forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			465 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			465 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the DeltaTree and related classes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Rewrite/Core/DeltaTree.h"
 | |
| #include "clang/Basic/LLVM.h"
 | |
| #include <cstdio>
 | |
| #include <cstring>
 | |
| using namespace clang;
 | |
| 
 | |
| /// The DeltaTree class is a multiway search tree (BTree) structure with some
 | |
| /// fancy features.  B-Trees are generally more memory and cache efficient
 | |
| /// than binary trees, because they store multiple keys/values in each node.
 | |
| ///
 | |
| /// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing
 | |
| /// fast lookup by FileIndex.  However, an added (important) bonus is that it
 | |
| /// can also efficiently tell us the full accumulated delta for a specific
 | |
| /// file offset as well, without traversing the whole tree.
 | |
| ///
 | |
| /// The nodes of the tree are made up of instances of two classes:
 | |
| /// DeltaTreeNode and DeltaTreeInteriorNode.  The later subclasses the
 | |
| /// former and adds children pointers.  Each node knows the full delta of all
 | |
| /// entries (recursively) contained inside of it, which allows us to get the
 | |
| /// full delta implied by a whole subtree in constant time.
 | |
| 
 | |
| namespace {
 | |
|   /// SourceDelta - As code in the original input buffer is added and deleted,
 | |
|   /// SourceDelta records are used to keep track of how the input SourceLocation
 | |
|   /// object is mapped into the output buffer.
 | |
|   struct SourceDelta {
 | |
|     unsigned FileLoc;
 | |
|     int Delta;
 | |
| 
 | |
|     static SourceDelta get(unsigned Loc, int D) {
 | |
|       SourceDelta Delta;
 | |
|       Delta.FileLoc = Loc;
 | |
|       Delta.Delta = D;
 | |
|       return Delta;
 | |
|     }
 | |
|   };
 | |
|   
 | |
|   /// DeltaTreeNode - The common part of all nodes.
 | |
|   ///
 | |
|   class DeltaTreeNode {
 | |
|   public:
 | |
|     struct InsertResult {
 | |
|       DeltaTreeNode *LHS, *RHS;
 | |
|       SourceDelta Split;
 | |
|     };
 | |
|     
 | |
|   private:
 | |
|     friend class DeltaTreeInteriorNode;
 | |
| 
 | |
|     /// WidthFactor - This controls the number of K/V slots held in the BTree:
 | |
|     /// how wide it is.  Each level of the BTree is guaranteed to have at least
 | |
|     /// WidthFactor-1 K/V pairs (except the root) and may have at most
 | |
|     /// 2*WidthFactor-1 K/V pairs.
 | |
|     enum { WidthFactor = 8 };
 | |
| 
 | |
|     /// Values - This tracks the SourceDelta's currently in this node.
 | |
|     ///
 | |
|     SourceDelta Values[2*WidthFactor-1];
 | |
| 
 | |
|     /// NumValuesUsed - This tracks the number of values this node currently
 | |
|     /// holds.
 | |
|     unsigned char NumValuesUsed;
 | |
| 
 | |
|     /// IsLeaf - This is true if this is a leaf of the btree.  If false, this is
 | |
|     /// an interior node, and is actually an instance of DeltaTreeInteriorNode.
 | |
|     bool IsLeaf;
 | |
| 
 | |
|     /// FullDelta - This is the full delta of all the values in this node and
 | |
|     /// all children nodes.
 | |
|     int FullDelta;
 | |
|   public:
 | |
|     DeltaTreeNode(bool isLeaf = true)
 | |
|       : NumValuesUsed(0), IsLeaf(isLeaf), FullDelta(0) {}
 | |
| 
 | |
|     bool isLeaf() const { return IsLeaf; }
 | |
|     int getFullDelta() const { return FullDelta; }
 | |
|     bool isFull() const { return NumValuesUsed == 2*WidthFactor-1; }
 | |
| 
 | |
|     unsigned getNumValuesUsed() const { return NumValuesUsed; }
 | |
|     const SourceDelta &getValue(unsigned i) const {
 | |
|       assert(i < NumValuesUsed && "Invalid value #");
 | |
|       return Values[i];
 | |
|     }
 | |
|     SourceDelta &getValue(unsigned i) {
 | |
|       assert(i < NumValuesUsed && "Invalid value #");
 | |
|       return Values[i];
 | |
|     }
 | |
| 
 | |
|     /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
 | |
|     /// this node.  If insertion is easy, do it and return false.  Otherwise,
 | |
|     /// split the node, populate InsertRes with info about the split, and return
 | |
|     /// true.
