forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			235 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			235 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- StringMap.cpp - String Hash table map implementation -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by Chris Lattner and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the StringMap class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/StringMap.h"
 | 
						|
#include <cassert>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
StringMapImpl::StringMapImpl(unsigned InitSize, unsigned itemSize) {
 | 
						|
  ItemSize = itemSize;
 | 
						|
  
 | 
						|
  // If a size is specified, initialize the table with that many buckets.
 | 
						|
  if (InitSize) {
 | 
						|
    init(InitSize);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, initialize it with zero buckets to avoid the allocation.
 | 
						|
  TheTable = 0;
 | 
						|
  NumBuckets = 0;
 | 
						|
  NumItems = 0;
 | 
						|
  NumTombstones = 0;
 | 
						|
}
 | 
						|
 | 
						|
void StringMapImpl::init(unsigned InitSize) {
 | 
						|
  assert((InitSize & (InitSize-1)) == 0 &&
 | 
						|
         "Init Size must be a power of 2 or zero!");
 | 
						|
  NumBuckets = InitSize ? InitSize : 16;
 | 
						|
  NumItems = 0;
 | 
						|
  NumTombstones = 0;
 | 
						|
  
 | 
						|
  TheTable = (ItemBucket*)calloc(NumBuckets+1, sizeof(ItemBucket));
 | 
						|
  
 | 
						|
  // Allocate one extra bucket, set it to look filled so the iterators stop at
 | 
						|
  // end.
 | 
						|
  TheTable[NumBuckets].Item = (StringMapEntryBase*)2;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// HashString - Compute a hash code for the specified string.
 | 
						|
///
 | 
						|
static unsigned HashString(const char *Start, const char *End) {
 | 
						|
  // Bernstein hash function.
 | 
						|
  unsigned int Result = 0;
 | 
						|
  // TODO: investigate whether a modified bernstein hash function performs
 | 
						|
  // better: http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx
 | 
						|
  //   X*33+c -> X*33^c
 | 
						|
  while (Start != End)
 | 
						|
    Result = Result * 33 + *Start++;
 | 
						|
  Result = Result + (Result >> 5);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// LookupBucketFor - Look up the bucket that the specified string should end
 | 
						|
/// up in.  If it already exists as a key in the map, the Item pointer for the
 | 
						|
/// specified bucket will be non-null.  Otherwise, it will be null.  In either
 | 
						|
/// case, the FullHashValue field of the bucket will be set to the hash value
 | 
						|
/// of the string.
 | 
						|
unsigned StringMapImpl::LookupBucketFor(const char *NameStart,
 | 
						|
                                        const char *NameEnd) {
 | 
						|
  unsigned HTSize = NumBuckets;
 | 
						|
  if (HTSize == 0) {  // Hash table unallocated so far?
 | 
						|
    init(16);
 | 
						|
    HTSize = NumBuckets;
 | 
						|
  }
 | 
						|
  unsigned FullHashValue = HashString(NameStart, NameEnd);
 | 
						|
  unsigned BucketNo = FullHashValue & (HTSize-1);
 | 
						|
  
 | 
						|
  unsigned ProbeAmt = 1;
 | 
						|
  int FirstTombstone = -1;
 | 
						|
  while (1) {
 | 
						|
    ItemBucket &Bucket = TheTable[BucketNo];
 | 
						|
    StringMapEntryBase *BucketItem = Bucket.Item;
 | 
						|
    // If we found an empty bucket, this key isn't in the table yet, return it.
 | 
						|
    if (BucketItem == 0) {
 | 
						|
      // If we found a tombstone, we want to reuse the tombstone instead of an
 | 
						|
      // empty bucket.  This reduces probing.
 | 
						|
      if (FirstTombstone != -1) {
 | 
						|
        TheTable[FirstTombstone].FullHashValue = FullHashValue;
 | 
						|
        return FirstTombstone;
 | 
						|
      }
 | 
						|
      
 | 
						|
      Bucket.FullHashValue = FullHashValue;
 | 
						|
      return BucketNo;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (BucketItem == getTombstoneVal()) {
 | 
						|
      // Skip over tombstones.  However, remember the first one we see.
 | 
						|
      if (FirstTombstone == -1) FirstTombstone = BucketNo;
 | 
						|
    } else if (Bucket.FullHashValue == FullHashValue) {
 | 
						|
      // If the full hash value matches, check deeply for a match.  The common
 | 
						|
      // case here is that we are only looking at the buckets (for item info
 | 
						|
      // being non-null and for the full hash value) not at the items.  This
 | 
						|
      // is important for cache locality.
 | 
						|
      
 | 
						|
      // Do the comparison like this because NameStart isn't necessarily
 | 
						|
      // null-terminated!
 | 
						|
      char *ItemStr = (char*)BucketItem+ItemSize;
 | 
						|
      unsigned ItemStrLen = BucketItem->getKeyLength();
 | 
						|
      if (unsigned(NameEnd-NameStart) == ItemStrLen &&
 | 
						|
          memcmp(ItemStr, NameStart, ItemStrLen) == 0) {
 | 
						|
        // We found a match!
 | 
						|
        return BucketNo;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Okay, we didn't find the item.  Probe to the next bucket.
 | 
						|
    BucketNo = (BucketNo+ProbeAmt) & (HTSize-1);
 | 
						|
    
