forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1686 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1686 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the NumericLiteralParser, CharLiteralParser, and
 | |
| // StringLiteralParser interfaces.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Lex/LiteralSupport.h"
 | |
| #include "clang/Basic/CharInfo.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Lex/LexDiagnostic.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Support/ConvertUTF.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
 | |
|   switch (kind) {
 | |
|   default: llvm_unreachable("Unknown token type!");
 | |
|   case tok::char_constant:
 | |
|   case tok::string_literal:
 | |
|   case tok::utf8_char_constant:
 | |
|   case tok::utf8_string_literal:
 | |
|     return Target.getCharWidth();
 | |
|   case tok::wide_char_constant:
 | |
|   case tok::wide_string_literal:
 | |
|     return Target.getWCharWidth();
 | |
|   case tok::utf16_char_constant:
 | |
|   case tok::utf16_string_literal:
 | |
|     return Target.getChar16Width();
 | |
|   case tok::utf32_char_constant:
 | |
|   case tok::utf32_string_literal:
 | |
|     return Target.getChar32Width();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
 | |
|                                            FullSourceLoc TokLoc,
 | |
|                                            const char *TokBegin,
 | |
|                                            const char *TokRangeBegin,
 | |
|                                            const char *TokRangeEnd) {
 | |
|   SourceLocation Begin =
 | |
|     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
 | |
|                                    TokLoc.getManager(), Features);
 | |
|   SourceLocation End =
 | |
|     Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
 | |
|                                    TokLoc.getManager(), Features);
 | |
|   return CharSourceRange::getCharRange(Begin, End);
 | |
| }
 | |
| 
 | |
| /// \brief Produce a diagnostic highlighting some portion of a literal.
 | |
| ///
 | |
| /// Emits the diagnostic \p DiagID, highlighting the range of characters from
 | |
| /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
 | |
| /// a substring of a spelling buffer for the token beginning at \p TokBegin.
 | |
| static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
 | |
|                               const LangOptions &Features, FullSourceLoc TokLoc,
 | |
|                               const char *TokBegin, const char *TokRangeBegin,
 | |
|                               const char *TokRangeEnd, unsigned DiagID) {
 | |
|   SourceLocation Begin =
 | |
|     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
 | |
|                                    TokLoc.getManager(), Features);
 | |
|   return Diags->Report(Begin, DiagID) <<
 | |
|     MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
 | |
| }
 | |
| 
 | |
| /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
 | |
| /// either a character or a string literal.
 | |
| static unsigned ProcessCharEscape(const char *ThisTokBegin,
 | |
|                                   const char *&ThisTokBuf,
 | |
|                                   const char *ThisTokEnd, bool &HadError,
 | |
|                                   FullSourceLoc Loc, unsigned CharWidth,
 | |
|                                   DiagnosticsEngine *Diags,
 | |
|                                   const LangOptions &Features) {
 | |
|   const char *EscapeBegin = ThisTokBuf;
 | |
| 
 | |
|   // Skip the '\' char.
 | |
|   ++ThisTokBuf;
 | |
| 
 | |
|   // We know that this character can't be off the end of the buffer, because
 | |
|   // that would have been \", which would not have been the end of string.
 | |
|   unsigned ResultChar = *ThisTokBuf++;
 | |
|   switch (ResultChar) {
 | |
|   // These map to themselves.
 | |
|   case '\\': case '\'': case '"': case '?': break;
 | |
| 
 | |
|     // These have fixed mappings.
 | |
|   case 'a':
 | |
|     // TODO: K&R: the meaning of '\\a' is different in traditional C
 | |
|     ResultChar = 7;
 | |
|     break;
 | |
|   case 'b':
 | |
|     ResultChar = 8;
 | |
|     break;
 | |
|   case 'e':
 | |
|     if (Diags)
 | |
|       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
 | |
|            diag::ext_nonstandard_escape) << "e";
 | |
|     ResultChar = 27;
 | |
|     break;
 | |
|   case 'E':
 | |
|     if (Diags)
 | |
|       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
 | |
|            diag::ext_nonstandard_escape) << "E";
 | |
|     ResultChar = 27;
 | |
|     break;
 | |
|   case 'f':
 | |
|     ResultChar = 12;
 | |
|     break;
 | |
|   case 'n':
 | |
|     ResultChar = 10;
 | |
|     break;
 | |
|   case 'r':
 | |
|     ResultChar = 13;
 | |
|     break;
 | |
|   case 't':
 | |
|     ResultChar = 9;
 | |
|     break;
 | |
|   case 'v':
 | |
|     ResultChar = 11;
 | |
|     break;
 | |
|   case 'x': { // Hex escape.
 | |
|     ResultChar = 0;
 | |
|     if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
 | |
|       if (Diags)
 | |
|         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
 | |
|              diag::err_hex_escape_no_digits) << "x";
 | |
|       HadError = 1;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Hex escapes are a maximal series of hex digits.
 | |
|     bool Overflow = false;
 | |
|     for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
 | |
|       int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
 | |
|       if (CharVal == -1) break;
 | |
|       // About to shift out a digit?
 | |
|       if (ResultChar & 0xF0000000)
 | |
|         Overflow = true;
 | |
|       ResultChar <<= 4;
 | |
|       ResultChar |= CharVal;
 | |
|     }
 | |
| 
 | |
|     // See if any bits will be truncated when evaluated as a character.
 | |
|     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
 | |
|       Overflow = true;
 | |
|       ResultChar &= ~0U >> (32-CharWidth);
 | |
|     }
 | |
| 
 | |
|     // Check for overflow.
 | |
|     if (Overflow && Diags)   // Too many digits to fit in
 | |
|       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
 | |
|            diag::err_escape_too_large) << 0;
 | |
|     break;
 | |
|   }
 | |
|   case '0': case '1': case '2': case '3':
 | |
|   case '4': case '5': case '6': case '7': {
 | |
|     // Octal escapes.
 | |
|     --ThisTokBuf;
 | |
|     ResultChar = 0;
 | |
| 
 | |
|     // Octal escapes are a series of octal digits with maximum length 3.
 | |
|     // "\0123" is a two digit sequence equal to "\012" "3".
 | |
|     unsigned NumDigits = 0;
 | |
|     do {
 | |
|       ResultChar <<= 3;
 | |
|       ResultChar |= *ThisTokBuf++ - '0';
 | |
|       ++NumDigits;
 | |
|     } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
 | |
|              ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
 | |
| 
 | |
|     // Check for overflow.  Reject '\777', but not L'\777'.
 | |
|     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
 | |
|       if (Diags)
 | |
|         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
 | |
|              diag::err_escape_too_large) << 1;
 | |
|       ResultChar &= ~0U >> (32-CharWidth);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|     // Otherwise, these are not valid escapes.
 | |
|   case '(': case '{': case '[': case '%':
 | |
|     // GCC accepts these as extensions.  We warn about them as such though.
 | |
|     if (Diags)
 | |
|       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
 | |
|            diag::ext_nonstandard_escape)
 | |
|         << std::string(1, ResultChar);
 | |
|     break;
 | |
|   default:
 | |
|     if (!Diags)
 | |
|       break;
 | |
| 
 | |
|     if (isPrintable(ResultChar))
 | |
|       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
 | |
|            diag::ext_unknown_escape)
 | |
|         << std::string(1, ResultChar);
 | |
|     else
 | |
|       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
 | |
|            diag::ext_unknown_escape)
 | |
|         << "x" + llvm::utohexstr(ResultChar);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return ResultChar;
 | |
| }
 | |
| 
 | |
| static void appendCodePoint(unsigned Codepoint,
 | |
|                             llvm::SmallVectorImpl<char> &Str) {
 | |
|   char ResultBuf[4];
 | |
|   char *ResultPtr = ResultBuf;
 | |
|   bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr);
 | |
|   (void)Res;
 | |
|   assert(Res && "Unexpected conversion failure");
 | |
|   Str.append(ResultBuf, ResultPtr);
 | |
| }
 | |
| 
 | |
| void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
 | |
|   for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
 | |
|     if (*I != '\\') {
 | |
|       Buf.push_back(*I);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     ++I;
 | |
|     assert(*I == 'u' || *I == 'U');
 | |
| 
 | |
|     unsigned NumHexDigits;
 | |
|     if (*I == 'u')
 | |
|       NumHexDigits = 4;
 | |
|     else
 | |
|       NumHexDigits = 8;
 | |
| 
 | |
|     assert(I + NumHexDigits <= E);
 | |
| 
 | |
|     uint32_t CodePoint = 0;
 | |
|     for (++I; NumHexDigits != 0; ++I, --NumHexDigits) {
 | |
|       unsigned Value = llvm::hexDigitValue(*I);
 | |
|       assert(Value != -1U);
 | |
| 
 | |
|       CodePoint <<= 4;
 | |
|       CodePoint += Value;
 | |
|     }
 | |
| 
 | |
|     appendCodePoint(CodePoint, Buf);
 | |
|     --I;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
 | |
| /// return the UTF32.