 | |
|     bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes);
 | |
| 
 | |
|     void DoSplit(InsertResult &InsertRes);
 | |
| 
 | |
| 
 | |
|     /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
 | |
|     /// local walk over our contained deltas.
 | |
|     void RecomputeFullDeltaLocally();
 | |
| 
 | |
|     void Destroy();
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| namespace {
 | |
|   /// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers.
 | |
|   /// This class tracks them.
 | |
|   class DeltaTreeInteriorNode : public DeltaTreeNode {
 | |
|     DeltaTreeNode *Children[2*WidthFactor];
 | |
|     ~DeltaTreeInteriorNode() {
 | |
|       for (unsigned i = 0, e = NumValuesUsed+1; i != e; ++i)
 | |
|         Children[i]->Destroy();
 | |
|     }
 | |
|     friend class DeltaTreeNode;
 | |
|   public:
 | |
|     DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {}
 | |
| 
 | |
|     DeltaTreeInteriorNode(const InsertResult &IR)
 | |
|       : DeltaTreeNode(false /*nonleaf*/) {
 | |
|       Children[0] = IR.LHS;
 | |
|       Children[1] = IR.RHS;
 | |
|       Values[0] = IR.Split;
 | |
|       FullDelta = IR.LHS->getFullDelta()+IR.RHS->getFullDelta()+IR.Split.Delta;
 | |
|       NumValuesUsed = 1;
 | |
|     }
 | |
| 
 | |
|     const DeltaTreeNode *getChild(unsigned i) const {
 | |
|       assert(i < getNumValuesUsed()+1 && "Invalid child");
 | |
|       return Children[i];
 | |
|     }
 | |
|     DeltaTreeNode *getChild(unsigned i) {
 | |
|       assert(i < getNumValuesUsed()+1 && "Invalid child");
 | |
|       return Children[i];
 | |
|     }
 | |
| 
 | |
|     static inline bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); }
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Destroy - A 'virtual' destructor.
 | |
| void DeltaTreeNode::Destroy() {
 | |
|   if (isLeaf())
 | |
|     delete this;
 | |
|   else
 | |
|     delete cast<DeltaTreeInteriorNode>(this);
 | |
| }
 | |
| 
 | |
| /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
 | |
| /// local walk over our contained deltas.
 | |
| void DeltaTreeNode::RecomputeFullDeltaLocally() {
 | |
|   int NewFullDelta = 0;
 | |
|   for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i)
 | |
|     NewFullDelta += Values[i].Delta;
 | |
|   if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this))
 | |
|     for (unsigned i = 0, e = getNumValuesUsed()+1; i != e; ++i)
 | |
|       NewFullDelta += IN->getChild(i)->getFullDelta();
 | |
|   FullDelta = NewFullDelta;
 | |
| }
 | |
| 
 | |
| /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
 | |
| /// this node.  If insertion is easy, do it and return false.  Otherwise,
 | |
| /// split the node, populate InsertRes with info about the split, and return
 | |
| /// true.
 | |
| bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta,
 | |
|                                 InsertResult *InsertRes) {
 | |
|   // Maintain full delta for this node.
 | |
|   FullDelta += Delta;
 | |
| 
 | |
|   // Find the insertion point, the first delta whose index is >= FileIndex.
 | |
|   unsigned i = 0, e = getNumValuesUsed();
 | |
|   while (i != e && FileIndex > getValue(i).FileLoc)
 | |
|     ++i;
 | |
| 
 | |
|   // If we found an a record for exactly this file index, just merge this
 | |
|   // value into the pre-existing record and finish early.
