forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3560 lines
		
	
	
		
			134 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3560 lines
		
	
	
		
			134 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "CodeGenFunction.h"
 | |
| #include "CGCXXABI.h"
 | |
| #include "CGDebugInfo.h"
 | |
| #include "CGObjCRuntime.h"
 | |
| #include "CodeGenModule.h"
 | |
| #include "TargetInfo.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/RecordLayout.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Frontend/CodeGenOptions.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include <cstdarg>
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace CodeGen;
 | |
| using llvm::Value;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Scalar Expression Emitter
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| struct BinOpInfo {
 | |
|   Value *LHS;
 | |
|   Value *RHS;
 | |
|   QualType Ty;  // Computation Type.
 | |
|   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
 | |
|   bool FPContractable;
 | |
|   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
 | |
| };
 | |
| 
 | |
| static bool MustVisitNullValue(const Expr *E) {
 | |
|   // If a null pointer expression's type is the C++0x nullptr_t, then
 | |
|   // it's not necessarily a simple constant and it must be evaluated
 | |
|   // for its potential side effects.
 | |
|   return E->getType()->isNullPtrType();
 | |
| }
 | |
| 
 | |
| class ScalarExprEmitter
 | |
|   : public StmtVisitor<ScalarExprEmitter, Value*> {
 | |
|   CodeGenFunction &CGF;
 | |
|   CGBuilderTy &Builder;
 | |
|   bool IgnoreResultAssign;
 | |
|   llvm::LLVMContext &VMContext;
 | |
| public:
 | |
| 
 | |
|   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
 | |
|     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
 | |
|       VMContext(cgf.getLLVMContext()) {
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //                               Utilities
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   bool TestAndClearIgnoreResultAssign() {
 | |
|     bool I = IgnoreResultAssign;
 | |
|     IgnoreResultAssign = false;
 | |
|     return I;
 | |
|   }
 | |
| 
 | |
|   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
 | |
|   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
 | |
|   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
 | |
|     return CGF.EmitCheckedLValue(E, TCK);
 | |
|   }
 | |
| 
 | |
|   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
 | |
|                       const BinOpInfo &Info);
 | |
| 
 | |
|   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
 | |
|     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
 | |
|   }
 | |
| 
 | |
|   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
 | |
|     const AlignValueAttr *AVAttr = nullptr;
 | |
|     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
 | |
|       const ValueDecl *VD = DRE->getDecl();
 | |
| 
 | |
|       if (VD->getType()->isReferenceType()) {
 | |
|         if (const auto *TTy =
 | |
|             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
 | |
|           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
 | |
|       } else {
 | |
|         // Assumptions for function parameters are emitted at the start of the
 | |
|         // function, so there is no need to repeat that here.
 | |
|         if (isa<ParmVarDecl>(VD))
 | |
|           return;
 | |
| 
 | |
|         AVAttr = VD->getAttr<AlignValueAttr>();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!AVAttr)
 | |
|       if (const auto *TTy =
 | |
|           dyn_cast<TypedefType>(E->getType()))
 | |
|         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
 | |
| 
 | |
|     if (!AVAttr)
 | |
|       return;
 | |
| 
 | |
|     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
 | |
|     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
 | |
|     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
 | |
|   }
 | |
| 
 | |
|   /// EmitLoadOfLValue - Given an expression with complex type that represents a
 | |
|   /// value l-value, this method emits the address of the l-value, then loads
 | |
|   /// and returns the result.
 | |
|   Value *EmitLoadOfLValue(const Expr *E) {
 | |
|     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
 | |
|                                 E->getExprLoc());
 | |
| 
 | |
|     EmitLValueAlignmentAssumption(E, V);
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   /// EmitConversionToBool - Convert the specified expression value to a
 | |
|   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
 | |
|   Value *EmitConversionToBool(Value *Src, QualType DstTy);
 | |
| 
 | |
|   /// Emit a check that a conversion to or from a floating-point type does not
 | |
|   /// overflow.
 | |
|   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
 | |
|                                 Value *Src, QualType SrcType, QualType DstType,
 | |
|                                 llvm::Type *DstTy, SourceLocation Loc);
 | |
| 
 | |
|   /// Emit a conversion from the specified type to the specified destination
 | |
|   /// type, both of which are LLVM scalar types.
 | |
|   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
 | |
|                               SourceLocation Loc);
 | |
| 
 | |
|   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
 | |
|                               SourceLocation Loc, bool TreatBooleanAsSigned);
 | |
| 
 | |
|   /// Emit a conversion from the specified complex type to the specified
 | |
|   /// destination type, where the destination type is an LLVM scalar type.
 | |
|   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
 | |
|                                        QualType SrcTy, QualType DstTy,
 | |
|                                        SourceLocation Loc);
 | |
| 
 | |
|   /// EmitNullValue - Emit a value that corresponds to null for the given type.
 | |
|   Value *EmitNullValue(QualType Ty);
 | |
| 
 | |
|   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
 | |
|   Value *EmitFloatToBoolConversion(Value *V) {
 | |
|     // Compare against 0.0 for fp scalars.
 | |
|     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
 | |
|     return Builder.CreateFCmpUNE(V, Zero, "tobool");
 | |
|   }
 | |
| 
 | |
|   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
 | |
|   Value *EmitPointerToBoolConversion(Value *V) {
 | |
|     Value *Zero = llvm::ConstantPointerNull::get(
 | |
|                                       cast<llvm::PointerType>(V->getType()));
 | |
|     return Builder.CreateICmpNE(V, Zero, "tobool");
 | |
|   }
 | |
| 
 | |
|   Value *EmitIntToBoolConversion(Value *V) {
 | |
|     // Because of the type rules of C, we often end up computing a
 | |
|     // logical value, then zero extending it to int, then wanting it
 | |
|     // as a logical value again.  Optimize this common case.
 | |
|     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
 | |
|       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
 | |
|         Value *Result = ZI->getOperand(0);
 | |
|         // If there aren't any more uses, zap the instruction to save space.
 | |
|         // Note that there can be more uses, for example if this
 | |
|         // is the result of an assignment.
 | |
|         if (ZI->use_empty())
 | |
|           ZI->eraseFromParent();
 | |
|         return Result;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return Builder.CreateIsNotNull(V, "tobool");
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //                            Visitor Methods
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   Value *Visit(Expr *E) {
 | |
|     ApplyDebugLocation DL(CGF, E);
 | |
|     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
 | |
|   }
 | |
| 
 | |
|   Value *VisitStmt(Stmt *S) {
 | |
|     S->dump(CGF.getContext().getSourceManager());
 | |
|     llvm_unreachable("Stmt can't have complex result type!");
 | |
|   }
 | |
|   Value *VisitExpr(Expr *S);
 | |
| 
 | |
|   Value *VisitParenExpr(ParenExpr *PE) {
 | |
|     return Visit(PE->getSubExpr());
 | |
|   }
 | |
|   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
 | |
|     return Visit(E->getReplacement());
 | |
|   }
 | |
|   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
 | |
|     return Visit(GE->getResultExpr());
 | |
|   }
 | |
| 
 | |
|   // Leaves.
 | |
|   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
 | |
|     return Builder.getInt(E->getValue());
 | |
|   }
 | |
|   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
 | |
|     return llvm::ConstantFP::get(VMContext, E->getValue());
 | |
|   }
 | |
|   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
 | |
|     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
 | |
|   }
 | |
|   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
 | |
|     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
 | |
|   }
 | |
|   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
 | |
|     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
 | |
|   }
 | |
|   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
 | |
|     return EmitNullValue(E->getType());
 | |
|   }
 | |
|   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
 | |
|     return EmitNullValue(E->getType());
 | |
|   }
 | |
|   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
 | |
|   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
 | |
|   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
 | |
|     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
 | |
|     return Builder.CreateBitCast(V, ConvertType(E->getType()));
 | |
|   }
 | |
| 
 | |
|   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
 | |
|     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
 | |
|   }
 | |
| 
 | |
|   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
 | |
|     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
 | |
|   }
 | |
| 
 | |
|   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
 | |
|     if (E->isGLValue())
 | |
|       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
 | |
| 
 | |
|     // Otherwise, assume the mapping is the scalar directly.
 | |
|     return CGF.getOpaqueRValueMapping(E).getScalarVal();
 | |
|   }
 | |
| 
 | |
|   // l-values.
 | |
|   Value *VisitDeclRefExpr(DeclRefExpr *E) {
 | |
|     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
 | |
|       if (result.isReference())
 | |
|         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
 | |
|                                 E->getExprLoc());
 | |
|       return result.getValue();
 | |
|     }
 | |
|     return EmitLoadOfLValue(E);
 | |
|   }
 | |
| 
 | |
|   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
 | |
|     return CGF.EmitObjCSelectorExpr(E);
 | |
|   }
 | |
|   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
 | |
|     return CGF.EmitObjCProtocolExpr(E);
 | |
|   }
 | |
|   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
 | |
|     return EmitLoadOfLValue(E);
 | |
|   }
 | |
|   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
 | |
|     if (E->getMethodDecl() &&
 | |
|         E->getMethodDecl()->getReturnType()->isReferenceType())
 | |
|       return EmitLoadOfLValue(E);
 | |
|     return CGF.EmitObjCMessageExpr(E).getScalarVal();
 | |
|   }
 | |
| 
 | |
|   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
 | |
|     LValue LV = CGF.EmitObjCIsaExpr(E);
 | |
|     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
 | |
|   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
 | |
|   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
 | |
|   Value *VisitMemberExpr(MemberExpr *E);
 | |
|   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
 | |
|   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
 | |
|     return EmitLoadOfLValue(E);
 | |
|   }
 | |
| 
 | |
|   Value *VisitInitListExpr(InitListExpr *E);
 | |
| 
 | |
|   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
 | |
|     return EmitNullValue(E->getType());
 | |
|   }
 | |
|   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
 | |
|     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
 | |
|     return VisitCastExpr(E);
 | |
|   }
 | |
|   Value *VisitCastExpr(CastExpr *E);
 | |
| 
 | |
|   Value *VisitCallExpr(const CallExpr *E) {
 | |
|     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
 | |
|       return EmitLoadOfLValue(E);
 | |
| 
 | |
|     Value *V = CGF.EmitCallExpr(E).getScalarVal();
 | |
| 
 | |
|     EmitLValueAlignmentAssumption(E, V);
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   Value *VisitStmtExpr(const StmtExpr *E);
 | |
| 
 | |
|   // Unary Operators.
 | |
|   Value *VisitUnaryPostDec(const UnaryOperator *E) {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     return EmitScalarPrePostIncDec(E, LV, false, false);
 | |
|   }
 | |
|   Value *VisitUnaryPostInc(const UnaryOperator *E) {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     return EmitScalarPrePostIncDec(E, LV, true, false);
 | |
|   }
 | |
|   Value *VisitUnaryPreDec(const UnaryOperator *E) {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     return EmitScalarPrePostIncDec(E, LV, false, true);
 | |
|   }
 | |
|   Value *VisitUnaryPreInc(const UnaryOperator *E) {
 | |
|     LValue LV = EmitLValue(E->getSubExpr());
 | |
|     return EmitScalarPrePostIncDec(E, LV, true, true);
 | |
|   }
 | |
| 
 | |
|   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
 | |
|                                                   llvm::Value *InVal,
 | |
|                                                   bool IsInc);
 | |
| 
 | |
|   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
 | |
|                                        bool isInc, bool isPre);
 | |
| 
 | |
| 
 | |
|   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
 | |
|     if (isa<MemberPointerType>(E->getType())) // never sugared
 | |
|       return CGF.CGM.getMemberPointerConstant(E);
 | |
| 
 | |
|     return EmitLValue(E->getSubExpr()).getPointer();
 | |
|   }
 | |
|   Value *VisitUnaryDeref(const UnaryOperator *E) {
 | |
|     if (E->getType()->isVoidType())
 | |
|       return Visit(E->getSubExpr()); // the actual value should be unused
 | |
|     return EmitLoadOfLValue(E);
 | |
|   }
 | |
|   Value *VisitUnaryPlus(const UnaryOperator *E) {
 | |
|     // This differs from gcc, though, most likely due to a bug in gcc.
 | |
|     TestAndClearIgnoreResultAssign();
 | |
|     return Visit(E->getSubExpr());
 | |
|   }
 | |
|   Value *VisitUnaryMinus    (const UnaryOperator *E);
 | |
|   Value *VisitUnaryNot      (const UnaryOperator *E);
 | |
|   Value *VisitUnaryLNot     (const UnaryOperator *E);
 | |
|   Value *VisitUnaryReal     (const UnaryOperator *E);
 | |
|   Value *VisitUnaryImag     (const UnaryOperator *E);
 | |
|   Value *VisitUnaryExtension(const UnaryOperator *E) {
 | |
|     return Visit(E->getSubExpr());
 | |
|   }
 | |
| 
 | |
|   // C++
 | |
|   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
 | |
|     return EmitLoadOfLValue(E);
 | |
|   }
 | |
| 
 | |
|   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
 | |
|     return Visit(DAE->getExpr());
 | |
|   }
 | |
|   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
 | |
|     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
 | |
|     return Visit(DIE->getExpr());
 | |
|   }
 | |
|   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
 | |
|     return CGF.LoadCXXThis();
 | |
|   }
 | |
| 
 | |
|   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
 | |
|     CGF.enterFullExpression(E);
 | |
|     CodeGenFunction::RunCleanupsScope Scope(CGF);
 | |
|     return Visit(E->getSubExpr());
 | |
|   }
 | |
|   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
 | |
|     return CGF.EmitCXXNewExpr(E);
 | |
|   }
 | |
|   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
 | |
|     CGF.EmitCXXDeleteExpr(E);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
 | |
|     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
 | |
|   }
 | |
| 
 | |
|   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
 | |
|     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
 | |
|   }
 | |
| 
 | |
|   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
 | |
|     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
 | |
|   }
 | |
| 
 | |
|   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
 | |
|     // C++ [expr.pseudo]p1:
 | |
|     //   The result shall only be used as the operand for the function call
 | |
|     //   operator (), and the result of such a call has type void. The only
 | |
|     //   effect is the evaluation of the postfix-expression before the dot or
 | |
|     //   arrow.
 | |
|     CGF.EmitScalarExpr(E->getBase());
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
 | |
|     return EmitNullValue(E->getType());
 | |
|   }
 | |
| 
 | |
|   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
 | |
|     CGF.EmitCXXThrowExpr(E);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
 | |
|     return Builder.getInt1(E->getValue());
 | |
|   }
 | |
| 
 | |
|   // Binary Operators.
 | |
|   Value *EmitMul(const BinOpInfo &Ops) {
 | |
|     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
 | |
|       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
 | |
|       case LangOptions::SOB_Defined:
 | |
|         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
 | |
|       case LangOptions::SOB_Undefined:
 | |
|         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
 | |
|           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
 | |
|         // Fall through.
 | |
|       case LangOptions::SOB_Trapping:
 | |
|         return EmitOverflowCheckedBinOp(Ops);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Ops.Ty->isUnsignedIntegerType() &&
 | |
|         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
 | |
|       return EmitOverflowCheckedBinOp(Ops);
 | |
| 
 | |
|     if (Ops.LHS->getType()->isFPOrFPVectorTy())
 | |
|       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
 | |
|     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
 | |
|   }
 | |
|   /// Create a binary op that checks for overflow.
 | |
|   /// Currently only supports +, - and *.
 | |
|   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
 | |
| 
 | |
|   // Check for undefined division and modulus behaviors.
 | |
|   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
 | |
|                                                   llvm::Value *Zero,bool isDiv);
 | |
|   // Common helper for getting how wide LHS of shift is.
 | |
|   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
 | |
|   Value *EmitDiv(const BinOpInfo &Ops);
 | |
|   Value *EmitRem(const BinOpInfo &Ops);
 | |
|   Value *EmitAdd(const BinOpInfo &Ops);
 | |
|   Value *EmitSub(const BinOpInfo &Ops);
 | |
|   Value *EmitShl(const BinOpInfo &Ops);
 | |
|   Value *EmitShr(const BinOpInfo &Ops);
 | |
|   Value *EmitAnd(const BinOpInfo &Ops) {
 | |
|     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
 | |
|   }
 | |
|   Value *EmitXor(const BinOpInfo &Ops) {
 | |
|     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
 | |
|   }
 | |
|   Value *EmitOr (const BinOpInfo &Ops) {
 | |
|     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
 | |
|   }
 | |
| 
 | |
|   BinOpInfo EmitBinOps(const BinaryOperator *E);
 | |
|   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
 | |
|                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
 | |
|                                   Value *&Result);
 | |
| 
 | |
|   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
 | |
|                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
 | |
| 
 | |
|   // Binary operators and binary compound assignment operators.
