forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1539 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1539 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This contains code to emit Aggregate Expr nodes as LLVM code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CodeGenFunction.h"
 | |
| #include "CGObjCRuntime.h"
 | |
| #include "CodeGenModule.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        Aggregate Expression Emitter
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace  {
 | |
| class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
 | |
|   CodeGenFunction &CGF;
 | |
|   CGBuilderTy &Builder;
 | |
|   AggValueSlot Dest;
 | |
|   bool IsResultUnused;
 | |
| 
 | |
|   /// We want to use 'dest' as the return slot except under two
 | |
|   /// conditions:
 | |
|   ///   - The destination slot requires garbage collection, so we
 | |
|   ///     need to use the GC API.
 | |
|   ///   - The destination slot is potentially aliased.
 | |
|   bool shouldUseDestForReturnSlot() const {
 | |
|     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
 | |
|   }
 | |
| 
 | |
|   ReturnValueSlot getReturnValueSlot() const {
 | |
|     if (!shouldUseDestForReturnSlot())
 | |
|       return ReturnValueSlot();
 | |
| 
 | |
|     return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(),
 | |
|                            IsResultUnused);
 | |
|   }
 | |
| 
 | |
|   AggValueSlot EnsureSlot(QualType T) {
 | |
|     if (!Dest.isIgnored()) return Dest;
 | |
|     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
 | |
|   }
 | |
|   void EnsureDest(QualType T) {
 | |
|     if (!Dest.isIgnored()) return;
 | |
|     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
 | |
|     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
 | |
|     IsResultUnused(IsResultUnused) { }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //                               Utilities
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
 | |
|   /// represents a value lvalue, this method emits the address of the lvalue,
 | |
|   /// then loads the result into DestPtr.
 | |
|   void EmitAggLoadOfLValue(const Expr *E);
 | |
| 
 | |
|   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
 | |
|   void EmitFinalDestCopy(QualType type, const LValue &src);
 | |
|   void EmitFinalDestCopy(QualType type, RValue src);
 | |
|   void EmitCopy(QualType type, const AggValueSlot &dest,
 | |
|                 const AggValueSlot &src);
 | |
| 
 | |
|   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
 | |
| 
 | |
|   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
 | |
|                      QualType elementType, InitListExpr *E);
 | |
| 
 | |
|   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
 | |
|     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
 | |
|       return AggValueSlot::NeedsGCBarriers;
 | |
|     return AggValueSlot::DoesNotNeedGCBarriers;
 | |
|   }
 | |
| 
 | |
|   bool TypeRequiresGCollection(QualType T);
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //                            Visitor Methods
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   void Visit(Expr *E) {
 | |
|     ApplyDebugLocation DL(CGF, E);
 | |
|     StmtVisitor<AggExprEmitter>::Visit(E);
 | |
|   }
 | |
| 
 | |
|   void VisitStmt(Stmt *S) {
 | |
|     CGF.ErrorUnsupported(S, "aggregate expression");
 | |
|   }
 | |
|   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
 | |
|   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
 | |
|     Visit(GE->getResultExpr());
 | |
|   }
 | |
|   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
 | |
|   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
 | |
|     return Visit(E->getReplacement());
 | |
|   }
 | |
| 
 | |
|   // l-values.
 | |
|   void VisitDeclRefExpr(DeclRefExpr *E) {
 | |
|     // For aggregates, we should always be able to emit the variable
 | |
|     // as an l-value unless it's a reference.  This is due to the fact
 | |
|     // that we can't actually ever see a normal l2r conversion on an
 | |
|     // aggregate in C++, and in C there's no language standard
 | |
|     // actively preventing us from listing variables in the captures
 | |
|     // list of a block.
 | |
|     if (E->getDecl()->getType()->isReferenceType()) {
 | |
|       if (CodeGenFunction::ConstantEmission result
 | |
|             = CGF.tryEmitAsConstant(E)) {
 | |
|         EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     EmitAggLoadOfLValue(E);
 | |
|   }
 | |
| 
 | |
|   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
 | |
|   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
 | |
|   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
 | |
|   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
 | |
|   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
 | |
|     EmitAggLoadOfLValue(E);
 | |
|   }
 | |
|   void VisitPredefinedExpr(const PredefinedExpr *E) {
 | |
|     EmitAggLoadOfLValue(E);
 | |
|   }
 | |
| 
 | |
|   // Operators.
 | |
|   void VisitCastExpr(CastExpr *E);
 | |
|   void VisitCallExpr(const CallExpr *E);
 | |
|   void VisitStmtExpr(const StmtExpr *E);
 | |
|   void VisitBinaryOperator(const BinaryOperator *BO);
 | |
|   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
 | |
|   void VisitBinAssign(const BinaryOperator *E);
 | |
|   void VisitBinComma(const BinaryOperator *E);
 | |
| 
 | |
|   void VisitObjCMessageExpr(ObjCMessageExpr *E);
 | |
|   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
 | |
|     EmitAggLoadOfLValue(E);
 | |
|   }
 | |
| 
 | |
|   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
 | |
|   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
 | |
|   void VisitChooseExpr(const ChooseExpr *CE);
 | |
|   void VisitInitListExpr(InitListExpr *E);
 | |
|   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
 | |
|   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
 | |
|   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
 | |
|     Visit(DAE->getExpr());
 | |
|   }
 | |
|   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
 | |
|     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
 | |
|     Visit(DIE->getExpr());
 | |
|   }
 | |
|   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
 | |
|   void VisitCXXConstructExpr(const CXXConstructExpr *E);
 | |
|   void VisitLambdaExpr(LambdaExpr *E);
 | |
|   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
 | |
|   void VisitExprWithCleanups(ExprWithCleanups *E);
 | |
|   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
 | |
|   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
 | |
|   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
 | |
|   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
 | |
| 
 | |
|   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
 | |
|     if (E->isGLValue()) {
 | |
|       LValue LV = CGF.EmitPseudoObjectLValue(E);
 | |
|       return EmitFinalDestCopy(E->getType(), LV);
 | |
|     }
 | |
| 
 | |
|     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
 | |
|   }
 | |
| 
 | |
|   void VisitVAArgExpr(VAArgExpr *E);
 | |
| 
 | |
|   void EmitInitializationToLValue(Expr *E, LValue Address);
 | |
|   void EmitNullInitializationToLValue(LValue Address);
 | |
|   //  case Expr::ChooseExprClass:
 | |
|   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
 | |
|   void VisitAtomicExpr(AtomicExpr *E) {
 | |
|     RValue Res = CGF.EmitAtomicExpr(E);
 | |
|     EmitFinalDestCopy(E->getType(), Res);
 | |
|   }
 | |
| };
 | |
| }  // end anonymous namespace.
