forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			4633 lines
		
	
	
		
			182 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4633 lines
		
	
	
		
			182 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements semantic analysis for Objective C declarations.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/AST/ASTConsumer.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/ASTMutationListener.h"
 | |
| #include "clang/AST/RecursiveASTVisitor.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/Basic/SourceManager.h"
 | |
| #include "clang/Sema/DeclSpec.h"
 | |
| #include "clang/Sema/ExternalSemaSource.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "TypeLocBuilder.h"
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| /// Check whether the given method, which must be in the 'init'
 | |
| /// family, is a valid member of that family.
 | |
| ///
 | |
| /// \param receiverTypeIfCall - if null, check this as if declaring it;
 | |
| ///   if non-null, check this as if making a call to it with the given
 | |
| ///   receiver type
 | |
| ///
 | |
| /// \return true to indicate that there was an error and appropriate
 | |
| ///   actions were taken
 | |
| bool Sema::checkInitMethod(ObjCMethodDecl *method,
 | |
|                            QualType receiverTypeIfCall) {
 | |
|   if (method->isInvalidDecl()) return true;
 | |
| 
 | |
|   // This castAs is safe: methods that don't return an object
 | |
|   // pointer won't be inferred as inits and will reject an explicit
 | |
|   // objc_method_family(init).
 | |
| 
 | |
|   // We ignore protocols here.  Should we?  What about Class?
 | |
| 
 | |
|   const ObjCObjectType *result =
 | |
|       method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
 | |
| 
 | |
|   if (result->isObjCId()) {
 | |
|     return false;
 | |
|   } else if (result->isObjCClass()) {
 | |
|     // fall through: always an error
 | |
|   } else {
 | |
|     ObjCInterfaceDecl *resultClass = result->getInterface();
 | |
|     assert(resultClass && "unexpected object type!");
 | |
| 
 | |
|     // It's okay for the result type to still be a forward declaration
 | |
|     // if we're checking an interface declaration.
 | |
|     if (!resultClass->hasDefinition()) {
 | |
|       if (receiverTypeIfCall.isNull() &&
 | |
|           !isa<ObjCImplementationDecl>(method->getDeclContext()))
 | |
|         return false;
 | |
| 
 | |
|     // Otherwise, we try to compare class types.
 | |
|     } else {
 | |
|       // If this method was declared in a protocol, we can't check
 | |
|       // anything unless we have a receiver type that's an interface.
 | |
|       const ObjCInterfaceDecl *receiverClass = nullptr;
 | |
|       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
 | |
|         if (receiverTypeIfCall.isNull())
 | |
|           return false;
 | |
| 
 | |
|         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
 | |
|           ->getInterfaceDecl();
 | |
| 
 | |
|         // This can be null for calls to e.g. id<Foo>.
 | |
|         if (!receiverClass) return false;
 | |
|       } else {
 | |
|         receiverClass = method->getClassInterface();
 | |
|         assert(receiverClass && "method not associated with a class!");
 | |
|       }
 | |
| 
 | |
|       // If either class is a subclass of the other, it's fine.
 | |
|       if (receiverClass->isSuperClassOf(resultClass) ||
 | |
|           resultClass->isSuperClassOf(receiverClass))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SourceLocation loc = method->getLocation();
 | |
| 
 | |
|   // If we're in a system header, and this is not a call, just make
 | |
|   // the method unusable.
 | |
|   if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
 | |
|     method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
 | |
|                       UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, it's an error.
 | |
|   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
 | |
|   method->setInvalidDecl();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, 
 | |
|                                    const ObjCMethodDecl *Overridden) {
 | |
|   if (Overridden->hasRelatedResultType() && 
 | |
|       !NewMethod->hasRelatedResultType()) {
 | |
|     // This can only happen when the method follows a naming convention that
 | |
|     // implies a related result type, and the original (overridden) method has
 | |
|     // a suitable return type, but the new (overriding) method does not have
 | |
|     // a suitable return type.
 | |
|     QualType ResultType = NewMethod->getReturnType();
 | |
|     SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
 | |
|     
 | |
|     // Figure out which class this method is part of, if any.
