forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2111 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2111 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			C++
		
	
	
	
| //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines analysis_warnings::[Policy,Executor].
 | |
| // Together they are used by Sema to issue warnings based on inexpensive
 | |
| // static analysis algorithms in libAnalysis.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/AnalysisBasedWarnings.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/EvaluatedExprVisitor.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/AST/ParentMap.h"
 | |
| #include "clang/AST/RecursiveASTVisitor.h"
 | |
| #include "clang/AST/StmtCXX.h"
 | |
| #include "clang/AST/StmtObjC.h"
 | |
| #include "clang/AST/StmtVisitor.h"
 | |
| #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
 | |
| #include "clang/Analysis/Analyses/Consumed.h"
 | |
| #include "clang/Analysis/Analyses/ReachableCode.h"
 | |
| #include "clang/Analysis/Analyses/ThreadSafety.h"
 | |
| #include "clang/Analysis/Analyses/UninitializedValues.h"
 | |
| #include "clang/Analysis/AnalysisContext.h"
 | |
| #include "clang/Analysis/CFG.h"
 | |
| #include "clang/Analysis/CFGStmtMap.h"
 | |
| #include "clang/Basic/SourceLocation.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/ImmutableMap.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include <algorithm>
 | |
| #include <deque>
 | |
| #include <iterator>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Unreachable code analysis.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   class UnreachableCodeHandler : public reachable_code::Callback {
 | |
|     Sema &S;
 | |
|   public:
 | |
|     UnreachableCodeHandler(Sema &s) : S(s) {}
 | |
| 
 | |
|     void HandleUnreachable(reachable_code::UnreachableKind UK,
 | |
|                            SourceLocation L,
 | |
|                            SourceRange SilenceableCondVal,
 | |
|                            SourceRange R1,
 | |
|                            SourceRange R2) override {
 | |
|       unsigned diag = diag::warn_unreachable;
 | |
|       switch (UK) {
 | |
|         case reachable_code::UK_Break:
 | |
|           diag = diag::warn_unreachable_break;
 | |
|           break;
 | |
|         case reachable_code::UK_Return:
 | |
|           diag = diag::warn_unreachable_return;
 | |
|           break;
 | |
|         case reachable_code::UK_Loop_Increment:
 | |
|           diag = diag::warn_unreachable_loop_increment;
 | |
|           break;
 | |
|         case reachable_code::UK_Other:
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       S.Diag(L, diag) << R1 << R2;
 | |
|       
 | |
|       SourceLocation Open = SilenceableCondVal.getBegin();
 | |
|       if (Open.isValid()) {
 | |
|         SourceLocation Close = SilenceableCondVal.getEnd();
 | |
|         Close = S.getLocForEndOfToken(Close);
 | |
|         if (Close.isValid()) {
 | |
|           S.Diag(Open, diag::note_unreachable_silence)
 | |
|             << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
 | |
|             << FixItHint::CreateInsertion(Close, ")");
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| } // anonymous namespace
 | |
| 
 | |
| /// CheckUnreachable - Check for unreachable code.
 | |
| static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
 | |
|   // As a heuristic prune all diagnostics not in the main file.  Currently
 | |
|   // the majority of warnings in headers are false positives.  These
 | |
|   // are largely caused by configuration state, e.g. preprocessor
 | |
|   // defined code, etc.
 | |
|   //
 | |
|   // Note that this is also a performance optimization.  Analyzing
 | |
|   // headers many times can be expensive.
 | |
|   if (!S.getSourceManager().isInMainFile(AC.getDecl()->getLocStart()))
 | |
|     return;
 | |
| 
 | |
|   UnreachableCodeHandler UC(S);
 | |
|   reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief Warn on logical operator errors in CFGBuilder
 | |
| class LogicalErrorHandler : public CFGCallback {
 | |
|   Sema &S;
 | |
| 
 | |
| public:
 | |
|   LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
 | |
| 
 | |
|   static bool HasMacroID(const Expr *E) {
 | |
|     if (E->getExprLoc().isMacroID())
 | |
|       return true;
 | |
| 
 | |
|     // Recurse to children.
 | |
|     for (const Stmt *SubStmt : E->children())
 | |
|       if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt))
 | |
|         if (HasMacroID(SubExpr))
 | |
|           return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
 | |
|     if (HasMacroID(B))
 | |
|       return;
 | |
| 
 | |
|     SourceRange DiagRange = B->getSourceRange();
 | |
|     S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
 | |
|         << DiagRange << isAlwaysTrue;
 | |
|   }
 | |
| 
 | |
|   void compareBitwiseEquality(const BinaryOperator *B,
 | |
|                               bool isAlwaysTrue) override {
 | |
|     if (HasMacroID(B))
 | |
|       return;
 | |
| 
 | |
|     SourceRange DiagRange = B->getSourceRange();
 | |
|     S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
 | |
|         << DiagRange << isAlwaysTrue;
 | |
|   }
 | |
| };
 | |
| } // anonymous namespace
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Check for infinite self-recursion in functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Returns true if the function is called anywhere within the CFGBlock.
 | |
| // For member functions, the additional condition of being call from the
 | |
| // this pointer is required.
 | |
| static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) {
 | |
|   // Process all the Stmt's in this block to find any calls to FD.
 | |
|   for (const auto &B : Block) {
 | |
|     if (B.getKind() != CFGElement::Statement)
 | |
|       continue;
 | |
| 
 | |
|     const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
 | |
|     if (!CE || !CE->getCalleeDecl() ||
 | |
|         CE->getCalleeDecl()->getCanonicalDecl() != FD)
 | |
|       continue;
 | |
| 
 | |
|     // Skip function calls which are qualified with a templated class.
 | |
|     if (const DeclRefExpr *DRE =
 | |
|             dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) {
 | |
|       if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
 | |
|         if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
 | |
|             isa<TemplateSpecializationType>(NNS->getAsType())) {
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE);
 | |
|     if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
 | |
|         !MCE->getMethodDecl()->isVirtual())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // All blocks are in one of three states.  States are ordered so that blocks
 | |
| // can only move to higher states.
 | |
| enum RecursiveState {
 | |
|   FoundNoPath,
 | |
|   FoundPath,
 | |
|   FoundPathWithNoRecursiveCall
 | |
| };
 | |
| 
 | |
| // Returns true if there exists a path to the exit block and every path
 | |
| // to the exit block passes through a call to FD.
 | |
| static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) {
 | |
| 
 | |
|   const unsigned ExitID = cfg->getExit().getBlockID();
 | |
| 
 | |
|   // Mark all nodes as FoundNoPath, then set the status of the entry block.
 | |
|   SmallVector<RecursiveState, 16> States(cfg->getNumBlockIDs(), FoundNoPath);
 | |
|   States[cfg->getEntry().getBlockID()] = FoundPathWithNoRecursiveCall;
 | |
| 
 | |
|   // Make the processing stack and seed it with the entry block.
 | |
|   SmallVector<CFGBlock *, 16> Stack;
 | |
|   Stack.push_back(&cfg->getEntry());
 | |
| 
 | |
|   while (!Stack.empty()) {
 | |
|     CFGBlock *CurBlock = Stack.back();
 | |
|     Stack.pop_back();
 | |
| 
 | |
|     unsigned ID = CurBlock->getBlockID();
 | |
|     RecursiveState CurState = States[ID];
 | |
| 
 | |
|     if (CurState == FoundPathWithNoRecursiveCall) {
 | |
|       // Found a path to the exit node without a recursive call.
 | |
|       if (ExitID == ID)
 | |
|         return false;
 | |
| 
 | |
|       // Only change state if the block has a recursive call.
 | |
|       if (hasRecursiveCallInPath(FD, *CurBlock))
 | |
|         CurState = FoundPath;
 | |
|     }
 | |
| 
 | |
|     // Loop over successor blocks and add them to the Stack if their state
 | |
|     // changes.
 | |
|     for (auto I = CurBlock->succ_begin(), E = CurBlock->succ_end(); I != E; ++I)
 | |
|       if (*I) {
 | |
|         unsigned next_ID = (*I)->getBlockID();
 | |
|         if (States[next_ID] < CurState) {
 | |
|           States[next_ID] = CurState;
 | |
|           Stack.push_back(*I);
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Return true if the exit node is reachable, and only reachable through
 | |
|   // a recursive call.
 | |
|   return States[ExitID] == FoundPath;
 | |
| }
 | |
| 
 | |
| static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
 | |
|                                    const Stmt *Body, AnalysisDeclContext &AC) {
 | |
|   FD = FD->getCanonicalDecl();
 | |
| 
 | |
|   // Only run on non-templated functions and non-templated members of
 | |
|   // templated classes.
 | |
|   if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
 | |
|       FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
 | |
|     return;
 | |
| 
 | |
|   CFG *cfg = AC.getCFG();
 | |
|   if (!cfg) return;
 | |
| 
 | |
|   // If the exit block is unreachable, skip processing the function.
 | |
|   if (cfg->getExit().pred_empty())
 | |
|     return;
 | |
| 
 | |
|   // Emit diagnostic if a recursive function call is detected for all paths.
 | |
|   if (checkForRecursiveFunctionCall(FD, cfg))
 | |
|     S.Diag(Body->getLocStart(), diag::warn_infinite_recursive_function);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Check for missing return value.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| enum ControlFlowKind {
 | |
|   UnknownFallThrough,
 | |
|   NeverFallThrough,
 | |
|   MaybeFallThrough,
 | |
|   AlwaysFallThrough,
 | |
|   NeverFallThroughOrReturn
 | |
| };
 | |
| 
 | |
| /// CheckFallThrough - Check that we don't fall off the end of a
 | |
| /// Statement that should return a value.
 | |
| ///
 | |
| /// \returns AlwaysFallThrough iff we always fall off the end of the statement,
 | |
| /// MaybeFallThrough iff we might or might not fall off the end,
 | |
| /// NeverFallThroughOrReturn iff we never fall off the end of the statement or
 | |
| /// return.  We assume NeverFallThrough iff we never fall off the end of the
 | |
| /// statement but we may return.  We assume that functions not marked noreturn
 | |
| /// will return.
 | |
| static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
 | |
|   CFG *cfg = AC.getCFG();
 | |
|   if (!cfg) return UnknownFallThrough;
 | |
| 
 | |
|   // The CFG leaves in dead things, and we don't want the dead code paths to
 | |
|   // confuse us, so we mark all live things first.
