llvm-project/lldb/source/Plugins/UnwindAssembly/x86/UnwindAssembly-x86.cpp

1405 lines
45 KiB
C++

//===-- UnwindAssembly-x86.cpp ----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "UnwindAssembly-x86.h"
#include "llvm-c/Disassembler.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/TargetSelect.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/ABI.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/UnwindAssembly.h"
#include "lldb/Utility/RegisterNumber.h"
using namespace lldb;
using namespace lldb_private;
enum CPU { k_i386, k_x86_64 };
enum i386_register_numbers {
k_machine_eax = 0,
k_machine_ecx = 1,
k_machine_edx = 2,
k_machine_ebx = 3,
k_machine_esp = 4,
k_machine_ebp = 5,
k_machine_esi = 6,
k_machine_edi = 7,
k_machine_eip = 8
};
enum x86_64_register_numbers {
k_machine_rax = 0,
k_machine_rcx = 1,
k_machine_rdx = 2,
k_machine_rbx = 3,
k_machine_rsp = 4,
k_machine_rbp = 5,
k_machine_rsi = 6,
k_machine_rdi = 7,
k_machine_r8 = 8,
k_machine_r9 = 9,
k_machine_r10 = 10,
k_machine_r11 = 11,
k_machine_r12 = 12,
k_machine_r13 = 13,
k_machine_r14 = 14,
k_machine_r15 = 15,
k_machine_rip = 16
};
struct regmap_ent {
const char *name;
int machine_regno;
int lldb_regno;
};
static struct regmap_ent i386_register_map[] = {
{"eax", k_machine_eax, -1}, {"ecx", k_machine_ecx, -1},
{"edx", k_machine_edx, -1}, {"ebx", k_machine_ebx, -1},
{"esp", k_machine_esp, -1}, {"ebp", k_machine_ebp, -1},
{"esi", k_machine_esi, -1}, {"edi", k_machine_edi, -1},
{"eip", k_machine_eip, -1}};
const int size_of_i386_register_map = llvm::array_lengthof(i386_register_map);
static int i386_register_map_initialized = 0;
static struct regmap_ent x86_64_register_map[] = {
{"rax", k_machine_rax, -1}, {"rcx", k_machine_rcx, -1},
{"rdx", k_machine_rdx, -1}, {"rbx", k_machine_rbx, -1},
{"rsp", k_machine_rsp, -1}, {"rbp", k_machine_rbp, -1},
{"rsi", k_machine_rsi, -1}, {"rdi", k_machine_rdi, -1},
{"r8", k_machine_r8, -1}, {"r9", k_machine_r9, -1},
{"r10", k_machine_r10, -1}, {"r11", k_machine_r11, -1},
{"r12", k_machine_r12, -1}, {"r13", k_machine_r13, -1},
{"r14", k_machine_r14, -1}, {"r15", k_machine_r15, -1},
{"rip", k_machine_rip, -1}};
const int size_of_x86_64_register_map =
llvm::array_lengthof(x86_64_register_map);
static int x86_64_register_map_initialized = 0;
//-----------------------------------------------------------------------------------------------
// AssemblyParse_x86 local-file class definition & implementation functions
//-----------------------------------------------------------------------------------------------
class AssemblyParse_x86 {
public:
AssemblyParse_x86(const ExecutionContext &exe_ctx, int cpu, ArchSpec &arch,
AddressRange func);
~AssemblyParse_x86();
bool get_non_call_site_unwind_plan(UnwindPlan &unwind_plan);
bool augment_unwind_plan_from_call_site(AddressRange &func,
UnwindPlan &unwind_plan);
bool get_fast_unwind_plan(AddressRange &func, UnwindPlan &unwind_plan);
bool find_first_non_prologue_insn(Address &address);
private:
enum { kMaxInstructionByteSize = 32 };
bool nonvolatile_reg_p(int machine_regno);
bool push_rbp_pattern_p();
bool push_0_pattern_p();
bool mov_rsp_rbp_pattern_p();
bool sub_rsp_pattern_p(int &amount);
bool add_rsp_pattern_p(int &amount);
bool lea_rsp_pattern_p(int &amount);
bool push_reg_p(int &regno);
bool pop_reg_p(int &regno);
bool push_imm_pattern_p();
bool mov_reg_to_local_stack_frame_p(int &regno, int &fp_offset);
bool ret_pattern_p();
bool pop_rbp_pattern_p();
bool leave_pattern_p();
bool call_next_insn_pattern_p();
uint32_t extract_4(uint8_t *b);
bool machine_regno_to_lldb_regno(int machine_regno, uint32_t &lldb_regno);
bool instruction_length(Address addr, int &length);
const ExecutionContext m_exe_ctx;
AddressRange m_func_bounds;
Address m_cur_insn;
uint8_t m_cur_insn_bytes[kMaxInstructionByteSize];
uint32_t m_machine_ip_regnum;
uint32_t m_machine_sp_regnum;
uint32_t m_machine_fp_regnum;
uint32_t m_lldb_ip_regnum;
uint32_t m_lldb_sp_regnum;
uint32_t m_lldb_fp_regnum;
int m_wordsize;
int m_cpu;
ArchSpec m_arch;
::LLVMDisasmContextRef m_disasm_context;
DISALLOW_COPY_AND_ASSIGN(AssemblyParse_x86);
};
AssemblyParse_x86::AssemblyParse_x86(const ExecutionContext &exe_ctx, int cpu,
ArchSpec &arch, AddressRange func)
: m_exe_ctx(exe_ctx), m_func_bounds(func), m_cur_insn(),
m_machine_ip_regnum(LLDB_INVALID_REGNUM),
m_machine_sp_regnum(LLDB_INVALID_REGNUM),
m_machine_fp_regnum(LLDB_INVALID_REGNUM),
m_lldb_ip_regnum(LLDB_INVALID_REGNUM),
m_lldb_sp_regnum(LLDB_INVALID_REGNUM),
