
RS_KIND_PIXEL_L = 7,
RS_KIND_PIXEL_A,
RS_KIND_PIXEL_LA,
RS_KIND_PIXEL_RGB,
RS_KIND_PIXEL_RGBA,
RS_KIND_PIXEL_DEPTH,
RS_KIND_PIXEL_YUV,
RS_KIND_INVALID = 100
};
// Taken from rsDefines.h
enum DataType {
RS_TYPE_NONE = 0,
RS_TYPE_FLOAT_16,
RS_TYPE_FLOAT_32,
RS_TYPE_FLOAT_64,
RS_TYPE_SIGNED_8,
RS_TYPE_SIGNED_16,
RS_TYPE_SIGNED_32,
RS_TYPE_SIGNED_64,
RS_TYPE_UNSIGNED_8,
RS_TYPE_UNSIGNED_16,
RS_TYPE_UNSIGNED_32,
RS_TYPE_UNSIGNED_64,
RS_TYPE_BOOLEAN,
RS_TYPE_UNSIGNED_5_6_5,
RS_TYPE_UNSIGNED_5_5_5_1,
RS_TYPE_UNSIGNED_4_4_4_4,
RS_TYPE_MATRIX_4X4,
RS_TYPE_MATRIX_3X3,
RS_TYPE_MATRIX_2X2,
RS_TYPE_ELEMENT = 1000,
RS_TYPE_TYPE,
RS_TYPE_ALLOCATION,
RS_TYPE_SAMPLER,
RS_TYPE_SCRIPT,
RS_TYPE_MESH,
RS_TYPE_PROGRAM_FRAGMENT,
RS_TYPE_PROGRAM_VERTEX,
RS_TYPE_PROGRAM_RASTER,
RS_TYPE_PROGRAM_STORE,
RS_TYPE_FONT,
RS_TYPE_INVALID = 10000
};
std::vector<Element> children; // Child Element fields for structs
empirical_type<lldb::addr_t>
element_ptr; // Pointer to the RS Element of the Type
empirical_type<DataType>
type; // Type of each data pointer stored by the allocation
empirical_type<DataKind>
type_kind; // Defines pixel type if Allocation is created from an image
empirical_type<uint32_t>
type_vec_size; // Vector size of each data point, e.g '4' for uchar4
empirical_type<uint32_t> field_count; // Number of Subelements
empirical_type<uint32_t> datum_size; // Size of a single Element with padding
empirical_type<uint32_t> padding; // Number of padding bytes
empirical_type<uint32_t>
array_size; // Number of items in array, only needed for strucrs
ConstString type_name; // Name of type, only needed for structs
static const ConstString &
GetFallbackStructName(); // Print this as the type name of a struct Element
// If we can't resolve the actual struct name
bool shouldRefresh() const {
const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0;
const bool valid_type =
type.isValid() && type_vec_size.isValid() && type_kind.isValid();
return !valid_ptr || !valid_type || !datum_size.isValid();
}
};
// This AllocationDetails class collects data associated with a single
// allocation instance.
struct RenderScriptRuntime::AllocationDetails {
struct Dimension {
uint32_t dim_1;
uint32_t dim_2;
uint32_t dim_3;
uint32_t cubeMap;
Dimension() {
dim_1 = 0;
dim_2 = 0;
dim_3 = 0;
cubeMap = 0;
}
};
// The FileHeader struct specifies the header we use for writing allocations
// to a binary file.
// Our format begins with the ASCII characters "RSAD", identifying the file as
// an allocation dump.
// Member variables dims and hdr_size are then written consecutively,
// immediately followed by an instance of
// the ElementHeader struct. Because Elements can contain subelements, there
// may be more than one instance
// of the ElementHeader struct. With this first instance being the root
// element, and the other instances being
// the root's descendants. To identify which instances are an ElementHeader's
// children, each struct
// is immediately followed by a sequence of consecutive offsets to the start
// of its child structs.
// These offsets are 4 bytes in size, and the 0 offset signifies no more
// children.
struct FileHeader {
uint8_t ident[4]; // ASCII 'RSAD' identifying the file
uint32_t dims[3]; // Dimensions
uint16_t hdr_size; // Header size in bytes, including all element headers
};
struct ElementHeader {
uint16_t type; // DataType enum
uint32_t kind; // DataKind enum
uint32_t element_size; // Size of a single element, including padding
uint16_t vector_size; // Vector width
uint32_t array_size; // Number of elements in array
};
// Monotonically increasing from 1
static uint32_t ID;
// Maps Allocation DataType enum and vector size to printable strings
// using mapping from RenderScript numerical types summary documentation
static const char *RsDataTypeToString[][4];
// Maps Allocation DataKind enum to printable strings
static const char *RsDataKindToString[];
// Maps allocation types to format sizes for printing.
static const uint32_t RSTypeToFormat[][3];
// Give each allocation an ID as a way
// for commands to reference it.
const uint32_t id;
RenderScriptRuntime::Element element; // Allocation Element type
empirical_type<Dimension> dimension; // Dimensions of the Allocation
empirical_type<lldb::addr_t>
address; // Pointer to address of the RS Allocation
empirical_type<lldb::addr_t>
data_ptr; // Pointer to the data held by the Allocation
empirical_type<lldb::addr_t>
type_ptr; // Pointer to the RS Type of the Allocation
empirical_type<lldb::addr_t>
context; // Pointer to the RS Context of the Allocation
empirical_type<uint32_t> size; // Size of the allocation
empirical_type<uint32_t> stride; // Stride between rows of the allocation
// Give each allocation an id, so we can reference it in user commands.
AllocationDetails() : id(ID++) {}
bool shouldRefresh() const {
bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0;
valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0;
return !valid_ptrs || !dimension.isValid() || !size.isValid() ||
element.shouldRefresh();
}
};
const ConstString &RenderScriptRuntime::Element::GetFallbackStructName() {
static const ConstString FallbackStructName("struct");
return FallbackStructName;
}
uint32_t RenderScriptRuntime::AllocationDetails::ID = 1;
const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = {
"User", "Undefined", "Undefined", "Undefined",
"Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7
"L Pixel", "A Pixel", "LA Pixel", "RGB Pixel",
"RGBA Pixel", "Pixel Depth", "YUV Pixel"};
const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = {
{"None", "None", "None", "None"},
{"half", "half2", "half3", "half4"},
{"float", "float2", "float3", "float4"},
{"double", "double2", "double3", "double4"},
{"char", "char2", "char3", "char4"},
{"short", "short2", "short3", "short4"},
{"int", "int2", "int3", "int4"},
{"long", "long2", "long3", "long4"},
{"uchar", "uchar2", "uchar3", "uchar4"},
{"ushort", "ushort2", "ushort3", "ushort4"},
{"uint", "uint2", "uint3", "uint4"},
{"ulong", "ulong2", "ulong3", "ulong4"},
{"bool", "bool2", "bool3", "bool4"},
{"packed_565", "packed_565", "packed_565", "packed_565"},
{"packed_5551", "packed_5551", "packed_5551", "packed_5551"},
{"packed_4444", "packed_4444", "packed_4444", "packed_4444"},
{"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"},
{"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"},
{"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"},
// Handlers
{"RS Element", "RS Element", "RS Element", "RS Element"},
{"RS Type", "RS Type", "RS Type", "RS Type"},
{"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"},
{"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"},
{"RS Script", "RS Script", "RS Script", "RS Script"},
// Deprecated
{"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"},
{"RS Program Fragment", "RS Program Fragment", "RS Program Fragment",
"RS Program Fragment"},
{"RS Program Vertex", "RS Program Vertex", "RS Program Vertex",
"RS Program Vertex"},
{"RS Program Raster", "RS Program Raster", "RS Program Raster",
"RS Program Raster"},
{"RS Program Store", "RS Program Store", "RS Program Store",
"RS Program Store"},
{"RS Font", "RS Font", "RS Font", "RS Font"}};
// Used as an index into the RSTypeToFormat array elements
enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize };
// { format enum of single element, format enum of element vector, size of
// element}
const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = {
{eFormatHex, eFormatHex, 1}, // RS_TYPE_NONE
{eFormatFloat, eFormatVectorOfFloat16, 2}, // RS_TYPE_FLOAT_16
{eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, // RS_TYPE_FLOAT_32
{eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, // RS_TYPE_FLOAT_64
{eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, // RS_TYPE_SIGNED_8
{eFormatDecimal, eFormatVectorOfSInt16,
sizeof(int16_t)}, // RS_TYPE_SIGNED_16
{eFormatDecimal, eFormatVectorOfSInt32,
sizeof(int32_t)}, // RS_TYPE_SIGNED_32
{eFormatDecimal, eFormatVectorOfSInt64,
sizeof(int64_t)}, // RS_TYPE_SIGNED_64
{eFormatDecimal, eFormatVectorOfUInt8,
sizeof(uint8_t)}, // RS_TYPE_UNSIGNED_8
{eFormatDecimal, eFormatVectorOfUInt16,
sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_16
{eFormatDecimal, eFormatVectorOfUInt32,
sizeof(uint32_t)}, // RS_TYPE_UNSIGNED_32
{eFormatDecimal, eFormatVectorOfUInt64,
sizeof(uint64_t)}, // RS_TYPE_UNSIGNED_64
{eFormatBoolean, eFormatBoolean, 1}, // RS_TYPE_BOOL
{eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_6_5
{eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_5_5_5_1
{eFormatHex, eFormatHex, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_4_4_4_4
{eFormatVectorOfFloat32, eFormatVectorOfFloat32,
sizeof(float) * 16}, // RS_TYPE_MATRIX_4X4
{eFormatVectorOfFloat32, eFormatVectorOfFloat32,
sizeof(float) * 9}, // RS_TYPE_MATRIX_3X3
{eFormatVectorOfFloat32, eFormatVectorOfFloat32,
sizeof(float) * 4} // RS_TYPE_MATRIX_2X2
};
//------------------------------------------------------------------
// Static Functions
//------------------------------------------------------------------
LanguageRuntime *
RenderScriptRuntime::CreateInstance(Process *process,
lldb::LanguageType language) {
if (language == eLanguageTypeExtRenderScript)
return new RenderScriptRuntime(process);
else
return nullptr;
}
// Callback with a module to search for matching symbols.
// We first check that the module contains RS kernels.
// Then look for a symbol which matches our kernel name.
// The breakpoint address is finally set using the address of this symbol.
Searcher::CallbackReturn
RSBreakpointResolver::SearchCallback(SearchFilter &filter,
SymbolContext &context, Address *, bool) {
ModuleSP module = context.module_sp;
if (!module)
return Searcher::eCallbackReturnContinue;
// Is this a module containing renderscript kernels?
if (nullptr ==
module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"),
eSymbolTypeData))
return Searcher::eCallbackReturnContinue;
// Attempt to set a breakpoint on the kernel name symbol within the module
// library.