 | |
|     ObjCInterfaceDecl *CurrentClass 
 | |
|       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
 | |
|     if (!CurrentClass) {
 | |
|       DeclContext *DC = NewMethod->getDeclContext();
 | |
|       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
 | |
|         CurrentClass = Cat->getClassInterface();
 | |
|       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
 | |
|         CurrentClass = Impl->getClassInterface();
 | |
|       else if (ObjCCategoryImplDecl *CatImpl
 | |
|                = dyn_cast<ObjCCategoryImplDecl>(DC))
 | |
|         CurrentClass = CatImpl->getClassInterface();
 | |
|     }
 | |
|     
 | |
|     if (CurrentClass) {
 | |
|       Diag(NewMethod->getLocation(), 
 | |
|            diag::warn_related_result_type_compatibility_class)
 | |
|         << Context.getObjCInterfaceType(CurrentClass)
 | |
|         << ResultType
 | |
|         << ResultTypeRange;
 | |
|     } else {
 | |
|       Diag(NewMethod->getLocation(), 
 | |
|            diag::warn_related_result_type_compatibility_protocol)
 | |
|         << ResultType
 | |
|         << ResultTypeRange;
 | |
|     }
 | |
|     
 | |
|     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
 | |
|       Diag(Overridden->getLocation(), 
 | |
|            diag::note_related_result_type_family)
 | |
|         << /*overridden method*/ 0
 | |
|         << Family;
 | |
|     else
 | |
|       Diag(Overridden->getLocation(), 
 | |
|            diag::note_related_result_type_overridden);
 | |
|   }
 | |
|   if (getLangOpts().ObjCAutoRefCount) {
 | |
|     if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
 | |
|          Overridden->hasAttr<NSReturnsRetainedAttr>())) {
 | |
|         Diag(NewMethod->getLocation(),
 | |
|              diag::err_nsreturns_retained_attribute_mismatch) << 1;
 | |
|         Diag(Overridden->getLocation(), diag::note_previous_decl) 
 | |
|         << "method";
 | |
|     }
 | |
|     if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
 | |
|               Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
 | |
|         Diag(NewMethod->getLocation(),
 | |
|              diag::err_nsreturns_retained_attribute_mismatch) << 0;
 | |
|         Diag(Overridden->getLocation(), diag::note_previous_decl) 
 | |
|         << "method";
 | |
|     }
 | |
|     ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
 | |
|                                          oe = Overridden->param_end();
 | |
|     for (ObjCMethodDecl::param_iterator
 | |
|            ni = NewMethod->param_begin(), ne = NewMethod->param_end();
 | |
|          ni != ne && oi != oe; ++ni, ++oi) {
 | |
|       const ParmVarDecl *oldDecl = (*oi);
 | |
|       ParmVarDecl *newDecl = (*ni);
 | |
|       if (newDecl->hasAttr<NSConsumedAttr>() != 
 | |
|           oldDecl->hasAttr<NSConsumedAttr>()) {
 | |
|         Diag(newDecl->getLocation(),
 | |
|              diag::err_nsconsumed_attribute_mismatch);
 | |
|         Diag(oldDecl->getLocation(), diag::note_previous_decl) 
 | |
|           << "parameter";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Check a method declaration for compatibility with the Objective-C
 | |
| /// ARC conventions.
 | |
| bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
 | |
|   ObjCMethodFamily family = method->getMethodFamily();
 | |
|   switch (family) {
 | |
|   case OMF_None:
 | |
|   case OMF_finalize:
 | |
|   case OMF_retain:
 | |
|   case OMF_release:
 | |
|   case OMF_autorelease:
 | |
|   case OMF_retainCount:
 | |
|   case OMF_self:
 | |
|   case OMF_initialize:
 | |
|   case OMF_performSelector:
 | |
|     return false;
 | |
| 
 | |
|   case OMF_dealloc:
 | |
|     if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
 | |
|       SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
 | |
|       if (ResultTypeRange.isInvalid())
 | |
|         Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
 | |
|             << method->getReturnType()
 | |
|             << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
 | |
|       else
 | |
|         Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
 | |
|             << method->getReturnType()
 | |
|             << FixItHint::CreateReplacement(ResultTypeRange, "void");
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|       
 | |
|   case OMF_init:
 | |
|     // If the method doesn't obey the init rules, don't bother annotating it.
 | |
|     if (checkInitMethod(method, QualType()))
 | |
|       return true;
 | |
| 
 | |
|     method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
 | |
| 
 | |
|     // Don't add a second copy of this attribute, but otherwise don't
 | |
|     // let it be suppressed.