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                Utilities
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// EmitAggLoadOfLValue - Given an expression with aggregate type that
 | |
| /// represents a value lvalue, this method emits the address of the lvalue,
 | |
| /// then loads the result into DestPtr.
 | |
| void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
 | |
|   LValue LV = CGF.EmitLValue(E);
 | |
| 
 | |
|   // If the type of the l-value is atomic, then do an atomic load.
 | |
|   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
 | |
|     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   EmitFinalDestCopy(E->getType(), LV);
 | |
| }
 | |
| 
 | |
| /// \brief True if the given aggregate type requires special GC API calls.
 | |
| bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
 | |
|   // Only record types have members that might require garbage collection.
 | |
|   const RecordType *RecordTy = T->getAs<RecordType>();
 | |
|   if (!RecordTy) return false;
 | |
| 
 | |
|   // Don't mess with non-trivial C++ types.
 | |
|   RecordDecl *Record = RecordTy->getDecl();
 | |
|   if (isa<CXXRecordDecl>(Record) &&
 | |
|       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
 | |
|        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
 | |
|     return false;
 | |
| 
 | |
|   // Check whether the type has an object member.
 | |
|   return Record->hasObjectMember();
 | |
| }
 | |
| 
 | |
| /// \brief Perform the final move to DestPtr if for some reason
 | |
| /// getReturnValueSlot() didn't use it directly.
 | |
| ///
 | |
| /// The idea is that you do something like this:
 | |
| ///   RValue Result = EmitSomething(..., getReturnValueSlot());
 | |
| ///   EmitMoveFromReturnSlot(E, Result);
 | |
| ///
 | |
| /// If nothing interferes, this will cause the result to be emitted
 | |
| /// directly into the return value slot.  Otherwise, a final move
 | |
| /// will be performed.
 | |
| void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
 | |
|   if (shouldUseDestForReturnSlot()) {
 | |
|     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
 | |
|     // The possibility of undef rvalues complicates that a lot,
 | |
|     // though, so we can't really assert.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, copy from there to the destination.
 | |
|   assert(Dest.getPointer() != src.getAggregatePointer());
 | |
|   EmitFinalDestCopy(E->getType(), src);
 | |
| }
 | |
| 
 | |
| /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
 | |
| void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
 | |
|   assert(src.isAggregate() && "value must be aggregate value!");
 | |
|   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
 | |
|   EmitFinalDestCopy(type, srcLV);
 | |
| }
 | |
| 
 | |
| /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
 | |
| void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
 | |
|   // If Dest is ignored, then we're evaluating an aggregate expression
 | |
|   // in a context that doesn't care about the result.  Note that loads
 | |
|   // from volatile l-values force the existence of a non-ignored
 | |
|   // destination.
 | |
|   if (Dest.isIgnored())
 | |
|     return;
 | |
| 
 | |
|   AggValueSlot srcAgg =
 | |
|     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
 | |
|                             needsGC(type), AggValueSlot::IsAliased);
 | |
|   EmitCopy(type, Dest, srcAgg);
 | |
| }
 | |
| 
 | |
| /// Perform a copy from the source into the destination.
 | |
| ///
 | |
| /// \param type - the type of the aggregate being copied; qualifiers are
 | |
| ///   ignored
 | |
| void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
 | |
|                               const AggValueSlot &src) {
 | |
|   if (dest.requiresGCollection()) {
 | |
|     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
 | |
|     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
 | |
|     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
 | |
|                                                       dest.getAddress(),
 | |
|                                                       src.getAddress(),
 | |
|                                                       size);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the result of the assignment is used, copy the LHS there also.
 | |
|   // It's volatile if either side is.  Use the minimum alignment of
 | |
|   // the two sides.
 | |
|   CGF.EmitAggregateCopy(dest.getAddress(), src.getAddress(), type,
 | |
|                         dest.isVolatile() || src.isVolatile());
 | |
| }
 | |
| 
 | |
| /// \brief Emit the initializer for a std::initializer_list initialized with a
 | |
| /// real initializer list.
 | |
| void
 | |
| AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
 | |
|   // Emit an array containing the elements.  The array is externally destructed
 | |
|   // if the std::initializer_list object is.
 | |
|   ASTContext &Ctx = CGF.getContext();
 | |
|   LValue Array = CGF.EmitLValue(E->getSubExpr());
 | |
|   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
 | |
|   Address ArrayPtr = Array.getAddress();
 | |
| 
 | |
|   const ConstantArrayType *ArrayType =
 | |
|       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
 | |
|   assert(ArrayType && "std::initializer_list constructed from non-array");
 | |
| 
 | |
|   // FIXME: Perform the checks on the field types in SemaInit.
 | |
|   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
 | |
|   RecordDecl::field_iterator Field = Record->field_begin();
 | |
|   if (Field == Record->field_end()) {
 | |
|     CGF.ErrorUnsupported(E, "weird std::initializer_list");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Start pointer.
 | |
|   if (!Field->getType()->isPointerType() ||
 | |
|       !Ctx.hasSameType(Field->getType()->getPointeeType(),
 | |
|                        ArrayType->getElementType())) {
 | |
|     CGF.ErrorUnsupported(E, "weird std::initializer_list");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   AggValueSlot Dest = EnsureSlot(E->getType());
 | |
|   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
 | |
|   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
 | |
|   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
 | |
|   llvm::Value *IdxStart[] = { Zero, Zero };
 | |
|   llvm::Value *ArrayStart =
 | |
|       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
 | |
|   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
 | |
|   ++Field;
 | |
| 
 | |
|   if (Field == Record->field_end()) {
 | |
|     CGF.ErrorUnsupported(E, "weird std::initializer_list");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
 | |
|   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
 | |
|   if (Field->getType()->isPointerType() &&
 | |
|       Ctx.hasSameType(Field->getType()->getPointeeType(),
 | |
|                       ArrayType->getElementType())) {
 | |
|     // End pointer.
 | |
|     llvm::Value *IdxEnd[] = { Zero, Size };
 | |
|     llvm::Value *ArrayEnd =
 | |
|         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
 | |
|     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
 | |
|   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
 | |
|     // Length.
 | |
|     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
 | |
|   } else {
 | |
|     CGF.ErrorUnsupported(E, "weird std::initializer_list");
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Determine if E is a trivial array filler, that is, one that is
 | |
| /// equivalent to zero-initialization.
 | |
| static bool isTrivialFiller(Expr *E) {
 | |
|   if (!E)
 | |
|     return true;
 | |
| 
 | |
|   if (isa<ImplicitValueInitExpr>(E))
 | |
|     return true;
 | |
| 
 | |
|   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
 | |
|     if (ILE->getNumInits())
 | |
|       return false;
 | |
|     return isTrivialFiller(ILE->getArrayFiller());
 | |
|   }
 | |
| 
 | |
|   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
 | |
|     return Cons->getConstructor()->isDefaultConstructor() &&
 | |
|            Cons->getConstructor()->isTrivial();
 | |
| 
 | |
|   // FIXME: Are there other cases where we can avoid emitting an initializer?