 | |
|   if (i != e && getValue(i).FileLoc == FileIndex) {
 | |
|     // NOTE: Delta could drop to zero here.  This means that the delta entry is
 | |
|     // useless and could be removed.  Supporting erases is more complex than
 | |
|     // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in
 | |
|     // the tree.
 | |
|     Values[i].Delta += Delta;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we found an insertion point, and we know that the value at the
 | |
|   // specified index is > FileIndex.  Handle the leaf case first.
 | |
|   if (isLeaf()) {
 | |
|     if (!isFull()) {
 | |
|       // For an insertion into a non-full leaf node, just insert the value in
 | |
|       // its sorted position.  This requires moving later values over.
 | |
|       if (i != e)
 | |
|         memmove(&Values[i+1], &Values[i], sizeof(Values[0])*(e-i));
 | |
|       Values[i] = SourceDelta::get(FileIndex, Delta);
 | |
|       ++NumValuesUsed;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, if this is leaf is full, split the node at its median, insert
 | |
|     // the value into one of the children, and return the result.
 | |
|     assert(InsertRes && "No result location specified");
 | |
|     DoSplit(*InsertRes);
 | |
| 
 | |
|     if (InsertRes->Split.FileLoc > FileIndex)
 | |
|       InsertRes->LHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/);
 | |
|     else
 | |
|       InsertRes->RHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, this is an interior node.  Send the request down the tree.
 | |
|   DeltaTreeInteriorNode *IN = cast<DeltaTreeInteriorNode>(this);
 | |
|   if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes))
 | |
|     return false; // If there was space in the child, just return.
 | |
| 
 | |
|   // Okay, this split the subtree, producing a new value and two children to
 | |
|   // insert here.  If this node is non-full, we can just insert it directly.
 | |
|   if (!isFull()) {
 | |
|     // Now that we have two nodes and a new element, insert the perclated value
 | |
|     // into ourself by moving all the later values/children down, then inserting
 | |
|     // the new one.
 | |
|     if (i != e)
 | |
|       memmove(&IN->Children[i+2], &IN->Children[i+1],
 | |
|               (e-i)*sizeof(IN->Children[0]));
 | |
|     IN->Children[i] = InsertRes->LHS;
 | |
|     IN->Children[i+1] = InsertRes->RHS;
 | |
| 
 | |
|     if (e != i)
 | |
|       memmove(&Values[i+1], &Values[i], (e-i)*sizeof(Values[0]));
 | |
|     Values[i] = InsertRes->Split;
 | |
|     ++NumValuesUsed;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Finally, if this interior node was full and a node is percolated up, split
 | |
|   // ourself and return that up the chain.  Start by saving all our info to
 | |
|   // avoid having the split clobber it.
 | |
|   IN->Children[i] = InsertRes->LHS;
 | |
|   DeltaTreeNode *SubRHS = InsertRes->RHS;
 | |
|   SourceDelta SubSplit = InsertRes->Split;
 | |
| 
 | |
|   // Do the split.
 | |
|   DoSplit(*InsertRes);
 | |
| 
 | |
|   // Figure out where to insert SubRHS/NewSplit.
 | |
|   DeltaTreeInteriorNode *InsertSide;
 | |
|   if (SubSplit.FileLoc < InsertRes->Split.FileLoc)
 | |
|     InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS);
 | |
|   else
 | |
|     InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS);
 | |
| 
 | |
|   // We now have a non-empty interior node 'InsertSide' to insert
 | |
|   // SubRHS/SubSplit into.  Find out where to insert SubSplit.
 | |
| 
 | |
|   // Find the insertion point, the first delta whose index is >SubSplit.FileLoc.
 | |
|   i = 0; e = InsertSide->getNumValuesUsed();
 | |
|   while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc)
 | |
|     ++i;
 | |
| 
 | |
|   // Now we know that i is the place to insert the split value into.  Insert it
 | |
|   // and the child right after it.
 | |
|   if (i != e)
 | |
|     memmove(&InsertSide->Children[i+2], &InsertSide->Children[i+1],
 | |
|             (e-i)*sizeof(IN->Children[0]));
 | |
|   InsertSide->Children[i+1] = SubRHS;
 | |
| 
 | |
|   if (e != i)
 | |
|     memmove(&InsertSide->Values[i+1], &InsertSide->Values[i],
 | |
|             (e-i)*sizeof(Values[0]));
 | |
|   InsertSide->Values[i] = SubSplit;
 | |
|   ++InsertSide->NumValuesUsed;
 | |
|   InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values)
 | |
| /// into two subtrees each with "WidthFactor-1" values and a pivot value.