 | |
|     if (method->hasAttr<NSReturnsRetainedAttr>())
 | |
|       return false;
 | |
|     break;
 | |
| 
 | |
|   case OMF_alloc:
 | |
|   case OMF_copy:
 | |
|   case OMF_mutableCopy:
 | |
|   case OMF_new:
 | |
|     if (method->hasAttr<NSReturnsRetainedAttr>() ||
 | |
|         method->hasAttr<NSReturnsNotRetainedAttr>() ||
 | |
|         method->hasAttr<NSReturnsAutoreleasedAttr>())
 | |
|       return false;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void DiagnoseObjCImplementedDeprecations(Sema &S,
 | |
|                                                 NamedDecl *ND,
 | |
|                                                 SourceLocation ImplLoc,
 | |
|                                                 int select) {
 | |
|   if (ND && ND->isDeprecated()) {
 | |
|     S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
 | |
|     if (select == 0)
 | |
|       S.Diag(ND->getLocation(), diag::note_method_declared_at)
 | |
|         << ND->getDeclName();
 | |
|     else
 | |
|       S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
 | |
| /// pool.
 | |
| void Sema::AddAnyMethodToGlobalPool(Decl *D) {
 | |
|   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
 | |
|     
 | |
|   // If we don't have a valid method decl, simply return.
 | |
|   if (!MDecl)
 | |
|     return;
 | |
|   if (MDecl->isInstanceMethod())
 | |
|     AddInstanceMethodToGlobalPool(MDecl, true);
 | |
|   else
 | |
|     AddFactoryMethodToGlobalPool(MDecl, true);
 | |
| }
 | |
| 
 | |
| /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
 | |
| /// has explicit ownership attribute; false otherwise.
 | |
| static bool
 | |
| HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
 | |
|   QualType T = Param->getType();
 | |
|   
 | |
|   if (const PointerType *PT = T->getAs<PointerType>()) {
 | |
|     T = PT->getPointeeType();
 | |
|   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
 | |
|     T = RT->getPointeeType();
 | |
|   } else {
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // If we have a lifetime qualifier, but it's local, we must have 
 | |
|   // inferred it. So, it is implicit.
 | |
|   return !T.getLocalQualifiers().hasObjCLifetime();
 | |
| }
 | |
| 
 | |
| /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
 | |
| /// and user declared, in the method definition's AST.
 | |
| void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
 | |
|   assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
 | |
|   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
 | |
|   
 | |
|   // If we don't have a valid method decl, simply return.
 | |
|   if (!MDecl)
 | |
|     return;
 | |
| 
 | |
|   // Allow all of Sema to see that we are entering a method definition.
 | |
|   PushDeclContext(FnBodyScope, MDecl);
 | |
|   PushFunctionScope();
 | |
|   
 | |
|   // Create Decl objects for each parameter, entrring them in the scope for
 | |
|   // binding to their use.
 | |
| 
 | |
|   // Insert the invisible arguments, self and _cmd!
 | |
|   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
 | |
| 
 | |
|   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
 | |
|   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
 | |
| 
 | |
|   // The ObjC parser requires parameter names so there's no need to check.
 | |
|   CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(),
 | |
|                            /*CheckParameterNames=*/false);
 | |
| 
 | |
|   // Introduce all of the other parameters into this scope.
 | |
|   for (auto *Param : MDecl->params()) {
 | |
|     if (!Param->isInvalidDecl() &&
 | |
|         getLangOpts().ObjCAutoRefCount &&
 | |
|         !HasExplicitOwnershipAttr(*this, Param))
 | |
|       Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
 | |
|             Param->getType();
 | |
|     
 | |
|     if (Param->getIdentifier())
 | |
|       PushOnScopeChains(Param, FnBodyScope);
 | |
|   }
 | |
| 
 | |
|   // In ARC, disallow definition of retain/release/autorelease/retainCount
 | |
|   if (getLangOpts().ObjCAutoRefCount) {
 | |
|     switch (MDecl->getMethodFamily()) {
 | |
|     case OMF_retain:
 | |
|     case OMF_retainCount:
 | |
|     case OMF_release:
 | |
|     case OMF_autorelease:
 | |
|       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
 | |
|         << 0 << MDecl->getSelector();
 | |
|       break;
 | |
| 
 | |
|     case OMF_None:
 | |
|     case OMF_dealloc:
 | |
|     case OMF_finalize:
 | |
|     case OMF_alloc:
 | |
|     case OMF_init:
 | |
|     case OMF_mutableCopy:
 | |
|     case OMF_copy:
 | |
|     case OMF_new:
 | |
|     case OMF_self:
 | |
|     case OMF_initialize:
 | |
|     case OMF_performSelector:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Warn on deprecated methods under -Wdeprecated-implementations,
 | |
|   // and prepare for warning on missing super calls.