// If it's not found, it's likely debug info is unavailable - try to set a
// breakpoint on <name>.expand.
const Symbol *kernel_sym =
module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
if (!kernel_sym) {
std::string kernel_name_expanded(m_kernel_name.AsCString());
kernel_name_expanded.append(".expand");
kernel_sym = module->FindFirstSymbolWithNameAndType(
ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
}
if (kernel_sym) {
Address bp_addr = kernel_sym->GetAddress();
if (filter.AddressPasses(bp_addr))
m_breakpoint->AddLocation(bp_addr);
}
return Searcher::eCallbackReturnContinue;
}
void RenderScriptRuntime::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
"RenderScript language support", CreateInstance,
GetCommandObject);
}
void RenderScriptRuntime::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() {
static ConstString g_name("renderscript");
return g_name;
}
RenderScriptRuntime::ModuleKind
RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) {
if (module_sp) {
// Is this a module containing renderscript kernels?
const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(
ConstString(".rs.info"), eSymbolTypeData);
if (info_sym) {
return eModuleKindKernelObj;
}
// Is this the main RS runtime library
const ConstString rs_lib("libRS.so");
if (module_sp->GetFileSpec().GetFilename() == rs_lib) {
return eModuleKindLibRS;
}
const ConstString rs_driverlib("libRSDriver.so");
if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) {
return eModuleKindDriver;
}
const ConstString rs_cpureflib("libRSCpuRef.so");
if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) {
return eModuleKindImpl;
}
}
return eModuleKindIgnored;
}
bool RenderScriptRuntime::IsRenderScriptModule(
const lldb::ModuleSP &module_sp) {
return GetModuleKind(module_sp) != eModuleKindIgnored;
}
void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) {
std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex());
size_t num_modules = module_list.GetSize();
for (size_t i = 0; i < num_modules; i++) {
auto mod = module_list.GetModuleAtIndex(i);
if (IsRenderScriptModule(mod)) {
LoadModule(mod);
}
}
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
lldb_private::ConstString RenderScriptRuntime::GetPluginName() {
return GetPluginNameStatic();
}
uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; }
bool RenderScriptRuntime::IsVTableName(const char *name) { return false; }
bool RenderScriptRuntime::GetDynamicTypeAndAddress(
ValueObject &in_value, lldb::DynamicValueType use_dynamic,
TypeAndOrName &class_type_or_name, Address &address,
Value::ValueType &value_type) {
return false;
}
TypeAndOrName
RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name,
ValueObject &static_value) {
return type_and_or_name;
}
bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) {
return false;
}
lldb::BreakpointResolverSP
RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp,
bool throw_bp) {
BreakpointResolverSP resolver_sp;
return resolver_sp;
}
const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] =
{
// rsdScript
{"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP"
"NS0_7ScriptCEPKcS7_PKhjj",
"_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_"
"7ScriptCEPKcS7_PKhmj",
0, RenderScriptRuntime::eModuleKindDriver,
&lldb_private::RenderScriptRuntime::CaptureScriptInit},
{"rsdScriptInvokeForEachMulti",
"_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
"_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall",
"_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0"
"_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall",
0, RenderScriptRuntime::eModuleKindDriver,
&lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti},
{"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render"
"script7ContextEPKNS0_6ScriptEjPvj",
"_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_"
"6ScriptEjPvm",
0, RenderScriptRuntime::eModuleKindDriver,
&lldb_private::RenderScriptRuntime::CaptureSetGlobalVar},
// rsdAllocation
{"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C"
"ontextEPNS0_10AllocationEb",
"_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_"
"10AllocationEb",
0, RenderScriptRuntime::eModuleKindDriver,
&lldb_private::RenderScriptRuntime::CaptureAllocationInit},
{"rsdAllocationRead2D",
"_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
"10AllocationEjjj23RsAllocationCubemapFacejjPvjj",
"_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_"
"10AllocationEjjj23RsAllocationCubemapFacejjPvmm",
0, RenderScriptRuntime::eModuleKindDriver, nullptr},
{"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc"
"ript7ContextEPNS0_10AllocationE",
"_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_"
"10AllocationE",
0, RenderScriptRuntime::eModuleKindDriver,
&lldb_private::RenderScriptRuntime::CaptureAllocationDestroy},
};
const size_t RenderScriptRuntime::s_runtimeHookCount =
sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]);
bool RenderScriptRuntime::HookCallback(void *baton,
StoppointCallbackContext *ctx,
lldb::user_id_t break_id,
lldb::user_id_t break_loc_id) {
RuntimeHook *hook_info = (RuntimeHook *)baton;
ExecutionContext context(ctx->exe_ctx_ref);
RenderScriptRuntime *lang_rt =
(RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript);
lang_rt->HookCallback(hook_info, context);
return false;
}
void RenderScriptRuntime::HookCallback(RuntimeHook *hook_info,
ExecutionContext &context) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (log)
log->Printf("%s - '%s'", __FUNCTION__, hook_info->defn->name);
if (hook_info->defn->grabber) {
(this->*(hook_info->defn->grabber))(hook_info, context);
}
}
void RenderScriptRuntime::CaptureScriptInvokeForEachMulti(
RuntimeHook *hook_info, ExecutionContext &context) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
enum {
eRsContext = 0,
eRsScript,
eRsSlot,
eRsAIns,
eRsInLen,
eRsAOut,
eRsUsr,
eRsUsrLen,
eRsSc,
};
std::array<ArgItem, 9> args{{
ArgItem{ArgItem::ePointer, 0}, // const Context *rsc
ArgItem{ArgItem::ePointer, 0}, // Script *s
ArgItem{ArgItem::eInt32, 0}, // uint32_t slot
ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns
ArgItem{ArgItem::eInt32, 0}, // size_t inLen
ArgItem{ArgItem::ePointer, 0}, // Allocation *aout
ArgItem{ArgItem::ePointer, 0}, // const void *usr
ArgItem{ArgItem::eInt32, 0}, // size_t usrLen
ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc
}};
bool success = GetArgs(context, &args[0], args.size());
if (!success) {
if (log)
log->Printf("%s - Error while reading the function parameters",
__FUNCTION__);
return;
}
const uint32_t target_ptr_size = m_process->GetAddressByteSize();
Error error;
std::vector<uint64_t> allocs;
// traverse allocation list
for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) {
// calculate offest to allocation pointer
const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size;
// Note: due to little endian layout, reading 32bits or 64bits into res64
// will
// give the correct results.
uint64_t res64 = 0;
size_t read = m_process->ReadMemory(addr, &res64, target_ptr_size, error);
if (read != target_ptr_size || !error.Success()) {
if (log)
log->Printf(
"%s - Error while reading allocation list argument %" PRIu64,
__FUNCTION__, i);
} else {
allocs.push_back(res64);
}
}
// if there is an output allocation track it
if (uint64_t aOut = uint64_t(args[eRsAOut])) {
allocs.push_back(aOut);
}
// for all allocations we have found
for (const uint64_t alloc_addr : allocs) {
AllocationDetails *alloc = LookUpAllocation(alloc_addr);
if (!alloc)
alloc = CreateAllocation(alloc_addr);
if (alloc) {
// save the allocation address
if (alloc->address.isValid()) {
// check the allocation address we already have matches
assert(*alloc->address.get() == alloc_addr);
} else {
alloc->address = alloc_addr;
}
// save the context
if (log) {
if (alloc->context.isValid() &&
*alloc->context.get() != addr_t(args[eRsContext]))
log->Printf("%s - Allocation used by multiple contexts",
__FUNCTION__);
}
alloc->context = addr_t(args[eRsContext]);
}
}
// make sure we track this script object
if (lldb_private::RenderScriptRuntime::ScriptDetails *script =
LookUpScript(addr_t(args[eRsScript]), true)) {
if (log) {
if (script->context.isValid() &&
*script->context.get() != addr_t(args[eRsContext]))
log->Printf("%s - Script used by multiple contexts", __FUNCTION__);
}
script->context = addr_t(args[eRsContext]);
}
}
void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook_info,
ExecutionContext &context) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
enum {
eRsContext,
eRsScript,
eRsId,
eRsData,
eRsLength,
};
std::array<ArgItem, 5> args{{
ArgItem{ArgItem::ePointer, 0}, // eRsContext
ArgItem{ArgItem::ePointer, 0}, // eRsScript
ArgItem{ArgItem::eInt32, 0}, // eRsId
ArgItem{ArgItem::ePointer, 0}, // eRsData
ArgItem{ArgItem::eInt32, 0}, // eRsLength
}};
bool success = GetArgs(context, &args[0], args.size());
if (!success) {
if (log)
log->Printf("%s - error reading the function parameters.", __FUNCTION__);
return;
}
if (log) {
log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64
":%" PRIu64 "bytes.",
__FUNCTION__, uint64_t(args[eRsContext]),
uint64_t(args[eRsScript]), uint64_t(args[eRsId]),
uint64_t(args[eRsData]), uint64_t(args[eRsLength]));
addr_t script_addr = addr_t(args[eRsScript]);
if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) {
auto rsm = m_scriptMappings[script_addr];
if (uint64_t(args[eRsId]) < rsm->m_globals.size()) {
auto rsg = rsm->m_globals[uint64_t(args[eRsId])];
log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__,
rsg.m_name.AsCString(),
rsm->m_module->GetFileSpec().GetFilename().AsCString());
}
}
}
}
void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook_info,
ExecutionContext &context) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
enum { eRsContext, eRsAlloc, eRsForceZero };
std::array<ArgItem, 3> args{{
ArgItem{ArgItem::ePointer, 0}, // eRsContext
ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
ArgItem{ArgItem::eBool, 0}, // eRsForceZero
}};
bool success = GetArgs(context, &args[0], args.size());
if (!success) // error case
{
if (log)
log->Printf("%s - error while reading the function parameters",
__FUNCTION__);
return; // abort
}
if (log)
log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .",
__FUNCTION__, uint64_t(args[eRsContext]),
uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero]));
AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc]));
if (alloc)
alloc->context = uint64_t(args[eRsContext]);
}
void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook_info,
ExecutionContext &context) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
enum {
eRsContext,
eRsAlloc,
};
std::array<ArgItem, 2> args{{
ArgItem{ArgItem::ePointer, 0}, // eRsContext
ArgItem{ArgItem::ePointer, 0}, // eRsAlloc
}};
bool success = GetArgs(context, &args[0], args.size());
if (!success) {
if (log)
log->Printf("%s - error while reading the function parameters.",
__FUNCTION__);
return;
}
if (log)
log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__,
uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc]));
for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) {
auto &allocation_ap = *iter; // get the unique pointer
if (allocation_ap->address.isValid() &&
*allocation_ap->address.get() == addr_t(args[eRsAlloc])) {
m_allocations.erase(iter);
if (log)
log->Printf("%s - deleted allocation entry.", __FUNCTION__);
return;
}
}
if (log)
log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__);
}
void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook_info,
ExecutionContext &context) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
Error error;
Process *process = context.GetProcessPtr();
enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr };
std::array<ArgItem, 4> args{
{ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0},
ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}};
bool success = GetArgs(context, &args[0], args.size());
if (!success) {
if (log)
log->Printf("%s - error while reading the function parameters.",
__FUNCTION__);
return;
}
std::string resname;
process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), resname, error);
if (error.Fail()) {
if (log)
log->Printf("%s - error reading resname: %s.", __FUNCTION__,
error.AsCString());
}
std::string cachedir;
process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cachedir,
error);
if (error.Fail()) {
if (log)
log->Printf("%s - error reading cachedir: %s.", __FUNCTION__,
error.AsCString());
}
if (log)
log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .",
__FUNCTION__, uint64_t(args[eRsContext]),
uint64_t(args[eRsScript]), resname.c_str(), cachedir.c_str());
if (resname.size() > 0) {
StreamString strm;
strm.Printf("librs.%s.so", resname.c_str());
ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true);
if (script) {
script->type = ScriptDetails::eScriptC;
script->cacheDir = cachedir;
script->resName = resname;
script->scriptDyLib = strm.GetData();
script->context = addr_t(args[eRsContext]);
}
if (log)
log->Printf("%s - '%s' tagged with context 0x%" PRIx64
" and script 0x%" PRIx64 ".",
__FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]),
uint64_t(args[eRsScript]));
} else if (log) {
log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__);
}
}
void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module,
ModuleKind kind) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!module) {
return;
}
Target &target = GetProcess()->GetTarget();
llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine();
if (targetArchType != llvm::Triple::ArchType::x86 &&
targetArchType != llvm::Triple::ArchType::arm &&
targetArchType != llvm::Triple::ArchType::aarch64 &&
targetArchType != llvm::Triple::ArchType::mipsel &&
targetArchType != llvm::Triple::ArchType::mips64el &&
targetArchType != llvm::Triple::ArchType::x86_64) {
if (log)
log->Printf("%s - unable to hook runtime functions.", __FUNCTION__);
return;
}
uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize();
for (size_t idx = 0; idx < s_runtimeHookCount; idx++) {
const HookDefn *hook_defn = &s_runtimeHookDefns[idx];
if (hook_defn->kind != kind) {
continue;
}
const char *symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32
: hook_defn->symbol_name_m64;
const Symbol *sym = module->FindFirstSymbolWithNameAndType(
ConstString(symbol_name), eSymbolTypeCode);
if (!sym) {
if (log) {
log->Printf("%s - symbol '%s' related to the function %s not found",
__FUNCTION__, symbol_name, hook_defn->name);
}
continue;
}
addr_t addr = sym->GetLoadAddress(&target);
if (addr == LLDB_INVALID_ADDRESS) {
if (log)
log->Printf("%s - unable to resolve the address of hook function '%s' "
"with symbol '%s'.",
__FUNCTION__, hook_defn->name, symbol_name);
continue;
} else {
if (log)
log->Printf("%s - function %s, address resolved at 0x%" PRIx64,
__FUNCTION__, hook_defn->name, addr);
}
RuntimeHookSP hook(new RuntimeHook());
hook->address = addr;
hook->defn = hook_defn;
hook->bp_sp = target.CreateBreakpoint(addr, true, false);
hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
m_runtimeHooks[addr] = hook;
if (log) {
log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64
" at 0x%" PRIx64 ".",
__FUNCTION__, hook_defn->name,
module->GetFileSpec().GetFilename().AsCString(),
(uint64_t)hook_defn->version, (uint64_t)addr);
}
}
}
void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) {
if (!rsmodule_sp)
return;
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
const ModuleSP module = rsmodule_sp->m_module;
const FileSpec &file = module->GetPlatformFileSpec();
// Iterate over all of the scripts that we currently know of.