 | |
| #define HANDLEBINOP(OP) \
 | |
|   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
 | |
|     return Emit ## OP(EmitBinOps(E));                                      \
 | |
|   }                                                                        \
 | |
|   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
 | |
|     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
 | |
|   }
 | |
|   HANDLEBINOP(Mul)
 | |
|   HANDLEBINOP(Div)
 | |
|   HANDLEBINOP(Rem)
 | |
|   HANDLEBINOP(Add)
 | |
|   HANDLEBINOP(Sub)
 | |
|   HANDLEBINOP(Shl)
 | |
|   HANDLEBINOP(Shr)
 | |
|   HANDLEBINOP(And)
 | |
|   HANDLEBINOP(Xor)
 | |
|   HANDLEBINOP(Or)
 | |
| #undef HANDLEBINOP
 | |
| 
 | |
|   // Comparisons.
 | |
|   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
 | |
|                      unsigned SICmpOpc, unsigned FCmpOpc);
 | |
| #define VISITCOMP(CODE, UI, SI, FP) \
 | |
|     Value *VisitBin##CODE(const BinaryOperator *E) { \
 | |
|       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
 | |
|                          llvm::FCmpInst::FP); }
 | |
|   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
 | |
|   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
 | |
|   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
 | |
|   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
 | |
|   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
 | |
|   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
 | |
| #undef VISITCOMP
 | |
| 
 | |
|   Value *VisitBinAssign     (const BinaryOperator *E);
 | |
| 
 | |
|   Value *VisitBinLAnd       (const BinaryOperator *E);
 | |
|   Value *VisitBinLOr        (const BinaryOperator *E);
 | |
|   Value *VisitBinComma      (const BinaryOperator *E);
 | |
| 
 | |
|   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
 | |
|   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
 | |
| 
 | |
|   // Other Operators.
 | |
|   Value *VisitBlockExpr(const BlockExpr *BE);
 | |
|   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
 | |
|   Value *VisitChooseExpr(ChooseExpr *CE);
 | |
|   Value *VisitVAArgExpr(VAArgExpr *VE);
 | |
|   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
 | |
|     return CGF.EmitObjCStringLiteral(E);
 | |
|   }
 | |
|   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
 | |
|     return CGF.EmitObjCBoxedExpr(E);
 | |
|   }
 | |
|   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
 | |
|     return CGF.EmitObjCArrayLiteral(E);
 | |
|   }
 | |
|   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
 | |
|     return CGF.EmitObjCDictionaryLiteral(E);
 | |
|   }
 | |
|   Value *VisitAsTypeExpr(AsTypeExpr *CE);
 | |
|   Value *VisitAtomicExpr(AtomicExpr *AE);
 | |
| };
 | |
| }  // end anonymous namespace.
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                Utilities
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// EmitConversionToBool - Convert the specified expression value to a
 | |
| /// boolean (i1) truth value.  This is equivalent to "Val != 0".
 | |
| Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
 | |
|   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
 | |
| 
 | |
|   if (SrcType->isRealFloatingType())
 | |
|     return EmitFloatToBoolConversion(Src);
 | |
| 
 | |
|   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
 | |
|     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
 | |
| 
 | |
|   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
 | |
|          "Unknown scalar type to convert");
 | |
| 
 | |
|   if (isa<llvm::IntegerType>(Src->getType()))
 | |
|     return EmitIntToBoolConversion(Src);
 | |
| 
 | |
|   assert(isa<llvm::PointerType>(Src->getType()));
 | |
|   return EmitPointerToBoolConversion(Src);
 | |
| }
 | |
| 
 | |
| void ScalarExprEmitter::EmitFloatConversionCheck(
 | |
|     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
 | |
|     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
 | |
|   CodeGenFunction::SanitizerScope SanScope(&CGF);
 | |
|   using llvm::APFloat;
 | |
|   using llvm::APSInt;
 | |
| 
 | |
|   llvm::Type *SrcTy = Src->getType();
 | |
| 
 | |
|   llvm::Value *Check = nullptr;
 | |
|   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
 | |
|     // Integer to floating-point. This can fail for unsigned short -> __half
 | |
|     // or unsigned __int128 -> float.
 | |
|     assert(DstType->isFloatingType());
 | |
|     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
 | |
| 
 | |
|     APFloat LargestFloat =
 | |
|       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
 | |
|     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
 | |
| 
 | |
|     bool IsExact;
 | |
|     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
 | |
|                                       &IsExact) != APFloat::opOK)
 | |
|       // The range of representable values of this floating point type includes
 | |
|       // all values of this integer type. Don't need an overflow check.
 | |
|       return;
 | |
| 
 | |
|     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
 | |
|     if (SrcIsUnsigned)
 | |
|       Check = Builder.CreateICmpULE(Src, Max);
 | |
|     else {
 | |
|       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
 | |
|       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
 | |
|       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
 | |
|       Check = Builder.CreateAnd(GE, LE);
 | |
|     }
 | |
|   } else {
 | |
|     const llvm::fltSemantics &SrcSema =
 | |
|       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
 | |
|     if (isa<llvm::IntegerType>(DstTy)) {
 | |
|       // Floating-point to integer. This has undefined behavior if the source is
 | |
|       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
 | |
|       // to an integer).
 | |
|       unsigned Width = CGF.getContext().getIntWidth(DstType);
 | |
|       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
 | |
| 
 | |
|       APSInt Min = APSInt::getMinValue(Width, Unsigned);
 | |
|       APFloat MinSrc(SrcSema, APFloat::uninitialized);
 | |
|       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
 | |
|           APFloat::opOverflow)
 | |
|         // Don't need an overflow check for lower bound. Just check for
 | |
|         // -Inf/NaN.
 | |
|         MinSrc = APFloat::getInf(SrcSema, true);
 | |
|       else
 | |
|         // Find the largest value which is too small to represent (before
 | |
|         // truncation toward zero).
 | |
|         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
 | |
| 
 | |
|       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
 | |
|       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
 | |
|       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
 | |
|           APFloat::opOverflow)
 | |
|         // Don't need an overflow check for upper bound. Just check for
 | |
|         // +Inf/NaN.
 | |
|         MaxSrc = APFloat::getInf(SrcSema, false);
 | |
|       else
 | |
|         // Find the smallest value which is too large to represent (before
 | |
|         // truncation toward zero).
 | |
|         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
 | |
| 
 | |
|       // If we're converting from __half, convert the range to float to match
 | |
|       // the type of src.
 | |
|       if (OrigSrcType->isHalfType()) {
 | |
|         const llvm::fltSemantics &Sema =
 | |
|           CGF.getContext().getFloatTypeSemantics(SrcType);
 | |
|         bool IsInexact;
 | |
|         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
 | |
|         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
 | |
|       }
 | |
| 
 | |
|       llvm::Value *GE =
 | |
|         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
 | |
|       llvm::Value *LE =
 | |
|         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
 | |
|       Check = Builder.CreateAnd(GE, LE);
 | |
|     } else {
 | |
|       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
 | |
|       //
 | |
|       // Floating-point to floating-point. This has undefined behavior if the
 | |
|       // source is not in the range of representable values of the destination
 | |
|       // type. The C and C++ standards are spectacularly unclear here. We
 | |
|       // diagnose finite out-of-range conversions, but allow infinities and NaNs
 | |
|       // to convert to the corresponding value in the smaller type.
 | |
|       //
 | |
|       // C11 Annex F gives all such conversions defined behavior for IEC 60559
 | |
|       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
 | |
|       // does not.
 | |
| 
 | |
|       // Converting from a lower rank to a higher rank can never have
 | |
|       // undefined behavior, since higher-rank types must have a superset
 | |
|       // of values of lower-rank types.
 | |
|       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
 | |
|         return;
 | |
| 
 | |
|       assert(!OrigSrcType->isHalfType() &&
 | |
|              "should not check conversion from __half, it has the lowest rank");
 | |
| 
 | |
|       const llvm::fltSemantics &DstSema =
 | |
|         CGF.getContext().getFloatTypeSemantics(DstType);
 | |
|       APFloat MinBad = APFloat::getLargest(DstSema, false);
 | |
|       APFloat MaxBad = APFloat::getInf(DstSema, false);
 | |
| 
 | |
|       bool IsInexact;
 | |
|       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
 | |
|       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
 | |
| 
 | |
|       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
 | |
|         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
 | |
|       llvm::Value *GE =
 | |
|         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
 | |
|       llvm::Value *LE =
 | |
|         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
 | |
|       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
 | |
|                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
 | |
|                                   CGF.EmitCheckTypeDescriptor(DstType)};
 | |
|   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
 | |
|                 "float_cast_overflow", StaticArgs, OrigSrc);
 | |
| }
 | |
| 
 | |
| /// Emit a conversion from the specified type to the specified destination type,
 | |
| /// both of which are LLVM scalar types.
 | |
| Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
 | |
|                                                QualType DstType,
 | |
|                                                SourceLocation Loc) {
 | |
|   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
 | |
|                                                QualType DstType,
 | |
|                                                SourceLocation Loc,
 | |
|                                                bool TreatBooleanAsSigned) {
 | |
|   SrcType = CGF.getContext().getCanonicalType(SrcType);
 | |
|   DstType = CGF.getContext().getCanonicalType(DstType);
 | |
|   if (SrcType == DstType) return Src;
 | |
| 
 | |
|   if (DstType->isVoidType()) return nullptr;
 | |
| 
 | |
|   llvm::Value *OrigSrc = Src;
 | |
|   QualType OrigSrcType = SrcType;
 | |
|   llvm::Type *SrcTy = Src->getType();
 | |
| 
 | |
|   // Handle conversions to bool first, they are special: comparisons against 0.
 | |
|   if (DstType->isBooleanType())
 | |
|     return EmitConversionToBool(Src, SrcType);
 | |
| 
 | |
|   llvm::Type *DstTy = ConvertType(DstType);
 | |
| 
 | |
|   // Cast from half through float if half isn't a native type.
 | |
|   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
 | |
|     // Cast to FP using the intrinsic if the half type itself isn't supported.
 | |
|     if (DstTy->isFloatingPointTy()) {
 | |
|       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
 | |
|         return Builder.CreateCall(
 | |
|             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
 | |
|             Src);
 | |
|     } else {
 | |
|       // Cast to other types through float, using either the intrinsic or FPExt,
 | |
|       // depending on whether the half type itself is supported
 | |
|       // (as opposed to operations on half, available with NativeHalfType).
 | |
|       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
 | |
|         Src = Builder.CreateCall(
 | |
|             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
 | |
|                                  CGF.CGM.FloatTy),
 | |
|             Src);
 | |
|       } else {
 | |
|         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
 | |
|       }
 | |
|       SrcType = CGF.getContext().FloatTy;
 | |
|       SrcTy = CGF.FloatTy;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Ignore conversions like int -> uint.
 | |
|   if (SrcTy == DstTy)
 | |
|     return Src;
 | |
| 
 | |
|   // Handle pointer conversions next: pointers can only be converted to/from
 | |
|   // other pointers and integers. Check for pointer types in terms of LLVM, as
 | |
|   // some native types (like Obj-C id) may map to a pointer type.
 | |
|   if (isa<llvm::PointerType>(DstTy)) {
 | |
|     // The source value may be an integer, or a pointer.
 | |
|     if (isa<llvm::PointerType>(SrcTy))
 | |
|       return Builder.CreateBitCast(Src, DstTy, "conv");
 | |
| 
 | |
|     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
 | |
|     // First, convert to the correct width so that we control the kind of
 | |
|     // extension.
 | |
|     llvm::Type *MiddleTy = CGF.IntPtrTy;
 | |
|     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
 | |
|     llvm::Value* IntResult =
 | |
|         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
 | |
|     // Then, cast to pointer.
 | |
|     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
 | |
|   }
 | |
| 
 | |
|   if (isa<llvm::PointerType>(SrcTy)) {
 | |
|     // Must be an ptr to int cast.
 | |
|     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
 | |
|     return Builder.CreatePtrToInt(Src, DstTy, "conv");
 | |
|   }
 | |
| 
 | |
|   // A scalar can be splatted to an extended vector of the same element type
 | |
|   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
 | |
|     // Cast the scalar to element type
 | |
|     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
 | |
|     llvm::Value *Elt = EmitScalarConversion(
 | |
|         Src, SrcType, EltTy, Loc, CGF.getContext().getLangOpts().OpenCL);
 | |
| 
 | |
|     // Splat the element across to all elements
 | |
|     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
 | |
|     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
 | |
|   }
 | |
| 
 | |
|   // Allow bitcast from vector to integer/fp of the same size.
 | |
|   if (isa<llvm::VectorType>(SrcTy) ||
 | |
|       isa<llvm::VectorType>(DstTy))
 | |
|     return Builder.CreateBitCast(Src, DstTy, "conv");
 | |
| 
 | |
|   // Finally, we have the arithmetic types: real int/float.
 | |
|   Value *Res = nullptr;
 | |
|   llvm::Type *ResTy = DstTy;
 | |
| 
 | |
|   // An overflowing conversion has undefined behavior if either the source type
 | |
|   // or the destination type is a floating-point type.
 | |
|   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
 | |
|       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
 | |
|     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
 | |
|                              Loc);
 | |
| 
 | |
|   // Cast to half through float if half isn't a native type.
 | |
|   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
 | |
|     // Make sure we cast in a single step if from another FP type.
 | |
|     if (SrcTy->isFloatingPointTy()) {
 | |
|       // Use the intrinsic if the half type itself isn't supported
 | |
|       // (as opposed to operations on half, available with NativeHalfType).
 | |
|       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
 | |
|         return Builder.CreateCall(
 | |
|             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
 | |
|       // If the half type is supported, just use an fptrunc.
 | |
|       return Builder.CreateFPTrunc(Src, DstTy);
 | |
|     }
 | |
|     DstTy = CGF.FloatTy;
 | |
|   }
 | |
| 
 | |
|   if (isa<llvm::IntegerType>(SrcTy)) {
 | |
|     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
 | |
|     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
 | |
|       InputSigned = true;
 | |
|     }
 | |
|     if (isa<llvm::IntegerType>(DstTy))
 | |
|       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
 | |
|     else if (InputSigned)
 | |
|       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
 | |
|     else
 | |
|       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
 | |
|   } else if (isa<llvm::IntegerType>(DstTy)) {
 | |
|     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
 | |
|     if (DstType->isSignedIntegerOrEnumerationType())
 | |
|       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
 | |
|     else
 | |
|       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
 | |
|   } else {
 | |
|     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
 | |
|            "Unknown real conversion");
 | |
|     if (DstTy->getTypeID() < SrcTy->getTypeID())
 | |
|       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
 | |
|     else
 | |
|       Res = Builder.CreateFPExt(Src, DstTy, "conv");
 | |
|   }
 | |
| 
 | |
|   if (DstTy != ResTy) {
 | |
|     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
 | |
|       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
 | |
|       Res = Builder.CreateCall(
 | |
|         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
 | |
|         Res);
 | |
|     } else {
 | |
|       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| /// Emit a conversion from the specified complex type to the specified
 | |
| /// destination type, where the destination type is an LLVM scalar type.
 | |
| Value *ScalarExprEmitter::EmitComplexToScalarConversion(
 | |
|     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
 | |
|     SourceLocation Loc) {
 | |
|   // Get the source element type.
 | |
|   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
 | |
| 
 | |
|   // Handle conversions to bool first, they are special: comparisons against 0.
 | |
|   if (DstTy->isBooleanType()) {
 | |
|     //  Complex != 0  -> (Real != 0) | (Imag != 0)
 | |
|     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
 | |
|     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
 | |
|     return Builder.CreateOr(Src.first, Src.second, "tobool");
 | |
|   }
 | |
| 
 | |
|   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
 | |
|   // the imaginary part of the complex value is discarded and the value of the
 | |
|   // real part is converted according to the conversion rules for the
 | |
|   // corresponding real type.