 | |
|   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
 | |
|     ObjCMethodDecl *IMD = 
 | |
|       IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
 | |
|     
 | |
|     if (IMD) {
 | |
|       ObjCImplDecl *ImplDeclOfMethodDef = 
 | |
|         dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
 | |
|       ObjCContainerDecl *ContDeclOfMethodDecl = 
 | |
|         dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
 | |
|       ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
 | |
|       if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
 | |
|         ImplDeclOfMethodDecl = OID->getImplementation();
 | |
|       else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
 | |
|         if (CD->IsClassExtension()) {
 | |
|           if (ObjCInterfaceDecl *OID = CD->getClassInterface())
 | |
|             ImplDeclOfMethodDecl = OID->getImplementation();
 | |
|         } else
 | |
|             ImplDeclOfMethodDecl = CD->getImplementation();
 | |
|       }
 | |
|       // No need to issue deprecated warning if deprecated mehod in class/category
 | |
|       // is being implemented in its own implementation (no overriding is involved).
 | |
|       if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
 | |
|         DiagnoseObjCImplementedDeprecations(*this, 
 | |
|                                           dyn_cast<NamedDecl>(IMD), 
 | |
|                                           MDecl->getLocation(), 0);
 | |
|     }
 | |
| 
 | |
|     if (MDecl->getMethodFamily() == OMF_init) {
 | |
|       if (MDecl->isDesignatedInitializerForTheInterface()) {
 | |
|         getCurFunction()->ObjCIsDesignatedInit = true;
 | |
|         getCurFunction()->ObjCWarnForNoDesignatedInitChain =
 | |
|             IC->getSuperClass() != nullptr;
 | |
|       } else if (IC->hasDesignatedInitializers()) {
 | |
|         getCurFunction()->ObjCIsSecondaryInit = true;
 | |
|         getCurFunction()->ObjCWarnForNoInitDelegation = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If this is "dealloc" or "finalize", set some bit here.
 | |
|     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
 | |
|     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
 | |
|     // Only do this if the current class actually has a superclass.
 | |
|     if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
 | |
|       ObjCMethodFamily Family = MDecl->getMethodFamily();
 | |
|       if (Family == OMF_dealloc) {
 | |
|         if (!(getLangOpts().ObjCAutoRefCount ||
 | |
|               getLangOpts().getGC() == LangOptions::GCOnly))
 | |
|           getCurFunction()->ObjCShouldCallSuper = true;
 | |
| 
 | |
|       } else if (Family == OMF_finalize) {
 | |
|         if (Context.getLangOpts().getGC() != LangOptions::NonGC)
 | |
|           getCurFunction()->ObjCShouldCallSuper = true;
 | |
|         
 | |
|       } else {
 | |
|         const ObjCMethodDecl *SuperMethod =
 | |
|           SuperClass->lookupMethod(MDecl->getSelector(),
 | |
|                                    MDecl->isInstanceMethod());
 | |
|         getCurFunction()->ObjCShouldCallSuper = 
 | |
|           (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Callback to only accept typo corrections that are Objective-C classes.
 | |
| // If an ObjCInterfaceDecl* is given to the constructor, then the validation
 | |
| // function will reject corrections to that class.
 | |
| class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
 | |
|  public:
 | |
|   ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
 | |
|   explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
 | |
|       : CurrentIDecl(IDecl) {}
 | |
| 
 | |
|   bool ValidateCandidate(const TypoCorrection &candidate) override {
 | |
|     ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
 | |
|     return ID && !declaresSameEntity(ID, CurrentIDecl);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   ObjCInterfaceDecl *CurrentIDecl;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static void diagnoseUseOfProtocols(Sema &TheSema,
 | |
|                                    ObjCContainerDecl *CD,
 | |
|                                    ObjCProtocolDecl *const *ProtoRefs,
 | |
|                                    unsigned NumProtoRefs,
 | |
|                                    const SourceLocation *ProtoLocs) {
 | |
|   assert(ProtoRefs);
 | |
|   // Diagnose availability in the context of the ObjC container.
