forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2407 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2407 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // A intra-procedural analysis for thread safety (e.g. deadlocks and race
 | |
| // conditions), based off of an annotation system.
 | |
| //
 | |
| // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
 | |
| // for more information.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/StmtCXX.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "clang/Analysis/Analyses/PostOrderCFGView.h"
 | |
| #include "clang/Analysis/Analyses/ThreadSafety.h"
 | |
| #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
 | |
| #include "clang/Analysis/Analyses/ThreadSafetyLogical.h"
 | |
| #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
 | |
| #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
 | |
| #include "clang/Analysis/AnalysisContext.h"
 | |
| #include "clang/Analysis/CFG.h"
 | |
| #include "clang/Analysis/CFGStmtMap.h"
 | |
| #include "clang/Basic/OperatorKinds.h"
 | |
| #include "clang/Basic/SourceLocation.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/ImmutableMap.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <ostream>
 | |
| #include <sstream>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| using namespace clang;
 | |
| using namespace threadSafety;
 | |
| 
 | |
| // Key method definition
 | |
| ThreadSafetyHandler::~ThreadSafetyHandler() {}
 | |
| 
 | |
| namespace {
 | |
| class TILPrinter :
 | |
|   public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
 | |
| 
 | |
| 
 | |
| /// Issue a warning about an invalid lock expression
 | |
| static void warnInvalidLock(ThreadSafetyHandler &Handler,
 | |
|                             const Expr *MutexExp, const NamedDecl *D,
 | |
|                             const Expr *DeclExp, StringRef Kind) {
 | |
|   SourceLocation Loc;
 | |
|   if (DeclExp)
 | |
|     Loc = DeclExp->getExprLoc();
 | |
| 
 | |
|   // FIXME: add a note about the attribute location in MutexExp or D
 | |
|   if (Loc.isValid())
 | |
|     Handler.handleInvalidLockExp(Kind, Loc);
 | |
| }
 | |
| 
 | |
| /// \brief A set of CapabilityInfo objects, which are compiled from the
 | |
| /// requires attributes on a function.
 | |
| class CapExprSet : public SmallVector<CapabilityExpr, 4> {
 | |
| public:
 | |
|   /// \brief Push M onto list, but discard duplicates.
 | |
|   void push_back_nodup(const CapabilityExpr &CapE) {
 | |
|     iterator It = std::find_if(begin(), end(),
 | |
|                                [=](const CapabilityExpr &CapE2) {
 | |
|       return CapE.equals(CapE2);
 | |
|     });
 | |
|     if (It == end())
 | |
|       push_back(CapE);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class FactManager;
 | |
| class FactSet;
 | |
| 
 | |
| /// \brief This is a helper class that stores a fact that is known at a
 | |
| /// particular point in program execution.  Currently, a fact is a capability,
 | |
| /// along with additional information, such as where it was acquired, whether
 | |
| /// it is exclusive or shared, etc.
 | |
| ///
 | |
| /// FIXME: this analysis does not currently support either re-entrant
 | |
| /// locking or lock "upgrading" and "downgrading" between exclusive and
 | |
| /// shared.
 | |
| class FactEntry : public CapabilityExpr {
 | |
| private:
 | |
|   LockKind          LKind;            ///<  exclusive or shared
 | |
|   SourceLocation    AcquireLoc;       ///<  where it was acquired.
 | |
|   bool              Asserted;         ///<  true if the lock was asserted
 | |
|   bool              Declared;         ///<  true if the lock was declared
 | |
| 
 | |
| public:
 | |
|   FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
 | |
|             bool Asrt, bool Declrd = false)
 | |
|       : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt),
 | |
|         Declared(Declrd) {}
 | |
| 
 | |
|   virtual ~FactEntry() {}
 | |
| 
 | |
|   LockKind          kind()       const { return LKind;      }
 | |
|   SourceLocation    loc()        const { return AcquireLoc; }
 | |
|   bool              asserted()   const { return Asserted; }
 | |
|   bool              declared()   const { return Declared; }
 | |
| 
 | |
|   void setDeclared(bool D) { Declared = D; }
 | |
| 
 | |
|   virtual void
 | |
|   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
 | |
|                                 SourceLocation JoinLoc, LockErrorKind LEK,
 | |
|                                 ThreadSafetyHandler &Handler) const = 0;
 | |
|   virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
 | |
|                             const CapabilityExpr &Cp, SourceLocation UnlockLoc,
 | |
|                             bool FullyRemove, ThreadSafetyHandler &Handler,
 | |
|                             StringRef DiagKind) const = 0;
 | |
| 
 | |
|   // Return true if LKind >= LK, where exclusive > shared
 | |
|   bool isAtLeast(LockKind LK) {
 | |
|     return  (LKind == LK_Exclusive) || (LK == LK_Shared);
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| typedef unsigned short FactID;
 | |
| 
 | |
| /// \brief FactManager manages the memory for all facts that are created during
 | |
| /// the analysis of a single routine.
 | |
| class FactManager {
 | |
| private:
 | |
|   std::vector<std::unique_ptr<FactEntry>> Facts;
 | |
| 
 | |
| public:
 | |
|   FactID newFact(std::unique_ptr<FactEntry> Entry) {
 | |
|     Facts.push_back(std::move(Entry));
 | |
|     return static_cast<unsigned short>(Facts.size() - 1);
 | |
|   }
 | |
| 
 | |
|   const FactEntry &operator[](FactID F) const { return *Facts[F]; }
 | |
|   FactEntry &operator[](FactID F) { return *Facts[F]; }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// \brief A FactSet is the set of facts that are known to be true at a
 | |
| /// particular program point.  FactSets must be small, because they are
 | |
| /// frequently copied, and are thus implemented as a set of indices into a
 | |
| /// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
 | |
| /// locks, so we can get away with doing a linear search for lookup.  Note
 | |
| /// that a hashtable or map is inappropriate in this case, because lookups
 | |
| /// may involve partial pattern matches, rather than exact matches.
 | |
| class FactSet {
 | |
| private:
 | |
|   typedef SmallVector<FactID, 4> FactVec;
 | |
| 
 | |
|   FactVec FactIDs;
 | |
| 
 | |
| public:
 | |
|   typedef FactVec::iterator       iterator;
 | |
|   typedef FactVec::const_iterator const_iterator;
 | |
| 
 | |
|   iterator       begin()       { return FactIDs.begin(); }
 | |
|   const_iterator begin() const { return FactIDs.begin(); }
 | |
| 
 | |
|   iterator       end()       { return FactIDs.end(); }
 | |
|   const_iterator end() const { return FactIDs.end(); }
 | |
| 
 | |
|   bool isEmpty() const { return FactIDs.size() == 0; }
 | |
| 
 | |
|   // Return true if the set contains only negative facts
 | |
|   bool isEmpty(FactManager &FactMan) const {
 | |
|     for (FactID FID : *this) {
 | |
|       if (!FactMan[FID].negative())
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   void addLockByID(FactID ID) { FactIDs.push_back(ID); }
 | |
| 
 | |
|   FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
 | |
|     FactID F = FM.newFact(std::move(Entry));
 | |
|     FactIDs.push_back(F);
 | |
|     return F;
 | |
|   }
 | |
| 
 | |
|   bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
 | |
|     unsigned n = FactIDs.size();
 | |
|     if (n == 0)
 | |
|       return false;
 | |
| 
 | |
|     for (unsigned i = 0; i < n-1; ++i) {
 | |
|       if (FM[FactIDs[i]].matches(CapE)) {
 | |
|         FactIDs[i] = FactIDs[n-1];
 | |
|         FactIDs.pop_back();
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     if (FM[FactIDs[n-1]].matches(CapE)) {
 | |
|       FactIDs.pop_back();
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
 | |
|     return std::find_if(begin(), end(), [&](FactID ID) {
 | |
|       return FM[ID].matches(CapE);
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
 | |
|     auto I = std::find_if(begin(), end(), [&](FactID ID) {
 | |
|       return FM[ID].matches(CapE);
 | |
|     });
 | |
|     return I != end() ? &FM[*I] : nullptr;
 | |
|   }
 | |
| 
 | |
|   FactEntry *findLockUniv(FactManager &FM, const CapabilityExpr &CapE) const {
 | |
|     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
 | |
|       return FM[ID].matchesUniv(CapE);
 | |
|     });
 | |
|     return I != end() ? &FM[*I] : nullptr;
 | |
|   }
 | |
| 
 | |
|   FactEntry *findPartialMatch(FactManager &FM,
 | |
|                               const CapabilityExpr &CapE) const {
 | |
|     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
 | |
|       return FM[ID].partiallyMatches(CapE);
 | |
|     });
 | |
|     return I != end() ? &FM[*I] : nullptr;
 | |
|   }
 | |
| 
 | |
|   bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
 | |
|     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
 | |
|       return FM[ID].valueDecl() == Vd;
 | |
|     });
 | |
|     return I != end();
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ThreadSafetyAnalyzer;
 | |
| } // namespace
 | |
| 
 | |
| namespace clang {
 | |
| namespace threadSafety {
 | |
| class BeforeSet {
 | |
| private:
 | |
|   typedef SmallVector<const ValueDecl*, 4>  BeforeVect;
 | |
| 
 | |
|   struct BeforeInfo {
 | |
|     BeforeInfo() : Visited(0) {}
 | |
|     BeforeInfo(BeforeInfo &&O) : Vect(std::move(O.Vect)), Visited(O.Visited) {}
 | |
| 
 | |
|     BeforeVect Vect;
 | |
|     int Visited;
 | |
|   };
 | |
| 
 | |
|   typedef llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>
 | |
|       BeforeMap;
 | |
|   typedef llvm::DenseMap<const ValueDecl*, bool>        CycleMap;
 | |
| 
 | |
| public:
 | |
|   BeforeSet() { }
 | |
| 
 | |
|   BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
 | |
|                               ThreadSafetyAnalyzer& Analyzer);
 | |
| 
 | |
|   BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
 | |
|                                    ThreadSafetyAnalyzer &Analyzer);
 | |
| 
 | |
|   void checkBeforeAfter(const ValueDecl* Vd,
 | |
|                         const FactSet& FSet,
 | |
|                         ThreadSafetyAnalyzer& Analyzer,
 | |
|                         SourceLocation Loc, StringRef CapKind);
 | |
| 
 | |
| private:
 | |
|   BeforeMap BMap;
 | |
|   CycleMap  CycMap;
 | |
| };
 | |
| } // end namespace threadSafety
 | |
| } // end namespace clang
 | |
| 
 | |
| namespace {
 | |
| typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext;
 | |
| class LocalVariableMap;
 | |
| 
 | |
| /// A side (entry or exit) of a CFG node.
 | |
| enum CFGBlockSide { CBS_Entry, CBS_Exit };
 | |
| 
 | |
| /// CFGBlockInfo is a struct which contains all the information that is
 | |
| /// maintained for each block in the CFG.  See LocalVariableMap for more
 | |
| /// information about the contexts.
 | |
| struct CFGBlockInfo {
 | |
|   FactSet EntrySet;             // Lockset held at entry to block
 | |
|   FactSet ExitSet;              // Lockset held at exit from block
 | |
|   LocalVarContext EntryContext; // Context held at entry to block
 | |
|   LocalVarContext ExitContext;  // Context held at exit from block
 | |
|   SourceLocation EntryLoc;      // Location of first statement in block
 | |
|   SourceLocation ExitLoc;       // Location of last statement in block.
 | |
|   unsigned EntryIndex;          // Used to replay contexts later
 | |
|   bool Reachable;               // Is this block reachable?