 | |
| /// Return the pieces in InsertRes.
 | |
| void DeltaTreeNode::DoSplit(InsertResult &InsertRes) {
 | |
|   assert(isFull() && "Why split a non-full node?");
 | |
| 
 | |
|   // Since this node is full, it contains 2*WidthFactor-1 values.  We move
 | |
|   // the first 'WidthFactor-1' values to the LHS child (which we leave in this
 | |
|   // node), propagate one value up, and move the last 'WidthFactor-1' values
 | |
|   // into the RHS child.
 | |
| 
 | |
|   // Create the new child node.
 | |
|   DeltaTreeNode *NewNode;
 | |
|   if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this)) {
 | |
|     // If this is an interior node, also move over 'WidthFactor' children
 | |
|     // into the new node.
 | |
|     DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode();
 | |
|     memcpy(&New->Children[0], &IN->Children[WidthFactor],
 | |
|            WidthFactor*sizeof(IN->Children[0]));
 | |
|     NewNode = New;
 | |
|   } else {
 | |
|     // Just create the new leaf node.
 | |
|     NewNode = new DeltaTreeNode();
 | |
|   }
 | |
| 
 | |
|   // Move over the last 'WidthFactor-1' values from here to NewNode.
 | |
|   memcpy(&NewNode->Values[0], &Values[WidthFactor],
 | |
|          (WidthFactor-1)*sizeof(Values[0]));
 | |
| 
 | |
|   // Decrease the number of values in the two nodes.
 | |
|   NewNode->NumValuesUsed = NumValuesUsed = WidthFactor-1;
 | |
| 
 | |
|   // Recompute the two nodes' full delta.
 | |
|   NewNode->RecomputeFullDeltaLocally();
 | |
|   RecomputeFullDeltaLocally();
 | |
| 
 | |
|   InsertRes.LHS = this;
 | |
|   InsertRes.RHS = NewNode;
 | |
|   InsertRes.Split = Values[WidthFactor-1];
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        DeltaTree Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //#define VERIFY_TREE
 | |
| 
 | |
| #ifdef VERIFY_TREE
 | |
| /// VerifyTree - Walk the btree performing assertions on various properties to
 | |
| /// verify consistency.  This is useful for debugging new changes to the tree.
 | |
| static void VerifyTree(const DeltaTreeNode *N) {
 | |
|   const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(N);
 | |
|   if (IN == 0) {
 | |
|     // Verify leaves, just ensure that FullDelta matches up and the elements
 | |
|     // are in proper order.
 | |
|     int FullDelta = 0;
 | |
|     for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) {
 | |
|       if (i)
 | |
|         assert(N->getValue(i-1).FileLoc < N->getValue(i).FileLoc);
 | |
|       FullDelta += N->getValue(i).Delta;
 | |
|     }
 | |
|     assert(FullDelta == N->getFullDelta());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Verify interior nodes: Ensure that FullDelta matches up and the
 | |
|   // elements are in proper order and the children are in proper order.
 | |
|   int FullDelta = 0;
 | |
|   for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) {
 | |
|     const SourceDelta &IVal = N->getValue(i);
 | |
|     const DeltaTreeNode *IChild = IN->getChild(i);
 | |
|     if (i)
 | |
|       assert(IN->getValue(i-1).FileLoc < IVal.FileLoc);
 | |
|     FullDelta += IVal.Delta;
 | |
|     FullDelta += IChild->getFullDelta();
 | |
| 
 | |
|     // The largest value in child #i should be smaller than FileLoc.
 | |
|     assert(IChild->getValue(IChild->getNumValuesUsed()-1).FileLoc <
 | |
|            IVal.FileLoc);
 | |
| 
 | |
|     // The smallest value in child #i+1 should be larger than FileLoc.