 | |
| static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
 | |
|                              const char *ThisTokEnd,
 | |
|                              uint32_t &UcnVal, unsigned short &UcnLen,
 | |
|                              FullSourceLoc Loc, DiagnosticsEngine *Diags, 
 | |
|                              const LangOptions &Features,
 | |
|                              bool in_char_string_literal = false) {
 | |
|   const char *UcnBegin = ThisTokBuf;
 | |
| 
 | |
|   // Skip the '\u' char's.
 | |
|   ThisTokBuf += 2;
 | |
| 
 | |
|   if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
 | |
|     if (Diags)
 | |
|       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
 | |
|            diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
 | |
|     return false;
 | |
|   }
 | |
|   UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
 | |
|   unsigned short UcnLenSave = UcnLen;
 | |
|   for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
 | |
|     int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
 | |
|     if (CharVal == -1) break;
 | |
|     UcnVal <<= 4;
 | |
|     UcnVal |= CharVal;
 | |
|   }
 | |
|   // If we didn't consume the proper number of digits, there is a problem.
 | |
|   if (UcnLenSave) {
 | |
|     if (Diags)
 | |
|       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
 | |
|            diag::err_ucn_escape_incomplete);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
 | |
|   if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
 | |
|       UcnVal > 0x10FFFF) {                      // maximum legal UTF32 value
 | |
|     if (Diags)
 | |
|       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
 | |
|            diag::err_ucn_escape_invalid);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // C++11 allows UCNs that refer to control characters and basic source
 | |
|   // characters inside character and string literals
 | |
|   if (UcnVal < 0xa0 &&
 | |
|       (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) {  // $, @, `
 | |
|     bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
 | |
|     if (Diags) {
 | |
|       char BasicSCSChar = UcnVal;
 | |
|       if (UcnVal >= 0x20 && UcnVal < 0x7f)
 | |
|         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
 | |
|              IsError ? diag::err_ucn_escape_basic_scs :
 | |
|                        diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
 | |
|             << StringRef(&BasicSCSChar, 1);
 | |
|       else
 | |
|         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
 | |
|              IsError ? diag::err_ucn_control_character :
 | |
|                        diag::warn_cxx98_compat_literal_ucn_control_character);
 | |
|     }
 | |
|     if (IsError)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (!Features.CPlusPlus && !Features.C99 && Diags)
 | |
|     Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
 | |
|          diag::warn_ucn_not_valid_in_c89_literal);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// MeasureUCNEscape - Determine the number of bytes within the resulting string
 | |
| /// which this UCN will occupy.
 | |
| static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
 | |
|                             const char *ThisTokEnd, unsigned CharByteWidth,
 | |
|                             const LangOptions &Features, bool &HadError) {
 | |
|   // UTF-32: 4 bytes per escape.
 | |
|   if (CharByteWidth == 4)
 | |
|     return 4;
 | |
| 
 | |
|   uint32_t UcnVal = 0;
 | |
|   unsigned short UcnLen = 0;
 | |
|   FullSourceLoc Loc;
 | |
| 
 | |
|   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
 | |
|                         UcnLen, Loc, nullptr, Features, true)) {
 | |
|     HadError = true;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
 | |
|   if (CharByteWidth == 2)
 | |
|     return UcnVal <= 0xFFFF ? 2 : 4;
 | |
| 
 | |
|   // UTF-8.
 | |
|   if (UcnVal < 0x80)
 | |
|     return 1;
 | |
|   if (UcnVal < 0x800)
 | |
|     return 2;
 | |
|   if (UcnVal < 0x10000)
 | |
|     return 3;
 | |
|   return 4;
 | |
| }
 | |
| 
 | |
| /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
 | |
| /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
 | |
| /// StringLiteralParser. When we decide to implement UCN's for identifiers,
 | |
| /// we will likely rework our support for UCN's.
 | |
| static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
 | |
|                             const char *ThisTokEnd,
 | |
|                             char *&ResultBuf, bool &HadError,
 | |
|                             FullSourceLoc Loc, unsigned CharByteWidth,
 | |
|                             DiagnosticsEngine *Diags,
 | |
|                             const LangOptions &Features) {
 | |
|   typedef uint32_t UTF32;
 | |
|   UTF32 UcnVal = 0;
 | |
|   unsigned short UcnLen = 0;
 | |
|   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
 | |
|                         Loc, Diags, Features, true)) {
 | |
|     HadError = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
 | |
|          "only character widths of 1, 2, or 4 bytes supported");
 | |
| 
 | |
|   (void)UcnLen;
 | |
|   assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
 | |
| 
 | |
|   if (CharByteWidth == 4) {
 | |
|     // FIXME: Make the type of the result buffer correct instead of
 | |
|     // using reinterpret_cast.
 | |
|     UTF32 *ResultPtr = reinterpret_cast<UTF32*>(ResultBuf);
 | |
|     *ResultPtr = UcnVal;
 | |
|     ResultBuf += 4;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (CharByteWidth == 2) {
 | |
|     // FIXME: Make the type of the result buffer correct instead of
 | |
|     // using reinterpret_cast.
 | |
|     UTF16 *ResultPtr = reinterpret_cast<UTF16*>(ResultBuf);
 | |
| 
 | |
|     if (UcnVal <= (UTF32)0xFFFF) {
 | |
|       *ResultPtr = UcnVal;
 | |
|       ResultBuf += 2;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Convert to UTF16.
 | |
|     UcnVal -= 0x10000;
 | |
|     *ResultPtr     = 0xD800 + (UcnVal >> 10);
 | |
|     *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
 | |
|     ResultBuf += 4;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
 | |
| 
 | |
|   // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
 | |
|   // The conversion below was inspired by:
 | |
|   //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
 | |
|   // First, we determine how many bytes the result will require.
 | |
|   typedef uint8_t UTF8;
 | |
| 
 | |
|   unsigned short bytesToWrite = 0;
 | |
|   if (UcnVal < (UTF32)0x80)
 | |
|     bytesToWrite = 1;
 | |
|   else if (UcnVal < (UTF32)0x800)
 | |
|     bytesToWrite = 2;
 | |
|   else if (UcnVal < (UTF32)0x10000)
 | |
|     bytesToWrite = 3;
 | |
|   else
 | |
|     bytesToWrite = 4;
 | |
| 
 | |
|   const unsigned byteMask = 0xBF;
 | |
|   const unsigned byteMark = 0x80;
 | |
| 
 | |
|   // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
 | |
|   // into the first byte, depending on how many bytes follow.
 | |
|   static const UTF8 firstByteMark[5] = {
 | |
|     0x00, 0x00, 0xC0, 0xE0, 0xF0
 | |
|   };
 | |
|   // Finally, we write the bytes into ResultBuf.
 | |
|   ResultBuf += bytesToWrite;
 | |
|   switch (bytesToWrite) { // note: everything falls through.
 | |
|   case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
 | |
|   case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
 | |
|   case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
 | |
|   case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
 | |
|   }
 | |
|   // Update the buffer.