 | |
|   Sema::ContextRAII SavedContext(TheSema, CD);
 | |
|   for (unsigned i = 0; i < NumProtoRefs; ++i) {
 | |
|     (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::
 | |
| ActOnSuperClassOfClassInterface(Scope *S,
 | |
|                                 SourceLocation AtInterfaceLoc,
 | |
|                                 ObjCInterfaceDecl *IDecl,
 | |
|                                 IdentifierInfo *ClassName,
 | |
|                                 SourceLocation ClassLoc,
 | |
|                                 IdentifierInfo *SuperName,
 | |
|                                 SourceLocation SuperLoc,
 | |
|                                 ArrayRef<ParsedType> SuperTypeArgs,
 | |
|                                 SourceRange SuperTypeArgsRange) {
 | |
|   // Check if a different kind of symbol declared in this scope.
 | |
|   NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
 | |
|                                          LookupOrdinaryName);
 | |
| 
 | |
|   if (!PrevDecl) {
 | |
|     // Try to correct for a typo in the superclass name without correcting
 | |
|     // to the class we're defining.
 | |
|     if (TypoCorrection Corrected = CorrectTypo(
 | |
|             DeclarationNameInfo(SuperName, SuperLoc),
 | |
|             LookupOrdinaryName, TUScope,
 | |
|             nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
 | |
|             CTK_ErrorRecovery)) {
 | |
|       diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
 | |
|                    << SuperName << ClassName);
 | |
|       PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (declaresSameEntity(PrevDecl, IDecl)) {
 | |
|     Diag(SuperLoc, diag::err_recursive_superclass)
 | |
|       << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
 | |
|     IDecl->setEndOfDefinitionLoc(ClassLoc);
 | |
|   } else {
 | |
|     ObjCInterfaceDecl *SuperClassDecl =
 | |
|     dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
 | |
|     QualType SuperClassType;
 | |
| 
 | |
|     // Diagnose classes that inherit from deprecated classes.
 | |
|     if (SuperClassDecl) {
 | |
|       (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
 | |
|       SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
 | |
|     }
 | |
| 
 | |
|     if (PrevDecl && !SuperClassDecl) {
 | |
|       // The previous declaration was not a class decl. Check if we have a
 | |
|       // typedef. If we do, get the underlying class type.
 | |
|       if (const TypedefNameDecl *TDecl =
 | |
|           dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
 | |
|         QualType T = TDecl->getUnderlyingType();
 | |
|         if (T->isObjCObjectType()) {
 | |
|           if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
 | |
|             SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
 | |
|             SuperClassType = Context.getTypeDeclType(TDecl);
 | |
| 
 | |
|             // This handles the following case:
 | |
|             // @interface NewI @end
 | |
|             // typedef NewI DeprI __attribute__((deprecated("blah")))
 | |
|             // @interface SI : DeprI /* warn here */ @end
 | |
|             (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // This handles the following case:
 | |
|       //
 | |
|       // typedef int SuperClass;
 | |
|       // @interface MyClass : SuperClass {} @end
 | |
|       //
 | |
|       if (!SuperClassDecl) {
 | |
|         Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
 | |
|         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
 | |
|       if (!SuperClassDecl)
 | |
|         Diag(SuperLoc, diag::err_undef_superclass)
 | |
|           << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
 | |
|       else if (RequireCompleteType(SuperLoc,
 | |
|                                    SuperClassType,
 | |
|                                    diag::err_forward_superclass,
 | |
|                                    SuperClassDecl->getDeclName(),
 | |
|                                    ClassName,
 | |
|                                    SourceRange(AtInterfaceLoc, ClassLoc))) {
 | |
|         SuperClassDecl = nullptr;
 | |
|         SuperClassType = QualType();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SuperClassType.isNull()) {
 | |
|       assert(!SuperClassDecl && "Failed to set SuperClassType?");
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Handle type arguments on the superclass.