// Note: We cant push or pop to m_scripts here or it may invalidate rs_script.
for (const auto &rs_script : m_scripts) {
// Extract the expected .so file path for this script.
std::string dylib;
if (!rs_script->scriptDyLib.get(dylib))
continue;
// Only proceed if the module that has loaded corresponds to this script.
if (file.GetFilename() != ConstString(dylib.c_str()))
continue;
// Obtain the script address which we use as a key.
lldb::addr_t script;
if (!rs_script->script.get(script))
continue;
// If we have a script mapping for the current script.
if (m_scriptMappings.find(script) != m_scriptMappings.end()) {
// if the module we have stored is different to the one we just received.
if (m_scriptMappings[script] != rsmodule_sp) {
if (log)
log->Printf(
"%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.",
__FUNCTION__, (uint64_t)script,
rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
}
}
// We don't have a script mapping for the current script.
else {
// Obtain the script resource name.
std::string resName;
if (rs_script->resName.get(resName))
// Set the modules resource name.
rsmodule_sp->m_resname = resName;
// Add Script/Module pair to map.
m_scriptMappings[script] = rsmodule_sp;
if (log)
log->Printf(
"%s - script %" PRIx64 " associated with rsmodule '%s'.",
__FUNCTION__, (uint64_t)script,
rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
}
}
}
// Uses the Target API to evaluate the expression passed as a parameter to the
// function
// The result of that expression is returned an unsigned 64 bit int, via the
// result* parameter.
// Function returns true on success, and false on failure
bool RenderScriptRuntime::EvalRSExpression(const char *expression,
StackFrame *frame_ptr,
uint64_t *result) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (log)
log->Printf("%s(%s)", __FUNCTION__, expression);
ValueObjectSP expr_result;
EvaluateExpressionOptions options;
options.SetLanguage(lldb::eLanguageTypeC_plus_plus);
// Perform the actual expression evaluation
GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr,
expr_result, options);
if (!expr_result) {
if (log)
log->Printf("%s: couldn't evaluate expression.", __FUNCTION__);
return false;
}
// The result of the expression is invalid
if (!expr_result->GetError().Success()) {
Error err = expr_result->GetError();
if (err.GetError() == UserExpression::kNoResult) // Expression returned
// void, so this is
// actually a success
{
if (log)
log->Printf("%s - expression returned void.", __FUNCTION__);
result = nullptr;
return true;
}
if (log)
log->Printf("%s - error evaluating expression result: %s", __FUNCTION__,
err.AsCString());
return false;
}
bool success = false;
*result = expr_result->GetValueAsUnsigned(
0, &success); // We only read the result as an uint32_t.
if (!success) {
if (log)
log->Printf("%s - couldn't convert expression result to uint32_t",
__FUNCTION__);
return false;
}
return true;
}
namespace {
// Used to index expression format strings
enum ExpressionStrings {
eExprGetOffsetPtr = 0,
eExprAllocGetType,
eExprTypeDimX,
eExprTypeDimY,
eExprTypeDimZ,
eExprTypeElemPtr,
eExprElementType,
eExprElementKind,
eExprElementVec,
eExprElementFieldCount,
eExprSubelementsId,
eExprSubelementsName,
eExprSubelementsArrSize,
_eExprLast // keep at the end, implicit size of the array runtimeExpressions
};
// max length of an expanded expression
const int jit_max_expr_size = 512;
// Retrieve the string to JIT for the given expression
const char *JITTemplate(ExpressionStrings e) {
// Format strings containing the expressions we may need to evaluate.
static std::array<const char *, _eExprLast> runtimeExpressions = {
{// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
"(int*)_"
"Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation"
"CubemapFace"
"(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)",
// Type* rsaAllocationGetType(Context*, Allocation*)
"(void*)rsaAllocationGetType(0x%" PRIx64 ", 0x%" PRIx64 ")",
// rsaTypeGetNativeData(Context*, Type*, void* typeData, size)
// Pack the data in the following way mHal.state.dimX; mHal.state.dimY;
// mHal.state.dimZ;
// mHal.state.lodCount; mHal.state.faces; mElement; into typeData
// Need to specify 32 or 64 bit for uint_t since this differs between
// devices
"uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64
", 0x%" PRIx64 ", data, 6); data[0]", // X dim
"uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64
", 0x%" PRIx64 ", data, 6); data[1]", // Y dim
"uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64
", 0x%" PRIx64 ", data, 6); data[2]", // Z dim
"uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(0x%" PRIx64
", 0x%" PRIx64 ", data, 6); data[5]", // Element ptr
// rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
// Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into
// elemData
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64
", 0x%" PRIx64 ", data, 5); data[0]", // Type
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64
", 0x%" PRIx64 ", data, 5); data[1]", // Kind
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64
", 0x%" PRIx64 ", data, 5); data[3]", // Vector Size
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%" PRIx64
", 0x%" PRIx64 ", data, 5); data[4]", // Field Count
// rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t
// *ids, const char **names,
// size_t *arraySizes, uint32_t dataSize)
// Needed for Allocations of structs to gather details about
// fields/Subelements
// Element* of field
"void* ids[%" PRIu32 "]; const char* names[%" PRIu32
"]; size_t arr_size[%" PRIu32 "];"
"(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64
", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]",
// Name of field
"void* ids[%" PRIu32 "]; const char* names[%" PRIu32
"]; size_t arr_size[%" PRIu32 "];"
"(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64
", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]",
// Array size of field
"void* ids[%" PRIu32 "]; const char* names[%" PRIu32
"]; size_t arr_size[%" PRIu32 "];"
"(void*)rsaElementGetSubElements(0x%" PRIx64 ", 0x%" PRIx64
", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}};
return runtimeExpressions[e];
}
} // end of the anonymous namespace
// JITs the RS runtime for the internal data pointer of an allocation.
// Is passed x,y,z coordinates for the pointer to a specific element.
// Then sets the data_ptr member in Allocation with the result.
// Returns true on success, false otherwise
bool RenderScriptRuntime::JITDataPointer(AllocationDetails *allocation,
StackFrame *frame_ptr, uint32_t x,
uint32_t y, uint32_t z) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->address.isValid()) {
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
char buffer[jit_max_expr_size];
int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr,
*allocation->address.get(), x, y, z);
if (chars_written < 0) {
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
} else if (chars_written >= jit_max_expr_size) {
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(buffer, frame_ptr, &result))
return false;
addr_t mem_ptr = static_cast<lldb::addr_t>(result);
allocation->data_ptr = mem_ptr;
return true;
}
// JITs the RS runtime for the internal pointer to the RS Type of an allocation
// Then sets the type_ptr member in Allocation with the result.
// Returns true on success, false otherwise
bool RenderScriptRuntime::JITTypePointer(AllocationDetails *allocation,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->address.isValid() || !allocation->context.isValid()) {
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
const char *expr_cstr = JITTemplate(eExprAllocGetType);
char buffer[jit_max_expr_size];
int chars_written =
snprintf(buffer, jit_max_expr_size, expr_cstr, *allocation->context.get(),
*allocation->address.get());
if (chars_written < 0) {
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
} else if (chars_written >= jit_max_expr_size) {
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(buffer, frame_ptr, &result))
return false;
addr_t type_ptr = static_cast<lldb::addr_t>(result);
allocation->type_ptr = type_ptr;
return true;
}
// JITs the RS runtime for information about the dimensions and type of an
// allocation
// Then sets dimension and element_ptr members in Allocation with the result.
// Returns true on success, false otherwise
bool RenderScriptRuntime::JITTypePacked(AllocationDetails *allocation,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->type_ptr.isValid() || !allocation->context.isValid()) {
if (log)
log->Printf("%s - Failed to find allocation details.", __FUNCTION__);
return false;
}
// Expression is different depending on if device is 32 or 64 bit
uint32_t archByteSize =
GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
const uint32_t bits = archByteSize == 4 ? 32 : 64;
// We want 4 elements from packed data
const uint32_t num_exprs = 4;
assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) &&
"Invalid number of expressions");
char buffer[num_exprs][jit_max_expr_size];
uint64_t results[num_exprs];
for (uint32_t i = 0; i < num_exprs; ++i) {
const char *expr_cstr = JITTemplate(ExpressionStrings(eExprTypeDimX + i));
int chars_written =
snprintf(buffer[i], jit_max_expr_size, expr_cstr, bits,
*allocation->context.get(), *allocation->type_ptr.get());
if (chars_written < 0) {
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
} else if (chars_written >= jit_max_expr_size) {
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
// Perform expression evaluation
if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
return false;
}
// Assign results to allocation members
AllocationDetails::Dimension dims;
dims.dim_1 = static_cast<uint32_t>(results[0]);
dims.dim_2 = static_cast<uint32_t>(results[1]);
dims.dim_3 = static_cast<uint32_t>(results[2]);
allocation->dimension = dims;
addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]);
allocation->element.element_ptr = elem_ptr;
if (log)
log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32
") Element*: 0x%" PRIx64 ".",
__FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr);
return true;
}
// JITs the RS runtime for information about the Element of an allocation
// Then sets type, type_vec_size, field_count and type_kind members in Element
// with the result.
// Returns true on success, false otherwise
bool RenderScriptRuntime::JITElementPacked(Element &elem,
const lldb::addr_t context,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!elem.element_ptr.isValid()) {
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
// We want 4 elements from packed data
const uint32_t num_exprs = 4;
assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) &&
"Invalid number of expressions");
char buffer[num_exprs][jit_max_expr_size];
uint64_t results[num_exprs];
for (uint32_t i = 0; i < num_exprs; i++) {
const char *expr_cstr =
JITTemplate(ExpressionStrings(eExprElementType + i));
int chars_written = snprintf(buffer[i], jit_max_expr_size, expr_cstr,
context, *elem.element_ptr.get());
if (chars_written < 0) {
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
} else if (chars_written >= jit_max_expr_size) {
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
// Perform expression evaluation
if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
return false;
}
// Assign results to allocation members
elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
elem.type_kind =
static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
elem.type_vec_size = static_cast<uint32_t>(results[2]);
elem.field_count = static_cast<uint32_t>(results[3]);
if (log)
log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32
", vector size %" PRIu32 ", field count %" PRIu32,
__FUNCTION__, *elem.type.get(), *elem.type_kind.get(),
*elem.type_vec_size.get(), *elem.field_count.get());
// If this Element has subelements then JIT rsaElementGetSubElements() for
// details about its fields
if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr))
return false;
return true;
}
// JITs the RS runtime for information about the subelements/fields of a struct
// allocation
// This is necessary for infering the struct type so we can pretty print the
// allocation's contents.
// Returns true on success, false otherwise
bool RenderScriptRuntime::JITSubelements(Element &elem,
const lldb::addr_t context,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) {
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
const short num_exprs = 3;
assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) &&
"Invalid number of expressions");
char expr_buffer[jit_max_expr_size];
uint64_t results;
// Iterate over struct fields.
const uint32_t field_count = *elem.field_count.get();
for (uint32_t field_index = 0; field_index < field_count; ++field_index) {
Element child;
for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) {
const char *expr_cstr =
JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index));
int chars_written =
snprintf(expr_buffer, jit_max_expr_size, expr_cstr, field_count,
field_count, field_count, context, *elem.element_ptr.get(),
field_count, field_index);
if (chars_written < 0) {
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
} else if (chars_written >= jit_max_expr_size) {
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
// Perform expression evaluation
if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
return false;
if (log)
log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results);
switch (expr_index) {
case 0: // Element* of child
child.element_ptr = static_cast<addr_t>(results);
break;
case 1: // Name of child
{
lldb::addr_t address = static_cast<addr_t>(results);
Error err;
std::string name;
GetProcess()->ReadCStringFromMemory(address, name, err);
if (!err.Fail())
child.type_name = ConstString(name);
else {
if (log)
log->Printf("%s - warning: Couldn't read field name.",
__FUNCTION__);
}
break;
}
case 2: // Array size of child
child.array_size = static_cast<uint32_t>(results);
break;
}
}
// We need to recursively JIT each Element field of the struct since
// structs can be nested inside structs.
if (!JITElementPacked(child, context, frame_ptr))
return false;
elem.children.push_back(child);
}
// Try to infer the name of the struct type so we can pretty print the
// allocation contents.