 | |
|   ResultBuf += bytesToWrite;
 | |
| }
 | |
| 
 | |
| 
 | |
| ///       integer-constant: [C99 6.4.4.1]
 | |
| ///         decimal-constant integer-suffix
 | |
| ///         octal-constant integer-suffix
 | |
| ///         hexadecimal-constant integer-suffix
 | |
| ///         binary-literal integer-suffix [GNU, C++1y]
 | |
| ///       user-defined-integer-literal: [C++11 lex.ext]
 | |
| ///         decimal-literal ud-suffix
 | |
| ///         octal-literal ud-suffix
 | |
| ///         hexadecimal-literal ud-suffix
 | |
| ///         binary-literal ud-suffix [GNU, C++1y]
 | |
| ///       decimal-constant:
 | |
| ///         nonzero-digit
 | |
| ///         decimal-constant digit
 | |
| ///       octal-constant:
 | |
| ///         0
 | |
| ///         octal-constant octal-digit
 | |
| ///       hexadecimal-constant:
 | |
| ///         hexadecimal-prefix hexadecimal-digit
 | |
| ///         hexadecimal-constant hexadecimal-digit
 | |
| ///       hexadecimal-prefix: one of
 | |
| ///         0x 0X
 | |
| ///       binary-literal:
 | |
| ///         0b binary-digit
 | |
| ///         0B binary-digit
 | |
| ///         binary-literal binary-digit
 | |
| ///       integer-suffix:
 | |
| ///         unsigned-suffix [long-suffix]
 | |
| ///         unsigned-suffix [long-long-suffix]
 | |
| ///         long-suffix [unsigned-suffix]
 | |
| ///         long-long-suffix [unsigned-sufix]
 | |
| ///       nonzero-digit:
 | |
| ///         1 2 3 4 5 6 7 8 9
 | |
| ///       octal-digit:
 | |
| ///         0 1 2 3 4 5 6 7
 | |
| ///       hexadecimal-digit:
 | |
| ///         0 1 2 3 4 5 6 7 8 9
 | |
| ///         a b c d e f
 | |
| ///         A B C D E F
 | |
| ///       binary-digit:
 | |
| ///         0
 | |
| ///         1
 | |
| ///       unsigned-suffix: one of
 | |
| ///         u U
 | |
| ///       long-suffix: one of
 | |
| ///         l L
 | |
| ///       long-long-suffix: one of
 | |
| ///         ll LL
 | |
| ///
 | |
| ///       floating-constant: [C99 6.4.4.2]
 | |
| ///         TODO: add rules...
 | |
| ///
 | |
| NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
 | |
|                                            SourceLocation TokLoc,
 | |
|                                            Preprocessor &PP)
 | |
|   : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
 | |
| 
 | |
|   // This routine assumes that the range begin/end matches the regex for integer
 | |
|   // and FP constants (specifically, the 'pp-number' regex), and assumes that
 | |
|   // the byte at "*end" is both valid and not part of the regex.  Because of
 | |
|   // this, it doesn't have to check for 'overscan' in various places.
 | |
|   assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
 | |
| 
 | |
|   s = DigitsBegin = ThisTokBegin;
 | |
|   saw_exponent = false;
 | |
|   saw_period = false;
 | |
|   saw_ud_suffix = false;
 | |
|   isLong = false;
 | |
|   isUnsigned = false;
 | |
|   isLongLong = false;
 | |
|   isFloat = false;
 | |
|   isImaginary = false;
 | |
|   MicrosoftInteger = 0;
 | |
|   hadError = false;
 | |
| 
 | |
|   if (*s == '0') { // parse radix
 | |
|     ParseNumberStartingWithZero(TokLoc);
 | |
|     if (hadError)
 | |
|       return;
 | |
|   } else { // the first digit is non-zero
 | |
|     radix = 10;
 | |
|     s = SkipDigits(s);
 | |
|     if (s == ThisTokEnd) {
 | |
|       // Done.
 | |
|     } else if (isHexDigit(*s) && !(*s == 'e' || *s == 'E')) {
 | |
|       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
 | |
|               diag::err_invalid_digit) << StringRef(s, 1) << 0;
 | |
|       hadError = true;
 | |
|       return;
 | |
|     } else if (*s == '.') {
 | |
|       checkSeparator(TokLoc, s, CSK_AfterDigits);
 | |
|       s++;
 | |
|       saw_period = true;
 | |
|       checkSeparator(TokLoc, s, CSK_BeforeDigits);
 | |
|       s = SkipDigits(s);
 | |
|     }
 | |
|     if ((*s == 'e' || *s == 'E')) { // exponent
 | |
|       checkSeparator(TokLoc, s, CSK_AfterDigits);
 | |
|       const char *Exponent = s;
 | |
|       s++;
 | |
|       saw_exponent = true;
 | |
|       if (*s == '+' || *s == '-')  s++; // sign
 | |
|       checkSeparator(TokLoc, s, CSK_BeforeDigits);
 | |
|       const char *first_non_digit = SkipDigits(s);
 | |
|       if (first_non_digit != s) {
 | |
|         s = first_non_digit;
 | |
|       } else {
 | |
|         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent - ThisTokBegin),
 | |
|                 diag::err_exponent_has_no_digits);
 | |
|         hadError = true;
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SuffixBegin = s;
 | |
|   checkSeparator(TokLoc, s, CSK_AfterDigits);
 | |
| 
 | |
|   // Parse the suffix.  At this point we can classify whether we have an FP or
 | |
|   // integer constant.
 | |
|   bool isFPConstant = isFloatingLiteral();
 | |
|   const char *ImaginarySuffixLoc = nullptr;
 | |
| 
 | |
|   // Loop over all of the characters of the suffix.  If we see something bad,
 | |
|   // we break out of the loop.
 | |
|   for (; s != ThisTokEnd; ++s) {
 | |
|     switch (*s) {
 | |
|     case 'f':      // FP Suffix for "float"
 | |
|     case 'F':
 | |
|       if (!isFPConstant) break;  // Error for integer constant.
 | |
|       if (isFloat || isLong) break; // FF, LF invalid.
 | |
|       isFloat = true;
 | |
|       continue;  // Success.
 | |
|     case 'u':
 | |
|     case 'U':
 | |
|       if (isFPConstant) break;  // Error for floating constant.
 | |
|       if (isUnsigned) break;    // Cannot be repeated.
 | |
|       isUnsigned = true;
 | |
|       continue;  // Success.
 | |
|     case 'l':
 | |
|     case 'L':
 | |
|       if (isLong || isLongLong) break;  // Cannot be repeated.
 | |
|       if (isFloat) break;               // LF invalid.
 | |
| 
 | |
|       // Check for long long.  The L's need to be adjacent and the same case.
 | |
|       if (s[1] == s[0]) {
 | |
|         assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
 | |
|         if (isFPConstant) break;        // long long invalid for floats.
 | |
|         isLongLong = true;
 | |
|         ++s;  // Eat both of them.
 | |
|       } else {
 | |
|         isLong = true;
 | |
|       }
 | |
|       continue;  // Success.
 | |
|     case 'i':
 | |
|     case 'I':
 | |
|       if (PP.getLangOpts().MicrosoftExt) {
 | |
|         if (isLong || isLongLong || MicrosoftInteger)
 | |
|           break;
 | |
| 
 | |
|         if (!isFPConstant) {
 | |
|           // Allow i8, i16, i32, and i64.
 | |
|           switch (s[1]) {
 | |
|           case '8':
 | |
|             s += 2; // i8 suffix
 | |
|             MicrosoftInteger = 8;
 | |
|             break;
 | |
|           case '1':
 | |
|             if (s[2] == '6') {
 | |
|               s += 3; // i16 suffix
 | |
|               MicrosoftInteger = 16;
 | |
|             }
 | |
|             break;
 | |
|           case '3':
 | |
|             if (s[2] == '2') {
 | |
|               s += 3; // i32 suffix
 | |
|               MicrosoftInteger = 32;
 | |
|             }
 | |
|             break;
 | |
|           case '6':
 | |
|             if (s[2] == '4') {
 | |
|               s += 3; // i64 suffix
 | |
|               MicrosoftInteger = 64;
 | |
|             }
 | |
|             break;
 | |
|           default:
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if (MicrosoftInteger) {
 | |
|           assert(s <= ThisTokEnd && "didn't maximally munch?");
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       // "i", "if", and "il" are user-defined suffixes in C++1y.
 | |
|       if (*s == 'i' && PP.getLangOpts().CPlusPlus14)
 | |
|         break;
 | |
|       // fall through.
 | |
|     case 'j':
 | |
|     case 'J':
 | |
|       if (isImaginary) break;   // Cannot be repeated.
 | |
|       isImaginary = true;
 | |
|       ImaginarySuffixLoc = s;
 | |
|       continue;  // Success.
 | |
|     }
 | |
|     // If we reached here, there was an error or a ud-suffix.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (s != ThisTokEnd) {
 | |
|     // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
 | |
|     expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
 | |
|     if (isValidUDSuffix(PP.getLangOpts(), UDSuffixBuf)) {
 | |
|       // Any suffix pieces we might have parsed are actually part of the
 | |
|       // ud-suffix.
 | |
|       isLong = false;
 | |
|       isUnsigned = false;
 | |
|       isLongLong = false;
 | |
|       isFloat = false;
 | |
|       isImaginary = false;
 | |
|       MicrosoftInteger = 0;
 | |
| 
 | |
|       saw_ud_suffix = true;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Report an error if there are any.