 | |
|   llvm::BitVector live(cfg->getNumBlockIDs());
 | |
|   unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
 | |
|                                                           live);
 | |
| 
 | |
|   bool AddEHEdges = AC.getAddEHEdges();
 | |
|   if (!AddEHEdges && count != cfg->getNumBlockIDs())
 | |
|     // When there are things remaining dead, and we didn't add EH edges
 | |
|     // from CallExprs to the catch clauses, we have to go back and
 | |
|     // mark them as live.
 | |
|     for (const auto *B : *cfg) {
 | |
|       if (!live[B->getBlockID()]) {
 | |
|         if (B->pred_begin() == B->pred_end()) {
 | |
|           if (B->getTerminator() && isa<CXXTryStmt>(B->getTerminator()))
 | |
|             // When not adding EH edges from calls, catch clauses
 | |
|             // can otherwise seem dead.  Avoid noting them as dead.
 | |
|             count += reachable_code::ScanReachableFromBlock(B, live);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Now we know what is live, we check the live precessors of the exit block
 | |
|   // and look for fall through paths, being careful to ignore normal returns,
 | |
|   // and exceptional paths.
 | |
|   bool HasLiveReturn = false;
 | |
|   bool HasFakeEdge = false;
 | |
|   bool HasPlainEdge = false;
 | |
|   bool HasAbnormalEdge = false;
 | |
| 
 | |
|   // Ignore default cases that aren't likely to be reachable because all
 | |
|   // enums in a switch(X) have explicit case statements.
 | |
|   CFGBlock::FilterOptions FO;
 | |
|   FO.IgnoreDefaultsWithCoveredEnums = 1;
 | |
| 
 | |
|   for (CFGBlock::filtered_pred_iterator
 | |
| 	 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
 | |
|     const CFGBlock& B = **I;
 | |
|     if (!live[B.getBlockID()])
 | |
|       continue;
 | |
| 
 | |
|     // Skip blocks which contain an element marked as no-return. They don't
 | |
|     // represent actually viable edges into the exit block, so mark them as
 | |
|     // abnormal.
 | |
|     if (B.hasNoReturnElement()) {
 | |
|       HasAbnormalEdge = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Destructors can appear after the 'return' in the CFG.  This is
 | |
|     // normal.  We need to look pass the destructors for the return
 | |
|     // statement (if it exists).
 | |
|     CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
 | |
| 
 | |
|     for ( ; ri != re ; ++ri)
 | |
|       if (ri->getAs<CFGStmt>())
 | |
|         break;
 | |
| 
 | |
|     // No more CFGElements in the block?
 | |
|     if (ri == re) {
 | |
|       if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
 | |
|         HasAbnormalEdge = true;
 | |
|         continue;
 | |
|       }
 | |
|       // A labeled empty statement, or the entry block...
 | |
|       HasPlainEdge = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     CFGStmt CS = ri->castAs<CFGStmt>();
 | |
|     const Stmt *S = CS.getStmt();
 | |
|     if (isa<ReturnStmt>(S)) {
 | |
|       HasLiveReturn = true;
 | |
|       continue;
 | |
|     }
 | |
|     if (isa<ObjCAtThrowStmt>(S)) {
 | |
|       HasFakeEdge = true;
 | |
|       continue;
 | |
|     }
 | |
|     if (isa<CXXThrowExpr>(S)) {
 | |
|       HasFakeEdge = true;
 | |
|       continue;
 | |
|     }
 | |
|     if (isa<MSAsmStmt>(S)) {
 | |
|       // TODO: Verify this is correct.
 | |
|       HasFakeEdge = true;
 | |
|       HasLiveReturn = true;
 | |
|       continue;
 | |
|     }
 | |
|     if (isa<CXXTryStmt>(S)) {
 | |
|       HasAbnormalEdge = true;
 | |
|       continue;
 | |
|     }
 | |
|     if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
 | |
|         == B.succ_end()) {
 | |
|       HasAbnormalEdge = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     HasPlainEdge = true;
 | |
|   }
 | |
|   if (!HasPlainEdge) {
 | |
|     if (HasLiveReturn)
 | |
|       return NeverFallThrough;
 | |
|     return NeverFallThroughOrReturn;
 | |
|   }
 | |
|   if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
 | |
|     return MaybeFallThrough;
 | |
|   // This says AlwaysFallThrough for calls to functions that are not marked
 | |
|   // noreturn, that don't return.  If people would like this warning to be more
 | |
|   // accurate, such functions should be marked as noreturn.
 | |
|   return AlwaysFallThrough;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct CheckFallThroughDiagnostics {
 | |
|   unsigned diag_MaybeFallThrough_HasNoReturn;
 | |
|   unsigned diag_MaybeFallThrough_ReturnsNonVoid;
 | |
|   unsigned diag_AlwaysFallThrough_HasNoReturn;
 | |
|   unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
 | |
|   unsigned diag_NeverFallThroughOrReturn;
 | |
|   enum { Function, Block, Lambda } funMode;
 | |
|   SourceLocation FuncLoc;
 | |
| 
 | |
|   static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
 | |
|     CheckFallThroughDiagnostics D;
 | |
|     D.FuncLoc = Func->getLocation();
 | |
|     D.diag_MaybeFallThrough_HasNoReturn =
 | |
|       diag::warn_falloff_noreturn_function;
 | |
|     D.diag_MaybeFallThrough_ReturnsNonVoid =
 | |
|       diag::warn_maybe_falloff_nonvoid_function;
 | |
|     D.diag_AlwaysFallThrough_HasNoReturn =
 | |
|       diag::warn_falloff_noreturn_function;
 | |
|     D.diag_AlwaysFallThrough_ReturnsNonVoid =
 | |
|       diag::warn_falloff_nonvoid_function;
 | |
| 
 | |
|     // Don't suggest that virtual functions be marked "noreturn", since they
 | |
|     // might be overridden by non-noreturn functions.
 | |
|     bool isVirtualMethod = false;
 | |
|     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
 | |
|       isVirtualMethod = Method->isVirtual();
 | |
|     
 | |
|     // Don't suggest that template instantiations be marked "noreturn"
 | |
|     bool isTemplateInstantiation = false;
 | |
|     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
 | |
|       isTemplateInstantiation = Function->isTemplateInstantiation();
 | |
|         
 | |
|     if (!isVirtualMethod && !isTemplateInstantiation)
 | |
|       D.diag_NeverFallThroughOrReturn =
 | |
|         diag::warn_suggest_noreturn_function;
 | |
|     else
 | |
|       D.diag_NeverFallThroughOrReturn = 0;
 | |
|     
 | |
|     D.funMode = Function;
 | |
|     return D;
 | |
|   }
 | |
| 
 | |
|   static CheckFallThroughDiagnostics MakeForBlock() {
 | |
|     CheckFallThroughDiagnostics D;
 | |
|     D.diag_MaybeFallThrough_HasNoReturn =
 | |
|       diag::err_noreturn_block_has_return_expr;
 | |
|     D.diag_MaybeFallThrough_ReturnsNonVoid =
 | |
|       diag::err_maybe_falloff_nonvoid_block;
 | |
|     D.diag_AlwaysFallThrough_HasNoReturn =
 | |
|       diag::err_noreturn_block_has_return_expr;
 | |
|     D.diag_AlwaysFallThrough_ReturnsNonVoid =
 | |
|       diag::err_falloff_nonvoid_block;
 | |
|     D.diag_NeverFallThroughOrReturn = 0;
 | |
|     D.funMode = Block;
 | |
|     return D;
 | |
|   }
 | |
| 
 | |
|   static CheckFallThroughDiagnostics MakeForLambda() {
 | |
|     CheckFallThroughDiagnostics D;
 | |
|     D.diag_MaybeFallThrough_HasNoReturn =
 | |
|       diag::err_noreturn_lambda_has_return_expr;
 | |
|     D.diag_MaybeFallThrough_ReturnsNonVoid =
 | |
|       diag::warn_maybe_falloff_nonvoid_lambda;
 | |
|     D.diag_AlwaysFallThrough_HasNoReturn =
 | |
|       diag::err_noreturn_lambda_has_return_expr;
 | |
|     D.diag_AlwaysFallThrough_ReturnsNonVoid =
 | |
|       diag::warn_falloff_nonvoid_lambda;
 | |
|     D.diag_NeverFallThroughOrReturn = 0;
 | |
|     D.funMode = Lambda;
 | |
|     return D;
 | |
|   }
 | |
| 
 | |
|   bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
 | |
|                         bool HasNoReturn) const {
 | |
|     if (funMode == Function) {
 | |
|       return (ReturnsVoid ||
 | |
|               D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
 | |
|                           FuncLoc)) &&
 | |
|              (!HasNoReturn ||
 | |
|               D.isIgnored(diag::warn_noreturn_function_has_return_expr,
 | |
|                           FuncLoc)) &&
 | |
|              (!ReturnsVoid ||
 | |
|               D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
 | |
|     }
 | |
| 
 | |
|     // For blocks / lambdas.
 | |
|     return ReturnsVoid && !HasNoReturn;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // anonymous namespace
 | |
| 
 | |
| /// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
 | |
| /// function that should return a value.  Check that we don't fall off the end
 | |
| /// of a noreturn function.  We assume that functions and blocks not marked
 | |
| /// noreturn will return.
 | |
| static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
 | |
|                                     const BlockExpr *blkExpr,
 | |
|                                     const CheckFallThroughDiagnostics& CD,
 | |
|                                     AnalysisDeclContext &AC) {
 | |
| 
 | |
|   bool ReturnsVoid = false;
 | |
|   bool HasNoReturn = false;
 | |
| 
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|     ReturnsVoid = FD->getReturnType()->isVoidType();
 | |
|     HasNoReturn = FD->isNoReturn();
 | |
|   }
 | |
|   else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
 | |
|     ReturnsVoid = MD->getReturnType()->isVoidType();
 | |
|     HasNoReturn = MD->hasAttr<NoReturnAttr>();
 | |
|   }
 | |
|   else if (isa<BlockDecl>(D)) {
 | |
|     QualType BlockTy = blkExpr->getType();
 | |
|     if (const FunctionType *FT =
 | |
|           BlockTy->getPointeeType()->getAs<FunctionType>()) {
 | |
|       if (FT->getReturnType()->isVoidType())
 | |
|         ReturnsVoid = true;
 | |
|       if (FT->getNoReturnAttr())
 | |
|         HasNoReturn = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DiagnosticsEngine &Diags = S.getDiagnostics();
 | |
| 
 | |
|   // Short circuit for compilation speed.