FindStructTypeName(elem, frame_ptr);
return true;
}
// JITs the RS runtime for the address of the last element in the allocation.
// The `elem_size` parameter represents the size of a single element, including
// padding.
// Which is needed as an offset from the last element pointer.
// Using this offset minus the starting address we can calculate the size of the
// allocation.
// Returns true on success, false otherwise
bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *allocation,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->address.isValid() || !allocation->dimension.isValid() ||
!allocation->data_ptr.isValid() ||
!allocation->element.datum_size.isValid()) {
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
// Find dimensions
uint32_t dim_x = allocation->dimension.get()->dim_1;
uint32_t dim_y = allocation->dimension.get()->dim_2;
uint32_t dim_z = allocation->dimension.get()->dim_3;
// Our plan of jitting the last element address doesn't seem to work for
// struct Allocations
// Instead try to infer the size ourselves without any inter element padding.
if (allocation->element.children.size() > 0) {
if (dim_x == 0)
dim_x = 1;
if (dim_y == 0)
dim_y = 1;
if (dim_z == 0)
dim_z = 1;
allocation->size =
dim_x * dim_y * dim_z * *allocation->element.datum_size.get();
if (log)
log->Printf("%s - inferred size of struct allocation %" PRIu32 ".",
__FUNCTION__, *allocation->size.get());
return true;
}
const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
char buffer[jit_max_expr_size];
// Calculate last element
dim_x = dim_x == 0 ? 0 : dim_x - 1;
dim_y = dim_y == 0 ? 0 : dim_y - 1;
dim_z = dim_z == 0 ? 0 : dim_z - 1;
int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr,
*allocation->address.get(), dim_x, dim_y, dim_z);
if (chars_written < 0) {
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
} else if (chars_written >= jit_max_expr_size) {
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(buffer, frame_ptr, &result))
return false;
addr_t mem_ptr = static_cast<lldb::addr_t>(result);
// Find pointer to last element and add on size of an element
allocation->size =
static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) +
*allocation->element.datum_size.get();
return true;
}
// JITs the RS runtime for information about the stride between rows in the
// allocation.
// This is done to detect padding, since allocated memory is 16-byte aligned.
// Returns true on success, false otherwise
bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *allocation,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->address.isValid() || !allocation->data_ptr.isValid()) {
if (log)
log->Printf("%s - failed to find allocation details.", __FUNCTION__);
return false;
}
const char *expr_cstr = JITTemplate(eExprGetOffsetPtr);
char buffer[jit_max_expr_size];
int chars_written = snprintf(buffer, jit_max_expr_size, expr_cstr,
*allocation->address.get(), 0, 1, 0);
if (chars_written < 0) {
if (log)
log->Printf("%s - encoding error in snprintf().", __FUNCTION__);
return false;
} else if (chars_written >= jit_max_expr_size) {
if (log)
log->Printf("%s - expression too long.", __FUNCTION__);
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(buffer, frame_ptr, &result))
return false;
addr_t mem_ptr = static_cast<lldb::addr_t>(result);
allocation->stride =
static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get());
return true;
}
// JIT all the current runtime info regarding an allocation
bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *allocation,
StackFrame *frame_ptr) {
// GetOffsetPointer()
if (!JITDataPointer(allocation, frame_ptr))
return false;
// rsaAllocationGetType()
if (!JITTypePointer(allocation, frame_ptr))
return false;
// rsaTypeGetNativeData()
if (!JITTypePacked(allocation, frame_ptr))
return false;
// rsaElementGetNativeData()
if (!JITElementPacked(allocation->element, *allocation->context.get(),
frame_ptr))
return false;
// Sets the datum_size member in Element
SetElementSize(allocation->element);
// Use GetOffsetPointer() to infer size of the allocation
if (!JITAllocationSize(allocation, frame_ptr))
return false;
return true;
}
// Function attempts to set the type_name member of the paramaterised Element
// object.
// This string should be the name of the struct type the Element represents.
// We need this string for pretty printing the Element to users.
void RenderScriptRuntime::FindStructTypeName(Element &elem,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!elem.type_name.IsEmpty()) // Name already set
return;
else
elem.type_name = Element::GetFallbackStructName(); // Default type name if
// we don't succeed
// Find all the global variables from the script rs modules
VariableList variable_list;
for (auto module_sp : m_rsmodules)
module_sp->m_module->FindGlobalVariables(RegularExpression("."), true,
UINT32_MAX, variable_list);
// Iterate over all the global variables looking for one with a matching type
// to the Element.
// We make the assumption a match exists since there needs to be a global
// variable to reflect the
// struct type back into java host code.
for (uint32_t var_index = 0; var_index < variable_list.GetSize();
++var_index) {
const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index));
if (!var_sp)
continue;
ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
if (!valobj_sp)
continue;
// Find the number of variable fields.
// If it has no fields, or more fields than our Element, then it can't be
// the struct we're looking for.
// Don't check for equality since RS can add extra struct members for
// padding.
size_t num_children = valobj_sp->GetNumChildren();
if (num_children > elem.children.size() || num_children == 0)
continue;
// Iterate over children looking for members with matching field names.
// If all the field names match, this is likely the struct we want.
//
// TODO: This could be made more robust by also checking children data
// sizes, or array size
bool found = true;
for (size_t child_index = 0; child_index < num_children; ++child_index) {
ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true);
if (!child ||
(child->GetName() != elem.children[child_index].type_name)) {
found = false;
break;
}
}
// RS can add extra struct members for padding in the format
// '#rs_padding_[0-9]+'
if (found && num_children < elem.children.size()) {
const uint32_t size_diff = elem.children.size() - num_children;
if (log)
log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__,
size_diff);
for (uint32_t padding_index = 0; padding_index < size_diff;
++padding_index) {
const ConstString &name =
elem.children[num_children + padding_index].type_name;
if (strcmp(name.AsCString(), "#rs_padding") < 0)
found = false;
}
}
// We've found a global var with matching type
if (found) {
// Dereference since our Element type isn't a pointer.
if (valobj_sp->IsPointerType()) {
Error err;
ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
if (!err.Fail())
valobj_sp = deref_valobj;
}
// Save name of variable in Element.
elem.type_name = valobj_sp->GetTypeName();
if (log)
log->Printf("%s - element name set to %s", __FUNCTION__,
elem.type_name.AsCString());
return;
}
}
}
// Function sets the datum_size member of Element. Representing the size of a
// single instance including padding.
// Assumes the relevant allocation information has already been jitted.
void RenderScriptRuntime::SetElementSize(Element &elem) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
const Element::DataType type = *elem.type.get();
assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
"Invalid allocation type");
const uint32_t vec_size = *elem.type_vec_size.get();
uint32_t data_size = 0;
uint32_t padding = 0;
// Element is of a struct type, calculate size recursively.
if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) {
for (Element &child : elem.children) {
SetElementSize(child);
const uint32_t array_size =
child.array_size.isValid() ? *child.array_size.get() : 1;
data_size += *child.datum_size.get() * array_size;
}
}
// These have been packed already
else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 ||
type == Element::RS_TYPE_UNSIGNED_5_5_5_1 ||
type == Element::RS_TYPE_UNSIGNED_4_4_4_4) {
data_size = AllocationDetails::RSTypeToFormat[type][eElementSize];
} else if (type < Element::RS_TYPE_ELEMENT) {
data_size =
vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
if (vec_size == 3)
padding = AllocationDetails::RSTypeToFormat[type][eElementSize];
} else
data_size =
GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
elem.padding = padding;
elem.datum_size = data_size + padding;
if (log)
log->Printf("%s - element size set to %" PRIu32, __FUNCTION__,
data_size + padding);
}
// Given an allocation, this function copies the allocation contents from device
// into a buffer on the heap.
// Returning a shared pointer to the buffer containing the data.
std::shared_ptr<uint8_t>
RenderScriptRuntime::GetAllocationData(AllocationDetails *allocation,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// JIT all the allocation details
if (allocation->shouldRefresh()) {
if (log)
log->Printf("%s - allocation details not calculated yet, jitting info",
__FUNCTION__);
if (!RefreshAllocation(allocation, frame_ptr)) {
if (log)
log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
return nullptr;
}
}
assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() &&
allocation->element.type_vec_size.isValid() &&
allocation->size.isValid() && "Allocation information not available");
// Allocate a buffer to copy data into
const uint32_t size = *allocation->size.get();
std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
if (!buffer) {
if (log)
log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer",
__FUNCTION__, size);
return nullptr;
}
// Read the inferior memory
Error error;
lldb::addr_t data_ptr = *allocation->data_ptr.get();
GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error);
if (error.Fail()) {
if (log)
log->Printf("%s - '%s' Couldn't read %" PRIu32
" bytes of allocation data from 0x%" PRIx64,
__FUNCTION__, error.AsCString(), size, data_ptr);
return nullptr;
}
return buffer;
}
// Function copies data from a binary file into an allocation.
// There is a header at the start of the file, FileHeader, before the data
// content itself.
// Information from this header is used to display warnings to the user about
// incompatibilities
bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id,
const char *filename,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Find allocation with the given id
AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
if (!alloc)
return false;
if (log)
log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__,
*alloc->address.get());
// JIT all the allocation details
if (alloc->shouldRefresh()) {
if (log)
log->Printf("%s - allocation details not calculated yet, jitting info.",
__FUNCTION__);
if (!RefreshAllocation(alloc, frame_ptr)) {
if (log)
log->Printf("%s - couldn't JIT allocation details", __FUNCTION__);
return false;
}
}
assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
alloc->element.type_vec_size.isValid() && alloc->size.isValid() &&
alloc->element.datum_size.isValid() &&
"Allocation information not available");
// Check we can read from file
FileSpec file(filename, true);
if (!file.Exists()) {
strm.Printf("Error: File %s does not exist", filename);
strm.EOL();
return false;
}
if (!file.Readable()) {
strm.Printf("Error: File %s does not have readable permissions", filename);
strm.EOL();
return false;
}
// Read file into data buffer
DataBufferSP data_sp(file.ReadFileContents());
// Cast start of buffer to FileHeader and use pointer to read metadata
void *file_buffer = data_sp->GetBytes();
if (file_buffer == nullptr ||
data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) +
sizeof(AllocationDetails::ElementHeader))) {
strm.Printf("Error: File %s does not contain enough data for header",
filename);
strm.EOL();
return false;
}
const AllocationDetails::FileHeader *file_header =
static_cast<AllocationDetails::FileHeader *>(file_buffer);
// Check file starts with ascii characters "RSAD"
if (memcmp(file_header->ident, "RSAD", 4)) {
strm.Printf("Error: File doesn't contain identifier for an RS allocation "
"dump. Are you sure this is the correct file?");
strm.EOL();
return false;
}
// Look at the type of the root element in the header
AllocationDetails::ElementHeader root_element_header;
memcpy(&root_element_header, static_cast<uint8_t *>(file_buffer) +
sizeof(AllocationDetails::FileHeader),
sizeof(AllocationDetails::ElementHeader));
if (log)
log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32,
__FUNCTION__, root_element_header.type,
root_element_header.element_size);
// Check if the target allocation and file both have the same number of bytes
// for an Element
if (*alloc->element.datum_size.get() != root_element_header.element_size) {
strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32
" bytes, allocation %" PRIu32 " bytes",
root_element_header.element_size,
*alloc->element.datum_size.get());
strm.EOL();
}
// Check if the target allocation and file both have the same type
const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get());
const uint32_t file_type = root_element_header.type;
if (file_type > Element::RS_TYPE_FONT) {
strm.Printf("Warning: File has unknown allocation type");
strm.EOL();
} else if (alloc_type != file_type) {
// Enum value isn't monotonous, so doesn't always index RsDataTypeToString
// array
uint32_t printable_target_type_index = alloc_type;
uint32_t printable_head_type_index = file_type;
if (alloc_type >= Element::RS_TYPE_ELEMENT &&
alloc_type <= Element::RS_TYPE_FONT)
printable_target_type_index = static_cast<Element::DataType>(
(alloc_type - Element::RS_TYPE_ELEMENT) +
Element::RS_TYPE_MATRIX_2X2 + 1);
if (file_type >= Element::RS_TYPE_ELEMENT &&
file_type <= Element::RS_TYPE_FONT)
printable_head_type_index = static_cast<Element::DataType>(
(file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 +
1);
const char *file_type_cstr =
AllocationDetails::RsDataTypeToString[printable_head_type_index][0];
const char *target_type_cstr =
AllocationDetails::RsDataTypeToString[printable_target_type_index][0];
strm.Printf(
"Warning: Mismatched Types - file '%s' type, allocation '%s' type",
file_type_cstr, target_type_cstr);
strm.EOL();
}
// Advance buffer past header
file_buffer = static_cast<uint8_t *>(file_buffer) + file_header->hdr_size;
// Calculate size of allocation data in file
size_t length = data_sp->GetByteSize() - file_header->hdr_size;
// Check if the target allocation and file both have the same total data size.
const uint32_t alloc_size = *alloc->size.get();
if (alloc_size != length) {
strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64
" bytes, allocation 0x%" PRIx32 " bytes",
(uint64_t)length, alloc_size);
strm.EOL();
length = alloc_size < length ? alloc_size
: length; // Set length to copy to minimum
}
// Copy file data from our buffer into the target allocation.
lldb::addr_t alloc_data = *alloc->data_ptr.get();
Error error;
size_t bytes_written =
GetProcess()->WriteMemory(alloc_data, file_buffer, length, error);
if (!error.Success() || bytes_written != length) {
strm.Printf("Error: Couldn't write data to allocation %s",
error.AsCString());
strm.EOL();
return false;
}
strm.Printf("Contents of file '%s' read into allocation %" PRIu32, filename,
alloc->id);
strm.EOL();
return true;
}
// Function takes as parameters a byte buffer, which will eventually be written
// to file as the element header,
// an offset into that buffer, and an Element that will be saved into the buffer
// at the parametrised offset.