 | |
|     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
 | |
|             diag::err_invalid_suffix_constant)
 | |
|       << StringRef(SuffixBegin, ThisTokEnd-SuffixBegin) << isFPConstant;
 | |
|     hadError = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (isImaginary) {
 | |
|     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc,
 | |
|                                        ImaginarySuffixLoc - ThisTokBegin),
 | |
|             diag::ext_imaginary_constant);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
 | |
| /// suffixes as ud-suffixes, because the diagnostic experience is better if we
 | |
| /// treat it as an invalid suffix.
 | |
| bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
 | |
|                                            StringRef Suffix) {
 | |
|   if (!LangOpts.CPlusPlus11 || Suffix.empty())
 | |
|     return false;
 | |
| 
 | |
|   // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
 | |
|   if (Suffix[0] == '_')
 | |
|     return true;
 | |
| 
 | |
|   // In C++11, there are no library suffixes.
 | |
|   if (!LangOpts.CPlusPlus14)
 | |
|     return false;
 | |
| 
 | |
|   // In C++1y, "s", "h", "min", "ms", "us", and "ns" are used in the library.
 | |
|   // Per tweaked N3660, "il", "i", and "if" are also used in the library.
 | |
|   return llvm::StringSwitch<bool>(Suffix)
 | |
|       .Cases("h", "min", "s", true)
 | |
|       .Cases("ms", "us", "ns", true)
 | |
|       .Cases("il", "i", "if", true)
 | |
|       .Default(false);
 | |
| }
 | |
| 
 | |
| void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
 | |
|                                           const char *Pos,
 | |
|                                           CheckSeparatorKind IsAfterDigits) {
 | |
|   if (IsAfterDigits == CSK_AfterDigits) {
 | |
|     if (Pos == ThisTokBegin)
 | |
|       return;
 | |
|     --Pos;
 | |
|   } else if (Pos == ThisTokEnd)
 | |
|     return;
 | |
| 
 | |
|   if (isDigitSeparator(*Pos))
 | |
|     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin),
 | |
|             diag::err_digit_separator_not_between_digits)
 | |
|       << IsAfterDigits;
 | |
| }
 | |
| 
 | |
| /// ParseNumberStartingWithZero - This method is called when the first character
 | |
| /// of the number is found to be a zero.  This means it is either an octal
 | |
| /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
 | |
| /// a floating point number (01239.123e4).  Eat the prefix, determining the
 | |
| /// radix etc.
 | |
| void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
 | |
|   assert(s[0] == '0' && "Invalid method call");
 | |
|   s++;
 | |
| 
 | |
|   int c1 = s[0];
 | |
| 
 | |
|   // Handle a hex number like 0x1234.
 | |
|   if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
 | |
|     s++;
 | |
|     assert(s < ThisTokEnd && "didn't maximally munch?");
 | |
|     radix = 16;
 | |
|     DigitsBegin = s;
 | |
|     s = SkipHexDigits(s);
 | |
|     bool noSignificand = (s == DigitsBegin);
 | |
|     if (s == ThisTokEnd) {
 | |
|       // Done.
 | |
|     } else if (*s == '.') {
 | |
|       s++;
 | |
|       saw_period = true;
 | |
|       const char *floatDigitsBegin = s;
 | |
|       checkSeparator(TokLoc, s, CSK_BeforeDigits);
 | |
|       s = SkipHexDigits(s);
 | |
|       noSignificand &= (floatDigitsBegin == s);
 | |
|     }
 | |
| 
 | |
|     if (noSignificand) {
 | |
|       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
 | |
|         diag::err_hexconstant_requires) << 1;
 | |
|       hadError = true;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // A binary exponent can appear with or with a '.'. If dotted, the
 | |
|     // binary exponent is required.
 | |
|     if (*s == 'p' || *s == 'P') {
 | |
|       checkSeparator(TokLoc, s, CSK_AfterDigits);
 | |
|       const char *Exponent = s;
 | |
|       s++;
 | |
|       saw_exponent = true;
 | |
|       if (*s == '+' || *s == '-')  s++; // sign
 | |
|       const char *first_non_digit = SkipDigits(s);
 | |
|       if (first_non_digit == s) {
 | |
|         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
 | |
|                 diag::err_exponent_has_no_digits);
 | |
|         hadError = true;
 | |
|         return;
 | |
|       }
 | |
|       checkSeparator(TokLoc, s, CSK_BeforeDigits);
 | |
|       s = first_non_digit;
 | |
| 
 | |
|       if (!PP.getLangOpts().HexFloats)
 | |
|         PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
 | |
|     } else if (saw_period) {
 | |
|       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
 | |
|               diag::err_hexconstant_requires) << 0;
 | |
|       hadError = true;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle simple binary numbers 0b01010
 | |
|   if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
 | |
|     // 0b101010 is a C++1y / GCC extension.
 | |
|     PP.Diag(TokLoc,
 | |
|             PP.getLangOpts().CPlusPlus14
 | |
|               ? diag::warn_cxx11_compat_binary_literal
 | |
|               : PP.getLangOpts().CPlusPlus
 | |
|                 ? diag::ext_binary_literal_cxx14
 | |
|                 : diag::ext_binary_literal);
 | |
|     ++s;
 | |
|     assert(s < ThisTokEnd && "didn't maximally munch?");
 | |
|     radix = 2;
 | |
|     DigitsBegin = s;
 | |
|     s = SkipBinaryDigits(s);
 | |
|     if (s == ThisTokEnd) {
 | |
|       // Done.
 | |
|     } else if (isHexDigit(*s)) {
 | |
|       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
 | |
|               diag::err_invalid_digit) << StringRef(s, 1) << 2;
 | |
|       hadError = true;
 | |
|     }
 | |
|     // Other suffixes will be diagnosed by the caller.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // For now, the radix is set to 8. If we discover that we have a
 | |
|   // floating point constant, the radix will change to 10. Octal floating
 | |
|   // point constants are not permitted (only decimal and hexadecimal).
 | |
|   radix = 8;
 | |
|   DigitsBegin = s;
 | |
|   s = SkipOctalDigits(s);
 | |
|   if (s == ThisTokEnd)
 | |
|     return; // Done, simple octal number like 01234
 | |
| 
 | |
|   // If we have some other non-octal digit that *is* a decimal digit, see if
 | |
|   // this is part of a floating point number like 094.123 or 09e1.
 | |
|   if (isDigit(*s)) {
 | |
|     const char *EndDecimal = SkipDigits(s);
 | |
|     if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
 | |
|       s = EndDecimal;
 | |
|       radix = 10;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we have a hex digit other than 'e' (which denotes a FP exponent) then
 | |
|   // the code is using an incorrect base.
 | |
|   if (isHexDigit(*s) && *s != 'e' && *s != 'E') {
 | |
|     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
 | |
|             diag::err_invalid_digit) << StringRef(s, 1) << 1;
 | |
|     hadError = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (*s == '.') {
 | |
|     s++;
 | |
|     radix = 10;
 | |
|     saw_period = true;
 | |
|     checkSeparator(TokLoc, s, CSK_BeforeDigits);
 | |
|     s = SkipDigits(s); // Skip suffix.
 | |
|   }
 | |
|   if (*s == 'e' || *s == 'E') { // exponent
 | |
|     checkSeparator(TokLoc, s, CSK_AfterDigits);
 | |
|     const char *Exponent = s;
 | |
|     s++;
 | |
|     radix = 10;
 | |
|     saw_exponent = true;
 | |
|     if (*s == '+' || *s == '-')  s++; // sign
 | |
|     const char *first_non_digit = SkipDigits(s);
 | |
|     if (first_non_digit != s) {
 | |
|       checkSeparator(TokLoc, s, CSK_BeforeDigits);
 | |
|       s = first_non_digit;
 | |
|     } else {
 | |
|       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
 | |
|               diag::err_exponent_has_no_digits);
 | |
|       hadError = true;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
 | |
|   switch (Radix) {
 | |
|   case 2:
 | |
|     return NumDigits <= 64;
 | |
|   case 8:
 | |
|     return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
 | |
|   case 10:
 | |
|     return NumDigits <= 19; // floor(log10(2^64))
 | |
|   case 16:
 | |
|     return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
 | |
|   default:
 | |
|     llvm_unreachable("impossible Radix");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// GetIntegerValue - Convert this numeric literal value to an APInt that
 | |
| /// matches Val's input width.  If there is an overflow, set Val to the low bits
 | |
| /// of the result and return true.  Otherwise, return false.
 | |
| bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
 | |
|   // Fast path: Compute a conservative bound on the maximum number of
 | |
|   // bits per digit in this radix. If we can't possibly overflow a
 | |
|   // uint64 based on that bound then do the simple conversion to
 | |
|   // integer. This avoids the expensive overflow checking below, and
 | |
|   // handles the common cases that matter (small decimal integers and
 | |
|   // hex/octal values which don't overflow).