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Emit initialization of an array from an initializer list.
 | |
| void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
 | |
|                                    QualType elementType, InitListExpr *E) {
 | |
|   uint64_t NumInitElements = E->getNumInits();
 | |
| 
 | |
|   uint64_t NumArrayElements = AType->getNumElements();
 | |
|   assert(NumInitElements <= NumArrayElements);
 | |
| 
 | |
|   // DestPtr is an array*.  Construct an elementType* by drilling
 | |
|   // down a level.
 | |
|   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
 | |
|   llvm::Value *indices[] = { zero, zero };
 | |
|   llvm::Value *begin =
 | |
|     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
 | |
| 
 | |
|   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
 | |
|   CharUnits elementAlign =
 | |
|     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
 | |
| 
 | |
|   // Exception safety requires us to destroy all the
 | |
|   // already-constructed members if an initializer throws.
 | |
|   // For that, we'll need an EH cleanup.
 | |
|   QualType::DestructionKind dtorKind = elementType.isDestructedType();
 | |
|   Address endOfInit = Address::invalid();
 | |
|   EHScopeStack::stable_iterator cleanup;
 | |
|   llvm::Instruction *cleanupDominator = nullptr;
 | |
|   if (CGF.needsEHCleanup(dtorKind)) {
 | |
|     // In principle we could tell the cleanup where we are more
 | |
|     // directly, but the control flow can get so varied here that it
 | |
|     // would actually be quite complex.  Therefore we go through an
 | |
|     // alloca.
 | |
|     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
 | |
|                                      "arrayinit.endOfInit");
 | |
|     cleanupDominator = Builder.CreateStore(begin, endOfInit);
 | |
|     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
 | |
|                                          elementAlign,
 | |
|                                          CGF.getDestroyer(dtorKind));
 | |
|     cleanup = CGF.EHStack.stable_begin();
 | |
| 
 | |
|   // Otherwise, remember that we didn't need a cleanup.
 | |
|   } else {
 | |
|     dtorKind = QualType::DK_none;
 | |
|   }
 | |
| 
 | |
|   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
 | |
| 
 | |
|   // The 'current element to initialize'.  The invariants on this
 | |
|   // variable are complicated.  Essentially, after each iteration of
 | |
|   // the loop, it points to the last initialized element, except
 | |
|   // that it points to the beginning of the array before any
 | |
|   // elements have been initialized.
 | |
|   llvm::Value *element = begin;
 | |
| 
 | |
|   // Emit the explicit initializers.
 | |
|   for (uint64_t i = 0; i != NumInitElements; ++i) {
 | |
|     // Advance to the next element.
 | |
|     if (i > 0) {
 | |
|       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
 | |
| 
 | |
|       // Tell the cleanup that it needs to destroy up to this
 | |
|       // element.  TODO: some of these stores can be trivially
 | |
|       // observed to be unnecessary.
 | |
|       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
 | |
|     }
 | |
| 
 | |
|     LValue elementLV =
 | |
|       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
 | |
|     EmitInitializationToLValue(E->getInit(i), elementLV);
 | |
|   }
 | |
| 
 | |
|   // Check whether there's a non-trivial array-fill expression.
 | |
|   Expr *filler = E->getArrayFiller();
 | |
|   bool hasTrivialFiller = isTrivialFiller(filler);
 | |
| 
 | |
|   // Any remaining elements need to be zero-initialized, possibly
 | |
|   // using the filler expression.  We can skip this if the we're
 | |
|   // emitting to zeroed memory.
 | |
|   if (NumInitElements != NumArrayElements &&
 | |
|       !(Dest.isZeroed() && hasTrivialFiller &&
 | |
|         CGF.getTypes().isZeroInitializable(elementType))) {
 | |
| 
 | |
|     // Use an actual loop.  This is basically
 | |
|     //   do { *array++ = filler; } while (array != end);
 | |
| 
 | |
|     // Advance to the start of the rest of the array.
 | |
|     if (NumInitElements) {
 | |
|       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
 | |
|       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
 | |
|     }
 | |
| 
 | |
|     // Compute the end of the array.
 | |
|     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
 | |
|                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
 | |
|                                                  "arrayinit.end");
 | |
| 
 | |
|     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
 | |
|     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
 | |
| 
 | |
|     // Jump into the body.
 | |
|     CGF.EmitBlock(bodyBB);
 | |
|     llvm::PHINode *currentElement =
 | |
|       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
 | |
|     currentElement->addIncoming(element, entryBB);
 | |
| 
 | |
|     // Emit the actual filler expression.
 | |
|     LValue elementLV =
 | |
|       CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
 | |
|     if (filler)
 | |
|       EmitInitializationToLValue(filler, elementLV);
 | |
|     else
 | |
|       EmitNullInitializationToLValue(elementLV);
 | |
| 
 | |
|     // Move on to the next element.
 | |
|     llvm::Value *nextElement =
 | |
|       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
 | |
| 
 | |
|     // Tell the EH cleanup that we finished with the last element.
 | |
|     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
 | |
| 
 | |
|     // Leave the loop if we're done.
 | |
|     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
 | |
|                                              "arrayinit.done");
 | |
|     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
 | |
|     Builder.CreateCondBr(done, endBB, bodyBB);
 | |
|     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
 | |
| 
 | |
|     CGF.EmitBlock(endBB);
 | |
|   }
 | |
| 
 | |
|   // Leave the partial-array cleanup if we entered one.
 | |
|   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            Visitor Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
 | |
|   Visit(E->GetTemporaryExpr());
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
 | |
|   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
 | |
| }
 | |
| 
 | |
| void
 | |
| AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
 | |
|   if (Dest.isPotentiallyAliased() &&
 | |
|       E->getType().isPODType(CGF.getContext())) {
 | |
|     // For a POD type, just emit a load of the lvalue + a copy, because our
 | |
|     // compound literal might alias the destination.
 | |
|     EmitAggLoadOfLValue(E);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   AggValueSlot Slot = EnsureSlot(E->getType());
 | |
|   CGF.EmitAggExpr(E->getInitializer(), Slot);
 | |
| }
 | |
| 
 | |
| /// Attempt to look through various unimportant expressions to find a
 | |
| /// cast of the given kind.
 | |
| static Expr *findPeephole(Expr *op, CastKind kind) {
 | |
|   while (true) {
 | |
|     op = op->IgnoreParens();
 | |
|     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
 | |
|       if (castE->getCastKind() == kind)
 | |
|         return castE->getSubExpr();
 | |
|       if (castE->getCastKind() == CK_NoOp)
 | |
|         continue;
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitCastExpr(CastExpr *E) {
 | |
|   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
 | |
|     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
 | |
|   switch (E->getCastKind()) {
 | |
|   case CK_Dynamic: {
 | |
|     // FIXME: Can this actually happen? We have no test coverage for it.
 | |
|     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
 | |
|     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
 | |
|                                       CodeGenFunction::TCK_Load);
 | |
|     // FIXME: Do we also need to handle property references here?
 | |
|     if (LV.isSimple())
 | |
|       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
 | |
|     else
 | |
|       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
 | |
|     
 | |
|     if (!Dest.isIgnored())
 | |
|       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
 | |
|     break;
 | |
|   }
 | |
|       
 | |
|   case CK_ToUnion: {
 | |
|     // Evaluate even if the destination is ignored.