// Return value is the new offset after writing the element into the buffer.
// Elements are saved to the file as the ElementHeader struct followed by
// offsets to the structs of all the element's
// children.
size_t RenderScriptRuntime::PopulateElementHeaders(
const std::shared_ptr<uint8_t> header_buffer, size_t offset,
const Element &elem) {
// File struct for an element header with all the relevant details copied from
// elem.
// We assume members are valid already.
AllocationDetails::ElementHeader elem_header;
elem_header.type = *elem.type.get();
elem_header.kind = *elem.type_kind.get();
elem_header.element_size = *elem.datum_size.get();
elem_header.vector_size = *elem.type_vec_size.get();
elem_header.array_size =
elem.array_size.isValid() ? *elem.array_size.get() : 0;
const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader);
// Copy struct into buffer and advance offset
// We assume that header_buffer has been checked for nullptr before this
// method is called
memcpy(header_buffer.get() + offset, &elem_header, elem_header_size);
offset += elem_header_size;
// Starting offset of child ElementHeader struct
size_t child_offset =
offset + ((elem.children.size() + 1) * sizeof(uint32_t));
for (const RenderScriptRuntime::Element &child : elem.children) {
// Recursively populate the buffer with the element header structs of
// children.
// Then save the offsets where they were set after the parent element
// header.
memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t));
offset += sizeof(uint32_t);
child_offset = PopulateElementHeaders(header_buffer, child_offset, child);
}
// Zero indicates no more children
memset(header_buffer.get() + offset, 0, sizeof(uint32_t));
return child_offset;
}
// Given an Element object this function returns the total size needed in the
// file header to store the element's
// details.
// Taking into account the size of the element header struct, plus the offsets
// to all the element's children.
// Function is recursive so that the size of all ancestors is taken into
// account.
size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) {
size_t size = (elem.children.size() + 1) *
sizeof(uint32_t); // Offsets to children plus zero terminator
size += sizeof(AllocationDetails::ElementHeader); // Size of header struct
// with type details
// Calculate recursively for all descendants
for (const Element &child : elem.children)
size += CalculateElementHeaderSize(child);
return size;
}
// Function copies allocation contents into a binary file.
// This file can then be loaded later into a different allocation.
// There is a header, FileHeader, before the allocation data containing
// meta-data.
bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id,
const char *filename,
StackFrame *frame_ptr) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Find allocation with the given id
AllocationDetails *alloc = FindAllocByID(strm, alloc_id);
if (!alloc)
return false;
if (log)
log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__,
*alloc->address.get());
// JIT all the allocation details
if (alloc->shouldRefresh()) {
if (log)
log->Printf("%s - allocation details not calculated yet, jitting info.",
__FUNCTION__);
if (!RefreshAllocation(alloc, frame_ptr)) {
if (log)
log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__);
return false;
}
}
assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() &&
alloc->element.type_vec_size.isValid() &&
alloc->element.datum_size.get() &&
alloc->element.type_kind.isValid() && alloc->dimension.isValid() &&
"Allocation information not available");
// Check we can create writable file
FileSpec file_spec(filename, true);
File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate |
File::eOpenOptionTruncate);
if (!file) {
strm.Printf("Error: Failed to open '%s' for writing", filename);
strm.EOL();
return false;
}
// Read allocation into buffer of heap memory
const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
if (!buffer) {
strm.Printf("Error: Couldn't read allocation data into buffer");
strm.EOL();
return false;
}
// Create the file header
AllocationDetails::FileHeader head;
memcpy(head.ident, "RSAD", 4);
head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
const size_t element_header_size = CalculateElementHeaderSize(alloc->element);
assert((sizeof(AllocationDetails::FileHeader) + element_header_size) <
UINT16_MAX &&
"Element header too large");
head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) +
element_header_size);
// Write the file header
size_t num_bytes = sizeof(AllocationDetails::FileHeader);
if (log)
log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__,
(uint64_t)num_bytes);
Error err = file.Write(&head, num_bytes);
if (!err.Success()) {
strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(),
filename);
strm.EOL();
return false;
}
// Create the headers describing the element type of the allocation.
std::shared_ptr<uint8_t> element_header_buffer(
new uint8_t[element_header_size]);
if (element_header_buffer == nullptr) {
strm.Printf("Internal Error: Couldn't allocate %" PRIu64
" bytes on the heap",
(uint64_t)element_header_size);
strm.EOL();
return false;
}
PopulateElementHeaders(element_header_buffer, 0, alloc->element);
// Write headers for allocation element type to file
num_bytes = element_header_size;
if (log)
log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.",
__FUNCTION__, (uint64_t)num_bytes);
err = file.Write(element_header_buffer.get(), num_bytes);
if (!err.Success()) {
strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(),
filename);
strm.EOL();
return false;
}
// Write allocation data to file
num_bytes = static_cast<size_t>(*alloc->size.get());
if (log)
log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__,
(uint64_t)num_bytes);
err = file.Write(buffer.get(), num_bytes);
if (!err.Success()) {
strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(),
filename);
strm.EOL();
return false;
}
strm.Printf("Allocation written to file '%s'", filename);
strm.EOL();
return true;
}
bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (module_sp) {
for (const auto &rs_module : m_rsmodules) {
if (rs_module->m_module == module_sp) {
// Check if the user has enabled automatically breaking on
// all RS kernels.
if (m_breakAllKernels)
BreakOnModuleKernels(rs_module);
return false;
}
}
bool module_loaded = false;
switch (GetModuleKind(module_sp)) {
case eModuleKindKernelObj: {
RSModuleDescriptorSP module_desc;
module_desc.reset(new RSModuleDescriptor(module_sp));
if (module_desc->ParseRSInfo()) {
m_rsmodules.push_back(module_desc);
module_loaded = true;
}
if (module_loaded) {
FixupScriptDetails(module_desc);
}
break;
}
case eModuleKindDriver: {
if (!m_libRSDriver) {
m_libRSDriver = module_sp;
LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
}
break;
}
case eModuleKindImpl: {
m_libRSCpuRef = module_sp;
break;
}
case eModuleKindLibRS: {
if (!m_libRS) {
m_libRS = module_sp;
static ConstString gDbgPresentStr("gDebuggerPresent");
const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType(
gDbgPresentStr, eSymbolTypeData);
if (debug_present) {
Error error;
uint32_t flag = 0x00000001U;
Target &target = GetProcess()->GetTarget();
addr_t addr = debug_present->GetLoadAddress(&target);
GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error);
if (error.Success()) {
if (log)
log->Printf("%s - debugger present flag set on debugee.",
__FUNCTION__);
m_debuggerPresentFlagged = true;
} else if (log) {
log->Printf("%s - error writing debugger present flags '%s' ",
__FUNCTION__, error.AsCString());
}
} else if (log) {
log->Printf(
"%s - error writing debugger present flags - symbol not found",
__FUNCTION__);
}
}
break;
}
default:
break;
}
if (module_loaded)
Update();
return module_loaded;
}
return false;
}
void RenderScriptRuntime::Update() {
if (m_rsmodules.size() > 0) {
if (!m_initiated) {
Initiate();
}
}
}
// The maximum line length of an .rs.info packet
#define MAXLINE 500
#define STRINGIFY(x) #x
#define MAXLINESTR_(x) "%" STRINGIFY(x) "s"
#define MAXLINESTR MAXLINESTR_(MAXLINE)
// The .rs.info symbol in renderscript modules contains a string which needs to
// be parsed.
// The string is basic and is parsed on a line by line basis.
bool RSModuleDescriptor::ParseRSInfo() {
assert(m_module);
const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(
ConstString(".rs.info"), eSymbolTypeData);
if (!info_sym)
return false;
const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
if (addr == LLDB_INVALID_ADDRESS)
return false;
const addr_t size = info_sym->GetByteSize();
const FileSpec fs = m_module->GetFileSpec();
const DataBufferSP buffer = fs.ReadFileContents(addr, size);
if (!buffer)
return false;
// split rs.info. contents into lines
std::vector<std::string> info_lines;
{
const std::string info((const char *)buffer->GetBytes());
for (size_t tail = 0; tail < info.size();) {
// find next new line or end of string
size_t head = info.find('\n', tail);
head = (head == std::string::npos) ? info.size() : head;
std::string line = info.substr(tail, head - tail);
// add to line list
info_lines.push_back(line);
tail = head + 1;
}
}
std::array<char, MAXLINE> name{{'\0'}};
std::array<char, MAXLINE> value{{'\0'}};
// parse all text lines of .rs.info
for (auto line = info_lines.begin(); line != info_lines.end(); ++line) {
uint32_t numDefns = 0;
if (sscanf(line->c_str(), "exportVarCount: %" PRIu32 "", &numDefns) == 1) {
while (numDefns--)
m_globals.push_back(RSGlobalDescriptor(this, (++line)->c_str()));
} else if (sscanf(line->c_str(), "exportForEachCount: %" PRIu32 "",
&numDefns) == 1) {
while (numDefns--) {
uint32_t slot = 0;
name[0] = '\0';
static const char *fmt_s = "%" PRIu32 " - " MAXLINESTR;
if (sscanf((++line)->c_str(), fmt_s, &slot, name.data()) == 2) {
if (name[0] != '\0')
m_kernels.push_back(RSKernelDescriptor(this, name.data(), slot));
}
}
} else if (sscanf(line->c_str(), "pragmaCount: %" PRIu32 "", &numDefns) ==
1) {
while (numDefns--) {
name[0] = value[0] = '\0';
static const char *fmt_s = MAXLINESTR " - " MAXLINESTR;
if (sscanf((++line)->c_str(), fmt_s, name.data(), value.data()) != 0) {
if (name[0] != '\0')
m_pragmas[std::string(name.data())] = value.data();
}
}
} else {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (log) {
log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__,
line->c_str());
}
}
}
// 'root' kernel should always be present
return m_kernels.size() > 0;
}
void RenderScriptRuntime::Status(Stream &strm) const {
if (m_libRS) {
strm.Printf("Runtime Library discovered.");
strm.EOL();
}
if (m_libRSDriver) {
strm.Printf("Runtime Driver discovered.");
strm.EOL();
}
if (m_libRSCpuRef) {
strm.Printf("CPU Reference Implementation discovered.");
strm.EOL();
}
if (m_runtimeHooks.size()) {
strm.Printf("Runtime functions hooked:");
strm.EOL();
for (auto b : m_runtimeHooks) {
strm.Indent(b.second->defn->name);
strm.EOL();
}
} else {
strm.Printf("Runtime is not hooked.");
strm.EOL();
}
}
void RenderScriptRuntime::DumpContexts(Stream &strm) const {
strm.Printf("Inferred RenderScript Contexts:");
strm.EOL();
strm.IndentMore();
std::map<addr_t, uint64_t> contextReferences;
// Iterate over all of the currently discovered scripts.