 | |
| 
 | |
|   const FactSet &getSet(CFGBlockSide Side) const {
 | |
|     return Side == CBS_Entry ? EntrySet : ExitSet;
 | |
|   }
 | |
|   SourceLocation getLocation(CFGBlockSide Side) const {
 | |
|     return Side == CBS_Entry ? EntryLoc : ExitLoc;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   CFGBlockInfo(LocalVarContext EmptyCtx)
 | |
|     : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false)
 | |
|   { }
 | |
| 
 | |
| public:
 | |
|   static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| // A LocalVariableMap maintains a map from local variables to their currently
 | |
| // valid definitions.  It provides SSA-like functionality when traversing the
 | |
| // CFG.  Like SSA, each definition or assignment to a variable is assigned a
 | |
| // unique name (an integer), which acts as the SSA name for that definition.
 | |
| // The total set of names is shared among all CFG basic blocks.
 | |
| // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
 | |
| // with their SSA-names.  Instead, we compute a Context for each point in the
 | |
| // code, which maps local variables to the appropriate SSA-name.  This map
 | |
| // changes with each assignment.
 | |
| //
 | |
| // The map is computed in a single pass over the CFG.  Subsequent analyses can
 | |
| // then query the map to find the appropriate Context for a statement, and use
 | |
| // that Context to look up the definitions of variables.
 | |
| class LocalVariableMap {
 | |
| public:
 | |
|   typedef LocalVarContext Context;
 | |
| 
 | |
|   /// A VarDefinition consists of an expression, representing the value of the
 | |
|   /// variable, along with the context in which that expression should be
 | |
|   /// interpreted.  A reference VarDefinition does not itself contain this
 | |
|   /// information, but instead contains a pointer to a previous VarDefinition.
 | |
|   struct VarDefinition {
 | |
|   public:
 | |
|     friend class LocalVariableMap;
 | |
| 
 | |
|     const NamedDecl *Dec;  // The original declaration for this variable.
 | |
|     const Expr *Exp;       // The expression for this variable, OR
 | |
|     unsigned Ref;          // Reference to another VarDefinition
 | |
|     Context Ctx;           // The map with which Exp should be interpreted.
 | |
| 
 | |
|     bool isReference() { return !Exp; }
 | |
| 
 | |
|   private:
 | |
|     // Create ordinary variable definition
 | |
|     VarDefinition(const NamedDecl *D, const Expr *E, Context C)
 | |
|       : Dec(D), Exp(E), Ref(0), Ctx(C)
 | |
|     { }
 | |
| 
 | |
|     // Create reference to previous definition
 | |
|     VarDefinition(const NamedDecl *D, unsigned R, Context C)
 | |
|       : Dec(D), Exp(nullptr), Ref(R), Ctx(C)
 | |
|     { }
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   Context::Factory ContextFactory;
 | |
|   std::vector<VarDefinition> VarDefinitions;
 | |
|   std::vector<unsigned> CtxIndices;
 | |
|   std::vector<std::pair<Stmt*, Context> > SavedContexts;
 | |
| 
 | |
| public:
 | |
|   LocalVariableMap() {
 | |
|     // index 0 is a placeholder for undefined variables (aka phi-nodes).
 | |
|     VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
 | |
|   }
 | |
| 
 | |
|   /// Look up a definition, within the given context.
 | |
|   const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
 | |
|     const unsigned *i = Ctx.lookup(D);
 | |
|     if (!i)
 | |
|       return nullptr;
 | |
|     assert(*i < VarDefinitions.size());
 | |
|     return &VarDefinitions[*i];
 | |
|   }
 | |
| 
 | |
|   /// Look up the definition for D within the given context.  Returns
 | |
|   /// NULL if the expression is not statically known.  If successful, also
 | |
|   /// modifies Ctx to hold the context of the return Expr.
 | |
|   const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
 | |
|     const unsigned *P = Ctx.lookup(D);
 | |
|     if (!P)
 | |
|       return nullptr;
 | |
| 
 | |
|     unsigned i = *P;
 | |
|     while (i > 0) {
 | |
|       if (VarDefinitions[i].Exp) {
 | |
|         Ctx = VarDefinitions[i].Ctx;
 | |
|         return VarDefinitions[i].Exp;
 | |
|       }
 | |
|       i = VarDefinitions[i].Ref;
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
 | |
| 
 | |
|   /// Return the next context after processing S.  This function is used by
 | |
|   /// clients of the class to get the appropriate context when traversing the
 | |
|   /// CFG.  It must be called for every assignment or DeclStmt.
 | |
|   Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
 | |
|     if (SavedContexts[CtxIndex+1].first == S) {
 | |
|       CtxIndex++;
 | |
|       Context Result = SavedContexts[CtxIndex].second;
 | |
|       return Result;
 | |
|     }
 | |
|     return C;
 | |
|   }
 | |
| 
 | |
|   void dumpVarDefinitionName(unsigned i) {
 | |
|     if (i == 0) {
 | |
|       llvm::errs() << "Undefined";
 | |
|       return;
 | |
|     }
 | |
|     const NamedDecl *Dec = VarDefinitions[i].Dec;
 | |
|     if (!Dec) {
 | |
|       llvm::errs() << "<<NULL>>";
 | |
|       return;
 | |
|     }
 | |
|     Dec->printName(llvm::errs());
 | |
|     llvm::errs() << "." << i << " " << ((const void*) Dec);
 | |
|   }
 | |
| 
 | |
|   /// Dumps an ASCII representation of the variable map to llvm::errs()
 | |
|   void dump() {
 | |
|     for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
 | |
|       const Expr *Exp = VarDefinitions[i].Exp;
 | |
|       unsigned Ref = VarDefinitions[i].Ref;
 | |
| 
 | |
|       dumpVarDefinitionName(i);
 | |
|       llvm::errs() << " = ";
 | |
|       if (Exp) Exp->dump();
 | |
|       else {
 | |
|         dumpVarDefinitionName(Ref);
 | |
|         llvm::errs() << "\n";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Dumps an ASCII representation of a Context to llvm::errs()
 | |
|   void dumpContext(Context C) {
 | |
|     for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
 | |
|       const NamedDecl *D = I.getKey();
 | |
|       D->printName(llvm::errs());
 | |
|       const unsigned *i = C.lookup(D);
 | |
|       llvm::errs() << " -> ";
 | |
|       dumpVarDefinitionName(*i);
 | |
|       llvm::errs() << "\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Builds the variable map.
 | |
|   void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
 | |
|                    std::vector<CFGBlockInfo> &BlockInfo);
 | |
| 
 | |
| protected:
 | |
|   // Get the current context index
 | |
|   unsigned getContextIndex() { return SavedContexts.size()-1; }
 | |
| 
 | |
|   // Save the current context for later replay
 | |
|   void saveContext(Stmt *S, Context C) {
 | |
|     SavedContexts.push_back(std::make_pair(S,C));
 | |
|   }
 | |
| 
 | |
|   // Adds a new definition to the given context, and returns a new context.
 | |
|   // This method should be called when declaring a new variable.
 | |
|   Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
 | |
|     assert(!Ctx.contains(D));
 | |
|     unsigned newID = VarDefinitions.size();
 | |
|     Context NewCtx = ContextFactory.add(Ctx, D, newID);
 | |
|     VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
 | |
|     return NewCtx;
 | |
|   }
 | |
| 
 | |
|   // Add a new reference to an existing definition.
 | |
|   Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
 | |
|     unsigned newID = VarDefinitions.size();
 | |
|     Context NewCtx = ContextFactory.add(Ctx, D, newID);
 | |
|     VarDefinitions.push_back(VarDefinition(D, i, Ctx));
 | |
|     return NewCtx;
 | |
|   }
 | |
| 
 | |
|   // Updates a definition only if that definition is already in the map.
 | |
|   // This method should be called when assigning to an existing variable.
 | |
|   Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
 | |
|     if (Ctx.contains(D)) {
 | |
|       unsigned newID = VarDefinitions.size();
 | |
|       Context NewCtx = ContextFactory.remove(Ctx, D);
 | |
|       NewCtx = ContextFactory.add(NewCtx, D, newID);
 | |
|       VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
 | |
|       return NewCtx;
 | |
|     }
 | |
|     return Ctx;
 | |
|   }
 | |
| 
 | |
|   // Removes a definition from the context, but keeps the variable name
 | |
|   // as a valid variable.  The index 0 is a placeholder for cleared definitions.
 | |
|   Context clearDefinition(const NamedDecl *D, Context Ctx) {
 | |
|     Context NewCtx = Ctx;
 | |
|     if (NewCtx.contains(D)) {
 | |
|       NewCtx = ContextFactory.remove(NewCtx, D);
 | |
|       NewCtx = ContextFactory.add(NewCtx, D, 0);
 | |
|     }
 | |
|     return NewCtx;
 | |
|   }
 | |
| 
 | |
|   // Remove a definition entirely frmo the context.
 | |
|   Context removeDefinition(const NamedDecl *D, Context Ctx) {
 | |
|     Context NewCtx = Ctx;
 | |
|     if (NewCtx.contains(D)) {
 | |
|       NewCtx = ContextFactory.remove(NewCtx, D);
 | |
|     }
 | |
|     return NewCtx;
 | |
|   }
 | |
| 
 | |
|   Context intersectContexts(Context C1, Context C2);
 | |
|   Context createReferenceContext(Context C);
 | |
|   void intersectBackEdge(Context C1, Context C2);
 | |
| 
 | |
|   friend class VarMapBuilder;
 | |
| };
 | |
| 
 | |
| 
 | |
| // This has to be defined after LocalVariableMap.
 | |
| CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
 | |
|   return CFGBlockInfo(M.getEmptyContext());
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Visitor which builds a LocalVariableMap
 | |
| class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
 | |
| public:
 | |
|   LocalVariableMap* VMap;
 | |
|   LocalVariableMap::Context Ctx;
 | |
| 
 | |
|   VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
 | |
|     : VMap(VM), Ctx(C) {}
 | |
| 
 | |
|   void VisitDeclStmt(DeclStmt *S);
 | |
|   void VisitBinaryOperator(BinaryOperator *BO);
 | |
| };
 | |
| 
 | |
| 
 | |
| // Add new local variables to the variable map
 | |
| void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
 | |
|   bool modifiedCtx = false;
 | |
|   DeclGroupRef DGrp = S->getDeclGroup();
 | |
|   for (const auto *D : DGrp) {
 | |
|     if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
 | |
|       const Expr *E = VD->getInit();
 | |
| 
 | |
|       // Add local variables with trivial type to the variable map
 | |
|       QualType T = VD->getType();
 | |
|       if (T.isTrivialType(VD->getASTContext())) {
 | |
|         Ctx = VMap->addDefinition(VD, E, Ctx);
 | |
|         modifiedCtx = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (modifiedCtx)
 | |
|     VMap->saveContext(S, Ctx);
 | |
| }
 | |
| 
 | |
| // Update local variable definitions in variable map
 | |
| void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
 | |
|   if (!BO->isAssignmentOp())
 | |
|     return;
 | |
| 
 | |
|   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
 | |
| 
 | |
|   // Update the variable map and current context.
 | |
|   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
 | |
|     ValueDecl *VDec = DRE->getDecl();
 | |
|     if (Ctx.lookup(VDec)) {
 | |
|       if (BO->getOpcode() == BO_Assign)
 | |
|         Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
 | |
|       else
 | |
|         // FIXME -- handle compound assignment operators
 | |
|         Ctx = VMap->clearDefinition(VDec, Ctx);
 | |
|       VMap->saveContext(BO, Ctx);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Computes the intersection of two contexts.  The intersection is the
 | |
| // set of variables which have the same definition in both contexts;
 | |
| // variables with different definitions are discarded.