 | |
|   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
 | |
|   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
 | |
| }
 | |
| 
 | |
| /// \brief Emit a sanitization check for the given "binary" operation (which
 | |
| /// might actually be a unary increment which has been lowered to a binary
 | |
| /// operation). The check passes if all values in \p Checks (which are \c i1),
 | |
| /// are \c true.
 | |
| void ScalarExprEmitter::EmitBinOpCheck(
 | |
|     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
 | |
|   assert(CGF.IsSanitizerScope);
 | |
|   StringRef CheckName;
 | |
|   SmallVector<llvm::Constant *, 4> StaticData;
 | |
|   SmallVector<llvm::Value *, 2> DynamicData;
 | |
| 
 | |
|   BinaryOperatorKind Opcode = Info.Opcode;
 | |
|   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
 | |
|     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
 | |
| 
 | |
|   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
 | |
|   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
 | |
|   if (UO && UO->getOpcode() == UO_Minus) {
 | |
|     CheckName = "negate_overflow";
 | |
|     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
 | |
|     DynamicData.push_back(Info.RHS);
 | |
|   } else {
 | |
|     if (BinaryOperator::isShiftOp(Opcode)) {
 | |
|       // Shift LHS negative or too large, or RHS out of bounds.
 | |
|       CheckName = "shift_out_of_bounds";
 | |
|       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
 | |
|       StaticData.push_back(
 | |
|         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
 | |
|       StaticData.push_back(
 | |
|         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
 | |
|     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
 | |
|       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
 | |
|       CheckName = "divrem_overflow";
 | |
|       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
 | |
|     } else {
 | |
|       // Arithmetic overflow (+, -, *).
 | |
|       switch (Opcode) {
 | |
|       case BO_Add: CheckName = "add_overflow"; break;
 | |
|       case BO_Sub: CheckName = "sub_overflow"; break;
 | |
|       case BO_Mul: CheckName = "mul_overflow"; break;
 | |
|       default: llvm_unreachable("unexpected opcode for bin op check");
 | |
|       }
 | |
|       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
 | |
|     }
 | |
|     DynamicData.push_back(Info.LHS);
 | |
|     DynamicData.push_back(Info.RHS);
 | |
|   }
 | |
| 
 | |
|   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            Visitor Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitExpr(Expr *E) {
 | |
|   CGF.ErrorUnsupported(E, "scalar expression");
 | |
|   if (E->getType()->isVoidType())
 | |
|     return nullptr;
 | |
|   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
 | |
|   // Vector Mask Case
 | |
|   if (E->getNumSubExprs() == 2 ||
 | |
|       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
 | |
|     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
 | |
|     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
 | |
|     Value *Mask;
 | |
| 
 | |
|     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
 | |
|     unsigned LHSElts = LTy->getNumElements();
 | |
| 
 | |
|     if (E->getNumSubExprs() == 3) {
 | |
|       Mask = CGF.EmitScalarExpr(E->getExpr(2));
 | |
| 
 | |
|       // Shuffle LHS & RHS into one input vector.
 | |
|       SmallVector<llvm::Constant*, 32> concat;
 | |
|       for (unsigned i = 0; i != LHSElts; ++i) {
 | |
|         concat.push_back(Builder.getInt32(2*i));
 | |
|         concat.push_back(Builder.getInt32(2*i+1));
 | |
|       }
 | |
| 
 | |
|       Value* CV = llvm::ConstantVector::get(concat);
 | |
|       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
 | |
|       LHSElts *= 2;
 | |
|     } else {
 | |
|       Mask = RHS;
 | |
|     }
 | |
| 
 | |
|     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
 | |
| 
 | |
|     // Mask off the high bits of each shuffle index.
 | |
|     Value *MaskBits =
 | |
|         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
 | |
|     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
 | |
| 
 | |
|     // newv = undef
 | |
|     // mask = mask & maskbits
 | |
|     // for each elt
 | |
|     //   n = extract mask i
 | |
|     //   x = extract val n
 | |
|     //   newv = insert newv, x, i
 | |
|     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
 | |
|                                                   MTy->getNumElements());
 | |
|     Value* NewV = llvm::UndefValue::get(RTy);
 | |
|     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
 | |
|       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
 | |
|       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
 | |
| 
 | |
|       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
 | |
|       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
 | |
|     }
 | |
|     return NewV;
 | |
|   }
 | |
| 
 | |
|   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
 | |
|   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
 | |
| 
 | |
|   SmallVector<llvm::Constant*, 32> indices;
 | |
|   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
 | |
|     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
 | |
|     // Check for -1 and output it as undef in the IR.
 | |
|     if (Idx.isSigned() && Idx.isAllOnesValue())
 | |
|       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
 | |
|     else
 | |
|       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
 | |
|   }
 | |
| 
 | |
|   Value *SV = llvm::ConstantVector::get(indices);
 | |
|   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
 | |
|   QualType SrcType = E->getSrcExpr()->getType(),
 | |
|            DstType = E->getType();
 | |
| 
 | |
|   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
 | |
| 
 | |
|   SrcType = CGF.getContext().getCanonicalType(SrcType);
 | |
|   DstType = CGF.getContext().getCanonicalType(DstType);
 | |
|   if (SrcType == DstType) return Src;
 | |
| 
 | |
|   assert(SrcType->isVectorType() &&
 | |
|          "ConvertVector source type must be a vector");
 | |
|   assert(DstType->isVectorType() &&
 | |
|          "ConvertVector destination type must be a vector");
 | |
| 
 | |
|   llvm::Type *SrcTy = Src->getType();
 | |
|   llvm::Type *DstTy = ConvertType(DstType);
 | |
| 
 | |
|   // Ignore conversions like int -> uint.
 | |
|   if (SrcTy == DstTy)
 | |
|     return Src;
 | |
| 
 | |
|   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
 | |
|            DstEltType = DstType->getAs<VectorType>()->getElementType();
 | |
| 
 | |
|   assert(SrcTy->isVectorTy() &&
 | |
|          "ConvertVector source IR type must be a vector");
 | |
|   assert(DstTy->isVectorTy() &&
 | |
|          "ConvertVector destination IR type must be a vector");
 | |
| 
 | |
|   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
 | |
|              *DstEltTy = DstTy->getVectorElementType();
 | |
| 
 | |
|   if (DstEltType->isBooleanType()) {
 | |
|     assert((SrcEltTy->isFloatingPointTy() ||
 | |
|             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
 | |
| 
 | |
|     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
 | |
|     if (SrcEltTy->isFloatingPointTy()) {
 | |
|       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
 | |
|     } else {
 | |
|       return Builder.CreateICmpNE(Src, Zero, "tobool");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We have the arithmetic types: real int/float.
 | |
|   Value *Res = nullptr;
 | |
| 
 | |
|   if (isa<llvm::IntegerType>(SrcEltTy)) {
 | |
|     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
 | |
|     if (isa<llvm::IntegerType>(DstEltTy))
 | |
|       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
 | |
|     else if (InputSigned)
 | |
|       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
 | |
|     else
 | |
|       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
 | |
|   } else if (isa<llvm::IntegerType>(DstEltTy)) {
 | |
|     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
 | |
|     if (DstEltType->isSignedIntegerOrEnumerationType())
 | |
|       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
 | |
|     else
 | |
|       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
 | |
|   } else {
 | |
|     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
 | |
|            "Unknown real conversion");
 | |
|     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
 | |
|       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
 | |
|     else
 | |
|       Res = Builder.CreateFPExt(Src, DstTy, "conv");
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
 | |
|   llvm::APSInt Value;
 | |
|   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
 | |
|     if (E->isArrow())
 | |
|       CGF.EmitScalarExpr(E->getBase());
 | |
|     else
 | |
|       EmitLValue(E->getBase());
 | |
|     return Builder.getInt(Value);
 | |
|   }
 | |
| 
 | |
|   return EmitLoadOfLValue(E);
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
 | |
|   TestAndClearIgnoreResultAssign();
 | |
| 
 | |
|   // Emit subscript expressions in rvalue context's.  For most cases, this just
 | |
|   // loads the lvalue formed by the subscript expr.  However, we have to be
 | |
|   // careful, because the base of a vector subscript is occasionally an rvalue,
 | |
|   // so we can't get it as an lvalue.
 | |
|   if (!E->getBase()->getType()->isVectorType())
 | |
|     return EmitLoadOfLValue(E);
 | |
| 
 | |
|   // Handle the vector case.  The base must be a vector, the index must be an
 | |
|   // integer value.
 | |
|   Value *Base = Visit(E->getBase());
 | |
|   Value *Idx  = Visit(E->getIdx());
 | |
|   QualType IdxTy = E->getIdx()->getType();
 | |
| 
 | |
|   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
 | |
|     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
 | |
| 
 | |
|   return Builder.CreateExtractElement(Base, Idx, "vecext");
 | |
| }
 | |
| 
 | |
| static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
 | |
|                                   unsigned Off, llvm::Type *I32Ty) {
 | |
|   int MV = SVI->getMaskValue(Idx);
 | |
|   if (MV == -1)
 | |
|     return llvm::UndefValue::get(I32Ty);
 | |
|   return llvm::ConstantInt::get(I32Ty, Off+MV);
 | |
| }
 | |
| 
 | |
| static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
 | |
|   if (C->getBitWidth() != 32) {
 | |
|       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
 | |
|                                                     C->getZExtValue()) &&
 | |
|              "Index operand too large for shufflevector mask!");
 | |
|       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
 | |
|   }
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
 | |
|   bool Ignore = TestAndClearIgnoreResultAssign();
 | |
|   (void)Ignore;
 | |
|   assert (Ignore == false && "init list ignored");
 | |
|   unsigned NumInitElements = E->getNumInits();
 | |
| 
 | |
|   if (E->hadArrayRangeDesignator())
 | |
|     CGF.ErrorUnsupported(E, "GNU array range designator extension");
 | |
| 
 | |
|   llvm::VectorType *VType =
 | |
|     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
 | |
| 
 | |
|   if (!VType) {
 | |
|     if (NumInitElements == 0) {
 | |
|       // C++11 value-initialization for the scalar.
 | |
|       return EmitNullValue(E->getType());
 | |
|     }
 | |
|     // We have a scalar in braces. Just use the first element.
 | |
|     return Visit(E->getInit(0));
 | |
|   }
 | |
| 
 | |
|   unsigned ResElts = VType->getNumElements();
 | |
| 
 | |
|   // Loop over initializers collecting the Value for each, and remembering
 | |
|   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
 | |
|   // us to fold the shuffle for the swizzle into the shuffle for the vector
 | |
|   // initializer, since LLVM optimizers generally do not want to touch
 | |
|   // shuffles.
 | |
|   unsigned CurIdx = 0;
 | |
|   bool VIsUndefShuffle = false;
 | |
|   llvm::Value *V = llvm::UndefValue::get(VType);
 | |
|   for (unsigned i = 0; i != NumInitElements; ++i) {
 | |
|     Expr *IE = E->getInit(i);
 | |
|     Value *Init = Visit(IE);
 | |
|     SmallVector<llvm::Constant*, 16> Args;
 | |
| 
 | |
|     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
 | |
| 
 | |
|     // Handle scalar elements.  If the scalar initializer is actually one
 | |
|     // element of a different vector of the same width, use shuffle instead of
 | |
|     // extract+insert.
 | |
|     if (!VVT) {
 | |
|       if (isa<ExtVectorElementExpr>(IE)) {
 | |
|         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
 | |
| 
 | |
|         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
 | |
|           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
 | |
|           Value *LHS = nullptr, *RHS = nullptr;
 | |
|           if (CurIdx == 0) {
 | |
|             // insert into undef -> shuffle (src, undef)
 | |
|             // shufflemask must use an i32
 | |
|             Args.push_back(getAsInt32(C, CGF.Int32Ty));
 | |
|             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
 | |
| 
 | |
|             LHS = EI->getVectorOperand();
 | |
|             RHS = V;
 | |
|             VIsUndefShuffle = true;
 | |
|           } else if (VIsUndefShuffle) {
 | |
|             // insert into undefshuffle && size match -> shuffle (v, src)
 | |
|             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
 | |
|             for (unsigned j = 0; j != CurIdx; ++j)
 | |
|               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
 | |
|             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
 | |
|             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
 | |
| 
 | |
|             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
 | |
|             RHS = EI->getVectorOperand();
 | |
|             VIsUndefShuffle = false;
 | |
|           }
 | |
|           if (!Args.empty()) {
 | |
|             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
 | |
|             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
 | |
|             ++CurIdx;
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
 | |
|                                       "vecinit");
 | |
|       VIsUndefShuffle = false;
 | |
|       ++CurIdx;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     unsigned InitElts = VVT->getNumElements();
 | |
| 
 | |
|     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
 | |
|     // input is the same width as the vector being constructed, generate an
 | |
|     // optimized shuffle of the swizzle input into the result.
 | |
|     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
 | |
|     if (isa<ExtVectorElementExpr>(IE)) {
 | |
|       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
 | |
|       Value *SVOp = SVI->getOperand(0);
 | |
|       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
 | |
| 
 | |
|       if (OpTy->getNumElements() == ResElts) {
 | |
|         for (unsigned j = 0; j != CurIdx; ++j) {
 | |
|           // If the current vector initializer is a shuffle with undef, merge
 | |
|           // this shuffle directly into it.
 | |
|           if (VIsUndefShuffle) {
 | |
|             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
 | |
|                                       CGF.Int32Ty));
 | |
|           } else {
 | |
|             Args.push_back(Builder.getInt32(j));
 | |
|           }
 | |
|         }
 | |
|         for (unsigned j = 0, je = InitElts; j != je; ++j)
 | |
|           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
 | |
|         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
 | |
| 
 | |
|         if (VIsUndefShuffle)
 | |
|           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
 | |
| 
 | |
|         Init = SVOp;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Extend init to result vector length, and then shuffle its contribution
 | |
|     // to the vector initializer into V.
 | |
|     if (Args.empty()) {
 | |
|       for (unsigned j = 0; j != InitElts; ++j)
 | |
|         Args.push_back(Builder.getInt32(j));
 | |
|       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
 | |
|       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
 | |
|       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
 | |
|                                          Mask, "vext");
 | |
| 
 | |
|       Args.clear();
 | |
|       for (unsigned j = 0; j != CurIdx; ++j)
 | |
|         Args.push_back(Builder.getInt32(j));
 | |
|       for (unsigned j = 0; j != InitElts; ++j)
 | |
|         Args.push_back(Builder.getInt32(j+Offset));
 | |
|       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
 | |
|     }
 | |
| 
 | |
|     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
 | |
|     // merging subsequent shuffles into this one.
 | |
|     if (CurIdx == 0)
 | |
|       std::swap(V, Init);
 | |
|     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
 | |
|     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
 | |
|     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
 | |
|     CurIdx += InitElts;
 | |
|   }
 | |
| 
 | |
|   // FIXME: evaluate codegen vs. shuffling against constant null vector.
 | |
|   // Emit remaining default initializers.
 | |
|   llvm::Type *EltTy = VType->getElementType();
 | |
| 
 | |
|   // Emit remaining default initializers
 | |
|   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
 | |
|     Value *Idx = Builder.getInt32(CurIdx);
 | |
|     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
 | |
|     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
 | |
|   const Expr *E = CE->getSubExpr();
 | |
| 
 | |
|   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
 | |
|     return false;
 | |
| 
 | |
|   if (isa<CXXThisExpr>(E->IgnoreParens())) {
 | |
|     // We always assume that 'this' is never null.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
 | |
|     // And that glvalue casts are never null.
 | |
|     if (ICE->getValueKind() != VK_RValue)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
 | |
| // have to handle a more broad range of conversions than explicit casts, as they
 | |
| // handle things like function to ptr-to-function decay etc.
 | |
| Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
 | |
|   Expr *E = CE->getSubExpr();
 | |
|   QualType DestTy = CE->getType();
 | |
|   CastKind Kind = CE->getCastKind();
 | |
| 
 | |
|   if (!DestTy->isVoidType())
 | |
|     TestAndClearIgnoreResultAssign();
 | |
| 
 | |
|   // Since almost all cast kinds apply to scalars, this switch doesn't have
 | |
|   // a default case, so the compiler will warn on a missing case.  The cases
 | |
|   // are in the same order as in the CastKind enum.