 | 
						|
    // Use quadratic probing, it has fewer clumping artifacts than linear
 | 
						|
    // probing and has good cache behavior in the common case.
 | 
						|
    ++ProbeAmt;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// FindKey - Look up the bucket that contains the specified key. If it exists
 | 
						|
/// in the map, return the bucket number of the key.  Otherwise return -1.
 | 
						|
/// This does not modify the map.
 | 
						|
int StringMapImpl::FindKey(const char *KeyStart, const char *KeyEnd) const {
 | 
						|
  unsigned HTSize = NumBuckets;
 | 
						|
  if (HTSize == 0) return -1;  // Really empty table?
 | 
						|
  unsigned FullHashValue = HashString(KeyStart, KeyEnd);
 | 
						|
  unsigned BucketNo = FullHashValue & (HTSize-1);
 | 
						|
  
 | 
						|
  unsigned ProbeAmt = 1;
 | 
						|
  while (1) {
 | 
						|
    ItemBucket &Bucket = TheTable[BucketNo];
 | 
						|
    StringMapEntryBase *BucketItem = Bucket.Item;
 | 
						|
    // If we found an empty bucket, this key isn't in the table yet, return.
 | 
						|
    if (BucketItem == 0)
 | 
						|
      return -1;
 | 
						|
    
 | 
						|
    if (BucketItem == getTombstoneVal()) {
 | 
						|
      // Ignore tombstones.
 | 
						|
    } else if (Bucket.FullHashValue == FullHashValue) {
 | 
						|
      // If the full hash value matches, check deeply for a match.  The common
 | 
						|
      // case here is that we are only looking at the buckets (for item info
 | 
						|
      // being non-null and for the full hash value) not at the items.  This
 | 
						|
      // is important for cache locality.
 | 
						|
      
 | 
						|
      // Do the comparison like this because NameStart isn't necessarily
 | 
						|
      // null-terminated!
 | 
						|
      char *ItemStr = (char*)BucketItem+ItemSize;
 | 
						|
      unsigned ItemStrLen = BucketItem->getKeyLength();
 | 
						|
      if (unsigned(KeyEnd-KeyStart) == ItemStrLen &&
 | 
						|
          memcmp(ItemStr, KeyStart, ItemStrLen) == 0) {
 | 
						|
        // We found a match!
 | 
						|
        return BucketNo;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Okay, we didn't find the item.  Probe to the next bucket.
 | 
						|
    BucketNo = (BucketNo+ProbeAmt) & (HTSize-1);
 | 
						|
    
 | 
						|
    // Use quadratic probing, it has fewer clumping artifacts than linear
 | 
						|
    // probing and has good cache behavior in the common case.
 | 
						|
    ++ProbeAmt;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveKey - Remove the specified StringMapEntry from the table, but do not
 | 
						|
/// delete it.  This aborts if the value isn't in the table.
 | 
						|
void StringMapImpl::RemoveKey(StringMapEntryBase *V) {
 | 
						|
  const char *VStr = (char*)V + ItemSize;
 | 
						|
  StringMapEntryBase *V2 = RemoveKey(VStr, VStr+V->getKeyLength());
 | 
						|
  V2 = V2;
 | 
						|
  assert(V == V2 && "Didn't find key?");
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveKey - Remove the StringMapEntry for the specified key from the
 | 
						|
/// table, returning it.  If the key is not in the table, this returns null.
 | 
						|
StringMapEntryBase *StringMapImpl::RemoveKey(const char *KeyStart,
 | 
						|
                                             const char *KeyEnd) {
 | 
						|
  int Bucket = FindKey(KeyStart, KeyEnd);
 | 
						|
  if (Bucket == -1) return 0;
 | 
						|
  
 | 
						|
  StringMapEntryBase *Result = TheTable[Bucket].Item;
 | 
						|
  TheTable[Bucket].Item = getTombstoneVal();
 | 
						|
  --NumItems;
 | 
						|
  ++NumTombstones;
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// RehashTable - Grow the table, redistributing values into the buckets with
 | 
						|
/// the appropriate mod-of-hashtable-size.
 | 
						|
void StringMapImpl::RehashTable() {
 | 
						|
  unsigned NewSize = NumBuckets*2;
 | 
						|
  // Allocate one extra bucket which will always be non-empty.  This allows the
 | 
						|
  // iterators to stop at end.
 | 
						|
  ItemBucket *NewTableArray =(ItemBucket*)calloc(NewSize+1, sizeof(ItemBucket));
 | 
						|
  NewTableArray[NewSize].Item = (StringMapEntryBase*)2;
 | 
						|
  
 | 
						|
  // Rehash all the items into their new buckets.  Luckily :) we already have
 | 
						|
  // the hash values available, so we don't have to rehash any strings.
 | 
						|
  for (ItemBucket *IB = TheTable, *E = TheTable+NumBuckets; IB != E; ++IB) {
 | 
						|
    if (IB->Item && IB->Item != getTombstoneVal()) {
 | 
						|
      // Fast case, bucket available.
 | 
						|
      unsigned FullHash = IB->FullHashValue;
 | 
						|
      unsigned NewBucket = FullHash & (NewSize-1);
 | 
						|
      if (NewTableArray[NewBucket].Item == 0) {
 | 
						|
        NewTableArray[FullHash & (NewSize-1)].Item = IB->Item;
 | 
						|
        NewTableArray[FullHash & (NewSize-1)].FullHashValue = FullHash;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Otherwise probe for a spot.
 | 
						|
      unsigned ProbeSize = 1;
 | 
						|
      do {
 | 
						|
        NewBucket = (NewBucket + ProbeSize++) & (NewSize-1);
 | 
						|
      } while (NewTableArray[NewBucket].Item);
 | 
						|
      
 | 
						|
      // Finally found a slot.  Fill it in.
 | 
						|
      NewTableArray[NewBucket].Item = IB->Item;
 | 
						|
      NewTableArray[NewBucket].FullHashValue = FullHash;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  free(TheTable);
 | 
						|
  
 | 
						|
  TheTable = NewTableArray;
 | 
						|
  NumBuckets = NewSize;
 | 
						|
}
 |