 | |
| LocalVariableMap::Context
 | |
| LocalVariableMap::intersectContexts(Context C1, Context C2) {
 | |
|   Context Result = C1;
 | |
|   for (const auto &P : C1) {
 | |
|     const NamedDecl *Dec = P.first;
 | |
|     const unsigned *i2 = C2.lookup(Dec);
 | |
|     if (!i2)             // variable doesn't exist on second path
 | |
|       Result = removeDefinition(Dec, Result);
 | |
|     else if (*i2 != P.second)  // variable exists, but has different definition
 | |
|       Result = clearDefinition(Dec, Result);
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // For every variable in C, create a new variable that refers to the
 | |
| // definition in C.  Return a new context that contains these new variables.
 | |
| // (We use this for a naive implementation of SSA on loop back-edges.)
 | |
| LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
 | |
|   Context Result = getEmptyContext();
 | |
|   for (const auto &P : C)
 | |
|     Result = addReference(P.first, P.second, Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // This routine also takes the intersection of C1 and C2, but it does so by
 | |
| // altering the VarDefinitions.  C1 must be the result of an earlier call to
 | |
| // createReferenceContext.
 | |
| void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
 | |
|   for (const auto &P : C1) {
 | |
|     unsigned i1 = P.second;
 | |
|     VarDefinition *VDef = &VarDefinitions[i1];
 | |
|     assert(VDef->isReference());
 | |
| 
 | |
|     const unsigned *i2 = C2.lookup(P.first);
 | |
|     if (!i2 || (*i2 != i1))
 | |
|       VDef->Ref = 0;    // Mark this variable as undefined
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Traverse the CFG in topological order, so all predecessors of a block
 | |
| // (excluding back-edges) are visited before the block itself.  At
 | |
| // each point in the code, we calculate a Context, which holds the set of
 | |
| // variable definitions which are visible at that point in execution.
 | |
| // Visible variables are mapped to their definitions using an array that
 | |
| // contains all definitions.
 | |
| //
 | |
| // At join points in the CFG, the set is computed as the intersection of
 | |
| // the incoming sets along each edge, E.g.
 | |
| //
 | |
| //                       { Context                 | VarDefinitions }
 | |
| //   int x = 0;          { x -> x1                 | x1 = 0 }
 | |
| //   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
 | |
| //   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
 | |
| //   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
 | |
| //   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
 | |
| //
 | |
| // This is essentially a simpler and more naive version of the standard SSA
 | |
| // algorithm.  Those definitions that remain in the intersection are from blocks
 | |
| // that strictly dominate the current block.  We do not bother to insert proper
 | |
| // phi nodes, because they are not used in our analysis; instead, wherever
 | |
| // a phi node would be required, we simply remove that definition from the
 | |
| // context (E.g. x above).
 | |
| //
 | |
| // The initial traversal does not capture back-edges, so those need to be
 | |
| // handled on a separate pass.  Whenever the first pass encounters an
 | |
| // incoming back edge, it duplicates the context, creating new definitions
 | |
| // that refer back to the originals.  (These correspond to places where SSA
 | |
| // might have to insert a phi node.)  On the second pass, these definitions are
 | |
| // set to NULL if the variable has changed on the back-edge (i.e. a phi
 | |
| // node was actually required.)  E.g.
 | |
| //
 | |
| //                       { Context           | VarDefinitions }
 | |
| //   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
 | |
| //   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
 | |
| //     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
 | |
| //   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
 | |
| //
 | |
| void LocalVariableMap::traverseCFG(CFG *CFGraph,
 | |
|                                    const PostOrderCFGView *SortedGraph,
 | |
|                                    std::vector<CFGBlockInfo> &BlockInfo) {
 | |
|   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
 | |
| 
 | |
|   CtxIndices.resize(CFGraph->getNumBlockIDs());
 | |
| 
 | |
|   for (const auto *CurrBlock : *SortedGraph) {
 | |
|     int CurrBlockID = CurrBlock->getBlockID();
 | |
|     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
 | |
| 
 | |
|     VisitedBlocks.insert(CurrBlock);
 | |
| 
 | |
|     // Calculate the entry context for the current block
 | |
|     bool HasBackEdges = false;
 | |
|     bool CtxInit = true;
 | |
|     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
 | |
|          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
 | |
|       // if *PI -> CurrBlock is a back edge, so skip it
 | |
|       if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
 | |
|         HasBackEdges = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       int PrevBlockID = (*PI)->getBlockID();
 | |
|       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
 | |
| 
 | |
|       if (CtxInit) {
 | |
|         CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
 | |
|         CtxInit = false;
 | |
|       }
 | |
|       else {
 | |
|         CurrBlockInfo->EntryContext =
 | |
|           intersectContexts(CurrBlockInfo->EntryContext,
 | |
|                             PrevBlockInfo->ExitContext);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Duplicate the context if we have back-edges, so we can call
 | |
|     // intersectBackEdges later.
 | |
|     if (HasBackEdges)
 | |
|       CurrBlockInfo->EntryContext =
 | |
|         createReferenceContext(CurrBlockInfo->EntryContext);
 | |
| 
 | |
|     // Create a starting context index for the current block
 | |
|     saveContext(nullptr, CurrBlockInfo->EntryContext);
 | |
|     CurrBlockInfo->EntryIndex = getContextIndex();
 | |
| 
 | |
|     // Visit all the statements in the basic block.
 | |
|     VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
 | |
|     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
 | |
|          BE = CurrBlock->end(); BI != BE; ++BI) {
 | |
|       switch (BI->getKind()) {
 | |
|         case CFGElement::Statement: {
 | |
|           CFGStmt CS = BI->castAs<CFGStmt>();
 | |
|           VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
 | |
|           break;
 | |
|         }
 | |
|         default:
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|     CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
 | |
| 
 | |
|     // Mark variables on back edges as "unknown" if they've been changed.
 | |
|     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
 | |
|          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
 | |
|       // if CurrBlock -> *SI is *not* a back edge
 | |
|       if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
 | |
|         continue;
 | |
| 
 | |
|       CFGBlock *FirstLoopBlock = *SI;
 | |
|       Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
 | |
|       Context LoopEnd   = CurrBlockInfo->ExitContext;
 | |
|       intersectBackEdge(LoopBegin, LoopEnd);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Put an extra entry at the end of the indexed context array
 | |
|   unsigned exitID = CFGraph->getExit().getBlockID();
 | |
|   saveContext(nullptr, BlockInfo[exitID].ExitContext);
 | |
| }
 | |
| 
 | |
| /// Find the appropriate source locations to use when producing diagnostics for
 | |
| /// each block in the CFG.
 | |
| static void findBlockLocations(CFG *CFGraph,
 | |
|                                const PostOrderCFGView *SortedGraph,
 | |
|                                std::vector<CFGBlockInfo> &BlockInfo) {
 | |
|   for (const auto *CurrBlock : *SortedGraph) {
 | |
|     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
 | |
| 
 | |
|     // Find the source location of the last statement in the block, if the
 | |
|     // block is not empty.
 | |
|     if (const Stmt *S = CurrBlock->getTerminator()) {
 | |
|       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
 | |
|     } else {
 | |
|       for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
 | |
|            BE = CurrBlock->rend(); BI != BE; ++BI) {
 | |
|         // FIXME: Handle other CFGElement kinds.
 | |
|         if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
 | |
|           CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (CurrBlockInfo->ExitLoc.isValid()) {
 | |
|       // This block contains at least one statement. Find the source location
 | |
|       // of the first statement in the block.
 | |
|       for (CFGBlock::const_iterator BI = CurrBlock->begin(),
 | |
|            BE = CurrBlock->end(); BI != BE; ++BI) {
 | |
|         // FIXME: Handle other CFGElement kinds.
 | |
|         if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
 | |
|           CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
 | |
|                CurrBlock != &CFGraph->getExit()) {
 | |
|       // The block is empty, and has a single predecessor. Use its exit
 | |
|       // location.
 | |
|       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
 | |
|           BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| class LockableFactEntry : public FactEntry {
 | |
| private:
 | |
|   bool Managed; ///<  managed by ScopedLockable object
 | |
| 
 | |
| public:
 | |
|   LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
 | |
|                     bool Mng = false, bool Asrt = false)
 | |
|       : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {}
 | |
| 
 | |
|   void
 | |
|   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
 | |
|                                 SourceLocation JoinLoc, LockErrorKind LEK,
 | |
|                                 ThreadSafetyHandler &Handler) const override {
 | |
|     if (!Managed && !asserted() && !negative() && !isUniversal()) {
 | |
|       Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc,
 | |
|                                         LEK);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void handleUnlock(FactSet &FSet, FactManager &FactMan,
 | |
|                     const CapabilityExpr &Cp, SourceLocation UnlockLoc,
 | |
|                     bool FullyRemove, ThreadSafetyHandler &Handler,
 | |
|                     StringRef DiagKind) const override {
 | |
|     FSet.removeLock(FactMan, Cp);
 | |
|     if (!Cp.negative()) {
 | |
|       FSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
 | |
|                                 !Cp, LK_Exclusive, UnlockLoc));
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ScopedLockableFactEntry : public FactEntry {
 | |
| private:
 | |
|   SmallVector<const til::SExpr *, 4> UnderlyingMutexes;
 | |
| 
 | |
| public:
 | |
|   ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc,
 | |
|                           const CapExprSet &Excl, const CapExprSet &Shrd)
 | |
|       : FactEntry(CE, LK_Exclusive, Loc, false) {
 | |
|     for (const auto &M : Excl)
 | |
|       UnderlyingMutexes.push_back(M.sexpr());
 | |
|     for (const auto &M : Shrd)
 | |
|       UnderlyingMutexes.push_back(M.sexpr());
 | |
|   }
 | |
| 
 | |
|   void
 | |
|   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
 | |
|                                 SourceLocation JoinLoc, LockErrorKind LEK,
 | |
|                                 ThreadSafetyHandler &Handler) const override {
 | |
|     for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) {
 | |
|       if (FSet.findLock(FactMan, CapabilityExpr(UnderlyingMutex, false))) {
 | |
|         // If this scoped lock manages another mutex, and if the underlying
 | |
|         // mutex is still held, then warn about the underlying mutex.
 | |
|         Handler.handleMutexHeldEndOfScope(
 | |
|             "mutex", sx::toString(UnderlyingMutex), loc(), JoinLoc, LEK);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void handleUnlock(FactSet &FSet, FactManager &FactMan,
 | |
|                     const CapabilityExpr &Cp, SourceLocation UnlockLoc,
 | |
|                     bool FullyRemove, ThreadSafetyHandler &Handler,
 | |
|                     StringRef DiagKind) const override {
 | |
|     assert(!Cp.negative() && "Managing object cannot be negative.");
 | |
|     for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) {
 | |
|       CapabilityExpr UnderCp(UnderlyingMutex, false);
 | |
|       auto UnderEntry = llvm::make_unique<LockableFactEntry>(
 | |
|           !UnderCp, LK_Exclusive, UnlockLoc);
 | |
| 
 | |
|       if (FullyRemove) {
 | |
|         // We're destroying the managing object.
 | |
|         // Remove the underlying mutex if it exists; but don't warn.
 | |
|         if (FSet.findLock(FactMan, UnderCp)) {
 | |
|           FSet.removeLock(FactMan, UnderCp);
 | |
|           FSet.addLock(FactMan, std::move(UnderEntry));
 | |
|         }
 | |
|       } else {
 | |
|         // We're releasing the underlying mutex, but not destroying the
 | |
|         // managing object.  Warn on dual release.