 | |
|     assert(IN->getChild(i+1)->getValue(0).FileLoc > IVal.FileLoc);
 | |
|     VerifyTree(IChild);
 | |
|   }
 | |
| 
 | |
|   FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta();
 | |
| 
 | |
|   assert(FullDelta == N->getFullDelta());
 | |
| }
 | |
| #endif  // VERIFY_TREE
 | |
| 
 | |
| static DeltaTreeNode *getRoot(void *Root) {
 | |
|   return (DeltaTreeNode*)Root;
 | |
| }
 | |
| 
 | |
| DeltaTree::DeltaTree() {
 | |
|   Root = new DeltaTreeNode();
 | |
| }
 | |
| DeltaTree::DeltaTree(const DeltaTree &RHS) {
 | |
|   // Currently we only support copying when the RHS is empty.
 | |
|   assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 &&
 | |
|          "Can only copy empty tree");
 | |
|   Root = new DeltaTreeNode();
 | |
| }
 | |
| 
 | |
| DeltaTree::~DeltaTree() {
 | |
|   getRoot(Root)->Destroy();
 | |
| }
 | |
| 
 | |
| /// getDeltaAt - Return the accumulated delta at the specified file offset.
 | |
| /// This includes all insertions or delections that occurred *before* the
 | |
| /// specified file index.
 | |
| int DeltaTree::getDeltaAt(unsigned FileIndex) const {
 | |
|   const DeltaTreeNode *Node = getRoot(Root);
 | |
| 
 | |
|   int Result = 0;
 | |
| 
 | |
|   // Walk down the tree.
 | |
|   while (1) {
 | |
|     // For all nodes, include any local deltas before the specified file
 | |
|     // index by summing them up directly.  Keep track of how many were
 | |
|     // included.
 | |
|     unsigned NumValsGreater = 0;
 | |
|     for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e;
 | |
|          ++NumValsGreater) {
 | |
|       const SourceDelta &Val = Node->getValue(NumValsGreater);
 | |
| 
 | |
|       if (Val.FileLoc >= FileIndex)
 | |
|         break;
 | |
|       Result += Val.Delta;
 | |
|     }
 | |
| 
 | |
|     // If we have an interior node, include information about children and
 | |
|     // recurse.  Otherwise, if we have a leaf, we're done.
 | |
|     const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(Node);
 | |
|     if (!IN) return Result;
 | |
| 
 | |
|     // Include any children to the left of the values we skipped, all of
 | |
|     // their deltas should be included as well.
 | |
|     for (unsigned i = 0; i != NumValsGreater; ++i)
 | |
|       Result += IN->getChild(i)->getFullDelta();
 | |
| 
 | |
|     // If we found exactly the value we were looking for, break off the
 | |
|     // search early.  There is no need to search the RHS of the value for
 | |
|     // partial results.
 | |
|     if (NumValsGreater != Node->getNumValuesUsed() &&
 | |
|         Node->getValue(NumValsGreater).FileLoc == FileIndex)
 | |
|       return Result+IN->getChild(NumValsGreater)->getFullDelta();
 | |
| 
 | |
|     // Otherwise, traverse down the tree.  The selected subtree may be
 | |
|     // partially included in the range.
 | |
|     Node = IN->getChild(NumValsGreater);
 | |
|   }
 | |
|   // NOT REACHED.
 | |
| }
 | |
| 
 | |
| /// AddDelta - When a change is made that shifts around the text buffer,
 | |
| /// this method is used to record that info.  It inserts a delta of 'Delta'
 | |
| /// into the current DeltaTree at offset FileIndex.
 | |
| void DeltaTree::AddDelta(unsigned FileIndex, int Delta) {
 | |
|   assert(Delta && "Adding a noop?");
 | |
|   DeltaTreeNode *MyRoot = getRoot(Root);
 | |
| 
 | |
|   DeltaTreeNode::InsertResult InsertRes;
 | |
|   if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) {
 | |
|     Root = MyRoot = new DeltaTreeInteriorNode(InsertRes);
 | |
|   }
 | |
| 
 | |
| #ifdef VERIFY_TREE
 | |
|   VerifyTree(MyRoot);
 | |
| #endif
 | |
| }
 | |
| 
 |