 | |
|   switch (Kind) {
 | |
|   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
 | |
|   case CK_BuiltinFnToFnPtr:
 | |
|     llvm_unreachable("builtin functions are handled elsewhere");
 | |
| 
 | |
|   case CK_LValueBitCast:
 | |
|   case CK_ObjCObjectLValueCast: {
 | |
|     Address Addr = EmitLValue(E).getAddress();
 | |
|     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
 | |
|     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
 | |
|     return EmitLoadOfLValue(LV, CE->getExprLoc());
 | |
|   }
 | |
| 
 | |
|   case CK_CPointerToObjCPointerCast:
 | |
|   case CK_BlockPointerToObjCPointerCast:
 | |
|   case CK_AnyPointerToBlockPointerCast:
 | |
|   case CK_BitCast: {
 | |
|     Value *Src = Visit(const_cast<Expr*>(E));
 | |
|     llvm::Type *SrcTy = Src->getType();
 | |
|     llvm::Type *DstTy = ConvertType(DestTy);
 | |
|     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
 | |
|         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
 | |
|       llvm_unreachable("wrong cast for pointers in different address spaces"
 | |
|                        "(must be an address space cast)!");
 | |
|     }
 | |
| 
 | |
|     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
 | |
|       if (auto PT = DestTy->getAs<PointerType>())
 | |
|         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
 | |
|                                       /*MayBeNull=*/true,
 | |
|                                       CodeGenFunction::CFITCK_UnrelatedCast,
 | |
|                                       CE->getLocStart());
 | |
|     }
 | |
| 
 | |
|     return Builder.CreateBitCast(Src, DstTy);
 | |
|   }
 | |
|   case CK_AddressSpaceConversion: {
 | |
|     Value *Src = Visit(const_cast<Expr*>(E));
 | |
|     return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
 | |
|   }
 | |
|   case CK_AtomicToNonAtomic:
 | |
|   case CK_NonAtomicToAtomic:
 | |
|   case CK_NoOp:
 | |
|   case CK_UserDefinedConversion:
 | |
|     return Visit(const_cast<Expr*>(E));
 | |
| 
 | |
|   case CK_BaseToDerived: {
 | |
|     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
 | |
|     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
 | |
| 
 | |
|     Address Base = CGF.EmitPointerWithAlignment(E);
 | |
|     Address Derived =
 | |
|       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
 | |
|                                    CE->path_begin(), CE->path_end(),
 | |
|                                    CGF.ShouldNullCheckClassCastValue(CE));
 | |
| 
 | |
|     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
 | |
|     // performed and the object is not of the derived type.
 | |
|     if (CGF.sanitizePerformTypeCheck())
 | |
|       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
 | |
|                         Derived.getPointer(), DestTy->getPointeeType());
 | |
| 
 | |
|     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
 | |
|       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
 | |
|                                     Derived.getPointer(),
 | |
|                                     /*MayBeNull=*/true,
 | |
|                                     CodeGenFunction::CFITCK_DerivedCast,
 | |
|                                     CE->getLocStart());
 | |
| 
 | |
|     return Derived.getPointer();
 | |
|   }
 | |
|   case CK_UncheckedDerivedToBase:
 | |
|   case CK_DerivedToBase: {
 | |
|     // The EmitPointerWithAlignment path does this fine; just discard
 | |
|     // the alignment.
 | |
|     return CGF.EmitPointerWithAlignment(CE).getPointer();
 | |
|   }
 | |
| 
 | |
|   case CK_Dynamic: {
 | |
|     Address V = CGF.EmitPointerWithAlignment(E);
 | |
|     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
 | |
|     return CGF.EmitDynamicCast(V, DCE);
 | |
|   }
 | |
| 
 | |
|   case CK_ArrayToPointerDecay:
 | |
|     return CGF.EmitArrayToPointerDecay(E).getPointer();
 | |
|   case CK_FunctionToPointerDecay:
 | |
|     return EmitLValue(E).getPointer();
 | |
| 
 | |
|   case CK_NullToPointer:
 | |
|     if (MustVisitNullValue(E))
 | |
|       (void) Visit(E);
 | |
| 
 | |
|     return llvm::ConstantPointerNull::get(
 | |
|                                cast<llvm::PointerType>(ConvertType(DestTy)));
 | |
| 
 | |
|   case CK_NullToMemberPointer: {
 | |
|     if (MustVisitNullValue(E))
 | |
|       (void) Visit(E);
 | |
| 
 | |
|     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
 | |
|     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
 | |
|   }
 | |
| 
 | |
|   case CK_ReinterpretMemberPointer:
 | |
|   case CK_BaseToDerivedMemberPointer:
 | |
|   case CK_DerivedToBaseMemberPointer: {
 | |
|     Value *Src = Visit(E);
 | |
| 
 | |
|     // Note that the AST doesn't distinguish between checked and
 | |
|     // unchecked member pointer conversions, so we always have to
 | |
|     // implement checked conversions here.  This is inefficient when
 | |
|     // actual control flow may be required in order to perform the
 | |
|     // check, which it is for data member pointers (but not member
 | |
|     // function pointers on Itanium and ARM).
 | |
|     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
 | |
|   }
 | |
| 
 | |
|   case CK_ARCProduceObject:
 | |
|     return CGF.EmitARCRetainScalarExpr(E);
 | |
|   case CK_ARCConsumeObject:
 | |
|     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
 | |
|   case CK_ARCReclaimReturnedObject: {
 | |
|     llvm::Value *value = Visit(E);
 | |
|     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
 | |
|     return CGF.EmitObjCConsumeObject(E->getType(), value);
 | |
|   }
 | |
|   case CK_ARCExtendBlockObject:
 | |
|     return CGF.EmitARCExtendBlockObject(E);
 | |
| 
 | |
|   case CK_CopyAndAutoreleaseBlockObject:
 | |
|     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
 | |
| 
 | |
|   case CK_FloatingRealToComplex:
 | |
|   case CK_FloatingComplexCast:
 | |
|   case CK_IntegralRealToComplex:
 | |
|   case CK_IntegralComplexCast:
 | |
|   case CK_IntegralComplexToFloatingComplex:
 | |
|   case CK_FloatingComplexToIntegralComplex:
 | |
|   case CK_ConstructorConversion:
 | |
|   case CK_ToUnion:
 | |
|     llvm_unreachable("scalar cast to non-scalar value");
 | |
| 
 | |
|   case CK_LValueToRValue:
 | |
|     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
 | |
|     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
 | |
|     return Visit(const_cast<Expr*>(E));
 | |
| 
 | |
|   case CK_IntegralToPointer: {
 | |
|     Value *Src = Visit(const_cast<Expr*>(E));
 | |
| 
 | |
|     // First, convert to the correct width so that we control the kind of
 | |
|     // extension.
 | |
|     llvm::Type *MiddleTy = CGF.IntPtrTy;
 | |
|     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
 | |
|     llvm::Value* IntResult =
 | |
|       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
 | |
| 
 | |
|     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
 | |
|   }
 | |
|   case CK_PointerToIntegral:
 | |
|     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
 | |
|     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
 | |
| 
 | |
|   case CK_ToVoid: {
 | |
|     CGF.EmitIgnoredExpr(E);
 | |
|     return nullptr;
 | |
|   }
 | |
|   case CK_VectorSplat: {
 | |
|     llvm::Type *DstTy = ConvertType(DestTy);
 | |
|     // Need an IgnoreImpCasts here as by default a boolean will be promoted to
 | |
|     // an int, which will not perform the sign extension, so if we know we are
 | |
|     // going to cast to a vector we have to strip the implicit cast off.
 | |
|     Value *Elt = Visit(const_cast<Expr*>(E->IgnoreImpCasts()));
 | |
|     Elt = EmitScalarConversion(Elt, E->IgnoreImpCasts()->getType(),
 | |
|                                DestTy->getAs<VectorType>()->getElementType(),
 | |
|                                CE->getExprLoc(), 
 | |
|                                CGF.getContext().getLangOpts().OpenCL);
 | |
| 
 | |
|     // Splat the element across to all elements
 | |
|     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
 | |
|     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
 | |
|   }
 | |
| 
 | |
|   case CK_IntegralCast:
 | |
|   case CK_IntegralToFloating:
 | |
|   case CK_FloatingToIntegral:
 | |
|   case CK_FloatingCast:
 | |
|     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
 | |
|                                 CE->getExprLoc());
 | |
|   case CK_IntegralToBoolean:
 | |
|     return EmitIntToBoolConversion(Visit(E));
 | |
|   case CK_PointerToBoolean:
 | |
|     return EmitPointerToBoolConversion(Visit(E));
 | |
|   case CK_FloatingToBoolean:
 | |
|     return EmitFloatToBoolConversion(Visit(E));
 | |
|   case CK_MemberPointerToBoolean: {
 | |
|     llvm::Value *MemPtr = Visit(E);
 | |
|     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
 | |
|     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
 | |
|   }
 | |
| 
 | |
|   case CK_FloatingComplexToReal:
 | |
|   case CK_IntegralComplexToReal:
 | |
|     return CGF.EmitComplexExpr(E, false, true).first;
 | |
| 
 | |
|   case CK_FloatingComplexToBoolean:
 | |
|   case CK_IntegralComplexToBoolean: {
 | |
|     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
 | |
| 
 | |
|     // TODO: kill this function off, inline appropriate case here
 | |
|     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
 | |
|                                          CE->getExprLoc());
 | |
|   }
 | |
| 
 | |
|   case CK_ZeroToOCLEvent: {
 | |
|     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
 | |
|     return llvm::Constant::getNullValue(ConvertType(DestTy));
 | |
|   }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unknown scalar cast");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
 | |
|   CodeGenFunction::StmtExprEvaluation eval(CGF);
 | |
|   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
 | |
|                                            !E->getType()->isVoidType());
 | |
|   if (!RetAlloca.isValid())
 | |
|     return nullptr;
 | |
|   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
 | |
|                               E->getExprLoc());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             Unary Operators
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
 | |
|                                            llvm::Value *InVal, bool IsInc) {
 | |
|   BinOpInfo BinOp;
 | |
|   BinOp.LHS = InVal;
 | |
|   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
 | |
|   BinOp.Ty = E->getType();
 | |
|   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
 | |
|   BinOp.FPContractable = false;
 | |
|   BinOp.E = E;
 | |
|   return BinOp;
 | |
| }
 | |
| 
 | |
| llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
 | |
|     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
 | |
|   llvm::Value *Amount =
 | |
|       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
 | |
|   StringRef Name = IsInc ? "inc" : "dec";
 | |
|   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
 | |
|   case LangOptions::SOB_Defined:
 | |
|     return Builder.CreateAdd(InVal, Amount, Name);
 | |
|   case LangOptions::SOB_Undefined:
 | |
|     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
 | |
|       return Builder.CreateNSWAdd(InVal, Amount, Name);
 | |
|     // Fall through.
 | |
|   case LangOptions::SOB_Trapping:
 | |
|     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
 | |
|   }
 | |
|   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
 | |
| }
 | |
| 
 | |
| llvm::Value *
 | |
| ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
 | |
|                                            bool isInc, bool isPre) {
 | |
| 
 | |
|   QualType type = E->getSubExpr()->getType();
 | |
|   llvm::PHINode *atomicPHI = nullptr;
 | |
|   llvm::Value *value;
 | |
|   llvm::Value *input;
 | |
| 
 | |
|   int amount = (isInc ? 1 : -1);
 | |
| 
 | |
|   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
 | |
|     type = atomicTy->getValueType();
 | |
|     if (isInc && type->isBooleanType()) {
 | |
|       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
 | |
|       if (isPre) {
 | |
|         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
 | |
|           ->setAtomic(llvm::SequentiallyConsistent);
 | |
|         return Builder.getTrue();
 | |
|       }
 | |
|       // For atomic bool increment, we just store true and return it for
 | |
|       // preincrement, do an atomic swap with true for postincrement
 | |
|         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
 | |
|             LV.getPointer(), True, llvm::SequentiallyConsistent);
 | |
|     }
 | |
|     // Special case for atomic increment / decrement on integers, emit
 | |
|     // atomicrmw instructions.  We skip this if we want to be doing overflow
 | |
|     // checking, and fall into the slow path with the atomic cmpxchg loop.
 | |
|     if (!type->isBooleanType() && type->isIntegerType() &&
 | |
|         !(type->isUnsignedIntegerType() &&
 | |
|           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
 | |
|         CGF.getLangOpts().getSignedOverflowBehavior() !=
 | |
|             LangOptions::SOB_Trapping) {
 | |
|       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
 | |
|         llvm::AtomicRMWInst::Sub;
 | |
|       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
 | |
|         llvm::Instruction::Sub;
 | |
|       llvm::Value *amt = CGF.EmitToMemory(
 | |
|           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
 | |
|       llvm::Value *old = Builder.CreateAtomicRMW(aop,
 | |
|           LV.getPointer(), amt, llvm::SequentiallyConsistent);
 | |
|       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
 | |
|     }
 | |
|     value = EmitLoadOfLValue(LV, E->getExprLoc());
 | |
|     input = value;
 | |
|     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
 | |
|     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
 | |
|     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
 | |
|     value = CGF.EmitToMemory(value, type);
 | |
|     Builder.CreateBr(opBB);
 | |
|     Builder.SetInsertPoint(opBB);
 | |
|     atomicPHI = Builder.CreatePHI(value->getType(), 2);
 | |
|     atomicPHI->addIncoming(value, startBB);
 | |
|     value = atomicPHI;
 | |
|   } else {
 | |
|     value = EmitLoadOfLValue(LV, E->getExprLoc());
 | |
|     input = value;
 | |
|   }
 | |
| 
 | |
|   // Special case of integer increment that we have to check first: bool++.
 | |
|   // Due to promotion rules, we get:
 | |
|   //   bool++ -> bool = bool + 1
 | |
|   //          -> bool = (int)bool + 1
 | |
|   //          -> bool = ((int)bool + 1 != 0)
 | |
|   // An interesting aspect of this is that increment is always true.
 | |
|   // Decrement does not have this property.
 | |
|   if (isInc && type->isBooleanType()) {
 | |
|     value = Builder.getTrue();
 | |
| 
 | |
|   // Most common case by far: integer increment.
 | |
|   } else if (type->isIntegerType()) {
 | |
|     // Note that signed integer inc/dec with width less than int can't
 | |
|     // overflow because of promotion rules; we're just eliding a few steps here.
 | |
|     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
 | |
|                        CGF.IntTy->getIntegerBitWidth();
 | |
|     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
 | |
|       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
 | |
|     } else if (CanOverflow && type->isUnsignedIntegerType() &&
 | |
|                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
 | |
|       value =
 | |
|           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
 | |
|     } else {
 | |
|       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
 | |
|       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
 | |
|     }
 | |
| 
 | |
|   // Next most common: pointer increment.
 | |
|   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
 | |
|     QualType type = ptr->getPointeeType();
 | |
| 
 | |
|     // VLA types don't have constant size.
 | |
|     if (const VariableArrayType *vla
 | |
|           = CGF.getContext().getAsVariableArrayType(type)) {
 | |
|       llvm::Value *numElts = CGF.getVLASize(vla).first;
 | |
|       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
 | |
|       if (CGF.getLangOpts().isSignedOverflowDefined())
 | |
|         value = Builder.CreateGEP(value, numElts, "vla.inc");
 | |
|       else
 | |
|         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
 | |
| 
 | |
|     // Arithmetic on function pointers (!) is just +-1.
 | |
|     } else if (type->isFunctionType()) {
 | |
|       llvm::Value *amt = Builder.getInt32(amount);
 | |
| 
 | |
|       value = CGF.EmitCastToVoidPtr(value);
 | |
|       if (CGF.getLangOpts().isSignedOverflowDefined())
 | |
|         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
 | |
|       else
 | |
|         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
 | |
|       value = Builder.CreateBitCast(value, input->getType());
 | |
| 
 | |
|     // For everything else, we can just do a simple increment.
 | |
|     } else {
 | |
|       llvm::Value *amt = Builder.getInt32(amount);
 | |
|       if (CGF.getLangOpts().isSignedOverflowDefined())
 | |
|         value = Builder.CreateGEP(value, amt, "incdec.ptr");
 | |
|       else
 | |
|         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
 | |
|     }
 | |
| 
 | |
|   // Vector increment/decrement.