 | |
|         if (!FSet.findLock(FactMan, UnderCp)) {
 | |
|           Handler.handleUnmatchedUnlock(DiagKind, UnderCp.toString(),
 | |
|                                         UnlockLoc);
 | |
|         }
 | |
|         FSet.removeLock(FactMan, UnderCp);
 | |
|         FSet.addLock(FactMan, std::move(UnderEntry));
 | |
|       }
 | |
|     }
 | |
|     if (FullyRemove)
 | |
|       FSet.removeLock(FactMan, Cp);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// \brief Class which implements the core thread safety analysis routines.
 | |
| class ThreadSafetyAnalyzer {
 | |
|   friend class BuildLockset;
 | |
|   friend class threadSafety::BeforeSet;
 | |
| 
 | |
|   llvm::BumpPtrAllocator Bpa;
 | |
|   threadSafety::til::MemRegionRef Arena;
 | |
|   threadSafety::SExprBuilder SxBuilder;
 | |
| 
 | |
|   ThreadSafetyHandler       &Handler;
 | |
|   const CXXMethodDecl       *CurrentMethod;
 | |
|   LocalVariableMap          LocalVarMap;
 | |
|   FactManager               FactMan;
 | |
|   std::vector<CFGBlockInfo> BlockInfo;
 | |
| 
 | |
|   BeforeSet* GlobalBeforeSet;
 | |
| 
 | |
| public:
 | |
|   ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
 | |
|      : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
 | |
| 
 | |
|   bool inCurrentScope(const CapabilityExpr &CapE);
 | |
| 
 | |
|   void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
 | |
|                StringRef DiagKind, bool ReqAttr = false);
 | |
|   void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
 | |
|                   SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind,
 | |
|                   StringRef DiagKind);
 | |
| 
 | |
|   template <typename AttrType>
 | |
|   void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp,
 | |
|                    const NamedDecl *D, VarDecl *SelfDecl = nullptr);
 | |
| 
 | |
|   template <class AttrType>
 | |
|   void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp,
 | |
|                    const NamedDecl *D,
 | |
|                    const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
 | |
|                    Expr *BrE, bool Neg);
 | |
| 
 | |
|   const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
 | |
|                                      bool &Negate);
 | |
| 
 | |
|   void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
 | |
|                       const CFGBlock* PredBlock,
 | |
|                       const CFGBlock *CurrBlock);
 | |
| 
 | |
|   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
 | |
|                         SourceLocation JoinLoc,
 | |
|                         LockErrorKind LEK1, LockErrorKind LEK2,
 | |
|                         bool Modify=true);
 | |
| 
 | |
|   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
 | |
|                         SourceLocation JoinLoc, LockErrorKind LEK1,
 | |
|                         bool Modify=true) {
 | |
|     intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
 | |
|   }
 | |
| 
 | |
|   void runAnalysis(AnalysisDeclContext &AC);
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| /// Process acquired_before and acquired_after attributes on Vd.
 | |
| BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
 | |
|     ThreadSafetyAnalyzer& Analyzer) {
 | |
|   // Create a new entry for Vd.
 | |
|   BeforeInfo *Info = nullptr;
 | |
|   {
 | |
|     // Keep InfoPtr in its own scope in case BMap is modified later and the
 | |
|     // reference becomes invalid.
 | |
|     std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
 | |
|     if (!InfoPtr)
 | |
|       InfoPtr.reset(new BeforeInfo());
 | |
|     Info = InfoPtr.get();
 | |
|   }
 | |
| 
 | |
|   for (Attr* At : Vd->attrs()) {
 | |
|     switch (At->getKind()) {
 | |
|       case attr::AcquiredBefore: {
 | |
|         auto *A = cast<AcquiredBeforeAttr>(At);
 | |
| 
 | |
|         // Read exprs from the attribute, and add them to BeforeVect.
 | |
|         for (const auto *Arg : A->args()) {
 | |
|           CapabilityExpr Cp =
 | |
|             Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
 | |
|           if (const ValueDecl *Cpvd = Cp.valueDecl()) {
 | |
|             Info->Vect.push_back(Cpvd);
 | |
|             auto It = BMap.find(Cpvd);
 | |
|             if (It == BMap.end())
 | |
|               insertAttrExprs(Cpvd, Analyzer);
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case attr::AcquiredAfter: {
 | |
|         auto *A = cast<AcquiredAfterAttr>(At);
 | |
| 
 | |
|         // Read exprs from the attribute, and add them to BeforeVect.
 | |
|         for (const auto *Arg : A->args()) {
 | |
|           CapabilityExpr Cp =
 | |
|             Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
 | |
|           if (const ValueDecl *ArgVd = Cp.valueDecl()) {
 | |
|             // Get entry for mutex listed in attribute
 | |
|             BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
 | |
|             ArgInfo->Vect.push_back(Vd);
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       default:
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Info;
 | |
| }
 | |
| 
 | |
| BeforeSet::BeforeInfo *
 | |
| BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
 | |
|                                 ThreadSafetyAnalyzer &Analyzer) {
 | |
|   auto It = BMap.find(Vd);
 | |
|   BeforeInfo *Info = nullptr;
 | |
|   if (It == BMap.end())
 | |
|     Info = insertAttrExprs(Vd, Analyzer);
 | |
|   else
 | |
|     Info = It->second.get();
 | |
|   assert(Info && "BMap contained nullptr?");
 | |
|   return Info;
 | |
| }
 | |
| 
 | |
| /// Return true if any mutexes in FSet are in the acquired_before set of Vd.
 | |
| void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
 | |
|                                  const FactSet& FSet,
 | |
|                                  ThreadSafetyAnalyzer& Analyzer,
 | |
|                                  SourceLocation Loc, StringRef CapKind) {
 | |
|   SmallVector<BeforeInfo*, 8> InfoVect;
 | |
| 
 | |
|   // Do a depth-first traversal of Vd.
 | |
|   // Return true if there are cycles.
 | |
|   std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
 | |
|     if (!Vd)
 | |
|       return false;
 | |
| 
 | |
|     BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
 | |
| 
 | |
|     if (Info->Visited == 1)
 | |
|       return true;
 | |
| 
 | |
|     if (Info->Visited == 2)
 | |
|       return false;
 | |
| 
 | |
|     if (Info->Vect.empty())
 | |
|       return false;
 | |
| 
 | |
|     InfoVect.push_back(Info);
 | |
|     Info->Visited = 1;
 | |
|     for (auto *Vdb : Info->Vect) {
 | |
|       // Exclude mutexes in our immediate before set.
 | |
|       if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
 | |
|         StringRef L1 = StartVd->getName();
 | |
|         StringRef L2 = Vdb->getName();
 | |
|         Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
 | |
|       }
 | |
|       // Transitively search other before sets, and warn on cycles.
 | |
|       if (traverse(Vdb)) {
 | |
|         if (CycMap.find(Vd) == CycMap.end()) {
 | |
|           CycMap.insert(std::make_pair(Vd, true));
 | |
|           StringRef L1 = Vd->getName();
 | |
|           Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     Info->Visited = 2;
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   traverse(StartVd);
 | |
| 
 | |
|   for (auto* Info : InfoVect)
 | |
|     Info->Visited = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs.
 | |
| static const ValueDecl *getValueDecl(const Expr *Exp) {
 | |
|   if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
 | |
|     return getValueDecl(CE->getSubExpr());
 | |
| 
 | |
|   if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
 | |
|     return DR->getDecl();
 | |
| 
 | |
|   if (const auto *ME = dyn_cast<MemberExpr>(Exp))
 | |
|     return ME->getMemberDecl();
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| template <typename Ty>
 | |
| class has_arg_iterator_range {
 | |
|   typedef char yes[1];
 | |
|   typedef char no[2];
 | |
| 
 | |
|   template <typename Inner>
 | |
|   static yes& test(Inner *I, decltype(I->args()) * = nullptr);
 | |
| 
 | |
|   template <typename>
 | |
|   static no& test(...);
 | |
| 
 | |
| public:
 | |
|   static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
 | |
|   return A->getName();
 | |
| }
 | |
| 
 | |
| static StringRef ClassifyDiagnostic(QualType VDT) {
 | |
|   // We need to look at the declaration of the type of the value to determine
 | |
|   // which it is. The type should either be a record or a typedef, or a pointer
 | |
|   // or reference thereof.
 | |
|   if (const auto *RT = VDT->getAs<RecordType>()) {
 | |
|     if (const auto *RD = RT->getDecl())
 | |
|       if (const auto *CA = RD->getAttr<CapabilityAttr>())
 | |
|         return ClassifyDiagnostic(CA);
 | |
|   } else if (const auto *TT = VDT->getAs<TypedefType>()) {
 | |
|     if (const auto *TD = TT->getDecl())
 | |
|       if (const auto *CA = TD->getAttr<CapabilityAttr>())
 | |
|         return ClassifyDiagnostic(CA);
 | |
|   } else if (VDT->isPointerType() || VDT->isReferenceType())
 | |
|     return ClassifyDiagnostic(VDT->getPointeeType());
 | |
| 
 | |
|   return "mutex";
 | |
| }
 | |
| 
 | |
| static StringRef ClassifyDiagnostic(const ValueDecl *VD) {
 | |
|   assert(VD && "No ValueDecl passed");
 | |
| 
 | |
|   // The ValueDecl is the declaration of a mutex or role (hopefully).
 | |
|   return ClassifyDiagnostic(VD->getType());
 | |
| }
 | |
| 
 | |
| template <typename AttrTy>
 | |
| static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value,
 | |
|                                StringRef>::type
 | |
| ClassifyDiagnostic(const AttrTy *A) {
 | |
|   if (const ValueDecl *VD = getValueDecl(A->getArg()))
 | |
|     return ClassifyDiagnostic(VD);
 | |
|   return "mutex";
 | |
| }
 | |
| 
 | |
| template <typename AttrTy>
 | |
| static typename std::enable_if<has_arg_iterator_range<AttrTy>::value,
 | |
|                                StringRef>::type
 | |
| ClassifyDiagnostic(const AttrTy *A) {
 | |
|   for (const auto *Arg : A->args()) {
 | |
|     if (const ValueDecl *VD = getValueDecl(Arg))
 | |
|       return ClassifyDiagnostic(VD);
 | |
|   }
 | |
|   return "mutex";
 | |
| }
 | |
| 
 | |
| 
 | |
| inline bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
 | |
|   if (!CurrentMethod)
 | |
|       return false;
 | |
|   if (auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) {
 | |
|     auto *VD = P->clangDecl();
 | |
|     if (VD)
 | |
|       return VD->getDeclContext() == CurrentMethod->getDeclContext();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Add a new lock to the lockset, warning if the lock is already there.
 | |
| /// \param ReqAttr -- true if this is part of an initial Requires attribute.
 | |
| void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
 | |
|                                    std::unique_ptr<FactEntry> Entry,
 | |
|                                    StringRef DiagKind, bool ReqAttr) {
 | |
|   if (Entry->shouldIgnore())
 | |
|     return;
 | |
| 
 | |
|   if (!ReqAttr && !Entry->negative()) {
 | |
|     // look for the negative capability, and remove it from the fact set.