 | |
|   const unsigned NumDigits = SuffixBegin - DigitsBegin;
 | |
|   if (alwaysFitsInto64Bits(radix, NumDigits)) {
 | |
|     uint64_t N = 0;
 | |
|     for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
 | |
|       if (!isDigitSeparator(*Ptr))
 | |
|         N = N * radix + llvm::hexDigitValue(*Ptr);
 | |
| 
 | |
|     // This will truncate the value to Val's input width. Simply check
 | |
|     // for overflow by comparing.
 | |
|     Val = N;
 | |
|     return Val.getZExtValue() != N;
 | |
|   }
 | |
| 
 | |
|   Val = 0;
 | |
|   const char *Ptr = DigitsBegin;
 | |
| 
 | |
|   llvm::APInt RadixVal(Val.getBitWidth(), radix);
 | |
|   llvm::APInt CharVal(Val.getBitWidth(), 0);
 | |
|   llvm::APInt OldVal = Val;
 | |
| 
 | |
|   bool OverflowOccurred = false;
 | |
|   while (Ptr < SuffixBegin) {
 | |
|     if (isDigitSeparator(*Ptr)) {
 | |
|       ++Ptr;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     unsigned C = llvm::hexDigitValue(*Ptr++);
 | |
| 
 | |
|     // If this letter is out of bound for this radix, reject it.
 | |
|     assert(C < radix && "NumericLiteralParser ctor should have rejected this");
 | |
| 
 | |
|     CharVal = C;
 | |
| 
 | |
|     // Add the digit to the value in the appropriate radix.  If adding in digits
 | |
|     // made the value smaller, then this overflowed.
 | |
|     OldVal = Val;
 | |
| 
 | |
|     // Multiply by radix, did overflow occur on the multiply?
 | |
|     Val *= RadixVal;
 | |
|     OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
 | |
| 
 | |
|     // Add value, did overflow occur on the value?
 | |
|     //   (a + b) ult b  <=> overflow
 | |
|     Val += CharVal;
 | |
|     OverflowOccurred |= Val.ult(CharVal);
 | |
|   }
 | |
|   return OverflowOccurred;
 | |
| }
 | |
| 
 | |
| llvm::APFloat::opStatus
 | |
| NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
 | |
|   using llvm::APFloat;
 | |
| 
 | |
|   unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
 | |
| 
 | |
|   llvm::SmallString<16> Buffer;
 | |
|   StringRef Str(ThisTokBegin, n);
 | |
|   if (Str.find('\'') != StringRef::npos) {
 | |
|     Buffer.reserve(n);
 | |
|     std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
 | |
|                         &isDigitSeparator);
 | |
|     Str = Buffer;
 | |
|   }
 | |
| 
 | |
|   return Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \verbatim
 | |
| ///       user-defined-character-literal: [C++11 lex.ext]
 | |
| ///         character-literal ud-suffix
 | |
| ///       ud-suffix:
 | |
| ///         identifier
 | |
| ///       character-literal: [C++11 lex.ccon]
 | |
| ///         ' c-char-sequence '
 | |
| ///         u' c-char-sequence '
 | |
| ///         U' c-char-sequence '
 | |
| ///         L' c-char-sequence '
 | |
| ///       c-char-sequence:
 | |
| ///         c-char
 | |
| ///         c-char-sequence c-char
 | |
| ///       c-char:
 | |
| ///         any member of the source character set except the single-quote ',
 | |
| ///           backslash \, or new-line character
 | |
| ///         escape-sequence
 | |
| ///         universal-character-name
 | |
| ///       escape-sequence:
 | |
| ///         simple-escape-sequence
 | |
| ///         octal-escape-sequence
 | |
| ///         hexadecimal-escape-sequence
 | |
| ///       simple-escape-sequence:
 | |
| ///         one of \' \" \? \\ \a \b \f \n \r \t \v
 | |
| ///       octal-escape-sequence:
 | |
| ///         \ octal-digit
 | |
| ///         \ octal-digit octal-digit
 | |
| ///         \ octal-digit octal-digit octal-digit
 | |
| ///       hexadecimal-escape-sequence:
 | |
| ///         \x hexadecimal-digit
 | |
| ///         hexadecimal-escape-sequence hexadecimal-digit
 | |
| ///       universal-character-name: [C++11 lex.charset]
 | |
| ///         \u hex-quad
 | |
| ///         \U hex-quad hex-quad
 | |
| ///       hex-quad:
 | |
| ///         hex-digit hex-digit hex-digit hex-digit
 | |
| /// \endverbatim
 | |
| ///
 | |
| CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
 | |
|                                      SourceLocation Loc, Preprocessor &PP,
 | |
|                                      tok::TokenKind kind) {
 | |
|   // At this point we know that the character matches the regex "(L|u|U)?'.*'".
 | |
|   HadError = false;
 | |
| 
 | |
|   Kind = kind;
 | |
| 
 | |
|   const char *TokBegin = begin;
 | |
| 
 | |
|   // Skip over wide character determinant.
 | |
|   if (Kind != tok::char_constant)
 | |
|     ++begin;
 | |
|   if (Kind == tok::utf8_char_constant)
 | |
|     ++begin;
 | |
| 
 | |
|   // Skip over the entry quote.
 | |
|   assert(begin[0] == '\'' && "Invalid token lexed");
 | |
|   ++begin;
 | |
| 
 | |
|   // Remove an optional ud-suffix.
 | |
|   if (end[-1] != '\'') {
 | |
|     const char *UDSuffixEnd = end;
 | |
|     do {
 | |
|       --end;
 | |
|     } while (end[-1] != '\'');
 | |
|     // FIXME: Don't bother with this if !tok.hasUCN().
 | |
|     expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
 | |
|     UDSuffixOffset = end - TokBegin;
 | |
|   }
 | |
| 
 | |
|   // Trim the ending quote.
 | |
|   assert(end != begin && "Invalid token lexed");
 | |
|   --end;
 | |
| 
 | |
|   // FIXME: The "Value" is an uint64_t so we can handle char literals of
 | |
|   // up to 64-bits.
 | |
|   // FIXME: This extensively assumes that 'char' is 8-bits.
 | |
|   assert(PP.getTargetInfo().getCharWidth() == 8 &&
 | |
|          "Assumes char is 8 bits");
 | |
|   assert(PP.getTargetInfo().getIntWidth() <= 64 &&
 | |
|          (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
 | |
|          "Assumes sizeof(int) on target is <= 64 and a multiple of char");
 | |
|   assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
 | |
|          "Assumes sizeof(wchar) on target is <= 64");
 | |
| 
 | |
|   SmallVector<uint32_t, 4> codepoint_buffer;
 | |
|   codepoint_buffer.resize(end - begin);
 | |
|   uint32_t *buffer_begin = &codepoint_buffer.front();
 | |
|   uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
 | |
| 
 | |
|   // Unicode escapes representing characters that cannot be correctly
 | |
|   // represented in a single code unit are disallowed in character literals
 | |
|   // by this implementation.
 | |
|   uint32_t largest_character_for_kind;
 | |
|   if (tok::wide_char_constant == Kind) {
 | |
|     largest_character_for_kind =
 | |
|         0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
 | |
|   } else if (tok::utf8_char_constant == Kind) {
 | |
|     largest_character_for_kind = 0x7F;
 | |
|   } else if (tok::utf16_char_constant == Kind) {
 | |
|     largest_character_for_kind = 0xFFFF;
 | |
|   } else if (tok::utf32_char_constant == Kind) {
 | |
|     largest_character_for_kind = 0x10FFFF;
 | |
|   } else {
 | |
|     largest_character_for_kind = 0x7Fu;
 | |
|   }
 | |
| 
 | |
|   while (begin != end) {
 | |
|     // Is this a span of non-escape characters?
 | |
|     if (begin[0] != '\\') {
 | |
|       char const *start = begin;
 | |
|       do {
 | |
|         ++begin;
 | |
|       } while (begin != end && *begin != '\\');
 | |
| 
 | |
|       char const *tmp_in_start = start;
 | |
|       uint32_t *tmp_out_start = buffer_begin;
 | |
|       ConversionResult res =
 | |
|           ConvertUTF8toUTF32(reinterpret_cast<UTF8 const **>(&start),
 | |
|                              reinterpret_cast<UTF8 const *>(begin),
 | |
|                              &buffer_begin, buffer_end, strictConversion);
 | |
|       if (res != conversionOK) {
 | |
|         // If we see bad encoding for unprefixed character literals, warn and
 | |
|         // simply copy the byte values, for compatibility with gcc and
 | |
|         // older versions of clang.