 | |
|   } else if (type->isVectorType()) {
 | |
|     if (type->hasIntegerRepresentation()) {
 | |
|       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
 | |
| 
 | |
|       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
 | |
|     } else {
 | |
|       value = Builder.CreateFAdd(
 | |
|                   value,
 | |
|                   llvm::ConstantFP::get(value->getType(), amount),
 | |
|                   isInc ? "inc" : "dec");
 | |
|     }
 | |
| 
 | |
|   // Floating point.
 | |
|   } else if (type->isRealFloatingType()) {
 | |
|     // Add the inc/dec to the real part.
 | |
|     llvm::Value *amt;
 | |
| 
 | |
|     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
 | |
|       // Another special case: half FP increment should be done via float
 | |
|       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
 | |
|         value = Builder.CreateCall(
 | |
|             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
 | |
|                                  CGF.CGM.FloatTy),
 | |
|             input, "incdec.conv");
 | |
|       } else {
 | |
|         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (value->getType()->isFloatTy())
 | |
|       amt = llvm::ConstantFP::get(VMContext,
 | |
|                                   llvm::APFloat(static_cast<float>(amount)));
 | |
|     else if (value->getType()->isDoubleTy())
 | |
|       amt = llvm::ConstantFP::get(VMContext,
 | |
|                                   llvm::APFloat(static_cast<double>(amount)));
 | |
|     else {
 | |
|       // Remaining types are either Half or LongDouble.  Convert from float.
 | |
|       llvm::APFloat F(static_cast<float>(amount));
 | |
|       bool ignored;
 | |
|       // Don't use getFloatTypeSemantics because Half isn't
 | |
|       // necessarily represented using the "half" LLVM type.
 | |
|       F.convert(value->getType()->isHalfTy()
 | |
|                     ? CGF.getTarget().getHalfFormat()
 | |
|                     : CGF.getTarget().getLongDoubleFormat(),
 | |
|                 llvm::APFloat::rmTowardZero, &ignored);
 | |
|       amt = llvm::ConstantFP::get(VMContext, F);
 | |
|     }
 | |
|     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
 | |
| 
 | |
|     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
 | |
|       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
 | |
|         value = Builder.CreateCall(
 | |
|             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
 | |
|                                  CGF.CGM.FloatTy),
 | |
|             value, "incdec.conv");
 | |
|       } else {
 | |
|         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Objective-C pointer types.
 | |
|   } else {
 | |
|     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
 | |
|     value = CGF.EmitCastToVoidPtr(value);
 | |
| 
 | |
|     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
 | |
|     if (!isInc) size = -size;
 | |
|     llvm::Value *sizeValue =
 | |
|       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
 | |
| 
 | |
|     if (CGF.getLangOpts().isSignedOverflowDefined())
 | |
|       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
 | |
|     else
 | |
|       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
 | |
|     value = Builder.CreateBitCast(value, input->getType());
 | |
|   }
 | |
| 
 | |
|   if (atomicPHI) {
 | |
|     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
 | |
|     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
 | |
|     auto Pair = CGF.EmitAtomicCompareExchange(
 | |
|         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
 | |
|     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
 | |
|     llvm::Value *success = Pair.second;
 | |
|     atomicPHI->addIncoming(old, opBB);
 | |
|     Builder.CreateCondBr(success, contBB, opBB);
 | |
|     Builder.SetInsertPoint(contBB);
 | |
|     return isPre ? value : input;
 | |
|   }
 | |
| 
 | |
|   // Store the updated result through the lvalue.
 | |
|   if (LV.isBitField())
 | |
|     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
 | |
|   else
 | |
|     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
 | |
| 
 | |
|   // If this is a postinc, return the value read from memory, otherwise use the
 | |
|   // updated value.
 | |
|   return isPre ? value : input;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
 | |
|   TestAndClearIgnoreResultAssign();
 | |
|   // Emit unary minus with EmitSub so we handle overflow cases etc.
 | |
|   BinOpInfo BinOp;
 | |
|   BinOp.RHS = Visit(E->getSubExpr());
 | |
| 
 | |
|   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
 | |
|     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
 | |
|   else
 | |
|     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
 | |
|   BinOp.Ty = E->getType();
 | |
|   BinOp.Opcode = BO_Sub;
 | |
|   BinOp.FPContractable = false;
 | |
|   BinOp.E = E;
 | |
|   return EmitSub(BinOp);
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
 | |
|   TestAndClearIgnoreResultAssign();
 | |
|   Value *Op = Visit(E->getSubExpr());
 | |
|   return Builder.CreateNot(Op, "neg");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
 | |
|   // Perform vector logical not on comparison with zero vector.
 | |
|   if (E->getType()->isExtVectorType()) {
 | |
|     Value *Oper = Visit(E->getSubExpr());
 | |
|     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
 | |
|     Value *Result;
 | |
|     if (Oper->getType()->isFPOrFPVectorTy())
 | |
|       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
 | |
|     else
 | |
|       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
 | |
|     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
 | |
|   }
 | |
| 
 | |
|   // Compare operand to zero.
 | |
|   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
 | |
| 
 | |
|   // Invert value.
 | |
|   // TODO: Could dynamically modify easy computations here.  For example, if
 | |
|   // the operand is an icmp ne, turn into icmp eq.
 | |
|   BoolVal = Builder.CreateNot(BoolVal, "lnot");
 | |
| 
 | |
|   // ZExt result to the expr type.
 | |
|   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
 | |
|   // Try folding the offsetof to a constant.
 | |
|   llvm::APSInt Value;
 | |
|   if (E->EvaluateAsInt(Value, CGF.getContext()))
 | |
|     return Builder.getInt(Value);
 | |
| 
 | |
|   // Loop over the components of the offsetof to compute the value.
 | |
|   unsigned n = E->getNumComponents();
 | |
|   llvm::Type* ResultType = ConvertType(E->getType());
 | |
|   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
 | |
|   QualType CurrentType = E->getTypeSourceInfo()->getType();
 | |
|   for (unsigned i = 0; i != n; ++i) {
 | |
|     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
 | |
|     llvm::Value *Offset = nullptr;
 | |
|     switch (ON.getKind()) {
 | |
|     case OffsetOfExpr::OffsetOfNode::Array: {
 | |
|       // Compute the index
 | |
|       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
 | |
|       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
 | |
|       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
 | |
|       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
 | |
| 
 | |
|       // Save the element type
 | |
|       CurrentType =
 | |
|           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
 | |
| 
 | |
|       // Compute the element size
 | |
|       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
 | |
|           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
 | |
| 
 | |
|       // Multiply out to compute the result
 | |
|       Offset = Builder.CreateMul(Idx, ElemSize);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case OffsetOfExpr::OffsetOfNode::Field: {
 | |
|       FieldDecl *MemberDecl = ON.getField();
 | |
|       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
 | |
|       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
 | |
| 
 | |
|       // Compute the index of the field in its parent.
 | |
|       unsigned i = 0;
 | |
|       // FIXME: It would be nice if we didn't have to loop here!
 | |
|       for (RecordDecl::field_iterator Field = RD->field_begin(),
 | |
|                                       FieldEnd = RD->field_end();
 | |
|            Field != FieldEnd; ++Field, ++i) {
 | |
|         if (*Field == MemberDecl)
 | |
|           break;
 | |
|       }
 | |
|       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
 | |
| 
 | |
|       // Compute the offset to the field
 | |
|       int64_t OffsetInt = RL.getFieldOffset(i) /
 | |
|                           CGF.getContext().getCharWidth();
 | |
|       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
 | |
| 
 | |
|       // Save the element type.
 | |
|       CurrentType = MemberDecl->getType();
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case OffsetOfExpr::OffsetOfNode::Identifier:
 | |
|       llvm_unreachable("dependent __builtin_offsetof");
 | |
| 
 | |
|     case OffsetOfExpr::OffsetOfNode::Base: {
 | |
|       if (ON.getBase()->isVirtual()) {
 | |
|         CGF.ErrorUnsupported(E, "virtual base in offsetof");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
 | |
|       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
 | |
| 
 | |
|       // Save the element type.
 | |
|       CurrentType = ON.getBase()->getType();
 | |
| 
 | |
|       // Compute the offset to the base.
 | |
|       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
 | |
|       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
 | |
|       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
 | |
|       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|     Result = Builder.CreateAdd(Result, Offset);
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
 | |
| /// argument of the sizeof expression as an integer.
 | |
| Value *
 | |
| ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
 | |
|                               const UnaryExprOrTypeTraitExpr *E) {
 | |
|   QualType TypeToSize = E->getTypeOfArgument();
 | |
|   if (E->getKind() == UETT_SizeOf) {
 | |
|     if (const VariableArrayType *VAT =
 | |
|           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
 | |
|       if (E->isArgumentType()) {
 | |
|         // sizeof(type) - make sure to emit the VLA size.
 | |
|         CGF.EmitVariablyModifiedType(TypeToSize);
 | |
|       } else {
 | |
|         // C99 6.5.3.4p2: If the argument is an expression of type
 | |
|         // VLA, it is evaluated.
 | |
|         CGF.EmitIgnoredExpr(E->getArgumentExpr());
 | |
|       }
 | |
| 
 | |
|       QualType eltType;
 | |
|       llvm::Value *numElts;
 | |
|       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
 | |
| 
 | |
|       llvm::Value *size = numElts;
 | |
| 
 | |
|       // Scale the number of non-VLA elements by the non-VLA element size.
 | |
|       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
 | |
|       if (!eltSize.isOne())
 | |
|         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
 | |
| 
 | |
|       return size;
 | |
|     }
 | |
|   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
 | |
|     auto Alignment =
 | |
|         CGF.getContext()
 | |
|             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
 | |
|                 E->getTypeOfArgument()->getPointeeType()))
 | |
|             .getQuantity();
 | |
|     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
 | |
|   }
 | |
| 
 | |
|   // If this isn't sizeof(vla), the result must be constant; use the constant
 | |
|   // folding logic so we don't have to duplicate it here.
 | |
|   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
 | |
|   Expr *Op = E->getSubExpr();
 | |
|   if (Op->getType()->isAnyComplexType()) {
 | |
|     // If it's an l-value, load through the appropriate subobject l-value.
 | |
|     // Note that we have to ask E because Op might be an l-value that
 | |
|     // this won't work for, e.g. an Obj-C property.
 | |
|     if (E->isGLValue())
 | |
|       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
 | |
|                                   E->getExprLoc()).getScalarVal();
 | |
| 
 | |
|     // Otherwise, calculate and project.
 | |
|     return CGF.EmitComplexExpr(Op, false, true).first;
 | |
|   }
 | |
| 
 | |
|   return Visit(Op);
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
 | |
|   Expr *Op = E->getSubExpr();
 | |
|   if (Op->getType()->isAnyComplexType()) {
 | |
|     // If it's an l-value, load through the appropriate subobject l-value.
 | |
|     // Note that we have to ask E because Op might be an l-value that
 | |
|     // this won't work for, e.g. an Obj-C property.
 | |
|     if (Op->isGLValue())
 | |
|       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
 | |
|                                   E->getExprLoc()).getScalarVal();
 | |
| 
 | |
|     // Otherwise, calculate and project.
 | |
|     return CGF.EmitComplexExpr(Op, true, false).second;
 | |
|   }
 | |
| 
 | |
|   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
 | |
|   // effects are evaluated, but not the actual value.
 | |
|   if (Op->isGLValue())
 | |
|     CGF.EmitLValue(Op);
 | |
|   else
 | |
|     CGF.EmitScalarExpr(Op, true);
 | |
|   return llvm::Constant::getNullValue(ConvertType(E->getType()));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           Binary Operators
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
 | |
|   TestAndClearIgnoreResultAssign();
 | |
|   BinOpInfo Result;
 | |
|   Result.LHS = Visit(E->getLHS());
 | |
|   Result.RHS = Visit(E->getRHS());
 | |
|   Result.Ty  = E->getType();
 | |
|   Result.Opcode = E->getOpcode();
 | |
|   Result.FPContractable = E->isFPContractable();
 | |
|   Result.E = E;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| LValue ScalarExprEmitter::EmitCompoundAssignLValue(
 | |
|                                               const CompoundAssignOperator *E,
 | |
|                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
 | |
|                                                    Value *&Result) {
 | |
|   QualType LHSTy = E->getLHS()->getType();
 | |
|   BinOpInfo OpInfo;
 | |
| 
 | |
|   if (E->getComputationResultType()->isAnyComplexType())
 | |
|     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
 | |
| 
 | |
|   // Emit the RHS first.  __block variables need to have the rhs evaluated
 | |
|   // first, plus this should improve codegen a little.
 | |
|   OpInfo.RHS = Visit(E->getRHS());
 | |
|   OpInfo.Ty = E->getComputationResultType();
 | |
|   OpInfo.Opcode = E->getOpcode();
 | |
|   OpInfo.FPContractable = E->isFPContractable();
 | |
|   OpInfo.E = E;
 | |
|   // Load/convert the LHS.
 | |
|   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
 | |
| 
 | |
|   llvm::PHINode *atomicPHI = nullptr;
 | |
|   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
 | |
|     QualType type = atomicTy->getValueType();
 | |
|     if (!type->isBooleanType() && type->isIntegerType() &&
 | |
|         !(type->isUnsignedIntegerType() &&
 | |
|           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
 | |
|         CGF.getLangOpts().getSignedOverflowBehavior() !=
 | |
|             LangOptions::SOB_Trapping) {
 | |
|       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
 | |
|       switch (OpInfo.Opcode) {
 | |
|         // We don't have atomicrmw operands for *, %, /, <<, >>
 | |
|         case BO_MulAssign: case BO_DivAssign:
 | |
|         case BO_RemAssign:
 | |
|         case BO_ShlAssign:
 | |
|         case BO_ShrAssign:
 | |
|           break;
 | |
|         case BO_AddAssign:
 | |
|           aop = llvm::AtomicRMWInst::Add;
 | |
|           break;
 | |
|         case BO_SubAssign:
 | |
|           aop = llvm::AtomicRMWInst::Sub;
 | |
|           break;
 | |
|         case BO_AndAssign:
 | |
|           aop = llvm::AtomicRMWInst::And;
 | |
|           break;
 | |
|         case BO_XorAssign:
 | |
|           aop = llvm::AtomicRMWInst::Xor;
 | |
|           break;
 | |
|         case BO_OrAssign:
 | |
|           aop = llvm::AtomicRMWInst::Or;
 | |
|           break;
 | |
|         default:
 | |
|           llvm_unreachable("Invalid compound assignment type");
 | |
|       }
 | |
|       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
 | |
|         llvm::Value *amt = CGF.EmitToMemory(
 | |
|             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
 | |
|                                  E->getExprLoc()),
 | |
|             LHSTy);
 | |
|         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
 | |
|             llvm::SequentiallyConsistent);
 | |
|         return LHSLV;
 | |
|       }
 | |
|     }
 | |
|     // FIXME: For floating point types, we should be saving and restoring the
 | |
|     // floating point environment in the loop.
 | |
|     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
 | |
|     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
 | |
|     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
 | |
|     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
 | |
|     Builder.CreateBr(opBB);
 | |
|     Builder.SetInsertPoint(opBB);
 | |
|     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
 | |
|     atomicPHI->addIncoming(OpInfo.LHS, startBB);
 | |
|     OpInfo.LHS = atomicPHI;
 | |
|   }
 | |
|   else
 | |
|     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
 | |
| 
 | |
|   SourceLocation Loc = E->getExprLoc();
 | |
|   OpInfo.LHS =
 | |
|       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
 | |
| 
 | |
|   // Expand the binary operator.
 | |
|   Result = (this->*Func)(OpInfo);
 | |
| 
 | |
|   // Convert the result back to the LHS type.
 | |
|   Result =
 | |
|       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
 | |
| 
 | |
|   if (atomicPHI) {
 | |
|     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
 | |
|     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
 | |
|     auto Pair = CGF.EmitAtomicCompareExchange(
 | |
|         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
 | |
|     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
 | |
|     llvm::Value *success = Pair.second;
 | |
|     atomicPHI->addIncoming(old, opBB);
 | |
|     Builder.CreateCondBr(success, contBB, opBB);
 | |
|     Builder.SetInsertPoint(contBB);
 | |
|     return LHSLV;
 | |
|   }
 | |
| 
 | |
|   // Store the result value into the LHS lvalue. Bit-fields are handled
 | |
|   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
 | |
|   // 'An assignment expression has the value of the left operand after the
 | |
|   // assignment...'.