 | |
|     CapabilityExpr NegC = !*Entry;
 | |
|     FactEntry *Nen = FSet.findLock(FactMan, NegC);
 | |
|     if (Nen) {
 | |
|       FSet.removeLock(FactMan, NegC);
 | |
|     }
 | |
|     else {
 | |
|       if (inCurrentScope(*Entry) && !Entry->asserted())
 | |
|         Handler.handleNegativeNotHeld(DiagKind, Entry->toString(),
 | |
|                                       NegC.toString(), Entry->loc());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check before/after constraints
 | |
|   if (Handler.issueBetaWarnings() &&
 | |
|       !Entry->asserted() && !Entry->declared()) {
 | |
|     GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
 | |
|                                       Entry->loc(), DiagKind);
 | |
|   }
 | |
| 
 | |
|   // FIXME: Don't always warn when we have support for reentrant locks.
 | |
|   if (FSet.findLock(FactMan, *Entry)) {
 | |
|     if (!Entry->asserted())
 | |
|       Handler.handleDoubleLock(DiagKind, Entry->toString(), Entry->loc());
 | |
|   } else {
 | |
|     FSet.addLock(FactMan, std::move(Entry));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Remove a lock from the lockset, warning if the lock is not there.
 | |
| /// \param UnlockLoc The source location of the unlock (only used in error msg)
 | |
| void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
 | |
|                                       SourceLocation UnlockLoc,
 | |
|                                       bool FullyRemove, LockKind ReceivedKind,
 | |
|                                       StringRef DiagKind) {
 | |
|   if (Cp.shouldIgnore())
 | |
|     return;
 | |
| 
 | |
|   const FactEntry *LDat = FSet.findLock(FactMan, Cp);
 | |
|   if (!LDat) {
 | |
|     Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Generic lock removal doesn't care about lock kind mismatches, but
 | |
|   // otherwise diagnose when the lock kinds are mismatched.
 | |
|   if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
 | |
|     Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(),
 | |
|                                       LDat->kind(), ReceivedKind, UnlockLoc);
 | |
|   }
 | |
| 
 | |
|   LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler,
 | |
|                      DiagKind);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Extract the list of mutexIDs from the attribute on an expression,
 | |
| /// and push them onto Mtxs, discarding any duplicates.
 | |
| template <typename AttrType>
 | |
| void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
 | |
|                                        Expr *Exp, const NamedDecl *D,
 | |
|                                        VarDecl *SelfDecl) {
 | |
|   if (Attr->args_size() == 0) {
 | |
|     // The mutex held is the "this" object.
 | |
|     CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl);
 | |
|     if (Cp.isInvalid()) {
 | |
|        warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
 | |
|        return;
 | |
|     }
 | |
|     //else
 | |
|     if (!Cp.shouldIgnore())
 | |
|       Mtxs.push_back_nodup(Cp);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for (const auto *Arg : Attr->args()) {
 | |
|     CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
 | |
|     if (Cp.isInvalid()) {
 | |
|        warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
 | |
|        continue;
 | |
|     }
 | |
|     //else
 | |
|     if (!Cp.shouldIgnore())
 | |
|       Mtxs.push_back_nodup(Cp);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Extract the list of mutexIDs from a trylock attribute.  If the
 | |
| /// trylock applies to the given edge, then push them onto Mtxs, discarding
 | |
| /// any duplicates.
 | |
| template <class AttrType>
 | |
| void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
 | |
|                                        Expr *Exp, const NamedDecl *D,
 | |
|                                        const CFGBlock *PredBlock,
 | |
|                                        const CFGBlock *CurrBlock,
 | |
|                                        Expr *BrE, bool Neg) {
 | |
|   // Find out which branch has the lock
 | |
|   bool branch = false;
 | |
|   if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
 | |
|     branch = BLE->getValue();
 | |
|   else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
 | |
|     branch = ILE->getValue().getBoolValue();
 | |
| 
 | |
|   int branchnum = branch ? 0 : 1;
 | |
|   if (Neg)
 | |
|     branchnum = !branchnum;
 | |
| 
 | |
|   // If we've taken the trylock branch, then add the lock
 | |
|   int i = 0;
 | |
|   for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
 | |
|        SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
 | |
|     if (*SI == CurrBlock && i == branchnum)
 | |
|       getMutexIDs(Mtxs, Attr, Exp, D);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool getStaticBooleanValue(Expr *E, bool &TCond) {
 | |
|   if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
 | |
|     TCond = false;
 | |
|     return true;
 | |
|   } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
 | |
|     TCond = BLE->getValue();
 | |
|     return true;
 | |
|   } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) {
 | |
|     TCond = ILE->getValue().getBoolValue();
 | |
|     return true;
 | |
|   } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
 | |
|     return getStaticBooleanValue(CE->getSubExpr(), TCond);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // If Cond can be traced back to a function call, return the call expression.
 | |
| // The negate variable should be called with false, and will be set to true
 | |
| // if the function call is negated, e.g. if (!mu.tryLock(...))
 | |
| const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
 | |
|                                                          LocalVarContext C,
 | |
|                                                          bool &Negate) {
 | |
|   if (!Cond)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
 | |
|     return CallExp;
 | |
|   }
 | |
|   else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) {
 | |
|     return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
 | |
|   }
 | |
|   else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
 | |
|     return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
 | |
|   }
 | |
|   else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) {
 | |
|     return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
 | |
|   }
 | |
|   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
 | |
|     const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
 | |
|     return getTrylockCallExpr(E, C, Negate);
 | |
|   }
 | |
|   else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
 | |
|     if (UOP->getOpcode() == UO_LNot) {
 | |
|       Negate = !Negate;
 | |
|       return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
|   else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) {
 | |
|     if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
 | |
|       if (BOP->getOpcode() == BO_NE)
 | |
|         Negate = !Negate;
 | |
| 
 | |
|       bool TCond = false;
 | |
|       if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
 | |
|         if (!TCond) Negate = !Negate;
 | |
|         return getTrylockCallExpr(BOP->getLHS(), C, Negate);
 | |
|       }
 | |
|       TCond = false;
 | |
|       if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
 | |
|         if (!TCond) Negate = !Negate;
 | |
|         return getTrylockCallExpr(BOP->getRHS(), C, Negate);
 | |
|       }
 | |
|       return nullptr;
 | |
|     }
 | |
|     if (BOP->getOpcode() == BO_LAnd) {
 | |
|       // LHS must have been evaluated in a different block.
 | |
|       return getTrylockCallExpr(BOP->getRHS(), C, Negate);
 | |
|     }
 | |
|     if (BOP->getOpcode() == BO_LOr) {
 | |
|       return getTrylockCallExpr(BOP->getRHS(), C, Negate);
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Find the lockset that holds on the edge between PredBlock
 | |
| /// and CurrBlock.  The edge set is the exit set of PredBlock (passed
 | |
| /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
 | |
| void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
 | |
|                                           const FactSet &ExitSet,
 | |
|                                           const CFGBlock *PredBlock,
 | |
|                                           const CFGBlock *CurrBlock) {
 | |
|   Result = ExitSet;
 | |
| 
 | |
|   const Stmt *Cond = PredBlock->getTerminatorCondition();
 | |
|   if (!Cond)
 | |
|     return;
 | |
| 
 | |
|   bool Negate = false;
 | |
|   const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
 | |
|   const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
 | |
|   StringRef CapDiagKind = "mutex";
 | |
| 
 | |
|   CallExpr *Exp =
 | |
|     const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate));
 | |
|   if (!Exp)
 | |
|     return;
 | |
| 
 | |
|   NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
 | |
|   if(!FunDecl || !FunDecl->hasAttrs())
 | |
|     return;
 | |
| 
 | |
|   CapExprSet ExclusiveLocksToAdd;
 | |
|   CapExprSet SharedLocksToAdd;
 | |
| 
 | |
|   // If the condition is a call to a Trylock function, then grab the attributes
 | |
|   for (auto *Attr : FunDecl->attrs()) {
 | |
|     switch (Attr->getKind()) {
 | |
|       case attr::ExclusiveTrylockFunction: {
 | |
|         ExclusiveTrylockFunctionAttr *A =
 | |
|           cast<ExclusiveTrylockFunctionAttr>(Attr);
 | |
|         getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
 | |
|                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
 | |
|         CapDiagKind = ClassifyDiagnostic(A);
 | |
|         break;
 | |
|       }
 | |
|       case attr::SharedTrylockFunction: {
 | |
|         SharedTrylockFunctionAttr *A =
 | |
|           cast<SharedTrylockFunctionAttr>(Attr);
 | |
|         getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
 | |
|                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
 | |
|         CapDiagKind = ClassifyDiagnostic(A);
 | |
|         break;
 | |
|       }
 | |
|       default:
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add and remove locks.
 | |
|   SourceLocation Loc = Exp->getExprLoc();
 | |
|   for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
 | |
|     addLock(Result, llvm::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
 | |
|                                                          LK_Exclusive, Loc),
 | |
|             CapDiagKind);
 | |
|   for (const auto &SharedLockToAdd : SharedLocksToAdd)
 | |
|     addLock(Result, llvm::make_unique<LockableFactEntry>(SharedLockToAdd,
 | |
|                                                          LK_Shared, Loc),
 | |
|             CapDiagKind);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief We use this class to visit different types of expressions in
 | |
| /// CFGBlocks, and build up the lockset.
 | |
| /// An expression may cause us to add or remove locks from the lockset, or else
 | |
| /// output error messages related to missing locks.
 | |
| /// FIXME: In future, we may be able to not inherit from a visitor.
 | |
| class BuildLockset : public StmtVisitor<BuildLockset> {
 | |
|   friend class ThreadSafetyAnalyzer;
 | |
| 
 | |
|   ThreadSafetyAnalyzer *Analyzer;
 | |
|   FactSet FSet;
 | |
|   LocalVariableMap::Context LVarCtx;
 | |
|   unsigned CtxIndex;
 | |
| 
 | |
|   // helper functions
 | |
|   void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
 | |
|                           Expr *MutexExp, ProtectedOperationKind POK,
 | |
|                           StringRef DiagKind, SourceLocation Loc);
 | |
|   void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
 | |
|                        StringRef DiagKind);
 | |
| 
 | |
|   void checkAccess(const Expr *Exp, AccessKind AK,
 | |
|                    ProtectedOperationKind POK = POK_VarAccess);
 | |
|   void checkPtAccess(const Expr *Exp, AccessKind AK,
 | |
|                      ProtectedOperationKind POK = POK_VarAccess);
 | |
| 
 | |
|   void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr);
 | |
| 
 | |
| public:
 | |
|   BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
 | |
|     : StmtVisitor<BuildLockset>(),
 | |
|       Analyzer(Anlzr),
 | |
|       FSet(Info.EntrySet),
 | |
|       LVarCtx(Info.EntryContext),
 | |
|       CtxIndex(Info.EntryIndex)
 | |
|   {}
 | |
| 
 | |
|   void VisitUnaryOperator(UnaryOperator *UO);
 | |
|   void VisitBinaryOperator(BinaryOperator *BO);
 | |
|   void VisitCastExpr(CastExpr *CE);
 | |
|   void VisitCallExpr(CallExpr *Exp);
 | |
|   void VisitCXXConstructExpr(CXXConstructExpr *Exp);
 | |
|   void VisitDeclStmt(DeclStmt *S);
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| /// \brief Warn if the LSet does not contain a lock sufficient to protect access
 | |
| /// of at least the passed in AccessKind.