 | |
|   if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
 | |
|       return;
 | |
| 
 | |
|   SourceLocation LBrace = Body->getLocStart(), RBrace = Body->getLocEnd();
 | |
|   // Either in a function body compound statement, or a function-try-block.
 | |
|   switch (CheckFallThrough(AC)) {
 | |
|     case UnknownFallThrough:
 | |
|       break;
 | |
| 
 | |
|     case MaybeFallThrough:
 | |
|       if (HasNoReturn)
 | |
|         S.Diag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
 | |
|       else if (!ReturnsVoid)
 | |
|         S.Diag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
 | |
|       break;
 | |
|     case AlwaysFallThrough:
 | |
|       if (HasNoReturn)
 | |
|         S.Diag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
 | |
|       else if (!ReturnsVoid)
 | |
|         S.Diag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
 | |
|       break;
 | |
|     case NeverFallThroughOrReturn:
 | |
|       if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
 | |
|         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
 | |
|         } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
 | |
|           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
 | |
|         } else {
 | |
|           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case NeverFallThrough:
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // -Wuninitialized
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// ContainsReference - A visitor class to search for references to
 | |
| /// a particular declaration (the needle) within any evaluated component of an
 | |
| /// expression (recursively).
 | |
| class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> {
 | |
|   bool FoundReference;
 | |
|   const DeclRefExpr *Needle;
 | |
| 
 | |
| public:
 | |
|   typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited;
 | |
| 
 | |
|   ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
 | |
|     : Inherited(Context), FoundReference(false), Needle(Needle) {}
 | |
| 
 | |
|   void VisitExpr(const Expr *E) {
 | |
|     // Stop evaluating if we already have a reference.
 | |
|     if (FoundReference)
 | |
|       return;
 | |
| 
 | |
|     Inherited::VisitExpr(E);
 | |
|   }
 | |
| 
 | |
|   void VisitDeclRefExpr(const DeclRefExpr *E) {
 | |
|     if (E == Needle)
 | |
|       FoundReference = true;
 | |
|     else
 | |
|       Inherited::VisitDeclRefExpr(E);
 | |
|   }
 | |
| 
 | |
|   bool doesContainReference() const { return FoundReference; }
 | |
| };
 | |
| } // anonymous namespace
 | |
| 
 | |
| static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
 | |
|   QualType VariableTy = VD->getType().getCanonicalType();
 | |
|   if (VariableTy->isBlockPointerType() &&
 | |
|       !VD->hasAttr<BlocksAttr>()) {
 | |
|     S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
 | |
|         << VD->getDeclName()
 | |
|         << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Don't issue a fixit if there is already an initializer.
 | |
|   if (VD->getInit())
 | |
|     return false;
 | |
| 
 | |
|   // Don't suggest a fixit inside macros.
 | |
|   if (VD->getLocEnd().isMacroID())
 | |
|     return false;
 | |
| 
 | |
|   SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
 | |
| 
 | |
|   // Suggest possible initialization (if any).
 | |
|   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
 | |
|   if (Init.empty())
 | |
|     return false;
 | |
| 
 | |
|   S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
 | |
|     << FixItHint::CreateInsertion(Loc, Init);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Create a fixit to remove an if-like statement, on the assumption that its
 | |
| /// condition is CondVal.
 | |
| static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
 | |
|                           const Stmt *Else, bool CondVal,
 | |
|                           FixItHint &Fixit1, FixItHint &Fixit2) {
 | |
|   if (CondVal) {
 | |
|     // If condition is always true, remove all but the 'then'.
 | |
|     Fixit1 = FixItHint::CreateRemoval(
 | |
|         CharSourceRange::getCharRange(If->getLocStart(),
 | |
|                                       Then->getLocStart()));
 | |
|     if (Else) {
 | |
|       SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getLocEnd());
 | |
|       Fixit2 = FixItHint::CreateRemoval(
 | |
|           SourceRange(ElseKwLoc, Else->getLocEnd()));
 | |
|     }
 | |
|   } else {
 | |
|     // If condition is always false, remove all but the 'else'.
 | |
|     if (Else)
 | |
|       Fixit1 = FixItHint::CreateRemoval(
 | |
|           CharSourceRange::getCharRange(If->getLocStart(),
 | |
|                                         Else->getLocStart()));
 | |
|     else
 | |
|       Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// DiagUninitUse -- Helper function to produce a diagnostic for an
 | |
| /// uninitialized use of a variable.
 | |
| static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
 | |
|                           bool IsCapturedByBlock) {
 | |
|   bool Diagnosed = false;
 | |
| 
 | |
|   switch (Use.getKind()) {
 | |
|   case UninitUse::Always:
 | |
|     S.Diag(Use.getUser()->getLocStart(), diag::warn_uninit_var)
 | |
|         << VD->getDeclName() << IsCapturedByBlock
 | |
|         << Use.getUser()->getSourceRange();
 | |
|     return;
 | |
| 
 | |
|   case UninitUse::AfterDecl:
 | |
|   case UninitUse::AfterCall:
 | |
|     S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
 | |
|       << VD->getDeclName() << IsCapturedByBlock
 | |
|       << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
 | |
|       << const_cast<DeclContext*>(VD->getLexicalDeclContext())
 | |
|       << VD->getSourceRange();
 | |
|     S.Diag(Use.getUser()->getLocStart(), diag::note_uninit_var_use)
 | |
|       << IsCapturedByBlock << Use.getUser()->getSourceRange();
 | |
|     return;
 | |
| 
 | |
|   case UninitUse::Maybe:
 | |
|   case UninitUse::Sometimes:
 | |
|     // Carry on to report sometimes-uninitialized branches, if possible,
 | |
|     // or a 'may be used uninitialized' diagnostic otherwise.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Diagnose each branch which leads to a sometimes-uninitialized use.
 | |
|   for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
 | |
|        I != E; ++I) {
 | |
|     assert(Use.getKind() == UninitUse::Sometimes);
 | |
| 
 | |
|     const Expr *User = Use.getUser();
 | |
|     const Stmt *Term = I->Terminator;
 | |
| 
 | |
|     // Information used when building the diagnostic.
 | |
|     unsigned DiagKind;
 | |
|     StringRef Str;
 | |
|     SourceRange Range;
 | |
| 
 | |
|     // FixIts to suppress the diagnostic by removing the dead condition.
 | |
|     // For all binary terminators, branch 0 is taken if the condition is true,
 | |
|     // and branch 1 is taken if the condition is false.
 | |
|     int RemoveDiagKind = -1;
 | |
|     const char *FixitStr =
 | |
|         S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
 | |
|                                   : (I->Output ? "1" : "0");
 | |
|     FixItHint Fixit1, Fixit2;
 | |
| 
 | |
|     switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
 | |
|     default:
 | |
|       // Don't know how to report this. Just fall back to 'may be used
 | |
|       // uninitialized'. FIXME: Can this happen?
 | |
|       continue;
 | |
| 
 | |
|     // "condition is true / condition is false".
 | |
|     case Stmt::IfStmtClass: {
 | |
|       const IfStmt *IS = cast<IfStmt>(Term);
 | |
|       DiagKind = 0;
 | |
|       Str = "if";
 | |
|       Range = IS->getCond()->getSourceRange();
 | |
|       RemoveDiagKind = 0;
 | |
|       CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
 | |
|                     I->Output, Fixit1, Fixit2);
 | |
|       break;
 | |
|     }
 | |
|     case Stmt::ConditionalOperatorClass: {
 | |
|       const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
 | |
|       DiagKind = 0;
 | |
|       Str = "?:";
 | |
|       Range = CO->getCond()->getSourceRange();
 | |
|       RemoveDiagKind = 0;
 | |
|       CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
 | |
|                     I->Output, Fixit1, Fixit2);
 | |
|       break;
 | |
|     }
 | |
|     case Stmt::BinaryOperatorClass: {
 | |
|       const BinaryOperator *BO = cast<BinaryOperator>(Term);
 | |
|       if (!BO->isLogicalOp())
 | |
|         continue;
 | |
|       DiagKind = 0;
 | |
|       Str = BO->getOpcodeStr();
 | |
|       Range = BO->getLHS()->getSourceRange();
 | |
|       RemoveDiagKind = 0;
 | |
|       if ((BO->getOpcode() == BO_LAnd && I->Output) ||
 | |
|           (BO->getOpcode() == BO_LOr && !I->Output))
 | |
|         // true && y -> y, false || y -> y.
 | |
|         Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
 | |
|                                                       BO->getOperatorLoc()));
 | |
|       else
 | |
|         // false && y -> false, true || y -> true.
 | |
|         Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // "loop is entered / loop is exited".
 | |
|     case Stmt::WhileStmtClass:
 | |
|       DiagKind = 1;
 | |
|       Str = "while";
 | |
|       Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
 | |
|       RemoveDiagKind = 1;
 | |
|       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
 | |
|       break;
 | |
|     case Stmt::ForStmtClass:
 | |
|       DiagKind = 1;
 | |
|       Str = "for";
 | |
|       Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
 | |
|       RemoveDiagKind = 1;
 | |
|       if (I->Output)
 | |
|         Fixit1 = FixItHint::CreateRemoval(Range);
 | |
|       else
 | |
|         Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
 | |
|       break;
 | |
|     case Stmt::CXXForRangeStmtClass:
 | |
|       if (I->Output == 1) {
 | |
|         // The use occurs if a range-based for loop's body never executes.
 | |
|         // That may be impossible, and there's no syntactic fix for this,
 | |
|         // so treat it as a 'may be uninitialized' case.
 | |
|         continue;
 | |
|       }
 | |
|       DiagKind = 1;
 | |
|       Str = "for";
 | |
|       Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
 | |
|       break;
 | |
| 
 | |
|     // "condition is true / loop is exited".
 | |
|     case Stmt::DoStmtClass:
 | |
|       DiagKind = 2;
 | |
|       Str = "do";
 | |
|       Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
 | |
|       RemoveDiagKind = 1;
 | |
|       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
 | |
|       break;
 | |
| 
 | |
|     // "switch case is taken".