m_lldb_fp_regnum(LLDB_INVALID_REGNUM), m_wordsize(-1), m_cpu(cpu),
m_arch(arch) {
int *initialized_flag = NULL;
if (cpu == k_i386) {
m_machine_ip_regnum = k_machine_eip;
m_machine_sp_regnum = k_machine_esp;
m_machine_fp_regnum = k_machine_ebp;
m_wordsize = 4;
initialized_flag = &i386_register_map_initialized;
} else {
m_machine_ip_regnum = k_machine_rip;
m_machine_sp_regnum = k_machine_rsp;
m_machine_fp_regnum = k_machine_rbp;
m_wordsize = 8;
initialized_flag = &x86_64_register_map_initialized;
}
// we only look at prologue - it will be complete earlier than 512 bytes into
// func
if (m_func_bounds.GetByteSize() == 0)
m_func_bounds.SetByteSize(512);
Thread *thread = m_exe_ctx.GetThreadPtr();
if (thread && *initialized_flag == 0) {
RegisterContext *reg_ctx = thread->GetRegisterContext().get();
if (reg_ctx) {
struct regmap_ent *ent;
int count, i;
if (cpu == k_i386) {
ent = i386_register_map;
count = size_of_i386_register_map;
} else {
ent = x86_64_register_map;
count = size_of_x86_64_register_map;
}
for (i = 0; i < count; i++, ent++) {
const RegisterInfo *ri = reg_ctx->GetRegisterInfoByName(ent->name);
if (ri)
ent->lldb_regno = ri->kinds[eRegisterKindLLDB];
}
*initialized_flag = 1;
}
}
// on initial construction we may not have a Thread so these have to remain
// uninitialized until we can get a RegisterContext to set up the register map
// table
if (*initialized_flag == 1) {
uint32_t lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
m_lldb_sp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
m_lldb_fp_regnum = lldb_regno;
if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
m_lldb_ip_regnum = lldb_regno;
}
m_disasm_context =
::LLVMCreateDisasm(m_arch.GetTriple().getTriple().c_str(), (void *)this,
/*TagType=*/1, NULL, NULL);
}
AssemblyParse_x86::~AssemblyParse_x86() {
::LLVMDisasmDispose(m_disasm_context);
}
// This function expects an x86 native register number (i.e. the bits stripped
// out of the
// actual instruction), not an lldb register number.
bool AssemblyParse_x86::nonvolatile_reg_p(int machine_regno) {
if (m_cpu == k_i386) {
switch (machine_regno) {
case k_machine_ebx:
case k_machine_ebp: // not actually a nonvolatile but often treated as such
// by convention
case k_machine_esi:
case k_machine_edi:
case k_machine_esp:
return true;
default:
return false;
}
}
if (m_cpu == k_x86_64) {
switch (machine_regno) {
case k_machine_rbx:
case k_machine_rsp:
case k_machine_rbp: // not actually a nonvolatile but often treated as such
// by convention
case k_machine_r12:
case k_machine_r13:
case k_machine_r14:
case k_machine_r15:
return true;
default:
return false;
}
}
return false;
}
// Macro to detect if this is a REX mode prefix byte.
#define REX_W_PREFIX_P(opcode) (((opcode) & (~0x5)) == 0x48)
// The high bit which should be added to the source register number (the "R"
// bit)
#define REX_W_SRCREG(opcode) (((opcode)&0x4) >> 2)
// The high bit which should be added to the destination register number (the
// "B" bit)
#define REX_W_DSTREG(opcode) ((opcode)&0x1)
// pushq %rbp [0x55]
bool AssemblyParse_x86::push_rbp_pattern_p() {
uint8_t *p = m_cur_insn_bytes;
if (*p == 0x55)
return true;
return false;
}
// pushq $0 ; the first instruction in start() [0x6a 0x00]
bool AssemblyParse_x86::push_0_pattern_p() {
uint8_t *p = m_cur_insn_bytes;
if (*p == 0x6a && *(p + 1) == 0x0)
return true;
return false;
}
// pushq $0
// pushl $0
bool AssemblyParse_x86::push_imm_pattern_p() {
uint8_t *p = m_cur_insn_bytes;
if (*p == 0x68 || *p == 0x6a)
return true;
return false;
}
// movq %rsp, %rbp [0x48 0x8b 0xec] or [0x48 0x89 0xe5]
// movl %esp, %ebp [0x8b 0xec] or [0x89 0xe5]
bool AssemblyParse_x86::mov_rsp_rbp_pattern_p() {
uint8_t *p = m_cur_insn_bytes;
if (m_wordsize == 8 && *p == 0x48)
p++;
if (*(p) == 0x8b && *(p + 1) == 0xec)
return true;
if (*(p) == 0x89 && *(p + 1) == 0xe5)
return true;
return false;
}
// subq $0x20, %rsp
bool AssemblyParse_x86::sub_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn_bytes;
if (m_wordsize == 8 && *p == 0x48)
p++;
// 8-bit immediate operand
if (*p == 0x83 && *(p + 1) == 0xec) {
amount = (int8_t) * (p + 2);
return true;
}
// 32-bit immediate operand
if (*p == 0x81 && *(p + 1) == 0xec) {
amount = (int32_t)extract_4(p + 2);
return true;
}
return false;
}
// addq $0x20, %rsp
bool AssemblyParse_x86::add_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn_bytes;
if (m_wordsize == 8 && *p == 0x48)
p++;
// 8-bit immediate operand
if (*p == 0x83 && *(p + 1) == 0xc4) {