 | |
|     if (Dest.isIgnored()) {
 | |
|       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
 | |
|                       /*ignoreResult=*/true);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // GCC union extension
 | |
|     QualType Ty = E->getSubExpr()->getType();
 | |
|     Address CastPtr =
 | |
|       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
 | |
|     EmitInitializationToLValue(E->getSubExpr(),
 | |
|                                CGF.MakeAddrLValue(CastPtr, Ty));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case CK_DerivedToBase:
 | |
|   case CK_BaseToDerived:
 | |
|   case CK_UncheckedDerivedToBase: {
 | |
|     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
 | |
|                 "should have been unpacked before we got here");
 | |
|   }
 | |
| 
 | |
|   case CK_NonAtomicToAtomic:
 | |
|   case CK_AtomicToNonAtomic: {
 | |
|     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
 | |
| 
 | |
|     // Determine the atomic and value types.
 | |
|     QualType atomicType = E->getSubExpr()->getType();
 | |
|     QualType valueType = E->getType();
 | |
|     if (isToAtomic) std::swap(atomicType, valueType);
 | |
| 
 | |
|     assert(atomicType->isAtomicType());
 | |
|     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
 | |
|                           atomicType->castAs<AtomicType>()->getValueType()));
 | |
| 
 | |
|     // Just recurse normally if we're ignoring the result or the
 | |
|     // atomic type doesn't change representation.
 | |
|     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
 | |
|       return Visit(E->getSubExpr());
 | |
|     }
 | |
| 
 | |
|     CastKind peepholeTarget =
 | |
|       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
 | |
| 
 | |
|     // These two cases are reverses of each other; try to peephole them.
 | |
|     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
 | |
|       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
 | |
|                                                      E->getType()) &&
 | |
|            "peephole significantly changed types?");
 | |
|       return Visit(op);
 | |
|     }
 | |
| 
 | |
|     // If we're converting an r-value of non-atomic type to an r-value
 | |
|     // of atomic type, just emit directly into the relevant sub-object.
 | |
|     if (isToAtomic) {
 | |
|       AggValueSlot valueDest = Dest;
 | |
|       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
 | |
|         // Zero-initialize.  (Strictly speaking, we only need to intialize
 | |
|         // the padding at the end, but this is simpler.)
 | |
|         if (!Dest.isZeroed())
 | |
|           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
 | |
| 
 | |
|         // Build a GEP to refer to the subobject.
 | |
|         Address valueAddr =
 | |
|             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0,
 | |
|                                         CharUnits());
 | |
|         valueDest = AggValueSlot::forAddr(valueAddr,
 | |
|                                           valueDest.getQualifiers(),
 | |
|                                           valueDest.isExternallyDestructed(),
 | |
|                                           valueDest.requiresGCollection(),
 | |
|                                           valueDest.isPotentiallyAliased(),
 | |
|                                           AggValueSlot::IsZeroed);
 | |
|       }
 | |
|       
 | |
|       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we're converting an atomic type to a non-atomic type.
 | |
|     // Make an atomic temporary, emit into that, and then copy the value out.
 | |
|     AggValueSlot atomicSlot =
 | |
|       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
 | |
|     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
 | |
| 
 | |
|     Address valueAddr =
 | |
|       Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits());
 | |
|     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
 | |
|     return EmitFinalDestCopy(valueType, rvalue);
 | |
|   }
 | |
| 
 | |
|   case CK_LValueToRValue:
 | |
|     // If we're loading from a volatile type, force the destination
 | |
|     // into existence.
 | |
|     if (E->getSubExpr()->getType().isVolatileQualified()) {
 | |
|       EnsureDest(E->getType());
 | |
|       return Visit(E->getSubExpr());
 | |
|     }
 | |
| 
 | |
|     // fallthrough
 | |
| 
 | |
|   case CK_NoOp:
 | |
|   case CK_UserDefinedConversion:
 | |
|   case CK_ConstructorConversion:
 | |
|     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
 | |
|                                                    E->getType()) &&
 | |
|            "Implicit cast types must be compatible");
 | |
|     Visit(E->getSubExpr());
 | |
|     break;
 | |
|       
 | |
|   case CK_LValueBitCast:
 | |
|     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
 | |
| 
 | |
|   case CK_Dependent:
 | |
|   case CK_BitCast:
 | |
|   case CK_ArrayToPointerDecay:
 | |
|   case CK_FunctionToPointerDecay:
 | |
|   case CK_NullToPointer:
 | |
|   case CK_NullToMemberPointer:
 | |
|   case CK_BaseToDerivedMemberPointer:
 | |
|   case CK_DerivedToBaseMemberPointer:
 | |
|   case CK_MemberPointerToBoolean:
 | |
|   case CK_ReinterpretMemberPointer:
 | |
|   case CK_IntegralToPointer:
 | |
|   case CK_PointerToIntegral:
 | |
|   case CK_PointerToBoolean:
 | |
|   case CK_ToVoid:
 | |
|   case CK_VectorSplat:
 | |
|   case CK_IntegralCast:
 | |
|   case CK_IntegralToBoolean:
 | |
|   case CK_IntegralToFloating:
 | |
|   case CK_FloatingToIntegral:
 | |
|   case CK_FloatingToBoolean:
 | |
|   case CK_FloatingCast:
 | |
|   case CK_CPointerToObjCPointerCast:
 | |
|   case CK_BlockPointerToObjCPointerCast:
 | |
|   case CK_AnyPointerToBlockPointerCast:
 | |
|   case CK_ObjCObjectLValueCast:
 | |
|   case CK_FloatingRealToComplex:
 | |
|   case CK_FloatingComplexToReal:
 | |
|   case CK_FloatingComplexToBoolean:
 | |
|   case CK_FloatingComplexCast:
 | |
|   case CK_FloatingComplexToIntegralComplex:
 | |
|   case CK_IntegralRealToComplex:
 | |
|   case CK_IntegralComplexToReal:
 | |
|   case CK_IntegralComplexToBoolean:
 | |
|   case CK_IntegralComplexCast:
 | |
|   case CK_IntegralComplexToFloatingComplex:
 | |
|   case CK_ARCProduceObject:
 | |
|   case CK_ARCConsumeObject:
 | |
|   case CK_ARCReclaimReturnedObject:
 | |
|   case CK_ARCExtendBlockObject:
 | |
|   case CK_CopyAndAutoreleaseBlockObject:
 | |
|   case CK_BuiltinFnToFnPtr:
 | |
|   case CK_ZeroToOCLEvent:
 | |
|   case CK_AddressSpaceConversion:
 | |
|     llvm_unreachable("cast kind invalid for aggregate types");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
 | |
|   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
 | |
|     EmitAggLoadOfLValue(E);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
 | |
|   EmitMoveFromReturnSlot(E, RV);
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
 | |
|   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
 | |
|   EmitMoveFromReturnSlot(E, RV);
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
 | |
|   CGF.EmitIgnoredExpr(E->getLHS());
 | |
|   Visit(E->getRHS());
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
 | |
|   CodeGenFunction::StmtExprEvaluation eval(CGF);
 | |
|   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
 | |
|   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
 | |
|     VisitPointerToDataMemberBinaryOperator(E);
 | |
|   else
 | |
|     CGF.ErrorUnsupported(E, "aggregate binary expression");
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
 | |
|                                                     const BinaryOperator *E) {
 | |
|   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
 | |
|   EmitFinalDestCopy(E->getType(), LV);
 | |
| }
 | |
| 
 | |
| /// Is the value of the given expression possibly a reference to or
 | |
| /// into a __block variable?
 | |
| static bool isBlockVarRef(const Expr *E) {
 | |
|   // Make sure we look through parens.