 | |
|     TypeSourceInfo *SuperClassTInfo = nullptr;
 | |
|     if (!SuperTypeArgs.empty()) {     
 | |
|       TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
 | |
|                                         S,
 | |
|                                         SuperLoc,
 | |
|                                         CreateParsedType(SuperClassType, 
 | |
|                                                          nullptr),
 | |
|                                         SuperTypeArgsRange.getBegin(),
 | |
|                                         SuperTypeArgs,
 | |
|                                         SuperTypeArgsRange.getEnd(),
 | |
|                                         SourceLocation(),
 | |
|                                         { },
 | |
|                                         { },
 | |
|                                         SourceLocation());
 | |
|       if (!fullSuperClassType.isUsable())
 | |
|         return;
 | |
| 
 | |
|       SuperClassType = GetTypeFromParser(fullSuperClassType.get(), 
 | |
|                                          &SuperClassTInfo);
 | |
|     }
 | |
| 
 | |
|     if (!SuperClassTInfo) {
 | |
|       SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType, 
 | |
|                                                          SuperLoc);
 | |
|     }
 | |
| 
 | |
|     IDecl->setSuperClass(SuperClassTInfo);
 | |
|     IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getLocEnd());
 | |
|   }
 | |
| }
 | |
| 
 | |
| DeclResult Sema::actOnObjCTypeParam(Scope *S,
 | |
|                                     ObjCTypeParamVariance variance,
 | |
|                                     SourceLocation varianceLoc,
 | |
|                                     unsigned index,
 | |
|                                     IdentifierInfo *paramName,
 | |
|                                     SourceLocation paramLoc,
 | |
|                                     SourceLocation colonLoc,
 | |
|                                     ParsedType parsedTypeBound) {
 | |
|   // If there was an explicitly-provided type bound, check it.
 | |
|   TypeSourceInfo *typeBoundInfo = nullptr;
 | |
|   if (parsedTypeBound) {
 | |
|     // The type bound can be any Objective-C pointer type.
 | |
|     QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
 | |
|     if (typeBound->isObjCObjectPointerType()) {
 | |
|       // okay
 | |
|     } else if (typeBound->isObjCObjectType()) {
 | |
|       // The user forgot the * on an Objective-C pointer type, e.g.,
 | |
|       // "T : NSView".
 | |
|       SourceLocation starLoc = getLocForEndOfToken(
 | |
|                                  typeBoundInfo->getTypeLoc().getEndLoc());
 | |
|       Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
 | |
|            diag::err_objc_type_param_bound_missing_pointer)
 | |
|         << typeBound << paramName
 | |
|         << FixItHint::CreateInsertion(starLoc, " *");
 | |
| 
 | |
|       // Create a new type location builder so we can update the type
 | |
|       // location information we have.
 | |
|       TypeLocBuilder builder;
 | |
|       builder.pushFullCopy(typeBoundInfo->getTypeLoc());
 | |
| 
 | |
|       // Create the Objective-C pointer type.
 | |
|       typeBound = Context.getObjCObjectPointerType(typeBound);
 | |
|       ObjCObjectPointerTypeLoc newT
 | |
|         = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
 | |
|       newT.setStarLoc(starLoc);
 | |
| 
 | |
|       // Form the new type source information.
 | |
|       typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
 | |
|     } else {
 | |
|       // Not a valid type bound.
 | |
|       Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
 | |
|            diag::err_objc_type_param_bound_nonobject)
 | |
|         << typeBound << paramName;
 | |
| 
 | |
|       // Forget the bound; we'll default to id later.
 | |
|       typeBoundInfo = nullptr;
 | |
|     }
 | |
| 
 | |
|     // Type bounds cannot have qualifiers (even indirectly) or explicit
 | |
|     // nullability.
 | |
|     if (typeBoundInfo) {
 | |
|       QualType typeBound = typeBoundInfo->getType();
 | |
|       TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
 | |
|       if (qual || typeBound.hasQualifiers()) {
 | |
|         bool diagnosed = false;
 | |
|         SourceRange rangeToRemove;
 | |
|         if (qual) {
 | |
|           if (auto attr = qual.getAs<AttributedTypeLoc>()) {
 | |
|             rangeToRemove = attr.getLocalSourceRange();
 | |
|             if (attr.getTypePtr()->getImmediateNullability()) {
 | |
|               Diag(attr.getLocStart(),
 | |
|                    diag::err_objc_type_param_bound_explicit_nullability)
 | |
|                 << paramName << typeBound
 | |
|                 << FixItHint::CreateRemoval(rangeToRemove);
 | |
|               diagnosed = true;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (!diagnosed) {
 | |
|           Diag(qual ? qual.getLocStart()
 | |
|                     : typeBoundInfo->getTypeLoc().getLocStart(),
 | |
|               diag::err_objc_type_param_bound_qualified)
 | |
|             << paramName << typeBound << typeBound.getQualifiers().getAsString()
 | |
|             << FixItHint::CreateRemoval(rangeToRemove);
 | |
|         }
 | |
| 
 | |
|         // If the type bound has qualifiers other than CVR, we need to strip
 | |
|         // them or we'll probably assert later when trying to apply new
 | |
|         // qualifiers.