amount = (int8_t) * (p + 2);
return true;
}
// 32-bit immediate operand
if (*p == 0x81 && *(p + 1) == 0xc4) {
amount = (int32_t)extract_4(p + 2);
return true;
}
return false;
}
// lea esp, [esp - 0x28]
// lea esp, [esp + 0x28]
bool AssemblyParse_x86::lea_rsp_pattern_p(int &amount) {
uint8_t *p = m_cur_insn_bytes;
if (m_wordsize == 8 && *p == 0x48)
p++;
// Check opcode
if (*p != 0x8d)
return false;
// 8 bit displacement
if (*(p + 1) == 0x64 && (*(p + 2) & 0x3f) == 0x24) {
amount = (int8_t) * (p + 3);
return true;
}
// 32 bit displacement
if (*(p + 1) == 0xa4 && (*(p + 2) & 0x3f) == 0x24) {
amount = (int32_t)extract_4(p + 3);
return true;
}
return false;
}
// pushq %rbx
// pushl %ebx
bool AssemblyParse_x86::push_reg_p(int &regno) {
uint8_t *p = m_cur_insn_bytes;
int regno_prefix_bit = 0;
// If we have a rex prefix byte, check to see if a B bit is set
if (m_wordsize == 8 && *p == 0x41) {
regno_prefix_bit = 1 << 3;
p++;
}
if (*p >= 0x50 && *p <= 0x57) {
regno = (*p - 0x50) | regno_prefix_bit;
return true;
}
return false;
}
// popq %rbx
// popl %ebx
bool AssemblyParse_x86::pop_reg_p(int &regno) {
uint8_t *p = m_cur_insn_bytes;
int regno_prefix_bit = 0;
// If we have a rex prefix byte, check to see if a B bit is set
if (m_wordsize == 8 && *p == 0x41) {
regno_prefix_bit = 1 << 3;
p++;
}
if (*p >= 0x58 && *p <= 0x5f) {
regno = (*p - 0x58) | regno_prefix_bit;
return true;
}
return false;
}
// popq %rbp [0x5d]
// popl %ebp [0x5d]
bool AssemblyParse_x86::pop_rbp_pattern_p() {
uint8_t *p = m_cur_insn_bytes;
return (*p == 0x5d);
}
// leave [0xc9]
bool AssemblyParse_x86::leave_pattern_p() {
uint8_t *p = m_cur_insn_bytes;
return (*p == 0xc9);
}
// call $0 [0xe8 0x0 0x0 0x0 0x0]
bool AssemblyParse_x86::call_next_insn_pattern_p() {
uint8_t *p = m_cur_insn_bytes;
return (*p == 0xe8) && (*(p + 1) == 0x0) && (*(p + 2) == 0x0) &&
(*(p + 3) == 0x0) && (*(p + 4) == 0x0);
}
// Look for an instruction sequence storing a nonvolatile register
// on to the stack frame.
// movq %rax, -0x10(%rbp) [0x48 0x89 0x45 0xf0]
// movl %eax, -0xc(%ebp) [0x89 0x45 0xf4]
// The offset value returned in rbp_offset will be positive --
// but it must be subtraced from the frame base register to get
// the actual location. The positive value returned for the offset
// is a convention used elsewhere for CFA offsets et al.
bool AssemblyParse_x86::mov_reg_to_local_stack_frame_p(int &regno,
int &rbp_offset) {
uint8_t *p = m_cur_insn_bytes;
int src_reg_prefix_bit = 0;
int target_reg_prefix_bit = 0;
if (m_wordsize == 8 && REX_W_PREFIX_P(*p)) {
src_reg_prefix_bit = REX_W_SRCREG(*p) << 3;
target_reg_prefix_bit = REX_W_DSTREG(*p) << 3;
if (target_reg_prefix_bit == 1) {
// rbp/ebp don't need a prefix bit - we know this isn't the
// reg we care about.
return false;
}
p++;
}
if (*p == 0x89) {
/* Mask off the 3-5 bits which indicate the destination register
if this is a ModR/M byte. */
int opcode_destreg_masked_out = *(p + 1) & (~0x38);
/* Is this a ModR/M byte with Mod bits 01 and R/M bits 101
and three bits between them, e.g. 01nnn101
We're looking for a destination of ebp-disp8 or ebp-disp32. */
int immsize;
if (opcode_destreg_masked_out == 0x45)
immsize = 2;
else if (opcode_destreg_masked_out == 0x85)
immsize = 4;
else
return false;
int offset = 0;
if (immsize == 2)
offset = (int8_t) * (p + 2);
if (immsize == 4)
offset = (uint32_t)extract_4(p + 2);
if (offset > 0)
return false;
regno = ((*(p + 1) >> 3) & 0x7) | src_reg_prefix_bit;
rbp_offset = offset > 0 ? offset : -offset;
return true;
}
return false;
}
// ret [0xc9] or [0xc2 imm8] or [0xca imm8]
bool AssemblyParse_x86::ret_pattern_p() {
uint8_t *p = m_cur_insn_bytes;
if (*p == 0xc9 || *p == 0xc2 || *p == 0xca || *p == 0xc3)
return true;
return false;
}
uint32_t AssemblyParse_x86::extract_4(uint8_t *b) {
uint32_t v = 0;
for (int i = 3; i >= 0; i--)
v = (v << 8) | b[i];
return v;
}
bool AssemblyParse_x86::machine_regno_to_lldb_regno(int machine_regno,
uint32_t &lldb_regno) {
struct regmap_ent *ent;
int count, i;
if (m_cpu == k_i386) {
ent = i386_register_map;
count = size_of_i386_register_map;
} else {
ent = x86_64_register_map;
count = size_of_x86_64_register_map;
}
for (i = 0; i < count; i++, ent++) {
if (ent->machine_regno == machine_regno)
if (ent->lldb_regno != -1) {
lldb_regno = ent->lldb_regno;
return true;
}
}
return false;
}
bool AssemblyParse_x86::instruction_length(Address addr, int &length) {
const uint32_t max_op_byte_size = m_arch.GetMaximumOpcodeByteSize();
llvm::SmallVector<uint8_t, 32> opcode_data;