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // Check for a direct reference to a __block variable.
 | |
|   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
 | |
|     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
 | |
|     return (var && var->hasAttr<BlocksAttr>());
 | |
|   }
 | |
| 
 | |
|   // More complicated stuff.
 | |
| 
 | |
|   // Binary operators.
 | |
|   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
 | |
|     // For an assignment or pointer-to-member operation, just care
 | |
|     // about the LHS.
 | |
|     if (op->isAssignmentOp() || op->isPtrMemOp())
 | |
|       return isBlockVarRef(op->getLHS());
 | |
| 
 | |
|     // For a comma, just care about the RHS.
 | |
|     if (op->getOpcode() == BO_Comma)
 | |
|       return isBlockVarRef(op->getRHS());
 | |
| 
 | |
|     // FIXME: pointer arithmetic?
 | |
|     return false;
 | |
| 
 | |
|   // Check both sides of a conditional operator.
 | |
|   } else if (const AbstractConditionalOperator *op
 | |
|                = dyn_cast<AbstractConditionalOperator>(E)) {
 | |
|     return isBlockVarRef(op->getTrueExpr())
 | |
|         || isBlockVarRef(op->getFalseExpr());
 | |
| 
 | |
|   // OVEs are required to support BinaryConditionalOperators.
 | |
|   } else if (const OpaqueValueExpr *op
 | |
|                = dyn_cast<OpaqueValueExpr>(E)) {
 | |
|     if (const Expr *src = op->getSourceExpr())
 | |
|       return isBlockVarRef(src);
 | |
| 
 | |
|   // Casts are necessary to get things like (*(int*)&var) = foo().
 | |
|   // We don't really care about the kind of cast here, except
 | |
|   // we don't want to look through l2r casts, because it's okay
 | |
|   // to get the *value* in a __block variable.
 | |
|   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
 | |
|     if (cast->getCastKind() == CK_LValueToRValue)
 | |
|       return false;
 | |
|     return isBlockVarRef(cast->getSubExpr());
 | |
| 
 | |
|   // Handle unary operators.  Again, just aggressively look through
 | |
|   // it, ignoring the operation.
 | |
|   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
 | |
|     return isBlockVarRef(uop->getSubExpr());
 | |
| 
 | |
|   // Look into the base of a field access.
 | |
|   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
 | |
|     return isBlockVarRef(mem->getBase());
 | |
| 
 | |
|   // Look into the base of a subscript.
 | |
|   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
 | |
|     return isBlockVarRef(sub->getBase());
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
 | |
|   // For an assignment to work, the value on the right has
 | |
|   // to be compatible with the value on the left.
 | |
|   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
 | |
|                                                  E->getRHS()->getType())
 | |
|          && "Invalid assignment");
 | |
| 
 | |
|   // If the LHS might be a __block variable, and the RHS can
 | |
|   // potentially cause a block copy, we need to evaluate the RHS first
 | |
|   // so that the assignment goes the right place.
 | |
|   // This is pretty semantically fragile.
 | |
|   if (isBlockVarRef(E->getLHS()) &&
 | |
|       E->getRHS()->HasSideEffects(CGF.getContext())) {
 | |
|     // Ensure that we have a destination, and evaluate the RHS into that.
 | |
|     EnsureDest(E->getRHS()->getType());
 | |
|     Visit(E->getRHS());
 | |
| 
 | |
|     // Now emit the LHS and copy into it.
 | |
|     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
 | |
| 
 | |
|     // That copy is an atomic copy if the LHS is atomic.
 | |
|     if (LHS.getType()->isAtomicType() ||
 | |
|         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
 | |
|       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     EmitCopy(E->getLHS()->getType(),
 | |
|              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
 | |
|                                      needsGC(E->getLHS()->getType()),
 | |
|                                      AggValueSlot::IsAliased),
 | |
|              Dest);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   LValue LHS = CGF.EmitLValue(E->getLHS());
 | |
| 
 | |
|   // If we have an atomic type, evaluate into the destination and then
 | |
|   // do an atomic copy.
 | |
|   if (LHS.getType()->isAtomicType() ||
 | |
|       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
 | |
|     EnsureDest(E->getRHS()->getType());
 | |
|     Visit(E->getRHS());
 | |
|     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Codegen the RHS so that it stores directly into the LHS.
 | |
|   AggValueSlot LHSSlot =
 | |
|     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 
 | |
|                             needsGC(E->getLHS()->getType()),
 | |
|                             AggValueSlot::IsAliased);
 | |
|   // A non-volatile aggregate destination might have volatile member.
 | |
|   if (!LHSSlot.isVolatile() &&
 | |
|       CGF.hasVolatileMember(E->getLHS()->getType()))
 | |
|     LHSSlot.setVolatile(true);
 | |
|       
 | |
|   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
 | |
| 
 | |
|   // Copy into the destination if the assignment isn't ignored.
 | |
|   EmitFinalDestCopy(E->getType(), LHS);
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::
 | |
| VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
 | |
|   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
 | |
|   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
 | |
|   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
 | |
| 
 | |
|   // Bind the common expression if necessary.
 | |
|   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
 | |
| 
 | |
|   CodeGenFunction::ConditionalEvaluation eval(CGF);
 | |
|   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
 | |
|                            CGF.getProfileCount(E));
 | |
| 
 | |
|   // Save whether the destination's lifetime is externally managed.
 | |
|   bool isExternallyDestructed = Dest.isExternallyDestructed();
 | |
| 
 | |
|   eval.begin(CGF);
 | |
|   CGF.EmitBlock(LHSBlock);
 | |
|   CGF.incrementProfileCounter(E);
 | |
|   Visit(E->getTrueExpr());
 | |
|   eval.end(CGF);
 | |
| 
 | |
|   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
 | |
|   CGF.Builder.CreateBr(ContBlock);
 | |
| 
 | |
|   // If the result of an agg expression is unused, then the emission
 | |
|   // of the LHS might need to create a destination slot.  That's fine
 | |
|   // with us, and we can safely emit the RHS into the same slot, but
 | |
|   // we shouldn't claim that it's already being destructed.
 | |
|   Dest.setExternallyDestructed(isExternallyDestructed);
 | |
| 
 | |
|   eval.begin(CGF);
 | |
|   CGF.EmitBlock(RHSBlock);
 | |
|   Visit(E->getFalseExpr());
 | |
|   eval.end(CGF);
 | |
| 
 | |
|   CGF.EmitBlock(ContBlock);
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
 | |
|   Visit(CE->getChosenSubExpr());
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
 | |
|   Address ArgValue = Address::invalid();
 | |
|   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
 | |
| 
 | |
|   if (!ArgPtr.isValid()) {
 | |
|     // If EmitVAArg fails, we fall back to the LLVM instruction.