 | |
|         bool NoErrorOnBadEncoding = isAscii();
 | |
|         unsigned Msg = diag::err_bad_character_encoding;
 | |
|         if (NoErrorOnBadEncoding)
 | |
|           Msg = diag::warn_bad_character_encoding;
 | |
|         PP.Diag(Loc, Msg);
 | |
|         if (NoErrorOnBadEncoding) {
 | |
|           start = tmp_in_start;
 | |
|           buffer_begin = tmp_out_start;
 | |
|           for (; start != begin; ++start, ++buffer_begin)
 | |
|             *buffer_begin = static_cast<uint8_t>(*start);
 | |
|         } else {
 | |
|           HadError = true;
 | |
|         }
 | |
|       } else {
 | |
|         for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
 | |
|           if (*tmp_out_start > largest_character_for_kind) {
 | |
|             HadError = true;
 | |
|             PP.Diag(Loc, diag::err_character_too_large);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
|     // Is this a Universal Character Name escape?
 | |
|     if (begin[1] == 'u' || begin[1] == 'U') {
 | |
|       unsigned short UcnLen = 0;
 | |
|       if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
 | |
|                             FullSourceLoc(Loc, PP.getSourceManager()),
 | |
|                             &PP.getDiagnostics(), PP.getLangOpts(), true)) {
 | |
|         HadError = true;
 | |
|       } else if (*buffer_begin > largest_character_for_kind) {
 | |
|         HadError = true;
 | |
|         PP.Diag(Loc, diag::err_character_too_large);
 | |
|       }
 | |
| 
 | |
|       ++buffer_begin;
 | |
|       continue;
 | |
|     }
 | |
|     unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
 | |
|     uint64_t result =
 | |
|       ProcessCharEscape(TokBegin, begin, end, HadError,
 | |
|                         FullSourceLoc(Loc,PP.getSourceManager()),
 | |
|                         CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
 | |
|     *buffer_begin++ = result;
 | |
|   }
 | |
| 
 | |
|   unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
 | |
| 
 | |
|   if (NumCharsSoFar > 1) {
 | |
|     if (isWide())
 | |
|       PP.Diag(Loc, diag::warn_extraneous_char_constant);
 | |
|     else if (isAscii() && NumCharsSoFar == 4)
 | |
|       PP.Diag(Loc, diag::ext_four_char_character_literal);
 | |
|     else if (isAscii())
 | |
|       PP.Diag(Loc, diag::ext_multichar_character_literal);
 | |
|     else
 | |
|       PP.Diag(Loc, diag::err_multichar_utf_character_literal);
 | |
|     IsMultiChar = true;
 | |
|   } else {
 | |
|     IsMultiChar = false;
 | |
|   }
 | |
| 
 | |
|   llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
 | |
| 
 | |
|   // Narrow character literals act as though their value is concatenated
 | |
|   // in this implementation, but warn on overflow.
 | |
|   bool multi_char_too_long = false;
 | |
|   if (isAscii() && isMultiChar()) {
 | |
|     LitVal = 0;
 | |
|     for (size_t i = 0; i < NumCharsSoFar; ++i) {
 | |
|       // check for enough leading zeros to shift into
 | |
|       multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
 | |
|       LitVal <<= 8;
 | |
|       LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
 | |
|     }
 | |
|   } else if (NumCharsSoFar > 0) {
 | |
|     // otherwise just take the last character
 | |
|     LitVal = buffer_begin[-1];
 | |
|   }
 | |
| 
 | |
|   if (!HadError && multi_char_too_long) {
 | |
|     PP.Diag(Loc, diag::warn_char_constant_too_large);
 | |
|   }
 | |
| 
 | |
|   // Transfer the value from APInt to uint64_t
 | |
|   Value = LitVal.getZExtValue();
 | |
| 
 | |
|   // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
 | |
|   // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
 | |
|   // character constants are not sign extended in the this implementation:
 | |
|   // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
 | |
|   if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
 | |
|       PP.getLangOpts().CharIsSigned)
 | |
|     Value = (signed char)Value;
 | |
| }
 | |
| 
 | |
| /// \verbatim
 | |
| ///       string-literal: [C++0x lex.string]
 | |
| ///         encoding-prefix " [s-char-sequence] "
 | |
| ///         encoding-prefix R raw-string
 | |
| ///       encoding-prefix:
 | |
| ///         u8
 | |
| ///         u
 | |
| ///         U
 | |
| ///         L
 | |
| ///       s-char-sequence:
 | |
| ///         s-char
 | |
| ///         s-char-sequence s-char
 | |
| ///       s-char:
 | |
| ///         any member of the source character set except the double-quote ",
 | |
| ///           backslash \, or new-line character
 | |
| ///         escape-sequence
 | |
| ///         universal-character-name
 | |
| ///       raw-string:
 | |
| ///         " d-char-sequence ( r-char-sequence ) d-char-sequence "
 | |
| ///       r-char-sequence:
 | |
| ///         r-char
 | |
| ///         r-char-sequence r-char
 | |
| ///       r-char:
 | |
| ///         any member of the source character set, except a right parenthesis )
 | |
| ///           followed by the initial d-char-sequence (which may be empty)
 | |
| ///           followed by a double quote ".
 | |
| ///       d-char-sequence:
 | |
| ///         d-char
 | |
| ///         d-char-sequence d-char
 | |
| ///       d-char:
 | |
| ///         any member of the basic source character set except:
 | |
| ///           space, the left parenthesis (, the right parenthesis ),
 | |
| ///           the backslash \, and the control characters representing horizontal
 | |
| ///           tab, vertical tab, form feed, and newline.
 | |
| ///       escape-sequence: [C++0x lex.ccon]
 | |
| ///         simple-escape-sequence
 | |
| ///         octal-escape-sequence
 | |
| ///         hexadecimal-escape-sequence
 | |
| ///       simple-escape-sequence:
 | |
| ///         one of \' \" \? \\ \a \b \f \n \r \t \v
 | |
| ///       octal-escape-sequence:
 | |
| ///         \ octal-digit
 | |
| ///         \ octal-digit octal-digit
 | |
| ///         \ octal-digit octal-digit octal-digit
 | |
| ///       hexadecimal-escape-sequence:
 | |
| ///         \x hexadecimal-digit
 | |
| ///         hexadecimal-escape-sequence hexadecimal-digit
 | |
| ///       universal-character-name:
 | |
| ///         \u hex-quad
 | |
| ///         \U hex-quad hex-quad
 | |
| ///       hex-quad:
 | |
| ///         hex-digit hex-digit hex-digit hex-digit
 | |
| /// \endverbatim
 | |
| ///
 | |
| StringLiteralParser::
 | |
| StringLiteralParser(ArrayRef<Token> StringToks,
 | |
|                     Preprocessor &PP, bool Complain)
 | |
|   : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
 | |
|     Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() :nullptr),
 | |
|     MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
 | |
|     ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
 | |
|   init(StringToks);
 | |
| }
 | |
| 
 | |
| void StringLiteralParser::init(ArrayRef<Token> StringToks){
 | |
|   // The literal token may have come from an invalid source location (e.g. due
 | |
|   // to a PCH error), in which case the token length will be 0.
 | |
|   if (StringToks.empty() || StringToks[0].getLength() < 2)
 | |
|     return DiagnoseLexingError(SourceLocation());
 | |
| 
 | |
|   // Scan all of the string portions, remember the max individual token length,
 | |
|   // computing a bound on the concatenated string length, and see whether any
 | |
|   // piece is a wide-string.  If any of the string portions is a wide-string
 | |
|   // literal, the result is a wide-string literal [C99 6.4.5p4].
 | |
|   assert(!StringToks.empty() && "expected at least one token");
 | |
|   MaxTokenLength = StringToks[0].getLength();
 | |
|   assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
 | |
|   SizeBound = StringToks[0].getLength()-2;  // -2 for "".
 | |
|   Kind = StringToks[0].getKind();
 | |
| 
 | |
|   hadError = false;
 | |
| 
 | |
|   // Implement Translation Phase #6: concatenation of string literals
 | |
|   /// (C99 5.1.1.2p1).  The common case is only one string fragment.
 | |
|   for (unsigned i = 1; i != StringToks.size(); ++i) {
 | |
|     if (StringToks[i].getLength() < 2)
 | |
|       return DiagnoseLexingError(StringToks[i].getLocation());
 | |
| 
 | |
|     // The string could be shorter than this if it needs cleaning, but this is a
 | |
|     // reasonable bound, which is all we need.