// Note: We cant push or pop from m_scripts inside this loop or it may
// invalidate script.
for (const auto &script : m_scripts) {
if (!script->context.isValid())
continue;
lldb::addr_t context = *script->context;
if (contextReferences.find(context) != contextReferences.end()) {
contextReferences[context]++;
} else {
contextReferences[context] = 1;
}
}
for (const auto &cRef : contextReferences) {
strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances",
cRef.first, cRef.second);
strm.EOL();
}
strm.IndentLess();
}
void RenderScriptRuntime::DumpKernels(Stream &strm) const {
strm.Printf("RenderScript Kernels:");
strm.EOL();
strm.IndentMore();
for (const auto &module : m_rsmodules) {
strm.Printf("Resource '%s':", module->m_resname.c_str());
strm.EOL();
for (const auto &kernel : module->m_kernels) {
strm.Indent(kernel.m_name.AsCString());
strm.EOL();
}
}
strm.IndentLess();
}
RenderScriptRuntime::AllocationDetails *
RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) {
AllocationDetails *alloc = nullptr;
// See if we can find allocation using id as an index;
if (alloc_id <= m_allocations.size() && alloc_id != 0 &&
m_allocations[alloc_id - 1]->id == alloc_id) {
alloc = m_allocations[alloc_id - 1].get();
return alloc;
}
// Fallback to searching
for (const auto &a : m_allocations) {
if (a->id == alloc_id) {
alloc = a.get();
break;
}
}
if (alloc == nullptr) {
strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32,
alloc_id);
strm.EOL();
}
return alloc;
}
// Prints the contents of an allocation to the output stream, which may be a
// file
bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr,
const uint32_t id) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Check we can find the desired allocation
AllocationDetails *alloc = FindAllocByID(strm, id);
if (!alloc)
return false; // FindAllocByID() will print error message for us here
if (log)
log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__,
*alloc->address.get());
// Check we have information about the allocation, if not calculate it
if (alloc->shouldRefresh()) {
if (log)
log->Printf("%s - allocation details not calculated yet, jitting info.",
__FUNCTION__);
// JIT all the allocation information
if (!RefreshAllocation(alloc, frame_ptr)) {
strm.Printf("Error: Couldn't JIT allocation details");
strm.EOL();
return false;
}
}
// Establish format and size of each data element
const uint32_t vec_size = *alloc->element.type_vec_size.get();
const Element::DataType type = *alloc->element.type.get();
assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT &&
"Invalid allocation type");
lldb::Format format;
if (type >= Element::RS_TYPE_ELEMENT)
format = eFormatHex;
else
format = vec_size == 1
? static_cast<lldb::Format>(
AllocationDetails::RSTypeToFormat[type][eFormatSingle])
: static_cast<lldb::Format>(
AllocationDetails::RSTypeToFormat[type][eFormatVector]);
const uint32_t data_size = *alloc->element.datum_size.get();
if (log)
log->Printf("%s - element size %" PRIu32 " bytes, including padding",
__FUNCTION__, data_size);
// Allocate a buffer to copy data into
std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
if (!buffer) {
strm.Printf("Error: Couldn't read allocation data");
strm.EOL();
return false;
}
// Calculate stride between rows as there may be padding at end of rows since
// allocated memory is 16-byte aligned
if (!alloc->stride.isValid()) {
if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
alloc->stride = 0;
else if (!JITAllocationStride(alloc, frame_ptr)) {
strm.Printf("Error: Couldn't calculate allocation row stride");
strm.EOL();
return false;
}
}
const uint32_t stride = *alloc->stride.get();
const uint32_t size = *alloc->size.get(); // Size of whole allocation
const uint32_t padding =
alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
if (log)
log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32
" bytes, padding %" PRIu32,
__FUNCTION__, stride, size, padding);
// Find dimensions used to index loops, so need to be non-zero
uint32_t dim_x = alloc->dimension.get()->dim_1;
dim_x = dim_x == 0 ? 1 : dim_x;
uint32_t dim_y = alloc->dimension.get()->dim_2;
dim_y = dim_y == 0 ? 1 : dim_y;
uint32_t dim_z = alloc->dimension.get()->dim_3;
dim_z = dim_z == 0 ? 1 : dim_z;
// Use data extractor to format output
const uint32_t archByteSize =
GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(),
archByteSize);
uint32_t offset = 0; // Offset in buffer to next element to be printed
uint32_t prev_row = 0; // Offset to the start of the previous row
// Iterate over allocation dimensions, printing results to user
strm.Printf("Data (X, Y, Z):");
for (uint32_t z = 0; z < dim_z; ++z) {
for (uint32_t y = 0; y < dim_y; ++y) {
// Use stride to index start of next row.
if (!(y == 0 && z == 0))
offset = prev_row + stride;
prev_row = offset;
// Print each element in the row individually
for (uint32_t x = 0; x < dim_x; ++x) {
strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z);
if ((type == Element::RS_TYPE_NONE) &&
(alloc->element.children.size() > 0) &&
(alloc->element.type_name != Element::GetFallbackStructName())) {
// Here we are dumping an Element of struct type.
// This is done using expression evaluation with the name of the
// struct type and pointer to element.
// Don't print the name of the resulting expression, since this will
// be '$[0-9]+'
DumpValueObjectOptions expr_options;
expr_options.SetHideName(true);
// Setup expression as derefrencing a pointer cast to element address.
char expr_char_buffer[jit_max_expr_size];
int chars_written =
snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64,
alloc->element.type_name.AsCString(),
*alloc->data_ptr.get() + offset);
if (chars_written < 0 || chars_written >= jit_max_expr_size) {
if (log)
log->Printf("%s - error in snprintf().", __FUNCTION__);
continue;
}
// Evaluate expression
ValueObjectSP expr_result;
GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer,
frame_ptr, expr_result);
// Print the results to our stream.
expr_result->Dump(strm, expr_options);
} else {
alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1,
LLDB_INVALID_ADDRESS, 0, 0);
}
offset += data_size;
}
}
}
strm.EOL();
return true;
}
// Function recalculates all our cached information about allocations by jitting
// the
// RS runtime regarding each allocation we know about.
// Returns true if all allocations could be recomputed, false otherwise.
bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm,
StackFrame *frame_ptr) {
bool success = true;
for (auto &alloc : m_allocations) {
// JIT current allocation information
if (!RefreshAllocation(alloc.get(), frame_ptr)) {
strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32
"\n",
alloc->id);
success = false;
}
}
if (success)
strm.Printf("All allocations successfully recomputed");
strm.EOL();
return success;
}
// Prints information regarding currently loaded allocations.
// These details are gathered by jitting the runtime, which has as latency.
// Index parameter specifies a single allocation ID to print, or a zero value to
// print them all
void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr,
const uint32_t index) {
strm.Printf("RenderScript Allocations:");
strm.EOL();
strm.IndentMore();
for (auto &alloc : m_allocations) {
// index will only be zero if we want to print all allocations
if (index != 0 && index != alloc->id)
continue;
// JIT current allocation information
if (alloc->shouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) {
strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32,
alloc->id);
strm.EOL();
continue;
}
strm.Printf("%" PRIu32 ":", alloc->id);
strm.EOL();
strm.IndentMore();
strm.Indent("Context: ");
if (!alloc->context.isValid())
strm.Printf("unknown\n");
else
strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
strm.Indent("Address: ");
if (!alloc->address.isValid())
strm.Printf("unknown\n");
else
strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
strm.Indent("Data pointer: ");
if (!alloc->data_ptr.isValid())
strm.Printf("unknown\n");
else
strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
strm.Indent("Dimensions: ");
if (!alloc->dimension.isValid())
strm.Printf("unknown\n");
else
strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n",
alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2,
alloc->dimension.get()->dim_3);
strm.Indent("Data Type: ");
if (!alloc->element.type.isValid() ||
!alloc->element.type_vec_size.isValid())
strm.Printf("unknown\n");
else {
const int vector_size = *alloc->element.type_vec_size.get();
Element::DataType type = *alloc->element.type.get();
if (!alloc->element.type_name.IsEmpty())
strm.Printf("%s\n", alloc->element.type_name.AsCString());
else {
// Enum value isn't monotonous, so doesn't always index
// RsDataTypeToString array
if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT)
type =
static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) +
Element::RS_TYPE_MATRIX_2X2 + 1);
if (type >= (sizeof(AllocationDetails::RsDataTypeToString) /
sizeof(AllocationDetails::RsDataTypeToString[0])) ||
vector_size > 4 || vector_size < 1)
strm.Printf("invalid type\n");
else
strm.Printf(
"%s\n",
AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)]
[vector_size - 1]);
}
}
strm.Indent("Data Kind: ");
if (!alloc->element.type_kind.isValid())
strm.Printf("unknown\n");
else {
const Element::DataKind kind = *alloc->element.type_kind.get();
if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
strm.Printf("invalid kind\n");
else
strm.Printf(
"%s\n",
AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]);
}
strm.EOL();
strm.IndentLess();
}
strm.IndentLess();
}
// Set breakpoints on every kernel found in RS module
void RenderScriptRuntime::BreakOnModuleKernels(
const RSModuleDescriptorSP rsmodule_sp) {
for (const auto &kernel : rsmodule_sp->m_kernels) {
// Don't set breakpoint on 'root' kernel
if (strcmp(kernel.m_name.AsCString(), "root") == 0)
continue;
CreateKernelBreakpoint(kernel.m_name);
}
}
// Method is internally called by the 'kernel breakpoint all' command to
// enable or disable breaking on all kernels.
//
// When do_break is true we want to enable this functionality.
// When do_break is false we want to disable it.
void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) {
Log *log(
GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
InitSearchFilter(target);
// Set breakpoints on all the kernels
if (do_break && !m_breakAllKernels) {
m_breakAllKernels = true;
for (const auto &module : m_rsmodules)
BreakOnModuleKernels(module);
if (log)
log->Printf("%s(True) - breakpoints set on all currently loaded kernels.",
__FUNCTION__);
} else if (!do_break &&
m_breakAllKernels) // Breakpoints won't be set on any new kernels.
{
m_breakAllKernels = false;
if (log)
log->Printf("%s(False) - breakpoints no longer automatically set.",
__FUNCTION__);
}
}
// Given the name of a kernel this function creates a breakpoint using our
// own breakpoint resolver, and returns the Breakpoint shared pointer.
BreakpointSP
RenderScriptRuntime::CreateKernelBreakpoint(const ConstString &name) {
Log *log(
GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
if (!m_filtersp) {
if (log)
log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__);
return nullptr;
}
BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(
m_filtersp, resolver_sp, false, false, false);
// Give RS breakpoints a specific name, so the user can manipulate them as a
// group.
Error err;
if (!bp->AddName("RenderScriptKernel", err) && log)
log->Printf("%s - error setting break name, '%s'.", __FUNCTION__,
err.AsCString());
return bp;
}
// Given an expression for a variable this function tries to calculate the
// variable's value.
// If this is possible it returns true and sets the uint64_t parameter to the
// variables unsigned value.
// Otherwise function returns false.
bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp,
const char *var_name,
uint64_t &val) {
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
Error error;
VariableSP var_sp;
// Find variable in stack frame
ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(
var_name, eNoDynamicValues,
StackFrame::eExpressionPathOptionCheckPtrVsMember |
StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
var_sp, error));
if (!error.Success()) {
if (log)
log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__,
var_name);
return false;
}
// Find the uint32_t value for the variable
bool success = false;
val = value_sp->GetValueAsUnsigned(0, &success);
if (!success) {
if (log)
log->Printf("%s - error, couldn't parse '%s' as an uint32_t.",
__FUNCTION__, var_name);
return false;
}
return true;
}
// Function attempts to find the current coordinate of a kernel invocation by
// investigating the
// values of frame variables in the .expand function. These coordinates are
// returned via the coord
// array reference parameter. Returns true if the coordinates could be found,
// and false otherwise.
bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord,
Thread *thread_ptr) {
static const std::string s_runtimeExpandSuffix(".expand");
static const std::array<const char *, 3> s_runtimeCoordVars{
{"rsIndex", "p->current.y", "p->current.z"}};
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!thread_ptr) {
if (log)
log->Printf("%s - Error, No thread pointer", __FUNCTION__);
return false;
}
// Walk the call stack looking for a function whose name has the suffix
// '.expand'
// and contains the variables we're looking for.
for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) {
if (!thread_ptr->SetSelectedFrameByIndex(i))
continue;
StackFrameSP frame_sp = thread_ptr->GetSelectedFrame();
if (!frame_sp)
continue;
// Find the function name
const SymbolContext sym_ctx = frame_sp->GetSymbolContext(false);
const char *func_name_cstr = sym_ctx.GetFunctionName().AsCString();
if (!func_name_cstr)
continue;
if (log)
log->Printf("%s - Inspecting function '%s'", __FUNCTION__,
func_name_cstr);
// Check if function name has .expand suffix
std::string func_name(func_name_cstr);
const int length_difference =
func_name.length() - s_runtimeExpandSuffix.length();
if (length_difference <= 0)
continue;
const int32_t has_expand_suffix =
func_name.compare(length_difference, s_runtimeExpandSuffix.length(),
s_runtimeExpandSuffix);
if (has_expand_suffix != 0)
continue;
if (log)
log->Printf("%s - Found .expand function '%s'", __FUNCTION__,
func_name_cstr);
// Get values for variables in .expand frame that tell us the current kernel
// invocation
bool found_coord_variables = true;
assert(s_runtimeCoordVars.size() == coord.size());
for (uint32_t i = 0; i < coord.size(); ++i) {
uint64_t value = 0;
if (!GetFrameVarAsUnsigned(frame_sp, s_runtimeCoordVars[i], value)) {
found_coord_variables = false;
break;
}
coord[i] = value;
}
if (found_coord_variables)
return true;
}
return false;
}
// Callback when a kernel breakpoint hits and we're looking for a specific
// coordinate.