 | |
|     llvm::Value *Val = Builder.CreateVAArg(ArgValue.getPointer(),
 | |
|                                            CGF.ConvertType(VE->getType()));
 | |
|     if (!Dest.isIgnored())
 | |
|       Builder.CreateStore(Val, Dest.getAddress());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
 | |
|   // Ensure that we have a slot, but if we already do, remember
 | |
|   // whether it was externally destructed.
 | |
|   bool wasExternallyDestructed = Dest.isExternallyDestructed();
 | |
|   EnsureDest(E->getType());
 | |
| 
 | |
|   // We're going to push a destructor if there isn't already one.
 | |
|   Dest.setExternallyDestructed();
 | |
| 
 | |
|   Visit(E->getSubExpr());
 | |
| 
 | |
|   // Push that destructor we promised.
 | |
|   if (!wasExternallyDestructed)
 | |
|     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
 | |
| }
 | |
| 
 | |
| void
 | |
| AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
 | |
|   AggValueSlot Slot = EnsureSlot(E->getType());
 | |
|   CGF.EmitCXXConstructExpr(E, Slot);
 | |
| }
 | |
| 
 | |
| void
 | |
| AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
 | |
|   AggValueSlot Slot = EnsureSlot(E->getType());
 | |
|   CGF.EmitLambdaExpr(E, Slot);
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
 | |
|   CGF.enterFullExpression(E);
 | |
|   CodeGenFunction::RunCleanupsScope cleanups(CGF);
 | |
|   Visit(E->getSubExpr());
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
 | |
|   QualType T = E->getType();
 | |
|   AggValueSlot Slot = EnsureSlot(T);
 | |
|   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
 | |
|   QualType T = E->getType();
 | |
|   AggValueSlot Slot = EnsureSlot(T);
 | |
|   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
 | |
| }
 | |
| 
 | |
| /// isSimpleZero - If emitting this value will obviously just cause a store of
 | |
| /// zero to memory, return true.  This can return false if uncertain, so it just
 | |
| /// handles simple cases.
 | |
| static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // 0
 | |
|   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
 | |
|     return IL->getValue() == 0;
 | |
|   // +0.0
 | |
|   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
 | |
|     return FL->getValue().isPosZero();
 | |
|   // int()
 | |
|   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
 | |
|       CGF.getTypes().isZeroInitializable(E->getType()))
 | |
|     return true;
 | |
|   // (int*)0 - Null pointer expressions.
 | |
|   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
 | |
|     return ICE->getCastKind() == CK_NullToPointer;
 | |
|   // '\0'
 | |
|   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
 | |
|     return CL->getValue() == 0;
 | |
|   
 | |
|   // Otherwise, hard case: conservatively return false.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| void 
 | |
| AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
 | |
|   QualType type = LV.getType();
 | |
|   // FIXME: Ignore result?
 | |
|   // FIXME: Are initializers affected by volatile?
 | |
|   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
 | |
|     // Storing "i32 0" to a zero'd memory location is a noop.
 | |
|     return;
 | |
|   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
 | |
|     return EmitNullInitializationToLValue(LV);
 | |
|   } else if (isa<NoInitExpr>(E)) {
 | |
|     // Do nothing.
 | |
|     return;
 | |
|   } else if (type->isReferenceType()) {
 | |
|     RValue RV = CGF.EmitReferenceBindingToExpr(E);
 | |
|     return CGF.EmitStoreThroughLValue(RV, LV);
 | |
|   }
 | |
|   
 | |
|   switch (CGF.getEvaluationKind(type)) {
 | |
|   case TEK_Complex:
 | |
|     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
 | |
|     return;
 | |
|   case TEK_Aggregate:
 | |
|     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
 | |
|                                                AggValueSlot::IsDestructed,
 | |
|                                       AggValueSlot::DoesNotNeedGCBarriers,
 | |
|                                                AggValueSlot::IsNotAliased,
 | |
|                                                Dest.isZeroed()));
 | |
|     return;
 | |
|   case TEK_Scalar:
 | |
|     if (LV.isSimple()) {
 | |
|       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
 | |
|     } else {
 | |
|       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   llvm_unreachable("bad evaluation kind");
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
 | |
|   QualType type = lv.getType();
 | |
| 
 | |
|   // If the destination slot is already zeroed out before the aggregate is
 | |
|   // copied into it, we don't have to emit any zeros here.
 | |
|   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
 | |
|     return;
 | |
|   
 | |
|   if (CGF.hasScalarEvaluationKind(type)) {
 | |
|     // For non-aggregates, we can store the appropriate null constant.
 | |
|     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
 | |
|     // Note that the following is not equivalent to
 | |
|     // EmitStoreThroughBitfieldLValue for ARC types.
 | |
|     if (lv.isBitField()) {
 | |
|       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
 | |
|     } else {
 | |
|       assert(lv.isSimple());
 | |
|       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
 | |
|     }
 | |
|   } else {
 | |
|     // There's a potential optimization opportunity in combining
 | |
|     // memsets; that would be easy for arrays, but relatively
 | |
|     // difficult for structures with the current code.
 | |
|     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
 | |
| #if 0
 | |
|   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
 | |
|   // (Length of globals? Chunks of zeroed-out space?).
 | |
|   //
 | |
|   // If we can, prefer a copy from a global; this is a lot less code for long
 | |
|   // globals, and it's easier for the current optimizers to analyze.
 | |
|   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
 | |
|     llvm::GlobalVariable* GV =
 | |
|     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
 | |
|                              llvm::GlobalValue::InternalLinkage, C, "");
 | |
|     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
 | |
|     return;
 | |
|   }
 | |
| #endif
 | |
|   if (E->hadArrayRangeDesignator())
 | |
|     CGF.ErrorUnsupported(E, "GNU array range designator extension");
 | |
| 
 | |
|   AggValueSlot Dest = EnsureSlot(E->getType());
 | |
| 
 | |
|   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
 | |
| 
 | |
|   // Handle initialization of an array.
 | |
|   if (E->getType()->isArrayType()) {
 | |
|     if (E->isStringLiteralInit())
 | |
|       return Visit(E->getInit(0));
 | |
| 
 | |
|     QualType elementType =
 | |
|         CGF.getContext().getAsArrayType(E->getType())->getElementType();
 | |
| 
 | |
|     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
 | |
|     EmitArrayInit(Dest.getAddress(), AType, elementType, E);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (E->getType()->isAtomicType()) {
 | |
|     // An _Atomic(T) object can be list-initialized from an expression
 | |
|     // of the same type.
 | |
|     assert(E->getNumInits() == 1 &&
 | |
|            CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(),
 | |
|                                                    E->getType()) &&
 | |
|            "unexpected list initialization for atomic object");
 | |
|     return Visit(E->getInit(0));
 | |
|   }
 | |
| 
 | |
|   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
 | |
| 
 | |
|   // Do struct initialization; this code just sets each individual member
 | |
|   // to the approprate value.  This makes bitfield support automatic;
 | |
|   // the disadvantage is that the generated code is more difficult for
 | |
|   // the optimizer, especially with bitfields.
 | |
|   unsigned NumInitElements = E->getNumInits();
 | |
|   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
 | |
| 
 | |
|   // Prepare a 'this' for CXXDefaultInitExprs.
 | |
|   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
 | |
| 
 | |
|   if (record->isUnion()) {
 | |
|     // Only initialize one field of a union. The field itself is
 | |
|     // specified by the initializer list.
 | |
|     if (!E->getInitializedFieldInUnion()) {
 | |
|       // Empty union; we have nothing to do.