opcode_data.resize(max_op_byte_size);
if (!addr.IsValid())
return false;
const bool prefer_file_cache = true;
Error error;
Target *target = m_exe_ctx.GetTargetPtr();
if (target->ReadMemory(addr, prefer_file_cache, opcode_data.data(),
max_op_byte_size, error) == static_cast<size_t>(-1)) {
return false;
}
char out_string[512];
const addr_t pc = addr.GetFileAddress();
const size_t inst_size = ::LLVMDisasmInstruction(
m_disasm_context, opcode_data.data(), max_op_byte_size,
pc, // PC value
out_string, sizeof(out_string));
length = inst_size;
return true;
}
bool AssemblyParse_x86::get_non_call_site_unwind_plan(UnwindPlan &unwind_plan) {
UnwindPlan::RowSP row(new UnwindPlan::Row);
m_cur_insn = m_func_bounds.GetBaseAddress();
addr_t current_func_text_offset = 0;
int current_sp_bytes_offset_from_cfa = 0;
UnwindPlan::Row::RegisterLocation initial_regloc;
Error error;
if (!m_cur_insn.IsValid()) {
return false;
}
unwind_plan.SetPlanValidAddressRange(m_func_bounds);
unwind_plan.SetRegisterKind(eRegisterKindLLDB);
// At the start of the function, find the CFA by adding wordsize to the SP
// register
row->SetOffset(current_func_text_offset);
row->GetCFAValue().SetIsRegisterPlusOffset(m_lldb_sp_regnum, m_wordsize);
// caller's stack pointer value before the call insn is the CFA address
initial_regloc.SetIsCFAPlusOffset(0);
row->SetRegisterInfo(m_lldb_sp_regnum, initial_regloc);
// saved instruction pointer can be found at CFA - wordsize.
current_sp_bytes_offset_from_cfa = m_wordsize;
initial_regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_cfa);
row->SetRegisterInfo(m_lldb_ip_regnum, initial_regloc);
unwind_plan.AppendRow(row);
// Allocate a new Row, populate it with the existing Row contents.
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset(newrow);
// Track which registers have been saved so far in the prologue.
// If we see another push of that register, it's not part of the prologue.
// The register numbers used here are the machine register #'s
// (i386_register_numbers, x86_64_register_numbers).
std::vector<bool> saved_registers(32, false);
const bool prefer_file_cache = true;
// Once the prologue has completed we'll save a copy of the unwind
// instructions
// If there is an epilogue in the middle of the function, after that epilogue
// we'll reinstate
// the unwind setup -- we assume that some code path jumps over the
// mid-function epilogue
UnwindPlan::RowSP prologue_completed_row; // copy of prologue row of CFI
int prologue_completed_sp_bytes_offset_from_cfa; // The sp value before the
// epilogue started executed
std::vector<bool> prologue_completed_saved_registers;
Target *target = m_exe_ctx.GetTargetPtr();
while (m_func_bounds.ContainsFileAddress(m_cur_insn)) {
int stack_offset, insn_len;
int machine_regno; // register numbers masked directly out of instructions
uint32_t lldb_regno; // register numbers in lldb's eRegisterKindLLDB
// numbering scheme
bool in_epilogue = false; // we're in the middle of an epilogue sequence
bool row_updated = false; // The UnwindPlan::Row 'row' has been updated
if (!instruction_length(m_cur_insn, insn_len) || insn_len == 0 ||
insn_len > kMaxInstructionByteSize) {
// An unrecognized/junk instruction
break;
}
if (target->ReadMemory(m_cur_insn, prefer_file_cache, m_cur_insn_bytes,
insn_len, error) == static_cast<size_t>(-1)) {
// Error reading the instruction out of the file, stop scanning
break;
}
if (push_rbp_pattern_p()) {
current_sp_bytes_offset_from_cfa += m_wordsize;
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
UnwindPlan::Row::RegisterLocation regloc;
regloc.SetAtCFAPlusOffset(-row->GetCFAValue().GetOffset());
row->SetRegisterInfo(m_lldb_fp_regnum, regloc);
saved_registers[m_machine_fp_regnum] = true;
row_updated = true;
}
else if (mov_rsp_rbp_pattern_p()) {
row->GetCFAValue().SetIsRegisterPlusOffset(
m_lldb_fp_regnum, row->GetCFAValue().GetOffset());
row_updated = true;
}
// This is the start() function (or a pthread equivalent), it starts with a
// pushl $0x0 which puts the
// saved pc value of 0 on the stack. In this case we want to pretend we
// didn't see a stack movement at all --
// normally the saved pc value is already on the stack by the time the
// function starts executing.
else if (push_0_pattern_p()) {
}
else if (push_reg_p(machine_regno)) {
current_sp_bytes_offset_from_cfa += m_wordsize;
// the PUSH instruction has moved the stack pointer - if the CFA is set in
// terms of the stack pointer,
// we need to add a new row of instructions.