// Baton parameter contains a pointer to the target coordinate we want to break
// on.
// Function then checks the .expand frame for the current coordinate and breaks
// to user if it matches.
// Parameter 'break_id' is the id of the Breakpoint which made the callback.
// Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit,
// a single logical breakpoint can have multiple addresses.
bool RenderScriptRuntime::KernelBreakpointHit(void *baton,
StoppointCallbackContext *ctx,
user_id_t break_id,
user_id_t break_loc_id) {
Log *log(
GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
assert(baton &&
"Error: null baton in conditional kernel breakpoint callback");
// Coordinate we want to stop on
const uint32_t *target_coord = static_cast<const uint32_t *>(baton);
if (log)
log->Printf("%s - Break ID %" PRIu64 ", (%" PRIu32 ", %" PRIu32 ", %" PRIu32
")",
__FUNCTION__, break_id, target_coord[0], target_coord[1],
target_coord[2]);
// Select current thread
ExecutionContext context(ctx->exe_ctx_ref);
Thread *thread_ptr = context.GetThreadPtr();
assert(thread_ptr && "Null thread pointer");
// Find current kernel invocation from .expand frame variables
RSCoordinate current_coord{}; // Zero initialise array
if (!GetKernelCoordinate(current_coord, thread_ptr)) {
if (log)
log->Printf("%s - Error, couldn't select .expand stack frame",
__FUNCTION__);
return false;
}
if (log)
log->Printf("%s - (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")", __FUNCTION__,
current_coord[0], current_coord[1], current_coord[2]);
// Check if the current kernel invocation coordinate matches our target
// coordinate
if (current_coord[0] == target_coord[0] &&
current_coord[1] == target_coord[1] &&
current_coord[2] == target_coord[2]) {
if (log)
log->Printf("%s, BREAKING (%" PRIu32 ",%" PRIu32 ",%" PRIu32 ")",
__FUNCTION__, current_coord[0], current_coord[1],
current_coord[2]);
BreakpointSP breakpoint_sp =
context.GetTargetPtr()->GetBreakpointByID(break_id);
assert(breakpoint_sp != nullptr &&
"Error: Couldn't find breakpoint matching break id for callback");
breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint
// should only be hit once.
return true;
}
// No match on coordinate
return false;
}
// Tries to set a breakpoint on the start of a kernel, resolved using the kernel
// name.
// Argument 'coords', represents a three dimensional coordinate which can be
// used to specify
// a single kernel instance to break on. If this is set then we add a callback
// to the breakpoint.
void RenderScriptRuntime::PlaceBreakpointOnKernel(
Stream &strm, const char *name, const std::array<int, 3> coords,
Error &error, TargetSP target) {
if (!name) {
error.SetErrorString("invalid kernel name");
return;
}
InitSearchFilter(target);
ConstString kernel_name(name);
BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
// We have a conditional breakpoint on a specific coordinate
if (coords[0] != -1) {
strm.Printf("Conditional kernel breakpoint on coordinate %" PRId32
", %" PRId32 ", %" PRId32,
coords[0], coords[1], coords[2]);
strm.EOL();
// Allocate memory for the baton, and copy over coordinate
uint32_t *baton = new uint32_t[coords.size()];
baton[0] = coords[0];
baton[1] = coords[1];
baton[2] = coords[2];
// Create a callback that will be invoked every time the breakpoint is hit.
// The baton object passed to the handler is the target coordinate we want
// to break on.
bp->SetCallback(KernelBreakpointHit, baton, true);
// Store a shared pointer to the baton, so the memory will eventually be
// cleaned up after destruction
m_conditional_breaks[bp->GetID()] = std::shared_ptr<uint32_t>(baton);
}
if (bp)
bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
}
void RenderScriptRuntime::DumpModules(Stream &strm) const {
strm.Printf("RenderScript Modules:");
strm.EOL();
strm.IndentMore();
for (const auto &module : m_rsmodules) {
module->Dump(strm);
}
strm.IndentLess();
}
RenderScriptRuntime::ScriptDetails *
RenderScriptRuntime::LookUpScript(addr_t address, bool create) {
for (const auto &s : m_scripts) {
if (s->script.isValid())
if (*s->script == address)
return s.get();
}
if (create) {
std::unique_ptr<ScriptDetails> s(new ScriptDetails);
s->script = address;
m_scripts.push_back(std::move(s));
return m_scripts.back().get();
}
return nullptr;
}
RenderScriptRuntime::AllocationDetails *
RenderScriptRuntime::LookUpAllocation(addr_t address) {
for (const auto &a : m_allocations) {
if (a->address.isValid())
if (*a->address == address)
return a.get();
}
return nullptr;
}
RenderScriptRuntime::AllocationDetails *
RenderScriptRuntime::CreateAllocation(addr_t address) {
Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE);
// Remove any previous allocation which contains the same address
auto it = m_allocations.begin();
while (it != m_allocations.end()) {
if (*((*it)->address) == address) {
if (log)
log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64,
__FUNCTION__, (*it)->id, address);
it = m_allocations.erase(it);
} else {
it++;
}
}
std::unique_ptr<AllocationDetails> a(new AllocationDetails);
a->address = address;
m_allocations.push_back(std::move(a));
return m_allocations.back().get();
}
void RSModuleDescriptor::Dump(Stream &strm) const {
strm.Indent();
m_module->GetFileSpec().Dump(&strm);
if (m_module->GetNumCompileUnits()) {
strm.Indent("Debug info loaded.");
} else {
strm.Indent("Debug info does not exist.");
}
strm.EOL();
strm.IndentMore();
strm.Indent();
strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
strm.EOL();
strm.IndentMore();
for (const auto &global : m_globals) {
global.Dump(strm);
}
strm.IndentLess();
strm.Indent();
strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
strm.EOL();
strm.IndentMore();
for (const auto &kernel : m_kernels) {
kernel.Dump(strm);
}
strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size()));
strm.EOL();
strm.IndentMore();
for (const auto &key_val : m_pragmas) {
strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
strm.EOL();
}
strm.IndentLess(4);
}
void RSGlobalDescriptor::Dump(Stream &strm) const {
strm.Indent(m_name.AsCString());
VariableList var_list;
m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list);
if (var_list.GetSize() == 1) {
auto var = var_list.GetVariableAtIndex(0);
auto type = var->GetType();
if (type) {
strm.Printf(" - ");
type->DumpTypeName(&strm);
} else {
strm.Printf(" - Unknown Type");
}
} else {
strm.Printf(" - variable identified, but not found in binary");
const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType(
m_name, eSymbolTypeData);
if (s) {
strm.Printf(" (symbol exists) ");
}
}
strm.EOL();
}
void RSKernelDescriptor::Dump(Stream &strm) const {
strm.Indent(m_name.AsCString());
strm.EOL();
}
class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript module dump",
"Dumps renderscript specific information for all modules.",
"renderscript module dump",
eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
~CommandObjectRenderScriptRuntimeModuleDump() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript);
runtime->DumpModules(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword {
public:
CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript module",
"Commands that deal with RenderScript modules.",
nullptr) {
LoadSubCommand(
"dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(
interpreter)));
}
~CommandObjectRenderScriptRuntimeModule() override = default;
};
class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript kernel list",
"Lists renderscript kernel names and associated script resources.",
"renderscript kernel list",
eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
~CommandObjectRenderScriptRuntimeKernelList() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript);
runtime->DumpKernels(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeKernelBreakpointSet
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeKernelBreakpointSet(
CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript kernel breakpoint set",
"Sets a breakpoint on a renderscript kernel.",
"renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
eCommandRequiresProcess | eCommandProcessMustBeLaunched |
eCommandProcessMustBePaused),
m_options() {}
~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
Options *GetOptions() override { return &m_options; }
class CommandOptions : public Options {
public:
CommandOptions() : Options() {}
~CommandOptions() override = default;
Error SetOptionValue(uint32_t option_idx, const char *option_arg,
ExecutionContext *execution_context) override {
Error error;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option) {
case 'c':
if (!ParseCoordinate(option_arg))
error.SetErrorStringWithFormat(
"Couldn't parse coordinate '%s', should be in format 'x,y,z'.",
option_arg);
break;
default:
error.SetErrorStringWithFormat("unrecognized option '%c'",
short_option);
break;
}
return error;
}
// -c takes an argument of the form 'num[,num][,num]'.
// Where 'id_cstr' is this argument with the whitespace trimmed.
// Missing coordinates are defaulted to zero.