 | |
|     case Stmt::CaseStmtClass:
 | |
|       DiagKind = 3;
 | |
|       Str = "case";
 | |
|       Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
 | |
|       break;
 | |
|     case Stmt::DefaultStmtClass:
 | |
|       DiagKind = 3;
 | |
|       Str = "default";
 | |
|       Range = cast<DefaultStmt>(Term)->getDefaultLoc();
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
 | |
|       << VD->getDeclName() << IsCapturedByBlock << DiagKind
 | |
|       << Str << I->Output << Range;
 | |
|     S.Diag(User->getLocStart(), diag::note_uninit_var_use)
 | |
|       << IsCapturedByBlock << User->getSourceRange();
 | |
|     if (RemoveDiagKind != -1)
 | |
|       S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
 | |
|         << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
 | |
| 
 | |
|     Diagnosed = true;
 | |
|   }
 | |
| 
 | |
|   if (!Diagnosed)
 | |
|     S.Diag(Use.getUser()->getLocStart(), diag::warn_maybe_uninit_var)
 | |
|         << VD->getDeclName() << IsCapturedByBlock
 | |
|         << Use.getUser()->getSourceRange();
 | |
| }
 | |
| 
 | |
| /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
 | |
| /// uninitialized variable. This manages the different forms of diagnostic
 | |
| /// emitted for particular types of uses. Returns true if the use was diagnosed
 | |
| /// as a warning. If a particular use is one we omit warnings for, returns
 | |
| /// false.
 | |
| static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
 | |
|                                      const UninitUse &Use,
 | |
|                                      bool alwaysReportSelfInit = false) {
 | |
|   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
 | |
|     // Inspect the initializer of the variable declaration which is
 | |
|     // being referenced prior to its initialization. We emit
 | |
|     // specialized diagnostics for self-initialization, and we
 | |
|     // specifically avoid warning about self references which take the
 | |
|     // form of:
 | |
|     //
 | |
|     //   int x = x;
 | |
|     //
 | |
|     // This is used to indicate to GCC that 'x' is intentionally left
 | |
|     // uninitialized. Proven code paths which access 'x' in
 | |
|     // an uninitialized state after this will still warn.
 | |
|     if (const Expr *Initializer = VD->getInit()) {
 | |
|       if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
 | |
|         return false;
 | |
| 
 | |
|       ContainsReference CR(S.Context, DRE);
 | |
|       CR.Visit(Initializer);
 | |
|       if (CR.doesContainReference()) {
 | |
|         S.Diag(DRE->getLocStart(),
 | |
|                diag::warn_uninit_self_reference_in_init)
 | |
|           << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     DiagUninitUse(S, VD, Use, false);
 | |
|   } else {
 | |
|     const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
 | |
|     if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
 | |
|       S.Diag(BE->getLocStart(),
 | |
|              diag::warn_uninit_byref_blockvar_captured_by_block)
 | |
|         << VD->getDeclName();
 | |
|     else
 | |
|       DiagUninitUse(S, VD, Use, true);
 | |
|   }
 | |
| 
 | |
|   // Report where the variable was declared when the use wasn't within
 | |
|   // the initializer of that declaration & we didn't already suggest
 | |
|   // an initialization fixit.
 | |
|   if (!SuggestInitializationFixit(S, VD))
 | |
|     S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
 | |
|       << VD->getDeclName();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
 | |
|   public:
 | |
|     FallthroughMapper(Sema &S)
 | |
|       : FoundSwitchStatements(false),
 | |
|         S(S) {
 | |
|     }
 | |
| 
 | |
|     bool foundSwitchStatements() const { return FoundSwitchStatements; }
 | |
| 
 | |
|     void markFallthroughVisited(const AttributedStmt *Stmt) {
 | |
|       bool Found = FallthroughStmts.erase(Stmt);
 | |
|       assert(Found);
 | |
|       (void)Found;
 | |
|     }
 | |
| 
 | |
|     typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
 | |
| 
 | |
|     const AttrStmts &getFallthroughStmts() const {
 | |
|       return FallthroughStmts;
 | |
|     }
 | |
| 
 | |
|     void fillReachableBlocks(CFG *Cfg) {
 | |
|       assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
 | |
|       std::deque<const CFGBlock *> BlockQueue;
 | |
| 
 | |
|       ReachableBlocks.insert(&Cfg->getEntry());
 | |
|       BlockQueue.push_back(&Cfg->getEntry());
 | |
|       // Mark all case blocks reachable to avoid problems with switching on
 | |
|       // constants, covered enums, etc.
 | |
|       // These blocks can contain fall-through annotations, and we don't want to
 | |
|       // issue a warn_fallthrough_attr_unreachable for them.
 | |
|       for (const auto *B : *Cfg) {
 | |
|         const Stmt *L = B->getLabel();
 | |
|         if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
 | |
|           BlockQueue.push_back(B);
 | |
|       }
 | |
| 
 | |
|       while (!BlockQueue.empty()) {
 | |
|         const CFGBlock *P = BlockQueue.front();
 | |
|         BlockQueue.pop_front();
 | |
|         for (CFGBlock::const_succ_iterator I = P->succ_begin(),
 | |
|                                            E = P->succ_end();
 | |
|              I != E; ++I) {
 | |
|           if (*I && ReachableBlocks.insert(*I).second)
 | |
|             BlockQueue.push_back(*I);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
 | |
|       assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
 | |
| 
 | |
|       int UnannotatedCnt = 0;
 | |
|       AnnotatedCnt = 0;
 | |
| 
 | |
|       std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
 | |
|       while (!BlockQueue.empty()) {
 | |
|         const CFGBlock *P = BlockQueue.front();
 | |
|         BlockQueue.pop_front();
 | |
|         if (!P) continue;
 | |
| 
 | |
|         const Stmt *Term = P->getTerminator();
 | |
|         if (Term && isa<SwitchStmt>(Term))
 | |
|           continue; // Switch statement, good.
 | |
| 
 | |
|         const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
 | |
|         if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
 | |
|           continue; // Previous case label has no statements, good.
 | |
| 
 | |
|         const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
 | |
|         if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
 | |
|           continue; // Case label is preceded with a normal label, good.
 | |
| 
 | |
|         if (!ReachableBlocks.count(P)) {
 | |
|           for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
 | |
|                                                 ElemEnd = P->rend();
 | |
|                ElemIt != ElemEnd; ++ElemIt) {
 | |
|             if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
 | |
|               if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
 | |
|                 S.Diag(AS->getLocStart(),
 | |
|                        diag::warn_fallthrough_attr_unreachable);
 | |
|                 markFallthroughVisited(AS);
 | |
|                 ++AnnotatedCnt;
 | |
|                 break;
 | |
|               }
 | |
|               // Don't care about other unreachable statements.
 | |
|             }
 | |
|           }
 | |
|           // If there are no unreachable statements, this may be a special
 | |
|           // case in CFG:
 | |
|           // case X: {
 | |
|           //    A a;  // A has a destructor.
 | |
|           //    break;
 | |
|           // }
 | |
|           // // <<<< This place is represented by a 'hanging' CFG block.
 | |
|           // case Y:
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         const Stmt *LastStmt = getLastStmt(*P);
 | |
|         if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
 | |
|           markFallthroughVisited(AS);
 | |
|           ++AnnotatedCnt;
 | |
|           continue; // Fallthrough annotation, good.
 | |
|         }
 | |
| 
 | |
|         if (!LastStmt) { // This block contains no executable statements.
 | |
|           // Traverse its predecessors.
 | |
|           std::copy(P->pred_begin(), P->pred_end(),
 | |
|                     std::back_inserter(BlockQueue));
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         ++UnannotatedCnt;
 | |
|       }
 | |
|       return !!UnannotatedCnt;
 | |
|     }
 | |
| 
 | |
|     // RecursiveASTVisitor setup.
 | |
|     bool shouldWalkTypesOfTypeLocs() const { return false; }
 | |
| 
 | |
|     bool VisitAttributedStmt(AttributedStmt *S) {
 | |
|       if (asFallThroughAttr(S))
 | |
|         FallthroughStmts.insert(S);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     bool VisitSwitchStmt(SwitchStmt *S) {
 | |
|       FoundSwitchStatements = true;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // We don't want to traverse local type declarations. We analyze their
 | |
|     // methods separately.
 | |
|     bool TraverseDecl(Decl *D) { return true; }
 | |
| 
 | |
|     // We analyze lambda bodies separately. Skip them here.
 | |
|     bool TraverseLambdaBody(LambdaExpr *LE) { return true; }
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
 | |
|       if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
 | |
|         if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
 | |
|           return AS;
 | |
|       }
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     static const Stmt *getLastStmt(const CFGBlock &B) {
 | |
|       if (const Stmt *Term = B.getTerminator())
 | |
|         return Term;
 | |
|       for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
 | |
|                                             ElemEnd = B.rend();
 | |
|                                             ElemIt != ElemEnd; ++ElemIt) {
 | |
|         if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
 | |
|           return CS->getStmt();
 | |
|       }
 | |
|       // Workaround to detect a statement thrown out by CFGBuilder:
 | |
|       //   case X: {} case Y:
 | |
|       //   case X: ; case Y:
 | |
|       if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
 | |
|         if (!isa<SwitchCase>(SW->getSubStmt()))
 | |
|           return SW->getSubStmt();
 | |
| 
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     bool FoundSwitchStatements;
 | |
|     AttrStmts FallthroughStmts;
 | |
|     Sema &S;
 | |
|     llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
 | |
|   };
 | |
| } // anonymous namespace
 | |
| 
 | |
| static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
 | |
|                                             bool PerFunction) {
 | |
|   // Only perform this analysis when using C++11.  There is no good workflow
 | |
|   // for this warning when not using C++11.  There is no good way to silence
 | |
|   // the warning (no attribute is available) unless we are using C++11's support
 | |
|   // for generalized attributes.  Once could use pragmas to silence the warning,
 | |
|   // but as a general solution that is gross and not in the spirit of this
 | |
|   // warning.
 | |
|   //
 | |
|   // NOTE: This an intermediate solution.  There are on-going discussions on
 | |
|   // how to properly support this warning outside of C++11 with an annotation.
 | |
|   if (!AC.getASTContext().getLangOpts().CPlusPlus11)
 | |
|     return;
 | |
| 
 | |
|   FallthroughMapper FM(S);
 | |
|   FM.TraverseStmt(AC.getBody());
 | |
| 
 | |
|   if (!FM.foundSwitchStatements())
 | |
|     return;
 | |
| 
 | |
|   if (PerFunction && FM.getFallthroughStmts().empty())
 | |
|     return;
 | |
| 
 | |
|   CFG *Cfg = AC.getCFG();
 | |
| 
 | |
|   if (!Cfg)
 | |
|     return;
 | |
| 
 | |
|   FM.fillReachableBlocks(Cfg);
 | |
| 
 | |
|   for (const CFGBlock *B : llvm::reverse(*Cfg)) {
 | |
|     const Stmt *Label = B->getLabel();
 | |
| 
 | |
|     if (!Label || !isa<SwitchCase>(Label))
 | |
|       continue;
 | |
| 
 | |
|     int AnnotatedCnt;
 | |
| 
 | |
|     if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt))
 | |
|       continue;
 | |
| 
 | |
|     S.Diag(Label->getLocStart(),
 | |
|         PerFunction ? diag::warn_unannotated_fallthrough_per_function
 | |
|                     : diag::warn_unannotated_fallthrough);
 | |
| 
 | |
|     if (!AnnotatedCnt) {
 | |
|       SourceLocation L = Label->getLocStart();
 | |
|       if (L.isMacroID())
 | |
|         continue;
 | |
|       if (S.getLangOpts().CPlusPlus11) {
 | |
|         const Stmt *Term = B->getTerminator();
 | |
|         // Skip empty cases.