if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
row_updated = true;
}
// record where non-volatile (callee-saved, spilled) registers are saved
// on the stack
if (nonvolatile_reg_p(machine_regno) &&
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
saved_registers[machine_regno] == false) {
UnwindPlan::Row::RegisterLocation regloc;
regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_cfa);
row->SetRegisterInfo(lldb_regno, regloc);
saved_registers[machine_regno] = true;
row_updated = true;
}
}
else if (pop_reg_p(machine_regno)) {
current_sp_bytes_offset_from_cfa -= m_wordsize;
if (nonvolatile_reg_p(machine_regno) &&
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
saved_registers[machine_regno] == true) {
saved_registers[machine_regno] = false;
row->RemoveRegisterInfo(lldb_regno);
if (machine_regno == (int)m_machine_fp_regnum) {
row->GetCFAValue().SetIsRegisterPlusOffset(
m_lldb_sp_regnum, row->GetCFAValue().GetOffset());
}
in_epilogue = true;
row_updated = true;
}
// the POP instruction has moved the stack pointer - if the CFA is set in
// terms of the stack pointer,
// we need to add a new row of instructions.
if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
row->GetCFAValue().SetIsRegisterPlusOffset(
m_lldb_sp_regnum, current_sp_bytes_offset_from_cfa);
row_updated = true;
}
}
// The LEAVE instruction moves the value from rbp into rsp and pops
// a value off the stack into rbp (restoring the caller's rbp value).
// It is the opposite of ENTER, or 'push rbp, mov rsp rbp'.
else if (leave_pattern_p()) {
// We're going to copy the value in rbp into rsp, so re-set the sp offset
// based on the CFAValue. Also, adjust it to recognize that we're popping
// the saved rbp value off the stack.
current_sp_bytes_offset_from_cfa = row->GetCFAValue().GetOffset();
current_sp_bytes_offset_from_cfa -= m_wordsize;
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
// rbp is restored to the caller's value
saved_registers[m_machine_fp_regnum] = false;
row->RemoveRegisterInfo(m_lldb_fp_regnum);
// cfa is now in terms of rsp again.
row->GetCFAValue().SetIsRegisterPlusOffset(
m_lldb_sp_regnum, row->GetCFAValue().GetOffset());
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
in_epilogue = true;
row_updated = true;
}
else if (mov_reg_to_local_stack_frame_p(machine_regno, stack_offset) &&
nonvolatile_reg_p(machine_regno) &&
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
saved_registers[machine_regno] == false) {
saved_registers[machine_regno] = true;
UnwindPlan::Row::RegisterLocation regloc;
// stack_offset for 'movq %r15, -80(%rbp)' will be 80.
// In the Row, we want to express this as the offset from the CFA. If the
// frame base
// is rbp (like the above instruction), the CFA offset for rbp is probably
// 16. So we
// want to say that the value is stored at the CFA address - 96.
regloc.SetAtCFAPlusOffset(
-(stack_offset + row->GetCFAValue().GetOffset()));
row->SetRegisterInfo(lldb_regno, regloc);
row_updated = true;
}
else if (sub_rsp_pattern_p(stack_offset)) {
current_sp_bytes_offset_from_cfa += stack_offset;
if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
row_updated = true;
}
}
else if (add_rsp_pattern_p(stack_offset)) {
current_sp_bytes_offset_from_cfa -= stack_offset;
if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
row_updated = true;
}
in_epilogue = true;
}
else if (lea_rsp_pattern_p(stack_offset)) {
current_sp_bytes_offset_from_cfa -= stack_offset;
if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
row_updated = true;
}
if (stack_offset > 0)
in_epilogue = true;
}
else if (ret_pattern_p() && prologue_completed_row.get()) {
// Reinstate the saved prologue setup for any instructions
// that come after the ret instruction
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *prologue_completed_row.get();
row.reset(newrow);
current_sp_bytes_offset_from_cfa =
prologue_completed_sp_bytes_offset_from_cfa;
saved_registers.clear();
saved_registers.resize(prologue_completed_saved_registers.size(), false);
for (size_t i = 0; i < prologue_completed_saved_registers.size(); ++i) {
saved_registers[i] = prologue_completed_saved_registers[i];
}
in_epilogue = true;
row_updated = true;
}
// call next instruction
// call 0
// => pop %ebx
// This is used in i386 programs to get the PIC base address for finding
// global data
else if (call_next_insn_pattern_p()) {
current_sp_bytes_offset_from_cfa += m_wordsize;
if (row->GetCFAValue().GetRegisterNumber() == m_lldb_sp_regnum) {
row->GetCFAValue().SetOffset(current_sp_bytes_offset_from_cfa);
row_updated = true;
}
}
if (row_updated) {
if (current_func_text_offset + insn_len < m_func_bounds.GetByteSize()) {
row->SetOffset(current_func_text_offset + insn_len);
unwind_plan.AppendRow(row);
// Allocate a new Row, populate it with the existing Row contents.
newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset(newrow);
}
}
if (in_epilogue == false && row_updated) {
// If we're not in an epilogue sequence, save the updated Row
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
prologue_completed_row.reset(newrow);
prologue_completed_saved_registers.clear();
prologue_completed_saved_registers.resize(saved_registers.size(), false);
for (size_t i = 0; i < saved_registers.size(); ++i) {
prologue_completed_saved_registers[i] = saved_registers[i];
}
}
// We may change the sp value without adding a new Row necessarily -- keep
// track of it either way.
if (in_epilogue == false) {
prologue_completed_sp_bytes_offset_from_cfa =
current_sp_bytes_offset_from_cfa;
}
m_cur_insn.SetOffset(m_cur_insn.GetOffset() + insn_len);
current_func_text_offset += insn_len;
}
unwind_plan.SetSourceName("assembly insn profiling");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
return true;
}
bool AssemblyParse_x86::augment_unwind_plan_from_call_site(
AddressRange &func, UnwindPlan &unwind_plan) {
// Is func address valid?
Address addr_start = func.GetBaseAddress();
if (!addr_start.IsValid())
return false;
// Is original unwind_plan valid?