 | |
|   if (LHSLV.isBitField())
 | |
|     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
 | |
|   else
 | |
|     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
 | |
| 
 | |
|   return LHSLV;
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
 | |
|                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
 | |
|   bool Ignore = TestAndClearIgnoreResultAssign();
 | |
|   Value *RHS;
 | |
|   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
 | |
| 
 | |
|   // If the result is clearly ignored, return now.
 | |
|   if (Ignore)
 | |
|     return nullptr;
 | |
| 
 | |
|   // The result of an assignment in C is the assigned r-value.
 | |
|   if (!CGF.getLangOpts().CPlusPlus)
 | |
|     return RHS;
 | |
| 
 | |
|   // If the lvalue is non-volatile, return the computed value of the assignment.
 | |
|   if (!LHS.isVolatileQualified())
 | |
|     return RHS;
 | |
| 
 | |
|   // Otherwise, reload the value.
 | |
|   return EmitLoadOfLValue(LHS, E->getExprLoc());
 | |
| }
 | |
| 
 | |
| void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
 | |
|     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
 | |
|   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
 | |
| 
 | |
|   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
 | |
|     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
 | |
|                                     SanitizerKind::IntegerDivideByZero));
 | |
|   }
 | |
| 
 | |
|   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
 | |
|       Ops.Ty->hasSignedIntegerRepresentation()) {
 | |
|     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
 | |
| 
 | |
|     llvm::Value *IntMin =
 | |
|       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
 | |
|     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
 | |
| 
 | |
|     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
 | |
|     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
 | |
|     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
 | |
|     Checks.push_back(
 | |
|         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
 | |
|   }
 | |
| 
 | |
|   if (Checks.size() > 0)
 | |
|     EmitBinOpCheck(Checks, Ops);
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
 | |
|   {
 | |
|     CodeGenFunction::SanitizerScope SanScope(&CGF);
 | |
|     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
 | |
|          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
 | |
|         Ops.Ty->isIntegerType()) {
 | |
|       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
 | |
|       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
 | |
|     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
 | |
|                Ops.Ty->isRealFloatingType()) {
 | |
|       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
 | |
|       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
 | |
|       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
 | |
|                      Ops);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
 | |
|     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
 | |
|     if (CGF.getLangOpts().OpenCL) {
 | |
|       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
 | |
|       llvm::Type *ValTy = Val->getType();
 | |
|       if (ValTy->isFloatTy() ||
 | |
|           (isa<llvm::VectorType>(ValTy) &&
 | |
|            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
 | |
|         CGF.SetFPAccuracy(Val, 2.5);
 | |
|     }
 | |
|     return Val;
 | |
|   }
 | |
|   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
 | |
|     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
 | |
|   else
 | |
|     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
 | |
|   // Rem in C can't be a floating point type: C99 6.5.5p2.
 | |
|   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
 | |
|     CodeGenFunction::SanitizerScope SanScope(&CGF);
 | |
|     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
 | |
| 
 | |
|     if (Ops.Ty->isIntegerType())
 | |
|       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
 | |
|   }
 | |
| 
 | |
|   if (Ops.Ty->hasUnsignedIntegerRepresentation())
 | |
|     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
 | |
|   else
 | |
|     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
 | |
|   unsigned IID;
 | |
|   unsigned OpID = 0;
 | |
| 
 | |
|   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
 | |
|   switch (Ops.Opcode) {
 | |
|   case BO_Add:
 | |
|   case BO_AddAssign:
 | |
|     OpID = 1;
 | |
|     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
 | |
|                      llvm::Intrinsic::uadd_with_overflow;
 | |
|     break;
 | |
|   case BO_Sub:
 | |
|   case BO_SubAssign:
 | |
|     OpID = 2;
 | |
|     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
 | |
|                      llvm::Intrinsic::usub_with_overflow;
 | |
|     break;
 | |
|   case BO_Mul:
 | |
|   case BO_MulAssign:
 | |
|     OpID = 3;
 | |
|     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
 | |
|                      llvm::Intrinsic::umul_with_overflow;
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Unsupported operation for overflow detection");
 | |
|   }
 | |
|   OpID <<= 1;
 | |
|   if (isSigned)
 | |
|     OpID |= 1;
 | |
| 
 | |
|   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
 | |
| 
 | |
|   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
 | |
| 
 | |
|   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
 | |
|   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
 | |
|   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
 | |
| 
 | |
|   // Handle overflow with llvm.trap if no custom handler has been specified.
 | |
|   const std::string *handlerName =
 | |
|     &CGF.getLangOpts().OverflowHandler;
 | |
|   if (handlerName->empty()) {
 | |
|     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
 | |
|     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
 | |
|     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
 | |
|       CodeGenFunction::SanitizerScope SanScope(&CGF);
 | |
|       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
 | |
|       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
 | |
|                               : SanitizerKind::UnsignedIntegerOverflow;
 | |
|       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
 | |
|     } else
 | |
|       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
 | |
|     return result;
 | |
|   }
 | |
| 
 | |
|   // Branch in case of overflow.
 | |
|   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
 | |
|   llvm::Function::iterator insertPt = initialBB->getIterator();
 | |
|   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
 | |
|                                                       &*std::next(insertPt));
 | |
|   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
 | |
| 
 | |
|   Builder.CreateCondBr(overflow, overflowBB, continueBB);
 | |
| 
 | |
|   // If an overflow handler is set, then we want to call it and then use its
 | |
|   // result, if it returns.
 | |
|   Builder.SetInsertPoint(overflowBB);
 | |
| 
 | |
|   // Get the overflow handler.
 | |
|   llvm::Type *Int8Ty = CGF.Int8Ty;
 | |
|   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
 | |
|   llvm::FunctionType *handlerTy =
 | |
|       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
 | |
|   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
 | |
| 
 | |
|   // Sign extend the args to 64-bit, so that we can use the same handler for
 | |
|   // all types of overflow.
 | |
|   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
 | |
|   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
 | |
| 
 | |
|   // Call the handler with the two arguments, the operation, and the size of
 | |
|   // the result.
 | |
|   llvm::Value *handlerArgs[] = {
 | |
|     lhs,
 | |
|     rhs,
 | |
|     Builder.getInt8(OpID),
 | |
|     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
 | |
|   };
 | |
|   llvm::Value *handlerResult =
 | |
|     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
 | |
| 
 | |
|   // Truncate the result back to the desired size.
 | |
|   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
 | |
|   Builder.CreateBr(continueBB);
 | |
| 
 | |
|   Builder.SetInsertPoint(continueBB);
 | |
|   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
 | |
|   phi->addIncoming(result, initialBB);
 | |
|   phi->addIncoming(handlerResult, overflowBB);
 | |
| 
 | |
|   return phi;
 | |
| }
 | |
| 
 | |
| /// Emit pointer + index arithmetic.
 | |
| static Value *emitPointerArithmetic(CodeGenFunction &CGF,
 | |
|                                     const BinOpInfo &op,
 | |
|                                     bool isSubtraction) {
 | |
|   // Must have binary (not unary) expr here.  Unary pointer
 | |
|   // increment/decrement doesn't use this path.
 | |
|   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
 | |
| 
 | |
|   Value *pointer = op.LHS;
 | |
|   Expr *pointerOperand = expr->getLHS();
 | |
|   Value *index = op.RHS;
 | |
|   Expr *indexOperand = expr->getRHS();
 | |
| 
 | |
|   // In a subtraction, the LHS is always the pointer.
 | |
|   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
 | |
|     std::swap(pointer, index);
 | |
|     std::swap(pointerOperand, indexOperand);
 | |
|   }
 | |
| 
 | |
|   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
 | |
|   if (width != CGF.PointerWidthInBits) {
 | |
|     // Zero-extend or sign-extend the pointer value according to
 | |
|     // whether the index is signed or not.
 | |
|     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
 | |
|     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
 | |
|                                       "idx.ext");
 | |
|   }
 | |
| 
 | |
|   // If this is subtraction, negate the index.
 | |
|   if (isSubtraction)
 | |
|     index = CGF.Builder.CreateNeg(index, "idx.neg");
 | |
| 
 | |
|   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
 | |
|     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
 | |
|                         /*Accessed*/ false);
 | |
| 
 | |
|   const PointerType *pointerType
 | |
|     = pointerOperand->getType()->getAs<PointerType>();
 | |
|   if (!pointerType) {
 | |
|     QualType objectType = pointerOperand->getType()
 | |
|                                         ->castAs<ObjCObjectPointerType>()
 | |
|                                         ->getPointeeType();
 | |
|     llvm::Value *objectSize
 | |
|       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
 | |
| 
 | |
|     index = CGF.Builder.CreateMul(index, objectSize);
 | |
| 
 | |
|     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
 | |
|     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
 | |
|     return CGF.Builder.CreateBitCast(result, pointer->getType());
 | |
|   }
 | |
| 
 | |
|   QualType elementType = pointerType->getPointeeType();
 | |
|   if (const VariableArrayType *vla
 | |
|         = CGF.getContext().getAsVariableArrayType(elementType)) {
 | |
|     // The element count here is the total number of non-VLA elements.
 | |
|     llvm::Value *numElements = CGF.getVLASize(vla).first;
 | |
| 
 | |
|     // Effectively, the multiply by the VLA size is part of the GEP.
 | |
|     // GEP indexes are signed, and scaling an index isn't permitted to
 | |
|     // signed-overflow, so we use the same semantics for our explicit
 | |
|     // multiply.  We suppress this if overflow is not undefined behavior.
 | |
|     if (CGF.getLangOpts().isSignedOverflowDefined()) {
 | |
|       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
 | |
|       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
 | |
|     } else {
 | |
|       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
 | |
|       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
 | |
|     }
 | |
|     return pointer;
 | |
|   }
 | |
| 
 | |
|   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
 | |
|   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
 | |
|   // future proof.
 | |
|   if (elementType->isVoidType() || elementType->isFunctionType()) {
 | |
|     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
 | |
|     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
 | |
|     return CGF.Builder.CreateBitCast(result, pointer->getType());
 | |
|   }
 | |
| 
 | |
|   if (CGF.getLangOpts().isSignedOverflowDefined())
 | |
|     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
 | |
| 
 | |
|   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
 | |
| }
 | |
| 
 | |
| // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
 | |
| // Addend. Use negMul and negAdd to negate the first operand of the Mul or
 | |
| // the add operand respectively. This allows fmuladd to represent a*b-c, or
 | |
| // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
 | |
| // efficient operations.
 | |
| static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
 | |
|                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
 | |
|                            bool negMul, bool negAdd) {
 | |
|   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
 | |
| 
 | |
|   Value *MulOp0 = MulOp->getOperand(0);
 | |
|   Value *MulOp1 = MulOp->getOperand(1);
 | |
|   if (negMul) {
 | |
|     MulOp0 =
 | |
|       Builder.CreateFSub(
 | |
|         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
 | |
|         "neg");
 | |
|   } else if (negAdd) {
 | |
|     Addend =
 | |
|       Builder.CreateFSub(
 | |
|         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
 | |
|         "neg");
 | |
|   }
 | |
| 
 | |
|   Value *FMulAdd = Builder.CreateCall(
 | |
|       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
 | |
|       {MulOp0, MulOp1, Addend});
 | |
|    MulOp->eraseFromParent();
 | |
| 
 | |
|    return FMulAdd;
 | |
| }
 | |
| 
 | |
| // Check whether it would be legal to emit an fmuladd intrinsic call to
 | |
| // represent op and if so, build the fmuladd.
 | |
| //
 | |
| // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
 | |
| // Does NOT check the type of the operation - it's assumed that this function
 | |
| // will be called from contexts where it's known that the type is contractable.
 | |
| static Value* tryEmitFMulAdd(const BinOpInfo &op,
 | |
|                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
 | |
|                          bool isSub=false) {
 | |
| 
 | |
|   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
 | |
|           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
 | |
|          "Only fadd/fsub can be the root of an fmuladd.");
 | |
| 
 | |
|   // Check whether this op is marked as fusable.
 | |
|   if (!op.FPContractable)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
 | |
|   // either disabled, or handled entirely by the LLVM backend).
 | |
|   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
 | |
|     return nullptr;
 | |
| 
 | |
|   // We have a potentially fusable op. Look for a mul on one of the operands.
 | |
|   // Also, make sure that the mul result isn't used directly. In that case,
 | |
|   // there's no point creating a muladd operation.
 | |
|   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
 | |
|     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
 | |
|         LHSBinOp->use_empty())
 | |
|       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
 | |
|   }
 | |
|   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
 | |
|     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
 | |
|         RHSBinOp->use_empty())
 | |
|       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
 | |
|   if (op.LHS->getType()->isPointerTy() ||
 | |
|       op.RHS->getType()->isPointerTy())
 | |
|     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
 | |
| 
 | |
|   if (op.Ty->isSignedIntegerOrEnumerationType()) {
 | |
|     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
 | |
|     case LangOptions::SOB_Defined:
 | |
|       return Builder.CreateAdd(op.LHS, op.RHS, "add");
 | |
|     case LangOptions::SOB_Undefined:
 | |
|       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
 | |
|         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
 | |
|       // Fall through.
 | |
|     case LangOptions::SOB_Trapping:
 | |
|       return EmitOverflowCheckedBinOp(op);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (op.Ty->isUnsignedIntegerType() &&
 | |
|       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
 | |
|     return EmitOverflowCheckedBinOp(op);
 | |
| 
 | |
|   if (op.LHS->getType()->isFPOrFPVectorTy()) {
 | |
|     // Try to form an fmuladd.
 | |
|     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
 | |
|       return FMulAdd;
 | |
| 
 | |
|     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
 | |
|   }
 | |
| 
 | |
|   return Builder.CreateAdd(op.LHS, op.RHS, "add");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
 | |
|   // The LHS is always a pointer if either side is.
 | |
|   if (!op.LHS->getType()->isPointerTy()) {
 | |
|     if (op.Ty->isSignedIntegerOrEnumerationType()) {
 | |
|       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
 | |
|       case LangOptions::SOB_Defined:
 | |
|         return Builder.CreateSub(op.LHS, op.RHS, "sub");
 | |
|       case LangOptions::SOB_Undefined:
 | |
|         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
 | |
|           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
 | |
|         // Fall through.
 | |
|       case LangOptions::SOB_Trapping:
 | |
|         return EmitOverflowCheckedBinOp(op);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (op.Ty->isUnsignedIntegerType() &&
 | |
|         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
 | |
|       return EmitOverflowCheckedBinOp(op);
 | |
| 
 | |
|     if (op.LHS->getType()->isFPOrFPVectorTy()) {
 | |
|       // Try to form an fmuladd.
 | |
|       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
 | |
|         return FMulAdd;
 | |
|       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
 | |
|     }
 | |
| 
 | |
|     return Builder.CreateSub(op.LHS, op.RHS, "sub");
 | |
|   }
 | |
| 
 | |
|   // If the RHS is not a pointer, then we have normal pointer
 | |
|   // arithmetic.
 | |
|   if (!op.RHS->getType()->isPointerTy())
 | |
|     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
 | |
| 
 | |
|   // Otherwise, this is a pointer subtraction.
 | |
| 
 | |
|   // Do the raw subtraction part.
 | |
|   llvm::Value *LHS
 | |
|     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
 | |
|   llvm::Value *RHS
 | |
|     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
 | |
|   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
 | |
| 
 | |
|   // Okay, figure out the element size.
 | |
|   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
 | |
|   QualType elementType = expr->getLHS()->getType()->getPointeeType();
 | |
| 
 | |
|   llvm::Value *divisor = nullptr;
 | |
| 
 | |
|   // For a variable-length array, this is going to be non-constant.
 | |
|   if (const VariableArrayType *vla
 | |
|         = CGF.getContext().getAsVariableArrayType(elementType)) {
 | |
|     llvm::Value *numElements;
 | |
|     std::tie(numElements, elementType) = CGF.getVLASize(vla);
 | |
| 
 | |
|     divisor = numElements;
 | |
| 
 | |
|     // Scale the number of non-VLA elements by the non-VLA element size.
 | |
|     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
 | |
|     if (!eltSize.isOne())
 | |
|       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
 | |
| 
 | |
|   // For everything elese, we can just compute it, safe in the
 | |
|   // assumption that Sema won't let anything through that we can't
 | |
|   // safely compute the size of.