 | |
|         while (B->empty() && !Term && B->succ_size() == 1) {
 | |
|           B = *B->succ_begin();
 | |
|           Term = B->getTerminator();
 | |
|         }
 | |
|         if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
 | |
|           Preprocessor &PP = S.getPreprocessor();
 | |
|           TokenValue Tokens[] = {
 | |
|             tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
 | |
|             tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
 | |
|             tok::r_square, tok::r_square
 | |
|           };
 | |
|           StringRef AnnotationSpelling = "[[clang::fallthrough]]";
 | |
|           StringRef MacroName = PP.getLastMacroWithSpelling(L, Tokens);
 | |
|           if (!MacroName.empty())
 | |
|             AnnotationSpelling = MacroName;
 | |
|           SmallString<64> TextToInsert(AnnotationSpelling);
 | |
|           TextToInsert += "; ";
 | |
|           S.Diag(L, diag::note_insert_fallthrough_fixit) <<
 | |
|               AnnotationSpelling <<
 | |
|               FixItHint::CreateInsertion(L, TextToInsert);
 | |
|         }
 | |
|       }
 | |
|       S.Diag(L, diag::note_insert_break_fixit) <<
 | |
|         FixItHint::CreateInsertion(L, "break; ");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (const auto *F : FM.getFallthroughStmts())
 | |
|     S.Diag(F->getLocStart(), diag::warn_fallthrough_attr_invalid_placement);
 | |
| }
 | |
| 
 | |
| static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
 | |
|                      const Stmt *S) {
 | |
|   assert(S);
 | |
| 
 | |
|   do {
 | |
|     switch (S->getStmtClass()) {
 | |
|     case Stmt::ForStmtClass:
 | |
|     case Stmt::WhileStmtClass:
 | |
|     case Stmt::CXXForRangeStmtClass:
 | |
|     case Stmt::ObjCForCollectionStmtClass:
 | |
|       return true;
 | |
|     case Stmt::DoStmtClass: {
 | |
|       const Expr *Cond = cast<DoStmt>(S)->getCond();
 | |
|       llvm::APSInt Val;
 | |
|       if (!Cond->EvaluateAsInt(Val, Ctx))
 | |
|         return true;
 | |
|       return Val.getBoolValue();
 | |
|     }
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   } while ((S = PM.getParent(S)));
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void diagnoseRepeatedUseOfWeak(Sema &S,
 | |
|                                       const sema::FunctionScopeInfo *CurFn,
 | |
|                                       const Decl *D,
 | |
|                                       const ParentMap &PM) {
 | |
|   typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
 | |
|   typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
 | |
|   typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
 | |
|   typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
 | |
|   StmtUsesPair;
 | |
| 
 | |
|   ASTContext &Ctx = S.getASTContext();
 | |
| 
 | |
|   const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
 | |
| 
 | |
|   // Extract all weak objects that are referenced more than once.
 | |
|   SmallVector<StmtUsesPair, 8> UsesByStmt;
 | |
|   for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
 | |
|        I != E; ++I) {
 | |
|     const WeakUseVector &Uses = I->second;
 | |
| 
 | |
|     // Find the first read of the weak object.
 | |
|     WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
 | |
|     for ( ; UI != UE; ++UI) {
 | |
|       if (UI->isUnsafe())
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // If there were only writes to this object, don't warn.
 | |
|     if (UI == UE)
 | |
|       continue;
 | |
| 
 | |
|     // If there was only one read, followed by any number of writes, and the
 | |
|     // read is not within a loop, don't warn. Additionally, don't warn in a
 | |
|     // loop if the base object is a local variable -- local variables are often
 | |
|     // changed in loops.
 | |
|     if (UI == Uses.begin()) {
 | |
|       WeakUseVector::const_iterator UI2 = UI;
 | |
|       for (++UI2; UI2 != UE; ++UI2)
 | |
|         if (UI2->isUnsafe())
 | |
|           break;
 | |
| 
 | |
|       if (UI2 == UE) {
 | |
|         if (!isInLoop(Ctx, PM, UI->getUseExpr()))
 | |
|           continue;
 | |
| 
 | |
|         const WeakObjectProfileTy &Profile = I->first;
 | |
|         if (!Profile.isExactProfile())
 | |
|           continue;
 | |
| 
 | |
|         const NamedDecl *Base = Profile.getBase();
 | |
|         if (!Base)
 | |
|           Base = Profile.getProperty();
 | |
|         assert(Base && "A profile always has a base or property.");
 | |
| 
 | |
|         if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
 | |
|           if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
 | |
|             continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
 | |
|   }
 | |
| 
 | |
|   if (UsesByStmt.empty())
 | |
|     return;
 | |
| 
 | |
|   // Sort by first use so that we emit the warnings in a deterministic order.
 | |
|   SourceManager &SM = S.getSourceManager();
 | |
|   std::sort(UsesByStmt.begin(), UsesByStmt.end(),
 | |
|             [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
 | |
|     return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(),
 | |
|                                         RHS.first->getLocStart());
 | |
|   });
 | |
| 
 | |
|   // Classify the current code body for better warning text.
 | |
|   // This enum should stay in sync with the cases in
 | |
|   // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
 | |
|   // FIXME: Should we use a common classification enum and the same set of
 | |
|   // possibilities all throughout Sema?
 | |
|   enum {
 | |
|     Function,
 | |
|     Method,
 | |
|     Block,
 | |
|     Lambda
 | |
|   } FunctionKind;
 | |
| 
 | |
|   if (isa<sema::BlockScopeInfo>(CurFn))
 | |
|     FunctionKind = Block;
 | |
|   else if (isa<sema::LambdaScopeInfo>(CurFn))
 | |
|     FunctionKind = Lambda;
 | |
|   else if (isa<ObjCMethodDecl>(D))
 | |
|     FunctionKind = Method;
 | |
|   else
 | |
|     FunctionKind = Function;
 | |
| 
 | |
|   // Iterate through the sorted problems and emit warnings for each.
 | |
|   for (const auto &P : UsesByStmt) {
 | |
|     const Stmt *FirstRead = P.first;
 | |
|     const WeakObjectProfileTy &Key = P.second->first;
 | |
|     const WeakUseVector &Uses = P.second->second;
 | |
| 
 | |
|     // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
 | |
|     // may not contain enough information to determine that these are different
 | |
|     // properties. We can only be 100% sure of a repeated use in certain cases,
 | |
|     // and we adjust the diagnostic kind accordingly so that the less certain
 | |
|     // case can be turned off if it is too noisy.
 | |
|     unsigned DiagKind;
 | |
|     if (Key.isExactProfile())
 | |
|       DiagKind = diag::warn_arc_repeated_use_of_weak;
 | |
|     else
 | |
|       DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
 | |
| 
 | |
|     // Classify the weak object being accessed for better warning text.
 | |
|     // This enum should stay in sync with the cases in
 | |
|     // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
 | |
|     enum {
 | |
|       Variable,
 | |
|       Property,
 | |
|       ImplicitProperty,
 | |
|       Ivar
 | |
|     } ObjectKind;
 | |
| 
 | |
|     const NamedDecl *D = Key.getProperty();
 | |
|     if (isa<VarDecl>(D))
 | |
|       ObjectKind = Variable;
 | |
|     else if (isa<ObjCPropertyDecl>(D))
 | |
|       ObjectKind = Property;
 | |
|     else if (isa<ObjCMethodDecl>(D))
 | |
|       ObjectKind = ImplicitProperty;
 | |
|     else if (isa<ObjCIvarDecl>(D))
 | |
|       ObjectKind = Ivar;
 | |
|     else
 | |
|       llvm_unreachable("Unexpected weak object kind!");
 | |
| 
 | |
|     // Show the first time the object was read.
 | |
|     S.Diag(FirstRead->getLocStart(), DiagKind)
 | |
|       << int(ObjectKind) << D << int(FunctionKind)
 | |
|       << FirstRead->getSourceRange();
 | |
| 
 | |
|     // Print all the other accesses as notes.
 | |
|     for (const auto &Use : Uses) {
 | |
|       if (Use.getUseExpr() == FirstRead)
 | |
|         continue;
 | |
|       S.Diag(Use.getUseExpr()->getLocStart(),
 | |
|              diag::note_arc_weak_also_accessed_here)
 | |
|           << Use.getUseExpr()->getSourceRange();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class UninitValsDiagReporter : public UninitVariablesHandler {
 | |
|   Sema &S;
 | |
|   typedef SmallVector<UninitUse, 2> UsesVec;
 | |
|   typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
 | |
|   // Prefer using MapVector to DenseMap, so that iteration order will be
 | |
|   // the same as insertion order. This is needed to obtain a deterministic
 | |
|   // order of diagnostics when calling flushDiagnostics().
 | |
|   typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
 | |
|   UsesMap uses;
 | |
|   
 | |
| public:
 | |
|   UninitValsDiagReporter(Sema &S) : S(S) {}
 | |
|   ~UninitValsDiagReporter() override { flushDiagnostics(); }
 | |
| 
 | |
|   MappedType &getUses(const VarDecl *vd) {
 | |
|     MappedType &V = uses[vd];
 | |
|     if (!V.getPointer())
 | |
|       V.setPointer(new UsesVec());
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   void handleUseOfUninitVariable(const VarDecl *vd,
 | |
|                                  const UninitUse &use) override {
 | |
|     getUses(vd).getPointer()->push_back(use);
 | |
|   }
 | |
|   
 | |
|   void handleSelfInit(const VarDecl *vd) override {
 | |
|     getUses(vd).setInt(true);
 | |
|   }
 | |
|   
 | |
|   void flushDiagnostics() {
 | |
|     for (const auto &P : uses) {
 | |
|       const VarDecl *vd = P.first;
 | |
|       const MappedType &V = P.second;
 | |
| 
 | |
|       UsesVec *vec = V.getPointer();
 | |
|       bool hasSelfInit = V.getInt();
 | |
| 
 | |
|       // Specially handle the case where we have uses of an uninitialized 
 | |
|       // variable, but the root cause is an idiomatic self-init.  We want
 | |
|       // to report the diagnostic at the self-init since that is the root cause.