// unwind_plan should have at least one row which is ABI-default (CFA register
// is sp),
// and another row in mid-function.
if (unwind_plan.GetRowCount() < 2)
return false;
UnwindPlan::RowSP first_row = unwind_plan.GetRowAtIndex(0);
if (first_row->GetOffset() != 0)
return false;
uint32_t cfa_reg = m_exe_ctx.GetThreadPtr()
->GetRegisterContext()
->ConvertRegisterKindToRegisterNumber(
unwind_plan.GetRegisterKind(),
first_row->GetCFAValue().GetRegisterNumber());
if (cfa_reg != m_lldb_sp_regnum ||
first_row->GetCFAValue().GetOffset() != m_wordsize)
return false;
UnwindPlan::RowSP original_last_row = unwind_plan.GetRowForFunctionOffset(-1);
Target *target = m_exe_ctx.GetTargetPtr();
m_cur_insn = func.GetBaseAddress();
uint64_t offset = 0;
int row_id = 1;
bool unwind_plan_updated = false;
UnwindPlan::RowSP row(new UnwindPlan::Row(*first_row));
// After a mid-function epilogue we will need to re-insert the original unwind
// rules
// so unwinds work for the remainder of the function. These aren't common
// with clang/gcc
// on x86 but it is possible.
bool reinstate_unwind_state = false;
while (func.ContainsFileAddress(m_cur_insn)) {
int insn_len;
if (!instruction_length(m_cur_insn, insn_len) || insn_len == 0 ||
insn_len > kMaxInstructionByteSize) {
// An unrecognized/junk instruction.
break;
}
const bool prefer_file_cache = true;
Error error;
if (target->ReadMemory(m_cur_insn, prefer_file_cache, m_cur_insn_bytes,
insn_len, error) == static_cast<size_t>(-1)) {
// Error reading the instruction out of the file, stop scanning.
break;
}
// Advance offsets.
offset += insn_len;
m_cur_insn.SetOffset(m_cur_insn.GetOffset() + insn_len);
if (reinstate_unwind_state) {
// that was the last instruction of this function
if (func.ContainsFileAddress(m_cur_insn) == false)
continue;
UnwindPlan::RowSP new_row(new UnwindPlan::Row());
*new_row = *original_last_row;
new_row->SetOffset(offset);
unwind_plan.AppendRow(new_row);
row.reset(new UnwindPlan::Row());
*row = *new_row;
reinstate_unwind_state = false;
unwind_plan_updated = true;
continue;
}
// If we already have one row for this instruction, we can continue.
while (row_id < unwind_plan.GetRowCount() &&
unwind_plan.GetRowAtIndex(row_id)->GetOffset() <= offset) {
row_id++;
}
UnwindPlan::RowSP original_row = unwind_plan.GetRowAtIndex(row_id - 1);
if (original_row->GetOffset() == offset) {
*row = *original_row;
continue;
}
if (row_id == 0) {
// If we are here, compiler didn't generate CFI for prologue.
// This won't happen to GCC or clang.
// In this case, bail out directly.
return false;
}
// Inspect the instruction to check if we need a new row for it.
cfa_reg = m_exe_ctx.GetThreadPtr()
->GetRegisterContext()
->ConvertRegisterKindToRegisterNumber(
unwind_plan.GetRegisterKind(),
row->GetCFAValue().GetRegisterNumber());
if (cfa_reg == m_lldb_sp_regnum) {
// CFA register is sp.
// call next instruction
// call 0
// => pop %ebx
if (call_next_insn_pattern_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// push/pop register
int regno;
if (push_reg_p(regno)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (pop_reg_p(regno)) {
// Technically, this might be a nonvolatile register recover in
// epilogue.
// We should reset RegisterInfo for the register.
// But in practice, previous rule for the register is still valid...
// So we ignore this case.
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// push imm
if (push_imm_pattern_p()) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// add/sub %rsp/%esp
int amount;
if (add_rsp_pattern_p(amount)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-amount);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (sub_rsp_pattern_p(amount)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(amount);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
// lea %rsp, [%rsp + $offset]
if (lea_rsp_pattern_p(amount)) {
row->SetOffset(offset);
row->GetCFAValue().IncOffset(-amount);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
continue;
}
if (ret_pattern_p()) {
reinstate_unwind_state = true;
continue;
}
} else if (cfa_reg == m_lldb_fp_regnum) {
// CFA register is fp.
// The only case we care about is epilogue:
// [0x5d] pop %rbp/%ebp
// => [0xc3] ret
if (pop_rbp_pattern_p() || leave_pattern_p()) {
if (target->ReadMemory(m_cur_insn, prefer_file_cache, m_cur_insn_bytes,
1, error) != static_cast<size_t>(-1) &&
ret_pattern_p()) {
row->SetOffset(offset);
row->GetCFAValue().SetIsRegisterPlusOffset(
first_row->GetCFAValue().GetRegisterNumber(), m_wordsize);
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
unwind_plan.InsertRow(new_row);
unwind_plan_updated = true;
reinstate_unwind_state = true;
continue;
}
}
} else {
// CFA register is not sp or fp.
// This must be hand-written assembly.