bool ParseCoordinate(const char *id_cstr) {
RegularExpression regex;
RegularExpression::Match regex_match(3);
bool matched = false;
if (regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") &&
regex.Execute(id_cstr, &regex_match))
matched = true;
else if (regex.Compile("^([0-9]+),([0-9]+)$") &&
regex.Execute(id_cstr, &regex_match))
matched = true;
else if (regex.Compile("^([0-9]+)$") &&
regex.Execute(id_cstr, &regex_match))
matched = true;
for (uint32_t i = 0; i < 3; i++) {
std::string group;
if (regex_match.GetMatchAtIndex(id_cstr, i + 1, group))
m_coord[i] = (uint32_t)strtoul(group.c_str(), nullptr, 0);
else
m_coord[i] = 0;
}
return matched;
}
void OptionParsingStarting(ExecutionContext *execution_context) override {
// -1 means the -c option hasn't been set
m_coord[0] = -1;
m_coord[1] = -1;
m_coord[2] = -1;
}
const OptionDefinition *GetDefinitions() override { return g_option_table; }
static OptionDefinition g_option_table[];
std::array<int, 3> m_coord;
};
bool DoExecute(Args &command, CommandReturnObject &result) override {
const size_t argc = command.GetArgumentCount();
if (argc < 1) {
result.AppendErrorWithFormat(
"'%s' takes 1 argument of kernel name, and an optional coordinate.",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript);
Error error;
runtime->PlaceBreakpointOnKernel(
result.GetOutputStream(), command.GetArgumentAtIndex(0),
m_options.m_coord, error, m_exe_ctx.GetTargetSP());
if (error.Success()) {
result.AppendMessage("Breakpoint(s) created");
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
result.SetStatus(eReturnStatusFailed);
result.AppendErrorWithFormat("Error: %s", error.AsCString());
return false;
}
private:
CommandOptions m_options;
};
OptionDefinition CommandObjectRenderScriptRuntimeKernelBreakpointSet::
CommandOptions::g_option_table[] = {
{LLDB_OPT_SET_1, false, "coordinate", 'c',
OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeValue,
"Set a breakpoint on a single invocation of the kernel with specified "
"coordinate.\n"
"Coordinate takes the form 'x[,y][,z] where x,y,z are positive "
"integers representing kernel dimensions. "
"Any unset dimensions will be defaulted to zero."},
{0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
class CommandObjectRenderScriptRuntimeKernelBreakpointAll
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeKernelBreakpointAll(
CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript kernel breakpoint all",
"Automatically sets a breakpoint on all renderscript kernels that "
"are or will be loaded.\n"
"Disabling option means breakpoints will no longer be set on any "
"kernels loaded in the future, "
"but does not remove currently set breakpoints.",
"renderscript kernel breakpoint all <enable/disable>",
eCommandRequiresProcess | eCommandProcessMustBeLaunched |
eCommandProcessMustBePaused) {}
~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
const size_t argc = command.GetArgumentCount();
if (argc != 1) {
result.AppendErrorWithFormat(
"'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript));
bool do_break = false;
const char *argument = command.GetArgumentAtIndex(0);
if (strcmp(argument, "enable") == 0) {
do_break = true;
result.AppendMessage("Breakpoints will be set on all kernels.");
} else if (strcmp(argument, "disable") == 0) {
do_break = false;
result.AppendMessage("Breakpoints will not be set on any new kernels.");
} else {
result.AppendErrorWithFormat(
"Argument must be either 'enable' or 'disable'");
result.SetStatus(eReturnStatusFailed);
return false;
}
runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeKernelCoordinate
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeKernelCoordinate(
CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript kernel coordinate",
"Shows the (x,y,z) coordinate of the current kernel invocation.",
"renderscript kernel coordinate",
eCommandRequiresProcess | eCommandProcessMustBeLaunched |
eCommandProcessMustBePaused) {}
~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
RSCoordinate coord{}; // Zero initialize array
bool success = RenderScriptRuntime::GetKernelCoordinate(
coord, m_exe_ctx.GetThreadPtr());
Stream &stream = result.GetOutputStream();
if (success) {
stream.Printf("Coordinate: (%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")",
coord[0], coord[1], coord[2]);
stream.EOL();
result.SetStatus(eReturnStatusSuccessFinishResult);
} else {
stream.Printf("Error: Coordinate could not be found.");
stream.EOL();
result.SetStatus(eReturnStatusFailed);
}
return true;
}
};
class CommandObjectRenderScriptRuntimeKernelBreakpoint
: public CommandObjectMultiword {
public:
CommandObjectRenderScriptRuntimeKernelBreakpoint(
CommandInterpreter &interpreter)
: CommandObjectMultiword(
interpreter, "renderscript kernel",
"Commands that generate breakpoints on renderscript kernels.",
nullptr) {
LoadSubCommand(
"set",
CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(
interpreter)));
LoadSubCommand(
"all",
CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(
interpreter)));
}
~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
};
class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword {
public:
CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript kernel",
"Commands that deal with RenderScript kernels.",
nullptr) {
LoadSubCommand(
"list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(
interpreter)));
LoadSubCommand(
"coordinate",
CommandObjectSP(
new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter)));
LoadSubCommand(
"breakpoint",
CommandObjectSP(
new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
}
~CommandObjectRenderScriptRuntimeKernel() override = default;
};
class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript context dump",
"Dumps renderscript context information.",
"renderscript context dump",
eCommandRequiresProcess |
eCommandProcessMustBeLaunched) {}
~CommandObjectRenderScriptRuntimeContextDump() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript);
runtime->DumpContexts(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword {
public:
CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript context",
"Commands that deal with RenderScript contexts.",
nullptr) {
LoadSubCommand(
"dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(
interpreter)));
}
~CommandObjectRenderScriptRuntimeContext() override = default;
};
class CommandObjectRenderScriptRuntimeAllocationDump
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeAllocationDump(
CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation dump",
"Displays the contents of a particular allocation",
"renderscript allocation dump <ID>",
eCommandRequiresProcess |
eCommandProcessMustBeLaunched),
m_options() {}
~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
Options *GetOptions() override { return &m_options; }
class CommandOptions : public Options {
public:
CommandOptions() : Options() {}
~CommandOptions() override = default;
Error SetOptionValue(uint32_t option_idx, const char *option_arg,
ExecutionContext *execution_context) override {
Error error;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option) {
case 'f':
m_outfile.SetFile(option_arg, true);
if (m_outfile.Exists()) {
m_outfile.Clear();
error.SetErrorStringWithFormat("file already exists: '%s'",
option_arg);
}
break;
default:
error.SetErrorStringWithFormat("unrecognized option '%c'",
short_option);
break;
}
return error;
}
void OptionParsingStarting(ExecutionContext *execution_context) override {
m_outfile.Clear();
}
const OptionDefinition *GetDefinitions() override { return g_option_table; }
static OptionDefinition g_option_table[];
FileSpec m_outfile;
};
bool DoExecute(Args &command, CommandReturnObject &result) override {
const size_t argc = command.GetArgumentCount();
if (argc < 1) {
result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. "
"As well as an optional -f argument",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript));
const char *id_cstr = command.GetArgumentAtIndex(0);
bool convert_complete = false;
const uint32_t id =
StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
if (!convert_complete) {
result.AppendErrorWithFormat("invalid allocation id argument '%s'",
id_cstr);
result.SetStatus(eReturnStatusFailed);
return false;
}
Stream *output_strm = nullptr;
StreamFile outfile_stream;
const FileSpec &outfile_spec =
m_options.m_outfile; // Dump allocation to file instead
if (outfile_spec) {
// Open output file
char path[256];
outfile_spec.GetPath(path, sizeof(path));
if (outfile_stream.GetFile()
.Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate)
.Success()) {
output_strm = &outfile_stream;
result.GetOutputStream().Printf("Results written to '%s'", path);
result.GetOutputStream().EOL();
} else {
result.AppendErrorWithFormat("Couldn't open file '%s'", path);
result.SetStatus(eReturnStatusFailed);
return false;
}
} else
output_strm = &result.GetOutputStream();
assert(output_strm != nullptr);
bool success =
runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
if (success)
result.SetStatus(eReturnStatusSuccessFinishResult);
else
result.SetStatus(eReturnStatusFailed);
return true;
}
private:
CommandOptions m_options;
};
OptionDefinition CommandObjectRenderScriptRuntimeAllocationDump::
CommandOptions::g_option_table[] = {
{LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument,
nullptr, nullptr, 0, eArgTypeFilename,
"Print results to specified file instead of command line."},
{0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
class CommandObjectRenderScriptRuntimeAllocationList
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeAllocationList(
CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript allocation list",
"List renderscript allocations and their information.",
"renderscript allocation list",
eCommandRequiresProcess | eCommandProcessMustBeLaunched),
m_options() {}
~CommandObjectRenderScriptRuntimeAllocationList() override = default;
Options *GetOptions() override { return &m_options; }
class CommandOptions : public Options {
public:
CommandOptions() : Options(), m_id(0) {}
~CommandOptions() override = default;
Error SetOptionValue(uint32_t option_idx, const char *option_arg,
ExecutionContext *execution_context) override {
Error error;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option) {
case 'i':
bool success;
m_id = StringConvert::ToUInt32(option_arg, 0, 0, &success);
if (!success)
error.SetErrorStringWithFormat(
"invalid integer value for option '%c'", short_option);
break;
default:
error.SetErrorStringWithFormat("unrecognized option '%c'",
short_option);
break;
}
return error;
}
void OptionParsingStarting(ExecutionContext *execution_context) override {
m_id = 0;
}
const OptionDefinition *GetDefinitions() override { return g_option_table; }
static OptionDefinition g_option_table[];
uint32_t m_id;
};
bool DoExecute(Args &command, CommandReturnObject &result) override {
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript));
runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(),
m_options.m_id);
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
private:
CommandOptions m_options;
};
OptionDefinition CommandObjectRenderScriptRuntimeAllocationList::
CommandOptions::g_option_table[] = {
{LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument,
nullptr, nullptr, 0, eArgTypeIndex,
"Only show details of a single allocation with specified id."},
{0, false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr}};
class CommandObjectRenderScriptRuntimeAllocationLoad
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeAllocationLoad(
CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "renderscript allocation load",
"Loads renderscript allocation contents from a file.",
"renderscript allocation load <ID> <filename>",
eCommandRequiresProcess | eCommandProcessMustBeLaunched) {}
~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
const size_t argc = command.GetArgumentCount();
if (argc != 2) {
result.AppendErrorWithFormat(
"'%s' takes 2 arguments, an allocation ID and filename to read from.",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript));
const char *id_cstr = command.GetArgumentAtIndex(0);
bool convert_complete = false;
const uint32_t id =
StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
if (!convert_complete) {
result.AppendErrorWithFormat("invalid allocation id argument '%s'",
id_cstr);
result.SetStatus(eReturnStatusFailed);
return false;
}
const char *filename = command.GetArgumentAtIndex(1);
bool success = runtime->LoadAllocation(result.GetOutputStream(), id,
filename, m_exe_ctx.GetFramePtr());
if (success)
result.SetStatus(eReturnStatusSuccessFinishResult);
else
result.SetStatus(eReturnStatusFailed);
return true;
}
};
class CommandObjectRenderScriptRuntimeAllocationSave
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeAllocationSave(
CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation save",
"Write renderscript allocation contents to a file.",
"renderscript allocation save <ID> <filename>",
eCommandRequiresProcess |
eCommandProcessMustBeLaunched) {}
~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
const size_t argc = command.GetArgumentCount();
if (argc != 2) {
result.AppendErrorWithFormat(
"'%s' takes 2 arguments, an allocation ID and filename to read from.",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript));
const char *id_cstr = command.GetArgumentAtIndex(0);
bool convert_complete = false;
const uint32_t id =
StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
if (!convert_complete) {
result.AppendErrorWithFormat("invalid allocation id argument '%s'",
id_cstr);
result.SetStatus(eReturnStatusFailed);
return false;
}
const char *filename = command.GetArgumentAtIndex(1);
bool success = runtime->SaveAllocation(result.GetOutputStream(), id,
filename, m_exe_ctx.GetFramePtr());
if (success)
result.SetStatus(eReturnStatusSuccessFinishResult);
else
result.SetStatus(eReturnStatusFailed);
return true;
}
};
class CommandObjectRenderScriptRuntimeAllocationRefresh
: public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeAllocationRefresh(
CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation refresh",
"Recomputes the details of all allocations.",
"renderscript allocation refresh",
eCommandRequiresProcess |
eCommandProcessMustBeLaunched) {}
~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>(
m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript));
bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(),
m_exe_ctx.GetFramePtr());
if (success) {
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
} else {
result.SetStatus(eReturnStatusFailed);
return false;
}
}
};
class CommandObjectRenderScriptRuntimeAllocation
: public CommandObjectMultiword {
public:
CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
: CommandObjectMultiword(
interpreter, "renderscript allocation",
"Commands that deal with RenderScript allocations.", nullptr) {
LoadSubCommand(
"list",
CommandObjectSP(
new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
LoadSubCommand(
"dump",
CommandObjectSP(
new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
LoadSubCommand(
"save",
CommandObjectSP(
new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
LoadSubCommand(
"load",
CommandObjectSP(
new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
LoadSubCommand(
"refresh",
CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh(
interpreter)));
}
~CommandObjectRenderScriptRuntimeAllocation() override = default;
};
class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed {
public:
CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript status",
"Displays current RenderScript runtime status.",
"renderscript status",
eCommandRequiresProcess |
eCommandProcessMustBeLaunched) {}
~CommandObjectRenderScriptRuntimeStatus() override = default;
bool DoExecute(Args &command, CommandReturnObject &result) override {
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(
eLanguageTypeExtRenderScript);
runtime->Status(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntime : public CommandObjectMultiword {
public:
CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
: CommandObjectMultiword(
interpreter, "renderscript",
"Commands for operating on the RenderScript runtime.",
"renderscript <subcommand> [<subcommand-options>]") {
LoadSubCommand(
"module", CommandObjectSP(
new CommandObjectRenderScriptRuntimeModule(interpreter)));
LoadSubCommand(
"status", CommandObjectSP(
new CommandObjectRenderScriptRuntimeStatus(interpreter)));
LoadSubCommand(
"kernel", CommandObjectSP(
new CommandObjectRenderScriptRuntimeKernel(interpreter)));
LoadSubCommand("context",
CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(
interpreter)));
LoadSubCommand(
"allocation",
CommandObjectSP(
new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
}
~CommandObjectRenderScriptRuntime() override = default;
};
void RenderScriptRuntime::Initiate() { assert(!m_initiated); }
RenderScriptRuntime::RenderScriptRuntime(Process *process)
: lldb_private::CPPLanguageRuntime(process), m_initiated(false),
m_debuggerPresentFlagged(false), m_breakAllKernels(false),
m_ir_passes(nullptr) {
ModulesDidLoad(process->GetTarget().GetImages());
}
lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject(
lldb_private::CommandInterpreter &interpreter) {
return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter));
}
RenderScriptRuntime::~RenderScriptRuntime() = default;