 | |
|     assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
 | |
|     SizeBound += StringToks[i].getLength()-2;  // -2 for "".
 | |
| 
 | |
|     // Remember maximum string piece length.
 | |
|     if (StringToks[i].getLength() > MaxTokenLength)
 | |
|       MaxTokenLength = StringToks[i].getLength();
 | |
| 
 | |
|     // Remember if we see any wide or utf-8/16/32 strings.
 | |
|     // Also check for illegal concatenations.
 | |
|     if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
 | |
|       if (isAscii()) {
 | |
|         Kind = StringToks[i].getKind();
 | |
|       } else {
 | |
|         if (Diags)
 | |
|           Diags->Report(StringToks[i].getLocation(),
 | |
|                         diag::err_unsupported_string_concat);
 | |
|         hadError = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Include space for the null terminator.
 | |
|   ++SizeBound;
 | |
| 
 | |
|   // TODO: K&R warning: "traditional C rejects string constant concatenation"
 | |
| 
 | |
|   // Get the width in bytes of char/wchar_t/char16_t/char32_t
 | |
|   CharByteWidth = getCharWidth(Kind, Target);
 | |
|   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
 | |
|   CharByteWidth /= 8;
 | |
| 
 | |
|   // The output buffer size needs to be large enough to hold wide characters.
 | |
|   // This is a worst-case assumption which basically corresponds to L"" "long".
 | |
|   SizeBound *= CharByteWidth;
 | |
| 
 | |
|   // Size the temporary buffer to hold the result string data.
 | |
|   ResultBuf.resize(SizeBound);
 | |
| 
 | |
|   // Likewise, but for each string piece.
 | |
|   SmallString<512> TokenBuf;
 | |
|   TokenBuf.resize(MaxTokenLength);
 | |
| 
 | |
|   // Loop over all the strings, getting their spelling, and expanding them to
 | |
|   // wide strings as appropriate.
 | |
|   ResultPtr = &ResultBuf[0];   // Next byte to fill in.
 | |
| 
 | |
|   Pascal = false;
 | |
| 
 | |
|   SourceLocation UDSuffixTokLoc;
 | |
| 
 | |
|   for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
 | |
|     const char *ThisTokBuf = &TokenBuf[0];
 | |
|     // Get the spelling of the token, which eliminates trigraphs, etc.  We know
 | |
|     // that ThisTokBuf points to a buffer that is big enough for the whole token
 | |
|     // and 'spelled' tokens can only shrink.
 | |
|     bool StringInvalid = false;
 | |
|     unsigned ThisTokLen = 
 | |
|       Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
 | |
|                          &StringInvalid);
 | |
|     if (StringInvalid)
 | |
|       return DiagnoseLexingError(StringToks[i].getLocation());
 | |
| 
 | |
|     const char *ThisTokBegin = ThisTokBuf;
 | |
|     const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
 | |
| 
 | |
|     // Remove an optional ud-suffix.
 | |
|     if (ThisTokEnd[-1] != '"') {
 | |
|       const char *UDSuffixEnd = ThisTokEnd;
 | |
|       do {
 | |
|         --ThisTokEnd;
 | |
|       } while (ThisTokEnd[-1] != '"');
 | |
| 
 | |
|       StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
 | |
| 
 | |
|       if (UDSuffixBuf.empty()) {
 | |
|         if (StringToks[i].hasUCN())
 | |
|           expandUCNs(UDSuffixBuf, UDSuffix);
 | |
|         else
 | |
|           UDSuffixBuf.assign(UDSuffix);
 | |
|         UDSuffixToken = i;
 | |
|         UDSuffixOffset = ThisTokEnd - ThisTokBuf;
 | |
|         UDSuffixTokLoc = StringToks[i].getLocation();
 | |
|       } else {
 | |
|         SmallString<32> ExpandedUDSuffix;
 | |
|         if (StringToks[i].hasUCN()) {
 | |
|           expandUCNs(ExpandedUDSuffix, UDSuffix);
 | |
|           UDSuffix = ExpandedUDSuffix;
 | |
|         }
 | |
| 
 | |
|         // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
 | |
|         // result of a concatenation involving at least one user-defined-string-
 | |
|         // literal, all the participating user-defined-string-literals shall
 | |
|         // have the same ud-suffix.
 | |
|         if (UDSuffixBuf != UDSuffix) {
 | |
|           if (Diags) {
 | |
|             SourceLocation TokLoc = StringToks[i].getLocation();
 | |
|             Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
 | |
|               << UDSuffixBuf << UDSuffix
 | |
|               << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
 | |
|               << SourceRange(TokLoc, TokLoc);
 | |
|           }
 | |
|           hadError = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Strip the end quote.
 | |
|     --ThisTokEnd;
 | |
| 
 | |
|     // TODO: Input character set mapping support.
 | |
| 
 | |
|     // Skip marker for wide or unicode strings.
 | |
|     if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
 | |
|       ++ThisTokBuf;
 | |
|       // Skip 8 of u8 marker for utf8 strings.
 | |
|       if (ThisTokBuf[0] == '8')
 | |
|         ++ThisTokBuf;
 | |
|     }
 | |
| 
 | |
|     // Check for raw string
 | |
|     if (ThisTokBuf[0] == 'R') {
 | |
|       ThisTokBuf += 2; // skip R"
 | |
| 
 | |
|       const char *Prefix = ThisTokBuf;
 | |
|       while (ThisTokBuf[0] != '(')
 | |
|         ++ThisTokBuf;
 | |
|       ++ThisTokBuf; // skip '('
 | |
| 
 | |
|       // Remove same number of characters from the end
 | |
|       ThisTokEnd -= ThisTokBuf - Prefix;
 | |
|       assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
 | |
| 
 | |
|       // C++14 [lex.string]p4: A source-file new-line in a raw string literal
 | |
|       // results in a new-line in the resulting execution string-literal.
 | |
|       StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
 | |
|       while (!RemainingTokenSpan.empty()) {
 | |
|         // Split the string literal on \r\n boundaries.
 | |
|         size_t CRLFPos = RemainingTokenSpan.find("\r\n");
 | |
|         StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos);
 | |
|         StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos);
 | |
| 
 | |
|         // Copy everything before the \r\n sequence into the string literal.
 | |
|         if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF))
 | |
|           hadError = true;
 | |
| 
 | |
|         // Point into the \n inside the \r\n sequence and operate on the
 | |
|         // remaining portion of the literal.
 | |
|         RemainingTokenSpan = AfterCRLF.substr(1);
 | |
|       }
 | |
|     } else {
 | |
|       if (ThisTokBuf[0] != '"') {
 | |
|         // The file may have come from PCH and then changed after loading the
 | |
|         // PCH; Fail gracefully.
 | |
|         return DiagnoseLexingError(StringToks[i].getLocation());
 | |
|       }
 | |
|       ++ThisTokBuf; // skip "
 | |
| 
 | |
|       // Check if this is a pascal string
 | |
|       if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
 | |
|           ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
 | |
| 
 | |
|         // If the \p sequence is found in the first token, we have a pascal string
 | |
|         // Otherwise, if we already have a pascal string, ignore the first \p
 | |
|         if (i == 0) {
 | |
|           ++ThisTokBuf;
 | |
|           Pascal = true;
 | |
|         } else if (Pascal)
 | |
|           ThisTokBuf += 2;
 | |
|       }
 | |
| 
 | |
|       while (ThisTokBuf != ThisTokEnd) {
 | |
|         // Is this a span of non-escape characters?
 | |
|         if (ThisTokBuf[0] != '\\') {
 | |
|           const char *InStart = ThisTokBuf;
 | |
|           do {
 | |
|             ++ThisTokBuf;
 | |
|           } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
 | |
| 
 | |
|           // Copy the character span over.
 | |
|           if (CopyStringFragment(StringToks[i], ThisTokBegin,
 | |
|                                  StringRef(InStart, ThisTokBuf - InStart)))
 | |
|             hadError = true;
 | |
|           continue;
 | |
|         }
 | |
|         // Is this a Universal Character Name escape?
 | |
|         if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
 | |
|           EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
 | |
|                           ResultPtr, hadError,
 | |
|                           FullSourceLoc(StringToks[i].getLocation(), SM),
 | |
|                           CharByteWidth, Diags, Features);
 | |
|           continue;
 | |
|         }
 | |
|         // Otherwise, this is a non-UCN escape character.  Process it.