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|       // Make sure that it's really an empty and not a failure of
 | |
|       // semantic analysis.
 | |
|       for (const auto *Field : record->fields())
 | |
|         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
 | |
| #endif
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // FIXME: volatility
 | |
|     FieldDecl *Field = E->getInitializedFieldInUnion();
 | |
| 
 | |
|     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
 | |
|     if (NumInitElements) {
 | |
|       // Store the initializer into the field
 | |
|       EmitInitializationToLValue(E->getInit(0), FieldLoc);
 | |
|     } else {
 | |
|       // Default-initialize to null.
 | |
|       EmitNullInitializationToLValue(FieldLoc);
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We'll need to enter cleanup scopes in case any of the member
 | |
|   // initializers throw an exception.
 | |
|   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
 | |
|   llvm::Instruction *cleanupDominator = nullptr;
 | |
| 
 | |
|   // Here we iterate over the fields; this makes it simpler to both
 | |
|   // default-initialize fields and skip over unnamed fields.
 | |
|   unsigned curInitIndex = 0;
 | |
|   for (const auto *field : record->fields()) {
 | |
|     // We're done once we hit the flexible array member.
 | |
|     if (field->getType()->isIncompleteArrayType())
 | |
|       break;
 | |
| 
 | |
|     // Always skip anonymous bitfields.
 | |
|     if (field->isUnnamedBitfield())
 | |
|       continue;
 | |
| 
 | |
|     // We're done if we reach the end of the explicit initializers, we
 | |
|     // have a zeroed object, and the rest of the fields are
 | |
|     // zero-initializable.
 | |
|     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
 | |
|         CGF.getTypes().isZeroInitializable(E->getType()))
 | |
|       break;
 | |
|     
 | |
| 
 | |
|     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
 | |
|     // We never generate write-barries for initialized fields.
 | |
|     LV.setNonGC(true);
 | |
|     
 | |
|     if (curInitIndex < NumInitElements) {
 | |
|       // Store the initializer into the field.
 | |
|       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
 | |
|     } else {
 | |
|       // We're out of initalizers; default-initialize to null
 | |
|       EmitNullInitializationToLValue(LV);
 | |
|     }
 | |
| 
 | |
|     // Push a destructor if necessary.
 | |
|     // FIXME: if we have an array of structures, all explicitly
 | |
|     // initialized, we can end up pushing a linear number of cleanups.
 | |
|     bool pushedCleanup = false;
 | |
|     if (QualType::DestructionKind dtorKind
 | |
|           = field->getType().isDestructedType()) {
 | |
|       assert(LV.isSimple());
 | |
|       if (CGF.needsEHCleanup(dtorKind)) {
 | |
|         if (!cleanupDominator)
 | |
|           cleanupDominator = CGF.Builder.CreateAlignedLoad(
 | |
|               CGF.Int8Ty,
 | |
|               llvm::Constant::getNullValue(CGF.Int8PtrTy),
 | |
|               CharUnits::One()); // placeholder
 | |
| 
 | |
|         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
 | |
|                         CGF.getDestroyer(dtorKind), false);
 | |
|         cleanups.push_back(CGF.EHStack.stable_begin());
 | |
|         pushedCleanup = true;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If the GEP didn't get used because of a dead zero init or something
 | |
|     // else, clean it up for -O0 builds and general tidiness.
 | |
|     if (!pushedCleanup && LV.isSimple()) 
 | |
|       if (llvm::GetElementPtrInst *GEP =
 | |
|             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
 | |
|         if (GEP->use_empty())
 | |
|           GEP->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Deactivate all the partial cleanups in reverse order, which
 | |
|   // generally means popping them.
 | |
|   for (unsigned i = cleanups.size(); i != 0; --i)
 | |
|     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
 | |
| 
 | |
|   // Destroy the placeholder if we made one.
 | |
|   if (cleanupDominator)
 | |
|     cleanupDominator->eraseFromParent();
 | |
| }
 | |
| 
 | |
| void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
 | |
|   AggValueSlot Dest = EnsureSlot(E->getType());
 | |
| 
 | |
|   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
 | |
|   EmitInitializationToLValue(E->getBase(), DestLV);
 | |
|   VisitInitListExpr(E->getUpdater());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        Entry Points into this File
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
 | |
| /// non-zero bytes that will be stored when outputting the initializer for the
 | |
| /// specified initializer expression.
 | |
| static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   // 0 and 0.0 won't require any non-zero stores!
 | |
|   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
 | |
| 
 | |
|   // If this is an initlist expr, sum up the size of sizes of the (present)
 | |
|   // elements.  If this is something weird, assume the whole thing is non-zero.
 | |
|   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
 | |
|   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
 | |
|     return CGF.getContext().getTypeSizeInChars(E->getType());
 | |
|   
 | |
|   // InitListExprs for structs have to be handled carefully.  If there are
 | |
|   // reference members, we need to consider the size of the reference, not the
 | |
|   // referencee.  InitListExprs for unions and arrays can't have references.
 | |
|   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
 | |
|     if (!RT->isUnionType()) {
 | |
|       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
 | |
|       CharUnits NumNonZeroBytes = CharUnits::Zero();
 | |
|       
 | |
|       unsigned ILEElement = 0;
 | |
|       for (const auto *Field : SD->fields()) {
 | |
|         // We're done once we hit the flexible array member or run out of
 | |
|         // InitListExpr elements.
 | |
|         if (Field->getType()->isIncompleteArrayType() ||
 | |
|             ILEElement == ILE->getNumInits())
 | |
|           break;
 | |
|         if (Field->isUnnamedBitfield())
 | |
|           continue;
 | |
| 
 | |
|         const Expr *E = ILE->getInit(ILEElement++);
 | |
|         
 | |
|         // Reference values are always non-null and have the width of a pointer.
 | |
|         if (Field->getType()->isReferenceType())
 | |
|           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
 | |
|               CGF.getTarget().getPointerWidth(0));
 | |
|         else
 | |
|           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
 | |
|       }
 | |
|       
 | |
|       return NumNonZeroBytes;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   
 | |
|   CharUnits NumNonZeroBytes = CharUnits::Zero();
 | |
|   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
 | |
|     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
 | |
|   return NumNonZeroBytes;
 | |
| }
 | |
| 
 | |
| /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
 | |
| /// zeros in it, emit a memset and avoid storing the individual zeros.