// Just trust eh_frame and assume we have finished.
break;
}
}
unwind_plan.SetPlanValidAddressRange(func);
if (unwind_plan_updated) {
std::string unwind_plan_source(unwind_plan.GetSourceName().AsCString());
unwind_plan_source += " plus augmentation from assembly parsing";
unwind_plan.SetSourceName(unwind_plan_source.c_str());
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
}
return true;
}
/* The "fast unwind plan" is valid for functions that follow the usual
convention of
using the frame pointer register (ebp, rbp), i.e. the function prologue looks
like
push %rbp [0x55]
mov %rsp,%rbp [0x48 0x89 0xe5] (this is a 2-byte insn seq on i386)
*/
bool AssemblyParse_x86::get_fast_unwind_plan(AddressRange &func,
UnwindPlan &unwind_plan) {
UnwindPlan::RowSP row(new UnwindPlan::Row);
UnwindPlan::Row::RegisterLocation pc_reginfo;
UnwindPlan::Row::RegisterLocation sp_reginfo;
UnwindPlan::Row::RegisterLocation fp_reginfo;
unwind_plan.SetRegisterKind(eRegisterKindLLDB);
if (!func.GetBaseAddress().IsValid())
return false;
Target *target = m_exe_ctx.GetTargetPtr();
uint8_t bytebuf[4];
Error error;
const bool prefer_file_cache = true;
if (target->ReadMemory(func.GetBaseAddress(), prefer_file_cache, bytebuf,
sizeof(bytebuf), error) == static_cast<size_t>(-1))
return false;
uint8_t i386_prologue[] = {0x55, 0x89, 0xe5};
uint8_t x86_64_prologue[] = {0x55, 0x48, 0x89, 0xe5};
int prologue_size;
if (memcmp(bytebuf, i386_prologue, sizeof(i386_prologue)) == 0) {
prologue_size = sizeof(i386_prologue);
} else if (memcmp(bytebuf, x86_64_prologue, sizeof(x86_64_prologue)) == 0) {
prologue_size = sizeof(x86_64_prologue);
} else {
return false;
}
pc_reginfo.SetAtCFAPlusOffset(-m_wordsize);
row->SetRegisterInfo(m_lldb_ip_regnum, pc_reginfo);
sp_reginfo.SetIsCFAPlusOffset(0);
row->SetRegisterInfo(m_lldb_sp_regnum, sp_reginfo);
// Zero instructions into the function
row->GetCFAValue().SetIsRegisterPlusOffset(m_lldb_sp_regnum, m_wordsize);
row->SetOffset(0);
unwind_plan.AppendRow(row);
UnwindPlan::Row *newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset(newrow);
// push %rbp has executed - stack moved, rbp now saved
row->GetCFAValue().IncOffset(m_wordsize);
fp_reginfo.SetAtCFAPlusOffset(2 * -m_wordsize);
row->SetRegisterInfo(m_lldb_fp_regnum, fp_reginfo);
row->SetOffset(1);
unwind_plan.AppendRow(row);
newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset(newrow);
// mov %rsp, %rbp has executed
row->GetCFAValue().SetIsRegisterPlusOffset(m_lldb_fp_regnum, 2 * m_wordsize);
row->SetOffset(prologue_size); /// 3 or 4 bytes depending on arch
unwind_plan.AppendRow(row);
newrow = new UnwindPlan::Row;
*newrow = *row.get();
row.reset(newrow);
unwind_plan.SetPlanValidAddressRange(func);
unwind_plan.SetSourceName("fast unwind assembly profiling");
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
return true;
}
bool AssemblyParse_x86::find_first_non_prologue_insn(Address &address) {
m_cur_insn = m_func_bounds.GetBaseAddress();
if (!m_cur_insn.IsValid()) {
return false;
}
const bool prefer_file_cache = true;
Target *target = m_exe_ctx.GetTargetPtr();
while (m_func_bounds.ContainsFileAddress(m_cur_insn)) {
Error error;
int insn_len, offset, regno;
if (!instruction_length(m_cur_insn, insn_len) ||
insn_len > kMaxInstructionByteSize || insn_len == 0) {
// An error parsing the instruction, i.e. probably data/garbage - stop
// scanning
break;
}
if (target->ReadMemory(m_cur_insn, prefer_file_cache, m_cur_insn_bytes,
insn_len, error) == static_cast<size_t>(-1)) {
// Error reading the instruction out of the file, stop scanning
break;
}
if (push_rbp_pattern_p() || mov_rsp_rbp_pattern_p() ||
sub_rsp_pattern_p(offset) || push_reg_p(regno) ||
mov_reg_to_local_stack_frame_p(regno, offset) ||
(lea_rsp_pattern_p(offset) && offset < 0)) {
m_cur_insn.SetOffset(m_cur_insn.GetOffset() + insn_len);
continue;
}
// Unknown non-prologue instruction - stop scanning
break;
}
address = m_cur_insn;
return true;
}
//-----------------------------------------------------------------------------------------------
// UnwindAssemblyParser_x86 method definitions
//-----------------------------------------------------------------------------------------------
UnwindAssembly_x86::UnwindAssembly_x86(const ArchSpec &arch, int cpu)
: lldb_private::UnwindAssembly(arch), m_cpu(cpu), m_arch(arch) {}
UnwindAssembly_x86::~UnwindAssembly_x86() {}
bool UnwindAssembly_x86::GetNonCallSiteUnwindPlanFromAssembly(
AddressRange &func, Thread &thread, UnwindPlan &unwind_plan) {
ExecutionContext exe_ctx(thread.shared_from_this());
AssemblyParse_x86 asm_parse(exe_ctx, m_cpu, m_arch, func);
return asm_parse.get_non_call_site_unwind_plan(unwind_plan);
}
bool UnwindAssembly_x86::AugmentUnwindPlanFromCallSite(
AddressRange &func, Thread &thread, UnwindPlan &unwind_plan) {
bool do_augment_unwindplan = true;
UnwindPlan::RowSP first_row = unwind_plan.GetRowForFunctionOffset(0);
UnwindPlan::RowSP last_row = unwind_plan.GetRowForFunctionOffset(-1);
int wordsize = 8;
ProcessSP process_sp(thread.GetProcess());
if (process_sp) {
wordsize = process_sp->GetTarget().GetArchitecture().GetAddressByteSize();
}
RegisterNumber sp_regnum(thread, eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_SP);
RegisterNumber pc_regnum(thread, eRegisterKindGeneric,
LLDB_REGNUM_GENERIC_PC);
// Does this UnwindPlan describe the prologue? I want to see that the CFA is
// set
// in terms of the stack pointer plus an offset, and I want to see that rip is
// retrieved at the CFA-wordsize.