 | |
|       if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
 | |
|         DiagnoseUninitializedUse(S, vd,
 | |
|                                  UninitUse(vd->getInit()->IgnoreParenCasts(),
 | |
|                                            /* isAlwaysUninit */ true),
 | |
|                                  /* alwaysReportSelfInit */ true);
 | |
|       else {
 | |
|         // Sort the uses by their SourceLocations.  While not strictly
 | |
|         // guaranteed to produce them in line/column order, this will provide
 | |
|         // a stable ordering.
 | |
|         std::sort(vec->begin(), vec->end(),
 | |
|                   [](const UninitUse &a, const UninitUse &b) {
 | |
|           // Prefer a more confident report over a less confident one.
 | |
|           if (a.getKind() != b.getKind())
 | |
|             return a.getKind() > b.getKind();
 | |
|           return a.getUser()->getLocStart() < b.getUser()->getLocStart();
 | |
|         });
 | |
| 
 | |
|         for (const auto &U : *vec) {
 | |
|           // If we have self-init, downgrade all uses to 'may be uninitialized'.
 | |
|           UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
 | |
| 
 | |
|           if (DiagnoseUninitializedUse(S, vd, Use))
 | |
|             // Skip further diagnostics for this variable. We try to warn only
 | |
|             // on the first point at which a variable is used uninitialized.
 | |
|             break;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Release the uses vector.
 | |
|       delete vec;
 | |
|     }
 | |
| 
 | |
|     uses.clear();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
 | |
|     return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
 | |
|       return U.getKind() == UninitUse::Always ||
 | |
|              U.getKind() == UninitUse::AfterCall ||
 | |
|              U.getKind() == UninitUse::AfterDecl;
 | |
|     });
 | |
|   }
 | |
| };
 | |
| } // anonymous namespace
 | |
| 
 | |
| namespace clang {
 | |
| namespace {
 | |
| typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
 | |
| typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
 | |
| typedef std::list<DelayedDiag> DiagList;
 | |
| 
 | |
| struct SortDiagBySourceLocation {
 | |
|   SourceManager &SM;
 | |
|   SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
 | |
| 
 | |
|   bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
 | |
|     // Although this call will be slow, this is only called when outputting
 | |
|     // multiple warnings.
 | |
|     return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
 | |
|   }
 | |
| };
 | |
| } // anonymous namespace
 | |
| } // namespace clang
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // -Wthread-safety
 | |
| //===----------------------------------------------------------------------===//
 | |
| namespace clang {
 | |
| namespace threadSafety {
 | |
| namespace {
 | |
| class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
 | |
|   Sema &S;
 | |
|   DiagList Warnings;
 | |
|   SourceLocation FunLocation, FunEndLocation;
 | |
| 
 | |
|   const FunctionDecl *CurrentFunction;
 | |
|   bool Verbose;
 | |
| 
 | |
|   OptionalNotes getNotes() const {
 | |
|     if (Verbose && CurrentFunction) {
 | |
|       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
 | |
|                                 S.PDiag(diag::note_thread_warning_in_fun)
 | |
|                                     << CurrentFunction->getNameAsString());
 | |
|       return OptionalNotes(1, FNote);
 | |
|     }
 | |
|     return OptionalNotes();
 | |
|   }
 | |
| 
 | |
|   OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
 | |
|     OptionalNotes ONS(1, Note);
 | |
|     if (Verbose && CurrentFunction) {
 | |
|       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
 | |
|                                 S.PDiag(diag::note_thread_warning_in_fun)
 | |
|                                     << CurrentFunction->getNameAsString());
 | |
|       ONS.push_back(std::move(FNote));
 | |
|     }
 | |
|     return ONS;
 | |
|   }
 | |
| 
 | |
|   OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
 | |
|                          const PartialDiagnosticAt &Note2) const {
 | |
|     OptionalNotes ONS;
 | |
|     ONS.push_back(Note1);
 | |
|     ONS.push_back(Note2);
 | |
|     if (Verbose && CurrentFunction) {
 | |
|       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
 | |
|                                 S.PDiag(diag::note_thread_warning_in_fun)
 | |
|                                     << CurrentFunction->getNameAsString());
 | |
|       ONS.push_back(std::move(FNote));
 | |
|     }
 | |
|     return ONS;
 | |
|   }
 | |
| 
 | |
|   // Helper functions
 | |
|   void warnLockMismatch(unsigned DiagID, StringRef Kind, Name LockName,
 | |
|                         SourceLocation Loc) {
 | |
|     // Gracefully handle rare cases when the analysis can't get a more
 | |
|     // precise source location.
 | |
|     if (!Loc.isValid())
 | |
|       Loc = FunLocation;
 | |
|     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << LockName);
 | |
|     Warnings.emplace_back(std::move(Warning), getNotes());
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
 | |
|     : S(S), FunLocation(FL), FunEndLocation(FEL),
 | |
|       CurrentFunction(nullptr), Verbose(false) {}
 | |
| 
 | |
|   void setVerbose(bool b) { Verbose = b; }
 | |
| 
 | |
|   /// \brief Emit all buffered diagnostics in order of sourcelocation.
 | |
|   /// We need to output diagnostics produced while iterating through
 | |
|   /// the lockset in deterministic order, so this function orders diagnostics
 | |
|   /// and outputs them.
 | |
|   void emitDiagnostics() {
 | |
|     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
 | |
|     for (const auto &Diag : Warnings) {
 | |
|       S.Diag(Diag.first.first, Diag.first.second);
 | |
|       for (const auto &Note : Diag.second)
 | |
|         S.Diag(Note.first, Note.second);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
 | |
|     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
 | |
|                                          << Loc);
 | |
|     Warnings.emplace_back(std::move(Warning), getNotes());
 | |
|   }
 | |
| 
 | |
|   void handleUnmatchedUnlock(StringRef Kind, Name LockName,
 | |
|                              SourceLocation Loc) override {
 | |
|     warnLockMismatch(diag::warn_unlock_but_no_lock, Kind, LockName, Loc);
 | |
|   }
 | |
| 
 | |
|   void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
 | |
|                                  LockKind Expected, LockKind Received,
 | |
|                                  SourceLocation Loc) override {
 | |
|     if (Loc.isInvalid())
 | |
|       Loc = FunLocation;
 | |
|     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_kind_mismatch)
 | |
|                                          << Kind << LockName << Received
 | |
|                                          << Expected);
 | |
|     Warnings.emplace_back(std::move(Warning), getNotes());
 | |
|   }
 | |
| 
 | |
|   void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation Loc) override {
 | |
|     warnLockMismatch(diag::warn_double_lock, Kind, LockName, Loc);
 | |
|   }
 | |
| 
 | |
|   void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
 | |
|                                  SourceLocation LocLocked,
 | |
|                                  SourceLocation LocEndOfScope,
 | |
|                                  LockErrorKind LEK) override {
 | |
|     unsigned DiagID = 0;
 | |
|     switch (LEK) {
 | |
|       case LEK_LockedSomePredecessors:
 | |
|         DiagID = diag::warn_lock_some_predecessors;
 | |
|         break;
 | |
|       case LEK_LockedSomeLoopIterations:
 | |
|         DiagID = diag::warn_expecting_lock_held_on_loop;
 | |
|         break;
 | |
|       case LEK_LockedAtEndOfFunction:
 | |
|         DiagID = diag::warn_no_unlock;
 | |
|         break;
 | |
|       case LEK_NotLockedAtEndOfFunction:
 | |
|         DiagID = diag::warn_expecting_locked;
 | |
|         break;
 | |
|     }
 | |
|     if (LocEndOfScope.isInvalid())
 | |
|       LocEndOfScope = FunEndLocation;
 | |
| 
 | |
|     PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
 | |
|                                                                << LockName);
 | |
|     if (LocLocked.isValid()) {
 | |
|       PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here)
 | |
|                                               << Kind);
 | |
|       Warnings.emplace_back(std::move(Warning), getNotes(Note));
 | |
|       return;
 | |
|     }
 | |
|     Warnings.emplace_back(std::move(Warning), getNotes());
 | |
|   }
 | |
| 
 | |
|   void handleExclusiveAndShared(StringRef Kind, Name LockName,
 | |
|                                 SourceLocation Loc1,
 | |
|                                 SourceLocation Loc2) override {
 | |
|     PartialDiagnosticAt Warning(Loc1,
 | |
|                                 S.PDiag(diag::warn_lock_exclusive_and_shared)
 | |
|                                     << Kind << LockName);
 | |
|     PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
 | |
|                                        << Kind << LockName);
 | |
|     Warnings.emplace_back(std::move(Warning), getNotes(Note));
 | |
|   }
 | |
| 
 | |
|   void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
 | |
|                          ProtectedOperationKind POK, AccessKind AK,
 | |
|                          SourceLocation Loc) override {
 | |
|     assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
 | |
|            "Only works for variables");
 | |
|     unsigned DiagID = POK == POK_VarAccess?