 | |
| void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
 | |
|                                       AccessKind AK, Expr *MutexExp,
 | |
|                                       ProtectedOperationKind POK,
 | |
|                                       StringRef DiagKind, SourceLocation Loc) {
 | |
|   LockKind LK = getLockKindFromAccessKind(AK);
 | |
| 
 | |
|   CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
 | |
|   if (Cp.isInvalid()) {
 | |
|     warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
 | |
|     return;
 | |
|   } else if (Cp.shouldIgnore()) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Cp.negative()) {
 | |
|     // Negative capabilities act like locks excluded
 | |
|     FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
 | |
|     if (LDat) {
 | |
|       Analyzer->Handler.handleFunExcludesLock(
 | |
|           DiagKind, D->getNameAsString(), (!Cp).toString(), Loc);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If this does not refer to a negative capability in the same class,
 | |
|     // then stop here.
 | |
|     if (!Analyzer->inCurrentScope(Cp))
 | |
|       return;
 | |
| 
 | |
|     // Otherwise the negative requirement must be propagated to the caller.
 | |
|     LDat = FSet.findLock(Analyzer->FactMan, Cp);
 | |
|     if (!LDat) {
 | |
|       Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(),
 | |
|                                            LK_Shared, Loc);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   FactEntry* LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
 | |
|   bool NoError = true;
 | |
|   if (!LDat) {
 | |
|     // No exact match found.  Look for a partial match.
 | |
|     LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
 | |
|     if (LDat) {
 | |
|       // Warn that there's no precise match.
 | |
|       std::string PartMatchStr = LDat->toString();
 | |
|       StringRef   PartMatchName(PartMatchStr);
 | |
|       Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
 | |
|                                            LK, Loc, &PartMatchName);
 | |
|     } else {
 | |
|       // Warn that there's no match at all.
 | |
|       Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
 | |
|                                            LK, Loc);
 | |
|     }
 | |
|     NoError = false;
 | |
|   }
 | |
|   // Make sure the mutex we found is the right kind.
 | |
|   if (NoError && LDat && !LDat->isAtLeast(LK)) {
 | |
|     Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
 | |
|                                          LK, Loc);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Warn if the LSet contains the given lock.
 | |
| void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
 | |
|                                    Expr *MutexExp, StringRef DiagKind) {
 | |
|   CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
 | |
|   if (Cp.isInvalid()) {
 | |
|     warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
 | |
|     return;
 | |
|   } else if (Cp.shouldIgnore()) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   FactEntry* LDat = FSet.findLock(Analyzer->FactMan, Cp);
 | |
|   if (LDat) {
 | |
|     Analyzer->Handler.handleFunExcludesLock(
 | |
|         DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Checks guarded_by and pt_guarded_by attributes.
 | |
| /// Whenever we identify an access (read or write) to a DeclRefExpr that is
 | |
| /// marked with guarded_by, we must ensure the appropriate mutexes are held.
 | |
| /// Similarly, we check if the access is to an expression that dereferences
 | |
| /// a pointer marked with pt_guarded_by.
 | |
| void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
 | |
|                                ProtectedOperationKind POK) {
 | |
|   Exp = Exp->IgnoreParenCasts();
 | |
| 
 | |
|   SourceLocation Loc = Exp->getExprLoc();
 | |
| 
 | |
|   // Local variables of reference type cannot be re-assigned;
 | |
|   // map them to their initializer.
 | |
|   while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
 | |
|     const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
 | |
|     if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
 | |
|       if (const auto *E = VD->getInit()) {
 | |
|         Exp = E;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) {
 | |
|     // For dereferences
 | |
|     if (UO->getOpcode() == clang::UO_Deref)
 | |
|       checkPtAccess(UO->getSubExpr(), AK, POK);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
 | |
|     checkPtAccess(AE->getLHS(), AK, POK);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
 | |
|     if (ME->isArrow())
 | |
|       checkPtAccess(ME->getBase(), AK, POK);
 | |
|     else
 | |
|       checkAccess(ME->getBase(), AK, POK);
 | |
|   }
 | |
| 
 | |
|   const ValueDecl *D = getValueDecl(Exp);
 | |
|   if (!D || !D->hasAttrs())
 | |
|     return;
 | |
| 
 | |
|   if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
 | |
|     Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc);
 | |
|   }
 | |
| 
 | |
|   for (const auto *I : D->specific_attrs<GuardedByAttr>())
 | |
|     warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK,
 | |
|                        ClassifyDiagnostic(I), Loc);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Checks pt_guarded_by and pt_guarded_var attributes.
 | |
| /// POK is the same  operationKind that was passed to checkAccess.
 | |
| void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
 | |
|                                  ProtectedOperationKind POK) {
 | |
|   while (true) {
 | |
|     if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) {
 | |
|       Exp = PE->getSubExpr();
 | |
|       continue;
 | |
|     }
 | |
|     if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) {
 | |
|       if (CE->getCastKind() == CK_ArrayToPointerDecay) {
 | |
|         // If it's an actual array, and not a pointer, then it's elements
 | |
|         // are protected by GUARDED_BY, not PT_GUARDED_BY;
 | |
|         checkAccess(CE->getSubExpr(), AK, POK);
 | |
|         return;
 | |
|       }
 | |
|       Exp = CE->getSubExpr();
 | |
|       continue;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Pass by reference warnings are under a different flag.
 | |
|   ProtectedOperationKind PtPOK = POK_VarDereference;
 | |
|   if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
 | |
| 
 | |
|   const ValueDecl *D = getValueDecl(Exp);
 | |
|   if (!D || !D->hasAttrs())
 | |
|     return;
 | |
| 
 | |
|   if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
 | |
|     Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK,
 | |
|                                         Exp->getExprLoc());
 | |
| 
 | |
|   for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
 | |
|     warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK,
 | |
|                        ClassifyDiagnostic(I), Exp->getExprLoc());
 | |
| }
 | |
| 
 | |
| /// \brief Process a function call, method call, constructor call,
 | |
| /// or destructor call.  This involves looking at the attributes on the
 | |
| /// corresponding function/method/constructor/destructor, issuing warnings,
 | |
| /// and updating the locksets accordingly.
 | |
| ///
 | |
| /// FIXME: For classes annotated with one of the guarded annotations, we need
 | |
| /// to treat const method calls as reads and non-const method calls as writes,
 | |
| /// and check that the appropriate locks are held. Non-const method calls with
 | |
| /// the same signature as const method calls can be also treated as reads.
 | |
| ///
 | |
| void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
 | |
|   SourceLocation Loc = Exp->getExprLoc();
 | |
|   CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
 | |
|   CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
 | |
|   CapExprSet ScopedExclusiveReqs, ScopedSharedReqs;
 | |
|   StringRef CapDiagKind = "mutex";
 | |
| 
 | |
|   // Figure out if we're calling the constructor of scoped lockable class
 | |
|   bool isScopedVar = false;
 | |
|   if (VD) {
 | |
|     if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) {
 | |
|       const CXXRecordDecl* PD = CD->getParent();
 | |
|       if (PD && PD->hasAttr<ScopedLockableAttr>())
 | |
|         isScopedVar = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for(Attr *Atconst : D->attrs()) {
 | |
|     Attr* At = const_cast<Attr*>(Atconst);
 | |
|     switch (At->getKind()) {
 | |
|       // When we encounter a lock function, we need to add the lock to our
 | |
|       // lockset.
 | |
|       case attr::AcquireCapability: {
 | |
|         auto *A = cast<AcquireCapabilityAttr>(At);
 | |
|         Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
 | |
|                                             : ExclusiveLocksToAdd,
 | |
|                               A, Exp, D, VD);
 | |
| 
 | |
|         CapDiagKind = ClassifyDiagnostic(A);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // An assert will add a lock to the lockset, but will not generate
 | |
|       // a warning if it is already there, and will not generate a warning
 | |
|       // if it is not removed.
 | |
|       case attr::AssertExclusiveLock: {
 | |
|         AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At);
 | |
| 
 | |
|         CapExprSet AssertLocks;
 | |
|         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
 | |
|         for (const auto &AssertLock : AssertLocks)
 | |
|           Analyzer->addLock(FSet,
 | |
|                             llvm::make_unique<LockableFactEntry>(
 | |
|                                 AssertLock, LK_Exclusive, Loc, false, true),
 | |
|                             ClassifyDiagnostic(A));
 | |
|         break;
 | |
|       }
 | |
|       case attr::AssertSharedLock: {
 | |
|         AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At);
 | |
| 
 | |
|         CapExprSet AssertLocks;
 | |
|         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
 | |
|         for (const auto &AssertLock : AssertLocks)
 | |
|           Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
 | |
|                                       AssertLock, LK_Shared, Loc, false, true),
 | |
|                             ClassifyDiagnostic(A));
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // When we encounter an unlock function, we need to remove unlocked
 | |
|       // mutexes from the lockset, and flag a warning if they are not there.
 | |
|       case attr::ReleaseCapability: {
 | |
|         auto *A = cast<ReleaseCapabilityAttr>(At);
 | |
|         if (A->isGeneric())
 | |
|           Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD);
 | |
|         else if (A->isShared())
 | |
|           Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD);
 | |
|         else
 | |
|           Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD);
 | |
| 
 | |
|         CapDiagKind = ClassifyDiagnostic(A);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       case attr::RequiresCapability: {
 | |
|         RequiresCapabilityAttr *A = cast<RequiresCapabilityAttr>(At);
 | |
|         for (auto *Arg : A->args()) {
 | |
|           warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
 | |
|                              POK_FunctionCall, ClassifyDiagnostic(A),
 | |
|                              Exp->getExprLoc());
 | |
|           // use for adopting a lock
 | |
|           if (isScopedVar) {
 | |
|             Analyzer->getMutexIDs(A->isShared() ? ScopedSharedReqs
 | |
|                                                 : ScopedExclusiveReqs,
 | |
|                                   A, Exp, D, VD);
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       case attr::LocksExcluded: {
 | |
|         LocksExcludedAttr *A = cast<LocksExcludedAttr>(At);
 | |
|         for (auto *Arg : A->args())
 | |
|           warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A));
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Ignore attributes unrelated to thread-safety
 | |
|       default:
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add locks.
 | |
|   for (const auto &M : ExclusiveLocksToAdd)
 | |
|     Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
 | |
|                                 M, LK_Exclusive, Loc, isScopedVar),
 | |
|                       CapDiagKind);
 | |
|   for (const auto &M : SharedLocksToAdd)
 | |
|     Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
 | |
|                                 M, LK_Shared, Loc, isScopedVar),
 | |
|                       CapDiagKind);
 | |
| 
 | |
|   if (isScopedVar) {
 | |
|     // Add the managing object as a dummy mutex, mapped to the underlying mutex.
 | |
|     SourceLocation MLoc = VD->getLocation();
 | |
|     DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
 | |
|     // FIXME: does this store a pointer to DRE?
 | |
|     CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr);
 | |
| 
 | |
|     std::copy(ScopedExclusiveReqs.begin(), ScopedExclusiveReqs.end(),
 | |
|               std::back_inserter(ExclusiveLocksToAdd));
 | |
|     std::copy(ScopedSharedReqs.begin(), ScopedSharedReqs.end(),
 | |
|               std::back_inserter(SharedLocksToAdd));
 | |
|     Analyzer->addLock(FSet,
 | |
|                       llvm::make_unique<ScopedLockableFactEntry>(
 | |
|                           Scp, MLoc, ExclusiveLocksToAdd, SharedLocksToAdd),
 | |
|                       CapDiagKind);
 | |
|   }
 | |
| 
 | |
|   // Remove locks.
 | |
|   // FIXME -- should only fully remove if the attribute refers to 'this'.