// If there is no description of the prologue, don't try to augment this
// eh_frame
// unwinder code, fall back to assembly parsing instead.
if (first_row->GetCFAValue().GetValueType() !=
UnwindPlan::Row::CFAValue::isRegisterPlusOffset ||
RegisterNumber(thread, unwind_plan.GetRegisterKind(),
first_row->GetCFAValue().GetRegisterNumber()) !=
sp_regnum ||
first_row->GetCFAValue().GetOffset() != wordsize) {
return false;
}
UnwindPlan::Row::RegisterLocation first_row_pc_loc;
if (first_row->GetRegisterInfo(
pc_regnum.GetAsKind(unwind_plan.GetRegisterKind()),
first_row_pc_loc) == false ||
first_row_pc_loc.IsAtCFAPlusOffset() == false ||
first_row_pc_loc.GetOffset() != -wordsize) {
return false;
}
// It looks like the prologue is described.
// Is the epilogue described? If it is, no need to do any augmentation.
if (first_row != last_row &&
first_row->GetOffset() != last_row->GetOffset()) {
// The first & last row have the same CFA register
// and the same CFA offset value
// and the CFA register is esp/rsp (the stack pointer).
// We're checking that both of them have an unwind rule like "CFA=esp+4" or
// CFA+rsp+8".
if (first_row->GetCFAValue().GetValueType() ==
last_row->GetCFAValue().GetValueType() &&
first_row->GetCFAValue().GetRegisterNumber() ==
last_row->GetCFAValue().GetRegisterNumber() &&
first_row->GetCFAValue().GetOffset() ==
last_row->GetCFAValue().GetOffset()) {
// Get the register locations for eip/rip from the first & last rows.
// Are they both CFA plus an offset? Is it the same offset?
UnwindPlan::Row::RegisterLocation last_row_pc_loc;
if (last_row->GetRegisterInfo(
pc_regnum.GetAsKind(unwind_plan.GetRegisterKind()),
last_row_pc_loc)) {
if (last_row_pc_loc.IsAtCFAPlusOffset() &&
first_row_pc_loc.GetOffset() == last_row_pc_loc.GetOffset()) {
// One last sanity check: Is the unwind rule for getting the caller
// pc value
// "deref the CFA-4" or "deref the CFA-8"?
// If so, we have an UnwindPlan that already describes the epilogue
// and we don't need
// to modify it at all.
if (first_row_pc_loc.GetOffset() == -wordsize) {
do_augment_unwindplan = false;
}
}
}
}
}
if (do_augment_unwindplan) {
ExecutionContext exe_ctx(thread.shared_from_this());
AssemblyParse_x86 asm_parse(exe_ctx, m_cpu, m_arch, func);
return asm_parse.augment_unwind_plan_from_call_site(func, unwind_plan);
}
return false;
}
bool UnwindAssembly_x86::GetFastUnwindPlan(AddressRange &func, Thread &thread,
UnwindPlan &unwind_plan) {
// if prologue is
// 55 pushl %ebp
// 89 e5 movl %esp, %ebp
// or
// 55 pushq %rbp
// 48 89 e5 movq %rsp, %rbp
// We should pull in the ABI architecture default unwind plan and return that
llvm::SmallVector<uint8_t, 4> opcode_data;
ProcessSP process_sp = thread.GetProcess();
if (process_sp) {
Target &target(process_sp->GetTarget());
const bool prefer_file_cache = true;
Error error;
if (target.ReadMemory(func.GetBaseAddress(), prefer_file_cache,
opcode_data.data(), 4, error) == 4) {
uint8_t i386_push_mov[] = {0x55, 0x89, 0xe5};
uint8_t x86_64_push_mov[] = {0x55, 0x48, 0x89, 0xe5};
if (memcmp(opcode_data.data(), i386_push_mov, sizeof(i386_push_mov)) ==
0 ||
memcmp(opcode_data.data(), x86_64_push_mov,
sizeof(x86_64_push_mov)) == 0) {
ABISP abi_sp = process_sp->GetABI();
if (abi_sp) {
return abi_sp->CreateDefaultUnwindPlan(unwind_plan);
}
}
}
}
return false;
}
bool UnwindAssembly_x86::FirstNonPrologueInsn(
AddressRange &func, const ExecutionContext &exe_ctx,
Address &first_non_prologue_insn) {
AssemblyParse_x86 asm_parse(exe_ctx, m_cpu, m_arch, func);
return asm_parse.find_first_non_prologue_insn(first_non_prologue_insn);
}
UnwindAssembly *UnwindAssembly_x86::CreateInstance(const ArchSpec &arch) {
const llvm::Triple::ArchType cpu = arch.GetMachine();
if (cpu == llvm::Triple::x86)
return new UnwindAssembly_x86(arch, k_i386);
else if (cpu == llvm::Triple::x86_64)
return new UnwindAssembly_x86(arch, k_x86_64);
return NULL;
}
//------------------------------------------------------------------
// PluginInterface protocol in UnwindAssemblyParser_x86
//------------------------------------------------------------------
ConstString UnwindAssembly_x86::GetPluginName() {
return GetPluginNameStatic();
}
uint32_t UnwindAssembly_x86::GetPluginVersion() { return 1; }
void UnwindAssembly_x86::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
GetPluginDescriptionStatic(), CreateInstance);
}
void UnwindAssembly_x86::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
lldb_private::ConstString UnwindAssembly_x86::GetPluginNameStatic() {
static ConstString g_name("x86");
return g_name;
}
const char *UnwindAssembly_x86::GetPluginDescriptionStatic() {
return "i386 and x86_64 assembly language profiler plugin.";
}