 | |
|         Qualifiers quals = typeBound.getQualifiers();
 | |
|         quals.removeCVRQualifiers();
 | |
|         if (!quals.empty()) {
 | |
|           typeBoundInfo =
 | |
|              Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there was no explicit type bound (or we removed it due to an error),
 | |
|   // use 'id' instead.
 | |
|   if (!typeBoundInfo) {
 | |
|     colonLoc = SourceLocation();
 | |
|     typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
 | |
|   }
 | |
| 
 | |
|   // Create the type parameter.
 | |
|   return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
 | |
|                                    index, paramLoc, paramName, colonLoc,
 | |
|                                    typeBoundInfo);
 | |
| }
 | |
| 
 | |
| ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
 | |
|                                                 SourceLocation lAngleLoc,
 | |
|                                                 ArrayRef<Decl *> typeParamsIn,
 | |
|                                                 SourceLocation rAngleLoc) {
 | |
|   // We know that the array only contains Objective-C type parameters.
 | |
|   ArrayRef<ObjCTypeParamDecl *>
 | |
|     typeParams(
 | |
|       reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
 | |
|       typeParamsIn.size());
 | |
| 
 | |
|   // Diagnose redeclarations of type parameters.
 | |
|   // We do this now because Objective-C type parameters aren't pushed into
 | |
|   // scope until later (after the instance variable block), but we want the
 | |
|   // diagnostics to occur right after we parse the type parameter list.
 | |
|   llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
 | |
|   for (auto typeParam : typeParams) {
 | |
|     auto known = knownParams.find(typeParam->getIdentifier());
 | |
|     if (known != knownParams.end()) {
 | |
|       Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
 | |
|         << typeParam->getIdentifier()
 | |
|         << SourceRange(known->second->getLocation());
 | |
| 
 | |
|       typeParam->setInvalidDecl();
 | |
|     } else {
 | |
|       knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
 | |
| 
 | |
|       // Push the type parameter into scope.
 | |
|       PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create the parameter list.
 | |
|   return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
 | |
| }
 | |
| 
 | |
| void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
 | |
|   for (auto typeParam : *typeParamList) {
 | |
|     if (!typeParam->isInvalidDecl()) {
 | |
|       S->RemoveDecl(typeParam);
 | |
|       IdResolver.RemoveDecl(typeParam);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// The context in which an Objective-C type parameter list occurs, for use
 | |
|   /// in diagnostics.
 | |
|   enum class TypeParamListContext {
 | |
|     ForwardDeclaration,
 | |
|     Definition,
 | |
|     Category,
 | |
|     Extension
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Check consistency between two Objective-C type parameter lists, e.g.,
 | |
| /// between a category/extension and an \@interface or between an \@class and an
 | |
| /// \@interface.
 | |
| static bool checkTypeParamListConsistency(Sema &S,
 | |
|                                           ObjCTypeParamList *prevTypeParams,
 | |
|                                           ObjCTypeParamList *newTypeParams,
 | |
|                                           TypeParamListContext newContext) {
 | |
|   // If the sizes don't match, complain about that.
 | |
|   if (prevTypeParams->size() != newTypeParams->size()) {
 | |
|     SourceLocation diagLoc;
 | |
|     if (newTypeParams->size() > prevTypeParams->size()) {
 | |
|       diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
 | |
|     } else {
 | |
|       diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getLocEnd());
 | |
|     }
 | |
| 
 | |
|     S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
 | |
|       << static_cast<unsigned>(newContext)
 | |
|       << (newTypeParams->size() > prevTypeParams->size())
 | |
|       << prevTypeParams->size()
 | |
|       << newTypeParams->size();
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Match up the type parameters.