 | |
|   bool Dtor = isa<CXXDestructorDecl>(D);
 | |
|   for (const auto &M : ExclusiveLocksToRemove)
 | |
|     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind);
 | |
|   for (const auto &M : SharedLocksToRemove)
 | |
|     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind);
 | |
|   for (const auto &M : GenericLocksToRemove)
 | |
|     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief For unary operations which read and write a variable, we need to
 | |
| /// check whether we hold any required mutexes. Reads are checked in
 | |
| /// VisitCastExpr.
 | |
| void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
 | |
|   switch (UO->getOpcode()) {
 | |
|     case clang::UO_PostDec:
 | |
|     case clang::UO_PostInc:
 | |
|     case clang::UO_PreDec:
 | |
|     case clang::UO_PreInc: {
 | |
|       checkAccess(UO->getSubExpr(), AK_Written);
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// For binary operations which assign to a variable (writes), we need to check
 | |
| /// whether we hold any required mutexes.
 | |
| /// FIXME: Deal with non-primitive types.
 | |
| void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
 | |
|   if (!BO->isAssignmentOp())
 | |
|     return;
 | |
| 
 | |
|   // adjust the context
 | |
|   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
 | |
| 
 | |
|   checkAccess(BO->getLHS(), AK_Written);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
 | |
| /// need to ensure we hold any required mutexes.
 | |
| /// FIXME: Deal with non-primitive types.
 | |
| void BuildLockset::VisitCastExpr(CastExpr *CE) {
 | |
|   if (CE->getCastKind() != CK_LValueToRValue)
 | |
|     return;
 | |
|   checkAccess(CE->getSubExpr(), AK_Read);
 | |
| }
 | |
| 
 | |
| 
 | |
| void BuildLockset::VisitCallExpr(CallExpr *Exp) {
 | |
|   bool ExamineArgs = true;
 | |
|   bool OperatorFun = false;
 | |
| 
 | |
|   if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
 | |
|     MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee());
 | |
|     // ME can be null when calling a method pointer
 | |
|     CXXMethodDecl *MD = CE->getMethodDecl();
 | |
| 
 | |
|     if (ME && MD) {
 | |
|       if (ME->isArrow()) {
 | |
|         if (MD->isConst()) {
 | |
|           checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
 | |
|         } else {  // FIXME -- should be AK_Written
 | |
|           checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
 | |
|         }
 | |
|       } else {
 | |
|         if (MD->isConst())
 | |
|           checkAccess(CE->getImplicitObjectArgument(), AK_Read);
 | |
|         else     // FIXME -- should be AK_Written
 | |
|           checkAccess(CE->getImplicitObjectArgument(), AK_Read);
 | |
|       }
 | |
|     }
 | |
|   } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
 | |
|     OperatorFun = true;
 | |
| 
 | |
|     auto OEop = OE->getOperator();
 | |
|     switch (OEop) {
 | |
|       case OO_Equal: {
 | |
|         ExamineArgs = false;
 | |
|         const Expr *Target = OE->getArg(0);
 | |
|         const Expr *Source = OE->getArg(1);
 | |
|         checkAccess(Target, AK_Written);
 | |
|         checkAccess(Source, AK_Read);
 | |
|         break;
 | |
|       }
 | |
|       case OO_Star:
 | |
|       case OO_Arrow:
 | |
|       case OO_Subscript: {
 | |
|         const Expr *Obj = OE->getArg(0);
 | |
|         checkAccess(Obj, AK_Read);
 | |
|         if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
 | |
|           // Grrr.  operator* can be multiplication...
 | |
|           checkPtAccess(Obj, AK_Read);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       default: {
 | |
|         // TODO: get rid of this, and rely on pass-by-ref instead.
 | |
|         const Expr *Obj = OE->getArg(0);
 | |
|         checkAccess(Obj, AK_Read);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ExamineArgs) {
 | |
|     if (FunctionDecl *FD = Exp->getDirectCallee()) {
 | |
| 
 | |
|       // NO_THREAD_SAFETY_ANALYSIS does double duty here.  Normally it
 | |
|       // only turns off checking within the body of a function, but we also
 | |
|       // use it to turn off checking in arguments to the function.  This
 | |
|       // could result in some false negatives, but the alternative is to
 | |
|       // create yet another attribute.
 | |
|       //
 | |
|       if (!FD->hasAttr<NoThreadSafetyAnalysisAttr>()) {
 | |
|         unsigned Fn = FD->getNumParams();
 | |
|         unsigned Cn = Exp->getNumArgs();
 | |
|         unsigned Skip = 0;
 | |
| 
 | |
|         unsigned i = 0;
 | |
|         if (OperatorFun) {
 | |
|           if (isa<CXXMethodDecl>(FD)) {
 | |
|             // First arg in operator call is implicit self argument,
 | |
|             // and doesn't appear in the FunctionDecl.
 | |
|             Skip = 1;
 | |
|             Cn--;
 | |
|           } else {
 | |
|             // Ignore the first argument of operators; it's been checked above.
 | |
|             i = 1;
 | |
|           }
 | |
|         }
 | |
|         // Ignore default arguments
 | |
|         unsigned n = (Fn < Cn) ? Fn : Cn;
 | |
| 
 | |
|         for (; i < n; ++i) {
 | |
|           ParmVarDecl* Pvd = FD->getParamDecl(i);
 | |
|           Expr* Arg = Exp->getArg(i+Skip);
 | |
|           QualType Qt = Pvd->getType();
 | |
|           if (Qt->isReferenceType())
 | |
|             checkAccess(Arg, AK_Read, POK_PassByRef);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
 | |
|   if(!D || !D->hasAttrs())
 | |
|     return;
 | |
|   handleCall(Exp, D);
 | |
| }
 | |
| 
 | |
| void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
 | |
|   const CXXConstructorDecl *D = Exp->getConstructor();
 | |
|   if (D && D->isCopyConstructor()) {
 | |
|     const Expr* Source = Exp->getArg(0);
 | |
|     checkAccess(Source, AK_Read);
 | |
|   }
 | |
|   // FIXME -- only handles constructors in DeclStmt below.
 | |
| }
 | |
| 
 | |
| void BuildLockset::VisitDeclStmt(DeclStmt *S) {
 | |
|   // adjust the context
 | |
|   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
 | |
| 
 | |
|   for (auto *D : S->getDeclGroup()) {
 | |
|     if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
 | |
|       Expr *E = VD->getInit();
 | |
|       // handle constructors that involve temporaries
 | |
|       if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E))
 | |
|         E = EWC->getSubExpr();
 | |
| 
 | |
|       if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
 | |
|         NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
 | |
|         if (!CtorD || !CtorD->hasAttrs())
 | |
|           return;
 | |
|         handleCall(CE, CtorD, VD);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// \brief Compute the intersection of two locksets and issue warnings for any
 | |
| /// locks in the symmetric difference.
 | |
| ///
 | |
| /// This function is used at a merge point in the CFG when comparing the lockset
 | |
| /// of each branch being merged. For example, given the following sequence:
 | |
| /// A; if () then B; else C; D; we need to check that the lockset after B and C
 | |
| /// are the same. In the event of a difference, we use the intersection of these
 | |
| /// two locksets at the start of D.
 | |
| ///
 | |
| /// \param FSet1 The first lockset.
 | |
| /// \param FSet2 The second lockset.
 | |
| /// \param JoinLoc The location of the join point for error reporting
 | |
| /// \param LEK1 The error message to report if a mutex is missing from LSet1
 | |
| /// \param LEK2 The error message to report if a mutex is missing from Lset2
 | |
| void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
 | |
|                                             const FactSet &FSet2,
 | |
|                                             SourceLocation JoinLoc,
 | |
|                                             LockErrorKind LEK1,
 | |
|                                             LockErrorKind LEK2,
 | |
|                                             bool Modify) {
 | |
|   FactSet FSet1Orig = FSet1;
 | |
| 
 | |
|   // Find locks in FSet2 that conflict or are not in FSet1, and warn.
 | |
|   for (const auto &Fact : FSet2) {
 | |
|     const FactEntry *LDat1 = nullptr;
 | |
|     const FactEntry *LDat2 = &FactMan[Fact];
 | |
|     FactSet::iterator Iter1  = FSet1.findLockIter(FactMan, *LDat2);
 | |
|     if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1];
 | |
| 
 | |
|     if (LDat1) {
 | |
|       if (LDat1->kind() != LDat2->kind()) {
 | |
|         Handler.handleExclusiveAndShared("mutex", LDat2->toString(),
 | |
|                                          LDat2->loc(), LDat1->loc());
 | |
|         if (Modify && LDat1->kind() != LK_Exclusive) {
 | |
|           // Take the exclusive lock, which is the one in FSet2.
 | |
|           *Iter1 = Fact;
 | |
|         }
 | |
|       }
 | |
|       else if (Modify && LDat1->asserted() && !LDat2->asserted()) {
 | |
|         // The non-asserted lock in FSet2 is the one we want to track.
 | |
|         *Iter1 = Fact;
 | |
|       }
 | |
|     } else {
 | |
|       LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1,
 | |
|                                            Handler);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Find locks in FSet1 that are not in FSet2, and remove them.
 | |
|   for (const auto &Fact : FSet1Orig) {
 | |
|     const FactEntry *LDat1 = &FactMan[Fact];
 | |
|     const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1);
 | |
| 
 | |
|     if (!LDat2) {
 | |
|       LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2,
 | |
|                                            Handler);
 | |
|       if (Modify)
 | |
|         FSet1.removeLock(FactMan, *LDat1);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // Return true if block B never continues to its successors.
 | |
| static bool neverReturns(const CFGBlock *B) {
 | |
|   if (B->hasNoReturnElement())
 | |
|     return true;
 | |
|   if (B->empty())
 | |
|     return false;
 | |
| 
 | |
|   CFGElement Last = B->back();
 | |
|   if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
 | |
|     if (isa<CXXThrowExpr>(S->getStmt()))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Check a function's CFG for thread-safety violations.
 | |
| ///
 | |
| /// We traverse the blocks in the CFG, compute the set of mutexes that are held
 | |
| /// at the end of each block, and issue warnings for thread safety violations.
 | |
| /// Each block in the CFG is traversed exactly once.
 | |
| void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
 | |
|   // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
 | |
|   // For now, we just use the walker to set things up.
 | |
|   threadSafety::CFGWalker walker;
 | |
|   if (!walker.init(AC))
 | |
|     return;
 | |
| 
 | |
|   // AC.dumpCFG(true);
 | |
|   // threadSafety::printSCFG(walker);
 | |
| 
 | |
|   CFG *CFGraph = walker.getGraph();
 | |
|   const NamedDecl *D = walker.getDecl();
 | |
|   const FunctionDecl *CurrentFunction = dyn_cast<FunctionDecl>(D);
 | |
|   CurrentMethod = dyn_cast<CXXMethodDecl>(D);
 | |
| 
 | |
|   if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
 | |
|     return;
 | |
| 
 | |
|   // FIXME: Do something a bit more intelligent inside constructor and
 | |
|   // destructor code.  Constructors and destructors must assume unique access
 | |
|   // to 'this', so checks on member variable access is disabled, but we should
 | |
|   // still enable checks on other objects.
 | |
|   if (isa<CXXConstructorDecl>(D))
 | |
|     return;  // Don't check inside constructors.
 | |
|   if (isa<CXXDestructorDecl>(D))
 | |
|     return;  // Don't check inside destructors.
 | |
| 
 | |
|   Handler.enterFunction(CurrentFunction);
 | |
| 
 | |
|   BlockInfo.resize(CFGraph->getNumBlockIDs(),
 | |
|     CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
 | |
| 
 | |
|   // We need to explore the CFG via a "topological" ordering.
 | |
|   // That way, we will be guaranteed to have information about required
 | |
|   // predecessor locksets when exploring a new block.