 | |
|   } else {
 | |
|     CharUnits elementSize;
 | |
|     // Handle GCC extension for pointer arithmetic on void* and
 | |
|     // function pointer types.
 | |
|     if (elementType->isVoidType() || elementType->isFunctionType())
 | |
|       elementSize = CharUnits::One();
 | |
|     else
 | |
|       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
 | |
| 
 | |
|     // Don't even emit the divide for element size of 1.
 | |
|     if (elementSize.isOne())
 | |
|       return diffInChars;
 | |
| 
 | |
|     divisor = CGF.CGM.getSize(elementSize);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
 | |
|   // pointer difference in C is only defined in the case where both operands
 | |
|   // are pointing to elements of an array.
 | |
|   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
 | |
|   llvm::IntegerType *Ty;
 | |
|   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
 | |
|     Ty = cast<llvm::IntegerType>(VT->getElementType());
 | |
|   else
 | |
|     Ty = cast<llvm::IntegerType>(LHS->getType());
 | |
|   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
 | |
|   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
 | |
|   // RHS to the same size as the LHS.
 | |
|   Value *RHS = Ops.RHS;
 | |
|   if (Ops.LHS->getType() != RHS->getType())
 | |
|     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
 | |
| 
 | |
|   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
 | |
|                       Ops.Ty->hasSignedIntegerRepresentation();
 | |
|   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
 | |
|   // OpenCL 6.3j: shift values are effectively % word size of LHS.
 | |
|   if (CGF.getLangOpts().OpenCL)
 | |
|     RHS =
 | |
|         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
 | |
|   else if ((SanitizeBase || SanitizeExponent) &&
 | |
|            isa<llvm::IntegerType>(Ops.LHS->getType())) {
 | |
|     CodeGenFunction::SanitizerScope SanScope(&CGF);
 | |
|     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
 | |
|     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
 | |
|     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
 | |
| 
 | |
|     if (SanitizeExponent) {
 | |
|       Checks.push_back(
 | |
|           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
 | |
|     }
 | |
| 
 | |
|     if (SanitizeBase) {
 | |
|       // Check whether we are shifting any non-zero bits off the top of the
 | |
|       // integer. We only emit this check if exponent is valid - otherwise
 | |
|       // instructions below will have undefined behavior themselves.
 | |
|       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
 | |
|       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
 | |
|       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
 | |
|       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
 | |
|       CGF.EmitBlock(CheckShiftBase);
 | |
|       llvm::Value *BitsShiftedOff =
 | |
|         Builder.CreateLShr(Ops.LHS,
 | |
|                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
 | |
|                                              /*NUW*/true, /*NSW*/true),
 | |
|                            "shl.check");
 | |
|       if (CGF.getLangOpts().CPlusPlus) {
 | |
|         // In C99, we are not permitted to shift a 1 bit into the sign bit.
 | |
|         // Under C++11's rules, shifting a 1 bit into the sign bit is
 | |
|         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
 | |
|         // define signed left shifts, so we use the C99 and C++11 rules there).
 | |
|         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
 | |
|         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
 | |
|       }
 | |
|       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
 | |
|       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
 | |
|       CGF.EmitBlock(Cont);
 | |
|       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
 | |
|       BaseCheck->addIncoming(Builder.getTrue(), Orig);
 | |
|       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
 | |
|       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
 | |
|     }
 | |
| 
 | |
|     assert(!Checks.empty());
 | |
|     EmitBinOpCheck(Checks, Ops);
 | |
|   }
 | |
| 
 | |
|   return Builder.CreateShl(Ops.LHS, RHS, "shl");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
 | |
|   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
 | |
|   // RHS to the same size as the LHS.
 | |
|   Value *RHS = Ops.RHS;
 | |
|   if (Ops.LHS->getType() != RHS->getType())
 | |
|     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
 | |
| 
 | |
|   // OpenCL 6.3j: shift values are effectively % word size of LHS.
 | |
|   if (CGF.getLangOpts().OpenCL)
 | |
|     RHS =
 | |
|         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
 | |
|   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
 | |
|            isa<llvm::IntegerType>(Ops.LHS->getType())) {
 | |
|     CodeGenFunction::SanitizerScope SanScope(&CGF);
 | |
|     llvm::Value *Valid =
 | |
|         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
 | |
|     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
 | |
|   }
 | |
| 
 | |
|   if (Ops.Ty->hasUnsignedIntegerRepresentation())
 | |
|     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
 | |
|   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
 | |
| }
 | |
| 
 | |
| enum IntrinsicType { VCMPEQ, VCMPGT };
 | |
| // return corresponding comparison intrinsic for given vector type
 | |
| static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
 | |
|                                         BuiltinType::Kind ElemKind) {
 | |
|   switch (ElemKind) {
 | |
|   default: llvm_unreachable("unexpected element type");
 | |
|   case BuiltinType::Char_U:
 | |
|   case BuiltinType::UChar:
 | |
|     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
 | |
|                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
 | |
|   case BuiltinType::Char_S:
 | |
|   case BuiltinType::SChar:
 | |
|     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
 | |
|                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
 | |
|   case BuiltinType::UShort:
 | |
|     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
 | |
|                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
 | |
|   case BuiltinType::Short:
 | |
|     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
 | |
|                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
 | |
|   case BuiltinType::UInt:
 | |
|   case BuiltinType::ULong:
 | |
|     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
 | |
|                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
 | |
|   case BuiltinType::Int:
 | |
|   case BuiltinType::Long:
 | |
|     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
 | |
|                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
 | |
|   case BuiltinType::Float:
 | |
|     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
 | |
|                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
 | |
|                                       unsigned SICmpOpc, unsigned FCmpOpc) {
 | |
|   TestAndClearIgnoreResultAssign();
 | |
|   Value *Result;
 | |
|   QualType LHSTy = E->getLHS()->getType();
 | |
|   QualType RHSTy = E->getRHS()->getType();
 | |
|   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
 | |
|     assert(E->getOpcode() == BO_EQ ||
 | |
|            E->getOpcode() == BO_NE);
 | |
|     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
 | |
|     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
 | |
|     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
 | |
|                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
 | |
|   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
 | |
|     Value *LHS = Visit(E->getLHS());
 | |
|     Value *RHS = Visit(E->getRHS());
 | |
| 
 | |
|     // If AltiVec, the comparison results in a numeric type, so we use
 | |
|     // intrinsics comparing vectors and giving 0 or 1 as a result
 | |
|     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
 | |
|       // constants for mapping CR6 register bits to predicate result
 | |
|       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
 | |
| 
 | |
|       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
 | |
| 
 | |
|       // in several cases vector arguments order will be reversed
 | |
|       Value *FirstVecArg = LHS,
 | |
|             *SecondVecArg = RHS;
 | |
| 
 | |
|       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
 | |
|       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
 | |
|       BuiltinType::Kind ElementKind = BTy->getKind();
 | |
| 
 | |
|       switch(E->getOpcode()) {
 | |
|       default: llvm_unreachable("is not a comparison operation");
 | |
|       case BO_EQ:
 | |
|         CR6 = CR6_LT;
 | |
|         ID = GetIntrinsic(VCMPEQ, ElementKind);
 | |
|         break;
 | |
|       case BO_NE:
 | |
|         CR6 = CR6_EQ;
 | |
|         ID = GetIntrinsic(VCMPEQ, ElementKind);
 | |
|         break;
 | |
|       case BO_LT:
 | |
|         CR6 = CR6_LT;
 | |
|         ID = GetIntrinsic(VCMPGT, ElementKind);
 | |
|         std::swap(FirstVecArg, SecondVecArg);
 | |
|         break;
 | |
|       case BO_GT:
 | |
|         CR6 = CR6_LT;
 | |
|         ID = GetIntrinsic(VCMPGT, ElementKind);
 | |
|         break;
 | |
|       case BO_LE:
 | |
|         if (ElementKind == BuiltinType::Float) {
 | |
|           CR6 = CR6_LT;
 | |
|           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
 | |
|           std::swap(FirstVecArg, SecondVecArg);
 | |
|         }
 | |
|         else {
 | |
|           CR6 = CR6_EQ;
 | |
|           ID = GetIntrinsic(VCMPGT, ElementKind);
 | |
|         }
 | |
|         break;
 | |
|       case BO_GE:
 | |
|         if (ElementKind == BuiltinType::Float) {
 | |
|           CR6 = CR6_LT;
 | |
|           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
 | |
|         }
 | |
|         else {
 | |
|           CR6 = CR6_EQ;
 | |
|           ID = GetIntrinsic(VCMPGT, ElementKind);
 | |
|           std::swap(FirstVecArg, SecondVecArg);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       Value *CR6Param = Builder.getInt32(CR6);
 | |
|       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
 | |
|       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
 | |
|       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
 | |
|                                   E->getExprLoc());
 | |
|     }
 | |
| 
 | |
|     if (LHS->getType()->isFPOrFPVectorTy()) {
 | |
|       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
 | |
|                                   LHS, RHS, "cmp");
 | |
|     } else if (LHSTy->hasSignedIntegerRepresentation()) {
 | |
|       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
 | |
|                                   LHS, RHS, "cmp");
 | |
|     } else {
 | |
|       // Unsigned integers and pointers.
 | |
|       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
 | |
|                                   LHS, RHS, "cmp");
 | |
|     }
 | |
| 
 | |
|     // If this is a vector comparison, sign extend the result to the appropriate
 | |
|     // vector integer type and return it (don't convert to bool).
 | |
|     if (LHSTy->isVectorType())
 | |
|       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
 | |
| 
 | |
|   } else {
 | |
|     // Complex Comparison: can only be an equality comparison.
 | |
|     CodeGenFunction::ComplexPairTy LHS, RHS;
 | |
|     QualType CETy;
 | |
|     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
 | |
|       LHS = CGF.EmitComplexExpr(E->getLHS());
 | |
|       CETy = CTy->getElementType();
 | |
|     } else {
 | |
|       LHS.first = Visit(E->getLHS());
 | |
|       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
 | |
|       CETy = LHSTy;
 | |
|     }
 | |
|     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
 | |
|       RHS = CGF.EmitComplexExpr(E->getRHS());
 | |
|       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
 | |
|                                                      CTy->getElementType()) &&
 | |
|              "The element types must always match.");
 | |
|       (void)CTy;
 | |
|     } else {
 | |
|       RHS.first = Visit(E->getRHS());
 | |
|       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
 | |
|       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
 | |
|              "The element types must always match.");
 | |
|     }
 | |
| 
 | |
|     Value *ResultR, *ResultI;
 | |
|     if (CETy->isRealFloatingType()) {
 | |
|       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
 | |
|                                    LHS.first, RHS.first, "cmp.r");
 | |
|       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
 | |
|                                    LHS.second, RHS.second, "cmp.i");
 | |
|     } else {
 | |
|       // Complex comparisons can only be equality comparisons.  As such, signed
 | |
|       // and unsigned opcodes are the same.
 | |
|       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
 | |
|                                    LHS.first, RHS.first, "cmp.r");
 | |
|       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
 | |
|                                    LHS.second, RHS.second, "cmp.i");
 | |
|     }
 | |
| 
 | |
|     if (E->getOpcode() == BO_EQ) {
 | |
|       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
 | |
|     } else {
 | |
|       assert(E->getOpcode() == BO_NE &&
 | |
|              "Complex comparison other than == or != ?");
 | |
|       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
 | |
|                               E->getExprLoc());
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
 | |
|   bool Ignore = TestAndClearIgnoreResultAssign();
 | |
| 
 | |
|   Value *RHS;
 | |
|   LValue LHS;
 | |
| 
 | |
|   switch (E->getLHS()->getType().getObjCLifetime()) {
 | |
|   case Qualifiers::OCL_Strong:
 | |
|     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
 | |
|     break;
 | |
| 
 | |
|   case Qualifiers::OCL_Autoreleasing:
 | |
|     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
 | |
|     break;
 | |
| 
 | |
|   case Qualifiers::OCL_Weak:
 | |
|     RHS = Visit(E->getRHS());
 | |
|     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
 | |
|     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
 | |
|     break;
 | |
| 
 | |
|   // No reason to do any of these differently.
 | |
|   case Qualifiers::OCL_None:
 | |
|   case Qualifiers::OCL_ExplicitNone:
 | |
|     // __block variables need to have the rhs evaluated first, plus
 | |
|     // this should improve codegen just a little.
 | |
|     RHS = Visit(E->getRHS());
 | |
|     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
 | |
| 
 | |
|     // Store the value into the LHS.  Bit-fields are handled specially
 | |
|     // because the result is altered by the store, i.e., [C99 6.5.16p1]
 | |
|     // 'An assignment expression has the value of the left operand after
 | |
|     // the assignment...'.
 | |
|     if (LHS.isBitField())
 | |
|       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
 | |
|     else
 | |
|       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
 | |
|   }
 | |
| 
 | |
|   // If the result is clearly ignored, return now.
 | |
|   if (Ignore)
 | |
|     return nullptr;
 | |
| 
 | |
|   // The result of an assignment in C is the assigned r-value.
 | |
|   if (!CGF.getLangOpts().CPlusPlus)
 | |
|     return RHS;
 | |
| 
 | |
|   // If the lvalue is non-volatile, return the computed value of the assignment.
 | |
|   if (!LHS.isVolatileQualified())
 | |
|     return RHS;
 | |
| 
 | |
|   // Otherwise, reload the value.
 | |
|   return EmitLoadOfLValue(LHS, E->getExprLoc());
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
 | |
|   // Perform vector logical and on comparisons with zero vectors.
 | |
|   if (E->getType()->isVectorType()) {
 | |
|     CGF.incrementProfileCounter(E);
 | |
| 
 | |
|     Value *LHS = Visit(E->getLHS());
 | |
|     Value *RHS = Visit(E->getRHS());
 | |
|     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
 | |
|     if (LHS->getType()->isFPOrFPVectorTy()) {
 | |
|       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
 | |
|       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
 | |
|     } else {
 | |
|       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
 | |
|       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
 | |
|     }
 | |
|     Value *And = Builder.CreateAnd(LHS, RHS);
 | |
|     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
 | |
|   }
 | |
| 
 | |
|   llvm::Type *ResTy = ConvertType(E->getType());
 | |
| 
 | |
|   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
 | |
|   // If we have 1 && X, just emit X without inserting the control flow.
 | |
|   bool LHSCondVal;
 | |
|   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
 | |
|     if (LHSCondVal) { // If we have 1 && X, just emit X.
 | |
|       CGF.incrementProfileCounter(E);
 | |
| 
 | |
|       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
 | |
|       // ZExt result to int or bool.
 | |
|       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
 | |
|     }
 | |
| 
 | |
|     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
 | |
|     if (!CGF.ContainsLabel(E->getRHS()))
 | |
|       return llvm::Constant::getNullValue(ResTy);
 | |
|   }
 | |
| 
 | |
|   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
 | |
|   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
 | |
| 
 | |
|   CodeGenFunction::ConditionalEvaluation eval(CGF);
 | |
| 
 | |
|   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
 | |
|   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
 | |
|                            CGF.getProfileCount(E->getRHS()));
 | |
| 
 | |
|   // Any edges into the ContBlock are now from an (indeterminate number of)
 | |
|   // edges from this first condition.  All of these values will be false.  Start
 | |
|   // setting up the PHI node in the Cont Block for this.
 | |
|   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
 | |
|                                             "", ContBlock);
 | |
|   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
 | |
|        PI != PE; ++PI)
 | |
|     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
 | |
| 
 | |
|   eval.begin(CGF);
 | |
|   CGF.EmitBlock(RHSBlock);
 | |
|   CGF.incrementProfileCounter(E);
 | |
|   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
 | |
|   eval.end(CGF);
 | |
| 
 | |
|   // Reaquire the RHS block, as there may be subblocks inserted.
 | |
|   RHSBlock = Builder.GetInsertBlock();
 | |
| 
 | |
|   // Emit an unconditional branch from this block to ContBlock.
 | |
|   {
 | |
|     // There is no need to emit line number for unconditional branch.
 | |
|     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
 | |
|     CGF.EmitBlock(ContBlock);
 | |
|   }
 | |
|   // Insert an entry into the phi node for the edge with the value of RHSCond.
 | |
|   PN->addIncoming(RHSCond, RHSBlock);
 | |
| 
 | |
|   // ZExt result to int.