 | |
| ///
 | |
| static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
 | |
|                                      CodeGenFunction &CGF) {
 | |
|   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
 | |
|   // volatile stores.
 | |
|   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
 | |
|     return;
 | |
| 
 | |
|   // C++ objects with a user-declared constructor don't need zero'ing.
 | |
|   if (CGF.getLangOpts().CPlusPlus)
 | |
|     if (const RecordType *RT = CGF.getContext()
 | |
|                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
 | |
|       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|       if (RD->hasUserDeclaredConstructor())
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|   // If the type is 16-bytes or smaller, prefer individual stores over memset.
 | |
|   CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType());
 | |
|   if (Size <= CharUnits::fromQuantity(16))
 | |
|     return;
 | |
| 
 | |
|   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
 | |
|   // we prefer to emit memset + individual stores for the rest.
 | |
|   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
 | |
|   if (NumNonZeroBytes*4 > Size)
 | |
|     return;
 | |
|   
 | |
|   // Okay, it seems like a good idea to use an initial memset, emit the call.
 | |
|   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
 | |
| 
 | |
|   Address Loc = Slot.getAddress();  
 | |
|   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
 | |
|   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
 | |
|   
 | |
|   // Tell the AggExprEmitter that the slot is known zero.
 | |
|   Slot.setZeroed();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /// EmitAggExpr - Emit the computation of the specified expression of aggregate
 | |
| /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
 | |
| /// the value of the aggregate expression is not needed.  If VolatileDest is
 | |
| /// true, DestPtr cannot be 0.
 | |
| void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
 | |
|   assert(E && hasAggregateEvaluationKind(E->getType()) &&
 | |
|          "Invalid aggregate expression to emit");
 | |
|   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
 | |
|          "slot has bits but no address");
 | |
| 
 | |
|   // Optimize the slot if possible.
 | |
|   CheckAggExprForMemSetUse(Slot, E, *this);
 | |
|  
 | |
|   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
 | |
|   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
 | |
|   Address Temp = CreateMemTemp(E->getType());
 | |
|   LValue LV = MakeAddrLValue(Temp, E->getType());
 | |
|   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
 | |
|                                          AggValueSlot::DoesNotNeedGCBarriers,
 | |
|                                          AggValueSlot::IsNotAliased));
 | |
|   return LV;
 | |
| }
 | |
| 
 | |
| void CodeGenFunction::EmitAggregateCopy(Address DestPtr,
 | |
|                                         Address SrcPtr, QualType Ty,
 | |
|                                         bool isVolatile,
 | |
|                                         bool isAssignment) {
 | |
|   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus) {
 | |
|     if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
 | |
|       assert((Record->hasTrivialCopyConstructor() || 
 | |
|               Record->hasTrivialCopyAssignment() ||
 | |
|               Record->hasTrivialMoveConstructor() ||
 | |
|               Record->hasTrivialMoveAssignment() ||
 | |
|               Record->isUnion()) &&
 | |
|              "Trying to aggregate-copy a type without a trivial copy/move "
 | |
|              "constructor or assignment operator");
 | |
|       // Ignore empty classes in C++.
 | |
|       if (Record->isEmpty())
 | |
|         return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
 | |
|   // C99 6.5.16.1p3, which states "If the value being stored in an object is
 | |
|   // read from another object that overlaps in anyway the storage of the first
 | |
|   // object, then the overlap shall be exact and the two objects shall have
 | |
|   // qualified or unqualified versions of a compatible type."
 | |
|   //
 | |
|   // memcpy is not defined if the source and destination pointers are exactly
 | |
|   // equal, but other compilers do this optimization, and almost every memcpy
 | |
|   // implementation handles this case safely.  If there is a libc that does not
 | |
|   // safely handle this, we can add a target hook.
 | |
| 
 | |
|   // Get data size info for this aggregate. If this is an assignment,
 | |
|   // don't copy the tail padding, because we might be assigning into a
 | |
|   // base subobject where the tail padding is claimed.  Otherwise,
 | |
|   // copying it is fine.
 | |
|   std::pair<CharUnits, CharUnits> TypeInfo;
 | |
|   if (isAssignment)
 | |
|     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
 | |
|   else
 | |
|     TypeInfo = getContext().getTypeInfoInChars(Ty);
 | |
| 
 | |
|   llvm::Value *SizeVal = nullptr;
 | |
|   if (TypeInfo.first.isZero()) {
 | |
|     // But note that getTypeInfo returns 0 for a VLA.
 | |
|     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
 | |
|             getContext().getAsArrayType(Ty))) {
 | |
|       QualType BaseEltTy;
 | |
|       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
 | |
|       TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy);
 | |
|       std::pair<CharUnits, CharUnits> LastElementTypeInfo;
 | |
|       if (!isAssignment)
 | |
|         LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
 | |
|       assert(!TypeInfo.first.isZero());
 | |
|       SizeVal = Builder.CreateNUWMul(
 | |
|           SizeVal,
 | |
|           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
 | |
|       if (!isAssignment) {
 | |
|         SizeVal = Builder.CreateNUWSub(
 | |
|             SizeVal,
 | |
|             llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
 | |
|         SizeVal = Builder.CreateNUWAdd(
 | |
|             SizeVal, llvm::ConstantInt::get(
 | |
|                          SizeTy, LastElementTypeInfo.first.getQuantity()));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (!SizeVal) {
 | |
|     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
 | |
|   }
 | |
| 
 | |
|   // FIXME: If we have a volatile struct, the optimizer can remove what might
 | |
|   // appear to be `extra' memory ops:
 | |
|   //
 | |
|   // volatile struct { int i; } a, b;
 | |
|   //
 | |
|   // int main() {
 | |
|   //   a = b;
 | |
|   //   a = b;
 | |
|   // }
 | |
|   //
 | |
|   // we need to use a different call here.  We use isVolatile to indicate when
 | |
|   // either the source or the destination is volatile.
 | |
| 
 | |
|   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
 | |
|   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
 | |
| 
 | |
|   // Don't do any of the memmove_collectable tests if GC isn't set.
 | |
|   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
 | |
|     // fall through
 | |
|   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
 | |
|     RecordDecl *Record = RecordTy->getDecl();
 | |
|     if (Record->hasObjectMember()) {
 | |
|       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 
 | |
|                                                     SizeVal);
 | |
|       return;
 | |
|     }
 | |
|   } else if (Ty->isArrayType()) {
 | |
|     QualType BaseType = getContext().getBaseElementType(Ty);
 | |
|     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
 | |
|       if (RecordTy->getDecl()->hasObjectMember()) {
 | |
|         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 
 | |
|                                                       SizeVal);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
 | |
| 
 | |
|   // Determine the metadata to describe the position of any padding in this
 | |
|   // memcpy, as well as the TBAA tags for the members of the struct, in case
 | |
|   // the optimizer wishes to expand it in to scalar memory operations.
 | |
|   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
 | |
|     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
 | |
| }
 |