 | |
|   const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
 | |
|   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
 | |
| 
 | |
|   // Mark entry block as reachable
 | |
|   BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
 | |
| 
 | |
|   // Compute SSA names for local variables
 | |
|   LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
 | |
| 
 | |
|   // Fill in source locations for all CFGBlocks.
 | |
|   findBlockLocations(CFGraph, SortedGraph, BlockInfo);
 | |
| 
 | |
|   CapExprSet ExclusiveLocksAcquired;
 | |
|   CapExprSet SharedLocksAcquired;
 | |
|   CapExprSet LocksReleased;
 | |
| 
 | |
|   // Add locks from exclusive_locks_required and shared_locks_required
 | |
|   // to initial lockset. Also turn off checking for lock and unlock functions.
 | |
|   // FIXME: is there a more intelligent way to check lock/unlock functions?
 | |
|   if (!SortedGraph->empty() && D->hasAttrs()) {
 | |
|     const CFGBlock *FirstBlock = *SortedGraph->begin();
 | |
|     FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
 | |
| 
 | |
|     CapExprSet ExclusiveLocksToAdd;
 | |
|     CapExprSet SharedLocksToAdd;
 | |
|     StringRef CapDiagKind = "mutex";
 | |
| 
 | |
|     SourceLocation Loc = D->getLocation();
 | |
|     for (const auto *Attr : D->attrs()) {
 | |
|       Loc = Attr->getLocation();
 | |
|       if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
 | |
|         getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
 | |
|                     nullptr, D);
 | |
|         CapDiagKind = ClassifyDiagnostic(A);
 | |
|       } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
 | |
|         // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
 | |
|         // We must ignore such methods.
 | |
|         if (A->args_size() == 0)
 | |
|           return;
 | |
|         // FIXME -- deal with exclusive vs. shared unlock functions?
 | |
|         getMutexIDs(ExclusiveLocksToAdd, A, nullptr, D);
 | |
|         getMutexIDs(LocksReleased, A, nullptr, D);
 | |
|         CapDiagKind = ClassifyDiagnostic(A);
 | |
|       } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
 | |
|         if (A->args_size() == 0)
 | |
|           return;
 | |
|         getMutexIDs(A->isShared() ? SharedLocksAcquired
 | |
|                                   : ExclusiveLocksAcquired,
 | |
|                     A, nullptr, D);
 | |
|         CapDiagKind = ClassifyDiagnostic(A);
 | |
|       } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
 | |
|         // Don't try to check trylock functions for now
 | |
|         return;
 | |
|       } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
 | |
|         // Don't try to check trylock functions for now
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // FIXME -- Loc can be wrong here.
 | |
|     for (const auto &Mu : ExclusiveLocksToAdd) {
 | |
|       auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc);
 | |
|       Entry->setDeclared(true);
 | |
|       addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
 | |
|     }
 | |
|     for (const auto &Mu : SharedLocksToAdd) {
 | |
|       auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc);
 | |
|       Entry->setDeclared(true);
 | |
|       addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (const auto *CurrBlock : *SortedGraph) {
 | |
|     int CurrBlockID = CurrBlock->getBlockID();
 | |
|     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
 | |
| 
 | |
|     // Use the default initial lockset in case there are no predecessors.
 | |
|     VisitedBlocks.insert(CurrBlock);
 | |
| 
 | |
|     // Iterate through the predecessor blocks and warn if the lockset for all
 | |
|     // predecessors is not the same. We take the entry lockset of the current
 | |
|     // block to be the intersection of all previous locksets.
 | |
|     // FIXME: By keeping the intersection, we may output more errors in future
 | |
|     // for a lock which is not in the intersection, but was in the union. We
 | |
|     // may want to also keep the union in future. As an example, let's say
 | |
|     // the intersection contains Mutex L, and the union contains L and M.
 | |
|     // Later we unlock M. At this point, we would output an error because we
 | |
|     // never locked M; although the real error is probably that we forgot to
 | |
|     // lock M on all code paths. Conversely, let's say that later we lock M.
 | |
|     // In this case, we should compare against the intersection instead of the
 | |
|     // union because the real error is probably that we forgot to unlock M on
 | |
|     // all code paths.
 | |
|     bool LocksetInitialized = false;
 | |
|     SmallVector<CFGBlock *, 8> SpecialBlocks;
 | |
|     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
 | |
|          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
 | |
| 
 | |
|       // if *PI -> CurrBlock is a back edge
 | |
|       if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
 | |
|         continue;
 | |
| 
 | |
|       int PrevBlockID = (*PI)->getBlockID();
 | |
|       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
 | |
| 
 | |
|       // Ignore edges from blocks that can't return.
 | |
|       if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
 | |
|         continue;
 | |
| 
 | |
|       // Okay, we can reach this block from the entry.
 | |
|       CurrBlockInfo->Reachable = true;
 | |
| 
 | |
|       // If the previous block ended in a 'continue' or 'break' statement, then
 | |
|       // a difference in locksets is probably due to a bug in that block, rather
 | |
|       // than in some other predecessor. In that case, keep the other
 | |
|       // predecessor's lockset.
 | |
|       if (const Stmt *Terminator = (*PI)->getTerminator()) {
 | |
|         if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
 | |
|           SpecialBlocks.push_back(*PI);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       FactSet PrevLockset;
 | |
|       getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
 | |
| 
 | |
|       if (!LocksetInitialized) {
 | |
|         CurrBlockInfo->EntrySet = PrevLockset;
 | |
|         LocksetInitialized = true;
 | |
|       } else {
 | |
|         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
 | |
|                          CurrBlockInfo->EntryLoc,
 | |
|                          LEK_LockedSomePredecessors);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Skip rest of block if it's not reachable.
 | |
|     if (!CurrBlockInfo->Reachable)
 | |
|       continue;
 | |
| 
 | |
|     // Process continue and break blocks. Assume that the lockset for the
 | |
|     // resulting block is unaffected by any discrepancies in them.
 | |
|     for (const auto *PrevBlock : SpecialBlocks) {
 | |
|       int PrevBlockID = PrevBlock->getBlockID();
 | |
|       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
 | |
| 
 | |
|       if (!LocksetInitialized) {
 | |
|         CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
 | |
|         LocksetInitialized = true;
 | |
|       } else {
 | |
|         // Determine whether this edge is a loop terminator for diagnostic
 | |
|         // purposes. FIXME: A 'break' statement might be a loop terminator, but
 | |
|         // it might also be part of a switch. Also, a subsequent destructor
 | |
|         // might add to the lockset, in which case the real issue might be a
 | |
|         // double lock on the other path.
 | |
|         const Stmt *Terminator = PrevBlock->getTerminator();
 | |
|         bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
 | |
| 
 | |
|         FactSet PrevLockset;
 | |
|         getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
 | |
|                        PrevBlock, CurrBlock);
 | |
| 
 | |
|         // Do not update EntrySet.
 | |
|         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
 | |
|                          PrevBlockInfo->ExitLoc,
 | |
|                          IsLoop ? LEK_LockedSomeLoopIterations
 | |
|                                 : LEK_LockedSomePredecessors,
 | |
|                          false);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     BuildLockset LocksetBuilder(this, *CurrBlockInfo);
 | |
| 
 | |
|     // Visit all the statements in the basic block.
 | |
|     for (CFGBlock::const_iterator BI = CurrBlock->begin(),
 | |
|          BE = CurrBlock->end(); BI != BE; ++BI) {
 | |
|       switch (BI->getKind()) {
 | |
|         case CFGElement::Statement: {
 | |
|           CFGStmt CS = BI->castAs<CFGStmt>();
 | |
|           LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt()));
 | |
|           break;
 | |
|         }
 | |
|         // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
 | |
|         case CFGElement::AutomaticObjectDtor: {
 | |
|           CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>();
 | |
|           CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>(
 | |
|               AD.getDestructorDecl(AC.getASTContext()));
 | |
|           if (!DD->hasAttrs())
 | |
|             break;
 | |
| 
 | |
|           // Create a dummy expression,
 | |
|           VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl());
 | |
|           DeclRefExpr DRE(VD, false, VD->getType().getNonReferenceType(),
 | |
|                           VK_LValue, AD.getTriggerStmt()->getLocEnd());
 | |
|           LocksetBuilder.handleCall(&DRE, DD);
 | |
|           break;
 | |
|         }
 | |
|         default:
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|     CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
 | |
| 
 | |
|     // For every back edge from CurrBlock (the end of the loop) to another block
 | |
|     // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
 | |
|     // the one held at the beginning of FirstLoopBlock. We can look up the
 | |
|     // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
 | |
|     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
 | |
|          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
 | |
| 
 | |
|       // if CurrBlock -> *SI is *not* a back edge
 | |
|       if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
 | |
|         continue;
 | |
| 
 | |
|       CFGBlock *FirstLoopBlock = *SI;
 | |
|       CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
 | |
|       CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
 | |
|       intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
 | |
|                        PreLoop->EntryLoc,
 | |
|                        LEK_LockedSomeLoopIterations,
 | |
|                        false);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
 | |
|   CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
 | |
| 
 | |
|   // Skip the final check if the exit block is unreachable.
 | |
|   if (!Final->Reachable)
 | |
|     return;
 | |
| 
 | |
|   // By default, we expect all locks held on entry to be held on exit.
 | |
|   FactSet ExpectedExitSet = Initial->EntrySet;
 | |
| 
 | |
|   // Adjust the expected exit set by adding or removing locks, as declared
 | |
|   // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then
 | |
|   // issue the appropriate warning.
 | |
|   // FIXME: the location here is not quite right.
 | |
|   for (const auto &Lock : ExclusiveLocksAcquired)
 | |
|     ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
 | |
|                                          Lock, LK_Exclusive, D->getLocation()));
 | |
|   for (const auto &Lock : SharedLocksAcquired)
 | |
|     ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
 | |
|                                          Lock, LK_Shared, D->getLocation()));
 | |
|   for (const auto &Lock : LocksReleased)
 | |
|     ExpectedExitSet.removeLock(FactMan, Lock);
 | |
| 
 | |
|   // FIXME: Should we call this function for all blocks which exit the function?
 | |
|   intersectAndWarn(ExpectedExitSet, Final->ExitSet,
 | |
|                    Final->ExitLoc,
 | |
|                    LEK_LockedAtEndOfFunction,
 | |
|                    LEK_NotLockedAtEndOfFunction,
 | |
|                    false);
 | |
| 
 | |
|   Handler.leaveFunction(CurrentFunction);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Check a function's CFG for thread-safety violations.
 | |
| ///
 | |
| /// We traverse the blocks in the CFG, compute the set of mutexes that are held
 | |
| /// at the end of each block, and issue warnings for thread safety violations.
 | |
| /// Each block in the CFG is traversed exactly once.
 | |
| void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
 | |
|                                            ThreadSafetyHandler &Handler,
 | |
|                                            BeforeSet **BSet) {
 | |
|   if (!*BSet)
 | |
|     *BSet = new BeforeSet;
 | |
|   ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
 | |
|   Analyzer.runAnalysis(AC);
 | |
| }
 | |
| 
 | |
| void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
 | |
| 
 | |
| /// \brief Helper function that returns a LockKind required for the given level
 | |
| /// of access.
 | |
| LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
 | |
|   switch (AK) {
 | |
|     case AK_Read :
 | |
|       return LK_Shared;
 | |
|     case AK_Written :
 | |
|       return LK_Exclusive;
 | |
|   }
 | |
|   llvm_unreachable("Unknown AccessKind");
 | |
| }
 |