 | |
|                         diag::warn_variable_requires_any_lock:
 | |
|                         diag::warn_var_deref_requires_any_lock;
 | |
|     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
 | |
|       << D->getNameAsString() << getLockKindFromAccessKind(AK));
 | |
|     Warnings.emplace_back(std::move(Warning), getNotes());
 | |
|   }
 | |
| 
 | |
|   void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
 | |
|                           ProtectedOperationKind POK, Name LockName,
 | |
|                           LockKind LK, SourceLocation Loc,
 | |
|                           Name *PossibleMatch) override {
 | |
|     unsigned DiagID = 0;
 | |
|     if (PossibleMatch) {
 | |
|       switch (POK) {
 | |
|         case POK_VarAccess:
 | |
|           DiagID = diag::warn_variable_requires_lock_precise;
 | |
|           break;
 | |
|         case POK_VarDereference:
 | |
|           DiagID = diag::warn_var_deref_requires_lock_precise;
 | |
|           break;
 | |
|         case POK_FunctionCall:
 | |
|           DiagID = diag::warn_fun_requires_lock_precise;
 | |
|           break;
 | |
|         case POK_PassByRef:
 | |
|           DiagID = diag::warn_guarded_pass_by_reference;
 | |
|           break;
 | |
|         case POK_PtPassByRef:
 | |
|           DiagID = diag::warn_pt_guarded_pass_by_reference;
 | |
|           break;
 | |
|       }
 | |
|       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
 | |
|                                                        << D->getNameAsString()
 | |
|                                                        << LockName << LK);
 | |
|       PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
 | |
|                                         << *PossibleMatch);
 | |
|       if (Verbose && POK == POK_VarAccess) {
 | |
|         PartialDiagnosticAt VNote(D->getLocation(),
 | |
|                                  S.PDiag(diag::note_guarded_by_declared_here)
 | |
|                                      << D->getNameAsString());
 | |
|         Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote));
 | |
|       } else
 | |
|         Warnings.emplace_back(std::move(Warning), getNotes(Note));
 | |
|     } else {
 | |
|       switch (POK) {
 | |
|         case POK_VarAccess:
 | |
|           DiagID = diag::warn_variable_requires_lock;
 | |
|           break;
 | |
|         case POK_VarDereference:
 | |
|           DiagID = diag::warn_var_deref_requires_lock;
 | |
|           break;
 | |
|         case POK_FunctionCall:
 | |
|           DiagID = diag::warn_fun_requires_lock;
 | |
|           break;
 | |
|         case POK_PassByRef:
 | |
|           DiagID = diag::warn_guarded_pass_by_reference;
 | |
|           break;
 | |
|         case POK_PtPassByRef:
 | |
|           DiagID = diag::warn_pt_guarded_pass_by_reference;
 | |
|           break;
 | |
|       }
 | |
|       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
 | |
|                                                        << D->getNameAsString()
 | |
|                                                        << LockName << LK);
 | |
|       if (Verbose && POK == POK_VarAccess) {
 | |
|         PartialDiagnosticAt Note(D->getLocation(),
 | |
|                                  S.PDiag(diag::note_guarded_by_declared_here)
 | |
|                                      << D->getNameAsString());
 | |
|         Warnings.emplace_back(std::move(Warning), getNotes(Note));
 | |
|       } else
 | |
|         Warnings.emplace_back(std::move(Warning), getNotes());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
 | |
|                              SourceLocation Loc) override {
 | |
|     PartialDiagnosticAt Warning(Loc,
 | |
|         S.PDiag(diag::warn_acquire_requires_negative_cap)
 | |
|         << Kind << LockName << Neg);
 | |
|     Warnings.emplace_back(std::move(Warning), getNotes());
 | |
|   }
 | |
| 
 | |
|   void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
 | |
|                              SourceLocation Loc) override {
 | |
|     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
 | |
|                                          << Kind << FunName << LockName);
 | |
|     Warnings.emplace_back(std::move(Warning), getNotes());
 | |
|   }
 | |
| 
 | |
|   void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
 | |
|                                 SourceLocation Loc) override {
 | |
|     PartialDiagnosticAt Warning(Loc,
 | |
|       S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
 | |
|     Warnings.emplace_back(std::move(Warning), getNotes());
 | |
|   }
 | |
| 
 | |
|   void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
 | |
|     PartialDiagnosticAt Warning(Loc,
 | |
|       S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
 | |
|     Warnings.emplace_back(std::move(Warning), getNotes());
 | |
|   }
 | |
| 
 | |
|   void enterFunction(const FunctionDecl* FD) override {
 | |
|     CurrentFunction = FD;
 | |
|   }
 | |
| 
 | |
|   void leaveFunction(const FunctionDecl* FD) override {
 | |
|     CurrentFunction = nullptr;
 | |
|   }
 | |
| };
 | |
| } // anonymous namespace
 | |
| } // namespace threadSafety
 | |
| } // namespace clang
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // -Wconsumed
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace clang {
 | |
| namespace consumed {
 | |
| namespace {
 | |
| class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
 | |
|   
 | |
|   Sema &S;
 | |
|   DiagList Warnings;
 | |
|   
 | |
| public:
 | |
| 
 | |
|   ConsumedWarningsHandler(Sema &S) : S(S) {}
 | |
| 
 | |
|   void emitDiagnostics() override {
 | |
|     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
 | |
|     for (const auto &Diag : Warnings) {
 | |
|       S.Diag(Diag.first.first, Diag.first.second);
 | |
|       for (const auto &Note : Diag.second)
 | |
|         S.Diag(Note.first, Note.second);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void warnLoopStateMismatch(SourceLocation Loc,
 | |
|                              StringRef VariableName) override {
 | |
|     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
 | |
|       VariableName);
 | |
| 
 | |
|     Warnings.emplace_back(std::move(Warning), OptionalNotes());
 | |
|   }
 | |
|   
 | |
|   void warnParamReturnTypestateMismatch(SourceLocation Loc,
 | |
|                                         StringRef VariableName,
 | |
|                                         StringRef ExpectedState,
 | |
|                                         StringRef ObservedState) override {
 | |
|     
 | |
|     PartialDiagnosticAt Warning(Loc, S.PDiag(
 | |
|       diag::warn_param_return_typestate_mismatch) << VariableName <<
 | |
|         ExpectedState << ObservedState);
 | |
| 
 | |
|     Warnings.emplace_back(std::move(Warning), OptionalNotes());
 | |
|   }
 | |
|   
 | |
|   void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
 | |
|                                   StringRef ObservedState) override {
 | |
|     
 | |
|     PartialDiagnosticAt Warning(Loc, S.PDiag(
 | |
|       diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
 | |
| 
 | |
|     Warnings.emplace_back(std::move(Warning), OptionalNotes());
 | |
|   }
 | |
|   
 | |
|   void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
 | |
|                                               StringRef TypeName) override {
 | |
|     PartialDiagnosticAt Warning(Loc, S.PDiag(
 | |
|       diag::warn_return_typestate_for_unconsumable_type) << TypeName);
 | |
| 
 | |
|     Warnings.emplace_back(std::move(Warning), OptionalNotes());
 | |
|   }
 | |
|   
 | |
|   void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
 | |
|                                    StringRef ObservedState) override {
 | |
|                                     
 | |
|     PartialDiagnosticAt Warning(Loc, S.PDiag(
 | |
|       diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
 | |
| 
 | |
|     Warnings.emplace_back(std::move(Warning), OptionalNotes());
 | |
|   }
 | |
|   
 | |
|   void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
 | |
|                                    SourceLocation Loc) override {
 | |
|                                                     
 | |
|     PartialDiagnosticAt Warning(Loc, S.PDiag(
 | |
|       diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
 | |
| 
 | |
|     Warnings.emplace_back(std::move(Warning), OptionalNotes());
 | |
|   }
 | |
|   
 | |
|   void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
 | |
|                              StringRef State, SourceLocation Loc) override {
 | |
|   
 | |
|     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
 | |
|                                 MethodName << VariableName << State);
 | |
| 
 | |
|     Warnings.emplace_back(std::move(Warning), OptionalNotes());
 | |
|   }
 | |
| };
 | |
| } // anonymous namespace
 | |
| } // namespace consumed
 | |
| } // namespace clang
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
 | |
| //  warnings on a function, method, or block.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| clang::sema::AnalysisBasedWarnings::Policy::Policy() {
 | |
|   enableCheckFallThrough = 1;
 | |
|   enableCheckUnreachable = 0;
 | |
|   enableThreadSafetyAnalysis = 0;
 | |
|   enableConsumedAnalysis = 0;
 | |
| }
 | |
| 
 | |
| static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
 | |
|   return (unsigned)!D.isIgnored(diag, SourceLocation());
 | |
| }
 | |
| 
 | |
| clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
 | |
|   : S(s),
 | |
|     NumFunctionsAnalyzed(0),
 | |
|     NumFunctionsWithBadCFGs(0),
 | |
|     NumCFGBlocks(0),
 | |
|     MaxCFGBlocksPerFunction(0),
 | |
|     NumUninitAnalysisFunctions(0),
 | |
|     NumUninitAnalysisVariables(0),
 | |
|     MaxUninitAnalysisVariablesPerFunction(0),
 | |
|     NumUninitAnalysisBlockVisits(0),
 | |
|     MaxUninitAnalysisBlockVisitsPerFunction(0) {
 | |
| 
 | |
|   using namespace diag;
 | |
|   DiagnosticsEngine &D = S.getDiagnostics();
 | |
| 
 | |
|   DefaultPolicy.enableCheckUnreachable =
 | |
|     isEnabled(D, warn_unreachable) ||
 | |
|     isEnabled(D, warn_unreachable_break) ||
 | |
|     isEnabled(D, warn_unreachable_return) ||
 | |
|     isEnabled(D, warn_unreachable_loop_increment);
 | |
| 
 | |
|   DefaultPolicy.enableThreadSafetyAnalysis =
 | |
|     isEnabled(D, warn_double_lock);
 | |
| 
 | |
|   DefaultPolicy.enableConsumedAnalysis =
 | |
|     isEnabled(D, warn_use_in_invalid_state);
 | |
| }
 | |
| 
 | |
| static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
 | |
|   for (const auto &D : fscope->PossiblyUnreachableDiags)
 | |
|     S.Diag(D.Loc, D.PD);
 | |
| }
 | |
| 
 | |
| void clang::sema::
 | |
| AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
 | |
|                                      sema::FunctionScopeInfo *fscope,
 | |
|                                      const Decl *D, const BlockExpr *blkExpr) {
 | |
| 
 | |
|   // We avoid doing analysis-based warnings when there are errors for
 | |
|   // two reasons:
 | |
|   // (1) The CFGs often can't be constructed (if the body is invalid), so
 | |
|   //     don't bother trying.
 | |
|   // (2) The code already has problems; running the analysis just takes more
 | |
|   //     time.
 | |
|   DiagnosticsEngine &Diags = S.getDiagnostics();
 | |
| 
 | |
|   // Do not do any analysis for declarations in system headers if we are
 | |
|   // going to just ignore them.
 | |
|   if (Diags.getSuppressSystemWarnings() &&
 | |
|       S.SourceMgr.isInSystemHeader(D->getLocation()))
 | |
|     return;
 | |
| 
 | |
|   // For code in dependent contexts, we'll do this at instantiation time.
 | |
|   if (cast<DeclContext>(D)->isDependentContext())
 | |
|     return;
 | |
| 
 | |
|   if (Diags.hasUncompilableErrorOccurred() || Diags.hasFatalErrorOccurred()) {
 | |
|     // Flush out any possibly unreachable diagnostics.
 | |
|     flushDiagnostics(S, fscope);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   const Stmt *Body = D->getBody();
 | |
|   assert(Body);
 | |
| 
 | |
|   // Construct the analysis context with the specified CFG build options.