 | |
|   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
 | |
|   // Perform vector logical or on comparisons with zero vectors.
 | |
|   if (E->getType()->isVectorType()) {
 | |
|     CGF.incrementProfileCounter(E);
 | |
| 
 | |
|     Value *LHS = Visit(E->getLHS());
 | |
|     Value *RHS = Visit(E->getRHS());
 | |
|     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
 | |
|     if (LHS->getType()->isFPOrFPVectorTy()) {
 | |
|       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
 | |
|       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
 | |
|     } else {
 | |
|       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
 | |
|       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
 | |
|     }
 | |
|     Value *Or = Builder.CreateOr(LHS, RHS);
 | |
|     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
 | |
|   }
 | |
| 
 | |
|   llvm::Type *ResTy = ConvertType(E->getType());
 | |
| 
 | |
|   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
 | |
|   // If we have 0 || X, just emit X without inserting the control flow.
 | |
|   bool LHSCondVal;
 | |
|   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
 | |
|     if (!LHSCondVal) { // If we have 0 || X, just emit X.
 | |
|       CGF.incrementProfileCounter(E);
 | |
| 
 | |
|       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
 | |
|       // ZExt result to int or bool.
 | |
|       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
 | |
|     }
 | |
| 
 | |
|     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
 | |
|     if (!CGF.ContainsLabel(E->getRHS()))
 | |
|       return llvm::ConstantInt::get(ResTy, 1);
 | |
|   }
 | |
| 
 | |
|   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
 | |
|   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
 | |
| 
 | |
|   CodeGenFunction::ConditionalEvaluation eval(CGF);
 | |
| 
 | |
|   // Branch on the LHS first.  If it is true, go to the success (cont) block.
 | |
|   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
 | |
|                            CGF.getCurrentProfileCount() -
 | |
|                                CGF.getProfileCount(E->getRHS()));
 | |
| 
 | |
|   // Any edges into the ContBlock are now from an (indeterminate number of)
 | |
|   // edges from this first condition.  All of these values will be true.  Start
 | |
|   // setting up the PHI node in the Cont Block for this.
 | |
|   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
 | |
|                                             "", ContBlock);
 | |
|   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
 | |
|        PI != PE; ++PI)
 | |
|     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
 | |
| 
 | |
|   eval.begin(CGF);
 | |
| 
 | |
|   // Emit the RHS condition as a bool value.
 | |
|   CGF.EmitBlock(RHSBlock);
 | |
|   CGF.incrementProfileCounter(E);
 | |
|   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
 | |
| 
 | |
|   eval.end(CGF);
 | |
| 
 | |
|   // Reaquire the RHS block, as there may be subblocks inserted.
 | |
|   RHSBlock = Builder.GetInsertBlock();
 | |
| 
 | |
|   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
 | |
|   // into the phi node for the edge with the value of RHSCond.
 | |
|   CGF.EmitBlock(ContBlock);
 | |
|   PN->addIncoming(RHSCond, RHSBlock);
 | |
| 
 | |
|   // ZExt result to int.
 | |
|   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
 | |
|   CGF.EmitIgnoredExpr(E->getLHS());
 | |
|   CGF.EnsureInsertPoint();
 | |
|   return Visit(E->getRHS());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             Other Operators
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
 | |
| /// expression is cheap enough and side-effect-free enough to evaluate
 | |
| /// unconditionally instead of conditionally.  This is used to convert control
 | |
| /// flow into selects in some cases.
 | |
| static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
 | |
|                                                    CodeGenFunction &CGF) {
 | |
|   // Anything that is an integer or floating point constant is fine.
 | |
|   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
 | |
| 
 | |
|   // Even non-volatile automatic variables can't be evaluated unconditionally.
 | |
|   // Referencing a thread_local may cause non-trivial initialization work to
 | |
|   // occur. If we're inside a lambda and one of the variables is from the scope
 | |
|   // outside the lambda, that function may have returned already. Reading its
 | |
|   // locals is a bad idea. Also, these reads may introduce races there didn't
 | |
|   // exist in the source-level program.
 | |
| }
 | |
| 
 | |
| 
 | |
| Value *ScalarExprEmitter::
 | |
| VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
 | |
|   TestAndClearIgnoreResultAssign();
 | |
| 
 | |
|   // Bind the common expression if necessary.
 | |
|   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
 | |
| 
 | |
|   Expr *condExpr = E->getCond();
 | |
|   Expr *lhsExpr = E->getTrueExpr();
 | |
|   Expr *rhsExpr = E->getFalseExpr();
 | |
| 
 | |
|   // If the condition constant folds and can be elided, try to avoid emitting
 | |
|   // the condition and the dead arm.
 | |
|   bool CondExprBool;
 | |
|   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
 | |
|     Expr *live = lhsExpr, *dead = rhsExpr;
 | |
|     if (!CondExprBool) std::swap(live, dead);
 | |
| 
 | |
|     // If the dead side doesn't have labels we need, just emit the Live part.
 | |
|     if (!CGF.ContainsLabel(dead)) {
 | |
|       if (CondExprBool)
 | |
|         CGF.incrementProfileCounter(E);
 | |
|       Value *Result = Visit(live);
 | |
| 
 | |
|       // If the live part is a throw expression, it acts like it has a void
 | |
|       // type, so evaluating it returns a null Value*.  However, a conditional
 | |
|       // with non-void type must return a non-null Value*.
 | |
|       if (!Result && !E->getType()->isVoidType())
 | |
|         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
 | |
| 
 | |
|       return Result;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // OpenCL: If the condition is a vector, we can treat this condition like
 | |
|   // the select function.
 | |
|   if (CGF.getLangOpts().OpenCL
 | |
|       && condExpr->getType()->isVectorType()) {
 | |
|     CGF.incrementProfileCounter(E);
 | |
| 
 | |
|     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
 | |
|     llvm::Value *LHS = Visit(lhsExpr);
 | |
|     llvm::Value *RHS = Visit(rhsExpr);
 | |
| 
 | |
|     llvm::Type *condType = ConvertType(condExpr->getType());
 | |
|     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
 | |
| 
 | |
|     unsigned numElem = vecTy->getNumElements();
 | |
|     llvm::Type *elemType = vecTy->getElementType();
 | |
| 
 | |
|     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
 | |
|     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
 | |
|     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
 | |
|                                           llvm::VectorType::get(elemType,
 | |
|                                                                 numElem),
 | |
|                                           "sext");
 | |
|     llvm::Value *tmp2 = Builder.CreateNot(tmp);
 | |
| 
 | |
|     // Cast float to int to perform ANDs if necessary.
 | |
|     llvm::Value *RHSTmp = RHS;
 | |
|     llvm::Value *LHSTmp = LHS;
 | |
|     bool wasCast = false;
 | |
|     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
 | |
|     if (rhsVTy->getElementType()->isFloatingPointTy()) {
 | |
|       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
 | |
|       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
 | |
|       wasCast = true;
 | |
|     }
 | |
| 
 | |
|     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
 | |
|     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
 | |
|     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
 | |
|     if (wasCast)
 | |
|       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
 | |
| 
 | |
|     return tmp5;
 | |
|   }
 | |
| 
 | |
|   // If this is a really simple expression (like x ? 4 : 5), emit this as a
 | |
|   // select instead of as control flow.  We can only do this if it is cheap and
 | |
|   // safe to evaluate the LHS and RHS unconditionally.
 | |
|   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
 | |
|       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
 | |
|     CGF.incrementProfileCounter(E);
 | |
| 
 | |
|     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
 | |
|     llvm::Value *LHS = Visit(lhsExpr);
 | |
|     llvm::Value *RHS = Visit(rhsExpr);
 | |
|     if (!LHS) {
 | |
|       // If the conditional has void type, make sure we return a null Value*.
 | |
|       assert(!RHS && "LHS and RHS types must match");
 | |
|       return nullptr;
 | |
|     }
 | |
|     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
 | |
|   }
 | |
| 
 | |
|   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
 | |
|   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
 | |
|   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
 | |
| 
 | |
|   CodeGenFunction::ConditionalEvaluation eval(CGF);
 | |
|   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
 | |
|                            CGF.getProfileCount(lhsExpr));
 | |
| 
 | |
|   CGF.EmitBlock(LHSBlock);
 | |
|   CGF.incrementProfileCounter(E);
 | |
|   eval.begin(CGF);
 | |
|   Value *LHS = Visit(lhsExpr);
 | |
|   eval.end(CGF);
 | |
| 
 | |
|   LHSBlock = Builder.GetInsertBlock();
 | |
|   Builder.CreateBr(ContBlock);
 | |
| 
 | |
|   CGF.EmitBlock(RHSBlock);
 | |
|   eval.begin(CGF);
 | |
|   Value *RHS = Visit(rhsExpr);
 | |
|   eval.end(CGF);
 | |
| 
 | |
|   RHSBlock = Builder.GetInsertBlock();
 | |
|   CGF.EmitBlock(ContBlock);
 | |
| 
 | |
|   // If the LHS or RHS is a throw expression, it will be legitimately null.
 | |
|   if (!LHS)
 | |
|     return RHS;
 | |
|   if (!RHS)
 | |
|     return LHS;
 | |
| 
 | |
|   // Create a PHI node for the real part.
 | |
|   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
 | |
|   PN->addIncoming(LHS, LHSBlock);
 | |
|   PN->addIncoming(RHS, RHSBlock);
 | |
|   return PN;
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
 | |
|   return Visit(E->getChosenSubExpr());
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
 | |
|   QualType Ty = VE->getType();
 | |
| 
 | |
|   if (Ty->isVariablyModifiedType())
 | |
|     CGF.EmitVariablyModifiedType(Ty);
 | |
| 
 | |
|   Address ArgValue = Address::invalid();
 | |
|   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
 | |
| 
 | |
|   llvm::Type *ArgTy = ConvertType(VE->getType());
 | |
| 
 | |
|   // If EmitVAArg fails, we fall back to the LLVM instruction.
 | |
|   if (!ArgPtr.isValid())
 | |
|     return Builder.CreateVAArg(ArgValue.getPointer(), ArgTy);
 | |
| 
 | |
|   // FIXME Volatility.
 | |
|   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
 | |
| 
 | |
|   // If EmitVAArg promoted the type, we must truncate it.
 | |
|   if (ArgTy != Val->getType()) {
 | |
|     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
 | |
|       Val = Builder.CreateIntToPtr(Val, ArgTy);
 | |
|     else
 | |
|       Val = Builder.CreateTrunc(Val, ArgTy);
 | |
|   }
 | |
| 
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
 | |
|   return CGF.EmitBlockLiteral(block);
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
 | |
|   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
 | |
|   llvm::Type *DstTy = ConvertType(E->getType());
 | |
| 
 | |
|   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
 | |
|   // a shuffle vector instead of a bitcast.
 | |
|   llvm::Type *SrcTy = Src->getType();
 | |
|   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
 | |
|     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
 | |
|     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
 | |
|     if ((numElementsDst == 3 && numElementsSrc == 4)
 | |
|         || (numElementsDst == 4 && numElementsSrc == 3)) {
 | |
| 
 | |
| 
 | |
|       // In the case of going from int4->float3, a bitcast is needed before
 | |
|       // doing a shuffle.
 | |
|       llvm::Type *srcElemTy =
 | |
|       cast<llvm::VectorType>(SrcTy)->getElementType();
 | |
|       llvm::Type *dstElemTy =
 | |
|       cast<llvm::VectorType>(DstTy)->getElementType();
 | |
| 
 | |
|       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
 | |
|           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
 | |
|         // Create a float type of the same size as the source or destination.
 | |
|         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
 | |
|                                                                  numElementsSrc);
 | |
| 
 | |
|         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
 | |
|       }
 | |
| 
 | |
|       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
 | |
| 
 | |
|       SmallVector<llvm::Constant*, 3> Args;
 | |
|       Args.push_back(Builder.getInt32(0));
 | |
|       Args.push_back(Builder.getInt32(1));
 | |
|       Args.push_back(Builder.getInt32(2));
 | |
| 
 | |
|       if (numElementsDst == 4)
 | |
|         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
 | |
| 
 | |
|       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
 | |
| 
 | |
|       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Builder.CreateBitCast(Src, DstTy, "astype");
 | |
| }
 | |
| 
 | |
| Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
 | |
|   return CGF.EmitAtomicExpr(E).getScalarVal();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Entry Point into this File
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Emit the computation of the specified expression of scalar type, ignoring
 | |
| /// the result.
 | |
| Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
 | |
|   assert(E && hasScalarEvaluationKind(E->getType()) &&
 | |
|          "Invalid scalar expression to emit");
 | |
| 
 | |
|   return ScalarExprEmitter(*this, IgnoreResultAssign)
 | |
|       .Visit(const_cast<Expr *>(E));
 | |
| }
 | |
| 
 | |
| /// Emit a conversion from the specified type to the specified destination type,
 | |
| /// both of which are LLVM scalar types.
 | |
| Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
 | |
|                                              QualType DstTy,
 | |
|                                              SourceLocation Loc) {
 | |
|   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
 | |
|          "Invalid scalar expression to emit");
 | |
|   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
 | |
| }
 | |
| 
 | |
| /// Emit a conversion from the specified complex type to the specified
 | |
| /// destination type, where the destination type is an LLVM scalar type.
 | |
| Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
 | |
|                                                       QualType SrcTy,
 | |
|                                                       QualType DstTy,
 | |
|                                                       SourceLocation Loc) {
 | |
|   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
 | |
|          "Invalid complex -> scalar conversion");
 | |
|   return ScalarExprEmitter(*this)
 | |
|       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
 | |
| }
 | |
| 
 | |
| 
 | |
| llvm::Value *CodeGenFunction::
 | |
| EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
 | |
|                         bool isInc, bool isPre) {
 | |
|   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
 | |
| }
 | |
| 
 | |
| LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
 | |
|   // object->isa or (*object).isa
 | |
|   // Generate code as for: *(Class*)object
 | |
| 
 | |
|   Expr *BaseExpr = E->getBase();
 | |
|   Address Addr = Address::invalid();
 | |
|   if (BaseExpr->isRValue()) {
 | |
|     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
 | |
|   } else {
 | |
|     Addr = EmitLValue(BaseExpr).getAddress();
 | |
|   }
 | |
| 
 | |
|   // Cast the address to Class*.
 | |
|   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
 | |
|   return MakeAddrLValue(Addr, E->getType());
 | |
| }
 | |
| 
 | |
| 
 | |
| LValue CodeGenFunction::EmitCompoundAssignmentLValue(
 | |
|                                             const CompoundAssignOperator *E) {
 | |
|   ScalarExprEmitter Scalar(*this);
 | |
|   Value *Result = nullptr;
 | |
|   switch (E->getOpcode()) {
 | |
| #define COMPOUND_OP(Op)                                                       \
 | |
|     case BO_##Op##Assign:                                                     \
 | |
|       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
 | |
|                                              Result)
 | |
|   COMPOUND_OP(Mul);
 | |
|   COMPOUND_OP(Div);
 | |
|   COMPOUND_OP(Rem);
 | |
|   COMPOUND_OP(Add);
 | |
|   COMPOUND_OP(Sub);
 | |
|   COMPOUND_OP(Shl);
 | |
|   COMPOUND_OP(Shr);
 | |
|   COMPOUND_OP(And);
 | |
|   COMPOUND_OP(Xor);
 | |
|   COMPOUND_OP(Or);
 | |
| #undef COMPOUND_OP
 | |
| 
 | |
|   case BO_PtrMemD:
 | |
|   case BO_PtrMemI:
 | |
|   case BO_Mul:
 | |
|   case BO_Div:
 | |
|   case BO_Rem:
 | |
|   case BO_Add:
 | |
|   case BO_Sub:
 | |
|   case BO_Shl:
 | |
|   case BO_Shr:
 | |
|   case BO_LT:
 | |
|   case BO_GT:
 | |
|   case BO_LE:
 | |
|   case BO_GE:
 | |
|   case BO_EQ:
 | |
|   case BO_NE:
 | |
|   case BO_And:
 | |
|   case BO_Xor:
 | |
|   case BO_Or:
 | |
|   case BO_LAnd:
 | |
|   case BO_LOr:
 | |
|   case BO_Assign:
 | |
|   case BO_Comma:
 | |
|     llvm_unreachable("Not valid compound assignment operators");
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unhandled compound assignment operator");
 | |
| }
 |