 | |
|         unsigned ResultChar =
 | |
|           ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
 | |
|                             FullSourceLoc(StringToks[i].getLocation(), SM),
 | |
|                             CharByteWidth*8, Diags, Features);
 | |
| 
 | |
|         if (CharByteWidth == 4) {
 | |
|           // FIXME: Make the type of the result buffer correct instead of
 | |
|           // using reinterpret_cast.
 | |
|           UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultPtr);
 | |
|           *ResultWidePtr = ResultChar;
 | |
|           ResultPtr += 4;
 | |
|         } else if (CharByteWidth == 2) {
 | |
|           // FIXME: Make the type of the result buffer correct instead of
 | |
|           // using reinterpret_cast.
 | |
|           UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultPtr);
 | |
|           *ResultWidePtr = ResultChar & 0xFFFF;
 | |
|           ResultPtr += 2;
 | |
|         } else {
 | |
|           assert(CharByteWidth == 1 && "Unexpected char width");
 | |
|           *ResultPtr++ = ResultChar & 0xFF;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Pascal) {
 | |
|     if (CharByteWidth == 4) {
 | |
|       // FIXME: Make the type of the result buffer correct instead of
 | |
|       // using reinterpret_cast.
 | |
|       UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultBuf.data());
 | |
|       ResultWidePtr[0] = GetNumStringChars() - 1;
 | |
|     } else if (CharByteWidth == 2) {
 | |
|       // FIXME: Make the type of the result buffer correct instead of
 | |
|       // using reinterpret_cast.
 | |
|       UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultBuf.data());
 | |
|       ResultWidePtr[0] = GetNumStringChars() - 1;
 | |
|     } else {
 | |
|       assert(CharByteWidth == 1 && "Unexpected char width");
 | |
|       ResultBuf[0] = GetNumStringChars() - 1;
 | |
|     }
 | |
| 
 | |
|     // Verify that pascal strings aren't too large.
 | |
|     if (GetStringLength() > 256) {
 | |
|       if (Diags)
 | |
|         Diags->Report(StringToks.front().getLocation(),
 | |
|                       diag::err_pascal_string_too_long)
 | |
|           << SourceRange(StringToks.front().getLocation(),
 | |
|                          StringToks.back().getLocation());
 | |
|       hadError = true;
 | |
|       return;
 | |
|     }
 | |
|   } else if (Diags) {
 | |
|     // Complain if this string literal has too many characters.
 | |
|     unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
 | |
| 
 | |
|     if (GetNumStringChars() > MaxChars)
 | |
|       Diags->Report(StringToks.front().getLocation(),
 | |
|                     diag::ext_string_too_long)
 | |
|         << GetNumStringChars() << MaxChars
 | |
|         << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
 | |
|         << SourceRange(StringToks.front().getLocation(),
 | |
|                        StringToks.back().getLocation());
 | |
|   }
 | |
| }
 | |
| 
 | |
| static const char *resyncUTF8(const char *Err, const char *End) {
 | |
|   if (Err == End)
 | |
|     return End;
 | |
|   End = Err + std::min<unsigned>(getNumBytesForUTF8(*Err), End-Err);
 | |
|   while (++Err != End && (*Err & 0xC0) == 0x80)
 | |
|     ;
 | |
|   return Err;
 | |
| }
 | |
| 
 | |
| /// \brief This function copies from Fragment, which is a sequence of bytes
 | |
| /// within Tok's contents (which begin at TokBegin) into ResultPtr.
 | |
| /// Performs widening for multi-byte characters.
 | |
| bool StringLiteralParser::CopyStringFragment(const Token &Tok,
 | |
|                                              const char *TokBegin,
 | |
|                                              StringRef Fragment) {
 | |
|   const UTF8 *ErrorPtrTmp;
 | |
|   if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
 | |
|     return false;
 | |
| 
 | |
|   // If we see bad encoding for unprefixed string literals, warn and
 | |
|   // simply copy the byte values, for compatibility with gcc and older
 | |
|   // versions of clang.
 | |
|   bool NoErrorOnBadEncoding = isAscii();
 | |
|   if (NoErrorOnBadEncoding) {
 | |
|     memcpy(ResultPtr, Fragment.data(), Fragment.size());
 | |
|     ResultPtr += Fragment.size();
 | |
|   }
 | |
| 
 | |
|   if (Diags) {
 | |
|     const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
 | |
| 
 | |
|     FullSourceLoc SourceLoc(Tok.getLocation(), SM);
 | |
|     const DiagnosticBuilder &Builder =
 | |
|       Diag(Diags, Features, SourceLoc, TokBegin,
 | |
|            ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
 | |
|            NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
 | |
|                                 : diag::err_bad_string_encoding);
 | |
| 
 | |
|     const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
 | |
|     StringRef NextFragment(NextStart, Fragment.end()-NextStart);
 | |
| 
 | |
|     // Decode into a dummy buffer.
 | |
|     SmallString<512> Dummy;
 | |
|     Dummy.reserve(Fragment.size() * CharByteWidth);
 | |
|     char *Ptr = Dummy.data();
 | |
| 
 | |
|     while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
 | |
|       const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
 | |
|       NextStart = resyncUTF8(ErrorPtr, Fragment.end());
 | |
|       Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
 | |
|                                      ErrorPtr, NextStart);
 | |
|       NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
 | |
|     }
 | |
|   }
 | |
|   return !NoErrorOnBadEncoding;
 | |
| }
 | |
| 
 | |
| void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
 | |
|   hadError = true;
 | |
|   if (Diags)
 | |
|     Diags->Report(Loc, diag::err_lexing_string);
 | |
| }
 | |
| 
 | |
| /// getOffsetOfStringByte - This function returns the offset of the
 | |
| /// specified byte of the string data represented by Token.  This handles
 | |
| /// advancing over escape sequences in the string.
 | |
| unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
 | |
|                                                     unsigned ByteNo) const {
 | |
|   // Get the spelling of the token.
 | |
|   SmallString<32> SpellingBuffer;
 | |
|   SpellingBuffer.resize(Tok.getLength());
 | |
| 
 | |
|   bool StringInvalid = false;
 | |
|   const char *SpellingPtr = &SpellingBuffer[0];
 | |
|   unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
 | |
|                                        &StringInvalid);
 | |
|   if (StringInvalid)
 | |
|     return 0;
 | |
| 
 | |
|   const char *SpellingStart = SpellingPtr;
 | |
|   const char *SpellingEnd = SpellingPtr+TokLen;
 | |
| 
 | |
|   // Handle UTF-8 strings just like narrow strings.
 | |
|   if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
 | |
|     SpellingPtr += 2;
 | |
| 
 | |
|   assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
 | |
|          SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
 | |
| 
 | |
|   // For raw string literals, this is easy.
 | |
|   if (SpellingPtr[0] == 'R') {
 | |
|     assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
 | |
|     // Skip 'R"'.
 | |
|     SpellingPtr += 2;
 | |
|     while (*SpellingPtr != '(') {
 | |
|       ++SpellingPtr;
 | |
|       assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
 | |
|     }
 | |
|     // Skip '('.
 | |
|     ++SpellingPtr;
 | |
|     return SpellingPtr - SpellingStart + ByteNo;
 | |
|   }
 | |
| 
 | |
|   // Skip over the leading quote
 | |
|   assert(SpellingPtr[0] == '"' && "Should be a string literal!");
 | |
|   ++SpellingPtr;
 | |
| 
 | |
|   // Skip over bytes until we find the offset we're looking for.
 | |
|   while (ByteNo) {
 | |
|     assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
 | |
| 
 | |
|     // Step over non-escapes simply.
 | |
|     if (*SpellingPtr != '\\') {
 | |
|       ++SpellingPtr;
 | |
|       --ByteNo;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, this is an escape character.  Advance over it.
 | |
|     bool HadError = false;
 | |
|     if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
 | |
|       const char *EscapePtr = SpellingPtr;
 | |
|       unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
 | |
|                                       1, Features, HadError);
 | |
|       if (Len > ByteNo) {
 | |
|         // ByteNo is somewhere within the escape sequence.
 | |
|         SpellingPtr = EscapePtr;
 | |
|         break;
 | |
|       }
 | |
|       ByteNo -= Len;
 | |
|     } else {
 | |
|       ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
 | |
|                         FullSourceLoc(Tok.getLocation(), SM),
 | |
|                         CharByteWidth*8, Diags, Features);
 | |
|       --ByteNo;
 | |
|     }
 | |
|     assert(!HadError && "This method isn't valid on erroneous strings");
 | |
|   }
 | |
| 
 | |
|   return SpellingPtr-SpellingStart;
 | |
| }
 |