 | |
|   AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
 | |
| 
 | |
|   // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
 | |
|   // explosion for destructors that can result and the compile time hit.
 | |
|   AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
 | |
|   AC.getCFGBuildOptions().AddEHEdges = false;
 | |
|   AC.getCFGBuildOptions().AddInitializers = true;
 | |
|   AC.getCFGBuildOptions().AddImplicitDtors = true;
 | |
|   AC.getCFGBuildOptions().AddTemporaryDtors = true;
 | |
|   AC.getCFGBuildOptions().AddCXXNewAllocator = false;
 | |
|   AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true;
 | |
| 
 | |
|   // Force that certain expressions appear as CFGElements in the CFG.  This
 | |
|   // is used to speed up various analyses.
 | |
|   // FIXME: This isn't the right factoring.  This is here for initial
 | |
|   // prototyping, but we need a way for analyses to say what expressions they
 | |
|   // expect to always be CFGElements and then fill in the BuildOptions
 | |
|   // appropriately.  This is essentially a layering violation.
 | |
|   if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
 | |
|       P.enableConsumedAnalysis) {
 | |
|     // Unreachable code analysis and thread safety require a linearized CFG.
 | |
|     AC.getCFGBuildOptions().setAllAlwaysAdd();
 | |
|   }
 | |
|   else {
 | |
|     AC.getCFGBuildOptions()
 | |
|       .setAlwaysAdd(Stmt::BinaryOperatorClass)
 | |
|       .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
 | |
|       .setAlwaysAdd(Stmt::BlockExprClass)
 | |
|       .setAlwaysAdd(Stmt::CStyleCastExprClass)
 | |
|       .setAlwaysAdd(Stmt::DeclRefExprClass)
 | |
|       .setAlwaysAdd(Stmt::ImplicitCastExprClass)
 | |
|       .setAlwaysAdd(Stmt::UnaryOperatorClass)
 | |
|       .setAlwaysAdd(Stmt::AttributedStmtClass);
 | |
|   }
 | |
| 
 | |
|   // Install the logical handler for -Wtautological-overlap-compare
 | |
|   std::unique_ptr<LogicalErrorHandler> LEH;
 | |
|   if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
 | |
|                        D->getLocStart())) {
 | |
|     LEH.reset(new LogicalErrorHandler(S));
 | |
|     AC.getCFGBuildOptions().Observer = LEH.get();
 | |
|   }
 | |
| 
 | |
|   // Emit delayed diagnostics.
 | |
|   if (!fscope->PossiblyUnreachableDiags.empty()) {
 | |
|     bool analyzed = false;
 | |
| 
 | |
|     // Register the expressions with the CFGBuilder.
 | |
|     for (const auto &D : fscope->PossiblyUnreachableDiags) {
 | |
|       if (D.stmt)
 | |
|         AC.registerForcedBlockExpression(D.stmt);
 | |
|     }
 | |
| 
 | |
|     if (AC.getCFG()) {
 | |
|       analyzed = true;
 | |
|       for (const auto &D : fscope->PossiblyUnreachableDiags) {
 | |
|         bool processed = false;
 | |
|         if (D.stmt) {
 | |
|           const CFGBlock *block = AC.getBlockForRegisteredExpression(D.stmt);
 | |
|           CFGReverseBlockReachabilityAnalysis *cra =
 | |
|               AC.getCFGReachablityAnalysis();
 | |
|           // FIXME: We should be able to assert that block is non-null, but
 | |
|           // the CFG analysis can skip potentially-evaluated expressions in
 | |
|           // edge cases; see test/Sema/vla-2.c.
 | |
|           if (block && cra) {
 | |
|             // Can this block be reached from the entrance?
 | |
|             if (cra->isReachable(&AC.getCFG()->getEntry(), block))
 | |
|               S.Diag(D.Loc, D.PD);
 | |
|             processed = true;
 | |
|           }
 | |
|         }
 | |
|         if (!processed) {
 | |
|           // Emit the warning anyway if we cannot map to a basic block.
 | |
|           S.Diag(D.Loc, D.PD);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!analyzed)
 | |
|       flushDiagnostics(S, fscope);
 | |
|   }
 | |
|   
 | |
|   // Warning: check missing 'return'
 | |
|   if (P.enableCheckFallThrough) {
 | |
|     const CheckFallThroughDiagnostics &CD =
 | |
|       (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
 | |
|        : (isa<CXXMethodDecl>(D) &&
 | |
|           cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
 | |
|           cast<CXXMethodDecl>(D)->getParent()->isLambda())
 | |
|             ? CheckFallThroughDiagnostics::MakeForLambda()
 | |
|             : CheckFallThroughDiagnostics::MakeForFunction(D));
 | |
|     CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
 | |
|   }
 | |
| 
 | |
|   // Warning: check for unreachable code
 | |
|   if (P.enableCheckUnreachable) {
 | |
|     // Only check for unreachable code on non-template instantiations.
 | |
|     // Different template instantiations can effectively change the control-flow
 | |
|     // and it is very difficult to prove that a snippet of code in a template
 | |
|     // is unreachable for all instantiations.
 | |
|     bool isTemplateInstantiation = false;
 | |
|     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
 | |
|       isTemplateInstantiation = Function->isTemplateInstantiation();
 | |
|     if (!isTemplateInstantiation)
 | |
|       CheckUnreachable(S, AC);
 | |
|   }
 | |
| 
 | |
|   // Check for thread safety violations
 | |
|   if (P.enableThreadSafetyAnalysis) {
 | |
|     SourceLocation FL = AC.getDecl()->getLocation();
 | |
|     SourceLocation FEL = AC.getDecl()->getLocEnd();
 | |
|     threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
 | |
|     if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getLocStart()))
 | |
|       Reporter.setIssueBetaWarnings(true);
 | |
|     if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getLocStart()))
 | |
|       Reporter.setVerbose(true);
 | |
| 
 | |
|     threadSafety::runThreadSafetyAnalysis(AC, Reporter,
 | |
|                                           &S.ThreadSafetyDeclCache);
 | |
|     Reporter.emitDiagnostics();
 | |
|   }
 | |
| 
 | |
|   // Check for violations of consumed properties.
 | |
|   if (P.enableConsumedAnalysis) {
 | |
|     consumed::ConsumedWarningsHandler WarningHandler(S);
 | |
|     consumed::ConsumedAnalyzer Analyzer(WarningHandler);
 | |
|     Analyzer.run(AC);
 | |
|   }
 | |
| 
 | |
|   if (!Diags.isIgnored(diag::warn_uninit_var, D->getLocStart()) ||
 | |
|       !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getLocStart()) ||
 | |
|       !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getLocStart())) {
 | |
|     if (CFG *cfg = AC.getCFG()) {
 | |
|       UninitValsDiagReporter reporter(S);
 | |
|       UninitVariablesAnalysisStats stats;
 | |
|       std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
 | |
|       runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
 | |
|                                         reporter, stats);
 | |
| 
 | |
|       if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
 | |
|         ++NumUninitAnalysisFunctions;
 | |
|         NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
 | |
|         NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
 | |
|         MaxUninitAnalysisVariablesPerFunction =
 | |
|             std::max(MaxUninitAnalysisVariablesPerFunction,
 | |
|                      stats.NumVariablesAnalyzed);
 | |
|         MaxUninitAnalysisBlockVisitsPerFunction =
 | |
|             std::max(MaxUninitAnalysisBlockVisitsPerFunction,
 | |
|                      stats.NumBlockVisits);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool FallThroughDiagFull =
 | |
|       !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getLocStart());
 | |
|   bool FallThroughDiagPerFunction = !Diags.isIgnored(
 | |
|       diag::warn_unannotated_fallthrough_per_function, D->getLocStart());
 | |
|   if (FallThroughDiagFull || FallThroughDiagPerFunction) {
 | |
|     DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
 | |
|   }
 | |
| 
 | |
|   if (S.getLangOpts().ObjCWeak &&
 | |
|       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getLocStart()))
 | |
|     diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
 | |
| 
 | |
| 
 | |
|   // Check for infinite self-recursion in functions
 | |
|   if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
 | |
|                        D->getLocStart())) {
 | |
|     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|       checkRecursiveFunction(S, FD, Body, AC);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If none of the previous checks caused a CFG build, trigger one here
 | |
|   // for -Wtautological-overlap-compare
 | |
|   if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
 | |
|                                D->getLocStart())) {
 | |
|     AC.getCFG();
 | |
|   }
 | |
| 
 | |
|   // Collect statistics about the CFG if it was built.
 | |
|   if (S.CollectStats && AC.isCFGBuilt()) {
 | |
|     ++NumFunctionsAnalyzed;
 | |
|     if (CFG *cfg = AC.getCFG()) {
 | |
|       // If we successfully built a CFG for this context, record some more
 | |
|       // detail information about it.
 | |
|       NumCFGBlocks += cfg->getNumBlockIDs();
 | |
|       MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
 | |
|                                          cfg->getNumBlockIDs());
 | |
|     } else {
 | |
|       ++NumFunctionsWithBadCFGs;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void clang::sema::AnalysisBasedWarnings::PrintStats() const {
 | |
|   llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
 | |
| 
 | |
|   unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
 | |
|   unsigned AvgCFGBlocksPerFunction =
 | |
|       !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
 | |
|   llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
 | |
|                << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
 | |
|                << "  " << NumCFGBlocks << " CFG blocks built.\n"
 | |
|                << "  " << AvgCFGBlocksPerFunction
 | |
|                << " average CFG blocks per function.\n"
 | |
|                << "  " << MaxCFGBlocksPerFunction
 | |
|                << " max CFG blocks per function.\n";
 | |
| 
 | |
|   unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
 | |
|       : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
 | |
|   unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
 | |
|       : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
 | |
|   llvm::errs() << NumUninitAnalysisFunctions
 | |
|                << " functions analyzed for uninitialiazed variables\n"
 | |
|                << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
 | |
|                << "  " << AvgUninitVariablesPerFunction
 | |
|                << " average variables per function.\n"
 | |
|                << "  " << MaxUninitAnalysisVariablesPerFunction
 | |
|                << " max variables per function.\n"
 | |
|                << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
 | |
|                << "  " << AvgUninitBlockVisitsPerFunction
 | |
|                << " average block visits per function.\n"
 | |
|                << "  " << MaxUninitAnalysisBlockVisitsPerFunction
 | |
|                << " max block visits per function.\n";
 | |
| }
 |