 | |
|   for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
 | |
|     ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
 | |
|     ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
 | |
| 
 | |
|     // Check for consistency of the variance.
 | |
|     if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
 | |
|       if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
 | |
|           newContext != TypeParamListContext::Definition) {
 | |
|         // When the new type parameter is invariant and is not part
 | |
|         // of the definition, just propagate the variance.
 | |
|         newTypeParam->setVariance(prevTypeParam->getVariance());
 | |
|       } else if (prevTypeParam->getVariance() 
 | |
|                    == ObjCTypeParamVariance::Invariant &&
 | |
|                  !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
 | |
|                    cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
 | |
|                      ->getDefinition() == prevTypeParam->getDeclContext())) {
 | |
|         // When the old parameter is invariant and was not part of the
 | |
|         // definition, just ignore the difference because it doesn't
 | |
|         // matter.
 | |
|       } else {
 | |
|         {
 | |
|           // Diagnose the conflict and update the second declaration.
 | |
|           SourceLocation diagLoc = newTypeParam->getVarianceLoc();
 | |
|           if (diagLoc.isInvalid())
 | |
|             diagLoc = newTypeParam->getLocStart();
 | |
| 
 | |
|           auto diag = S.Diag(diagLoc,
 | |
|                              diag::err_objc_type_param_variance_conflict)
 | |
|                         << static_cast<unsigned>(newTypeParam->getVariance())
 | |
|                         << newTypeParam->getDeclName()
 | |
|                         << static_cast<unsigned>(prevTypeParam->getVariance())
 | |
|                         << prevTypeParam->getDeclName();
 | |
|           switch (prevTypeParam->getVariance()) {
 | |
|           case ObjCTypeParamVariance::Invariant:
 | |
|             diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
 | |
|             break;
 | |
| 
 | |
|           case ObjCTypeParamVariance::Covariant:
 | |
|           case ObjCTypeParamVariance::Contravariant: {
 | |
|             StringRef newVarianceStr
 | |
|                = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
 | |
|                    ? "__covariant"
 | |
|                    : "__contravariant";
 | |
|             if (newTypeParam->getVariance()
 | |
|                   == ObjCTypeParamVariance::Invariant) {
 | |
|               diag << FixItHint::CreateInsertion(newTypeParam->getLocStart(),
 | |
|                                                  (newVarianceStr + " ").str());
 | |
|             } else {
 | |
|               diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
 | |
|                                                newVarianceStr);
 | |
|             }
 | |
|           }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
 | |
|           << prevTypeParam->getDeclName();
 | |
| 
 | |
|         // Override the variance.
 | |
|         newTypeParam->setVariance(prevTypeParam->getVariance());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the bound types match, there's nothing to do.
 | |
|     if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
 | |
|                               newTypeParam->getUnderlyingType()))
 | |
|       continue;
 | |
| 
 | |
|     // If the new type parameter's bound was explicit, complain about it being
 | |
|     // different from the original.
 | |
|     if (newTypeParam->hasExplicitBound()) {
 | |
|       SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
 | |
|                                     ->getTypeLoc().getSourceRange();
 | |
|       S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
 | |
|         << newTypeParam->getUnderlyingType()
 | |
|         << newTypeParam->getDeclName()
 | |
|         << prevTypeParam->hasExplicitBound()
 | |
|         << prevTypeParam->getUnderlyingType()
 | |
|         << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
 | |
|         << prevTypeParam->getDeclName()
 | |
|         << FixItHint::CreateReplacement(
 | |
|              newBoundRange,
 | |
|              prevTypeParam->getUnderlyingType().getAsString(
 | |
|                S.Context.getPrintingPolicy()));
 | |
| 
 | |
|       S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
 | |
|         << prevTypeParam->getDeclName();
 | |
| 
 | |
|       // Override the new type parameter's bound type with the previous type,
 | |
|       // so that it's consistent.
 | |
|       newTypeParam->setTypeSourceInfo(
 | |
|         S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // The new type parameter got the implicit bound of 'id'. That's okay for
 | |
|     // categories and extensions (overwrite it later), but not for forward
 | |
|     // declarations and @interfaces, because those must be standalone.
 | |
|     if (newContext == TypeParamListContext::ForwardDeclaration ||
 | |
|         newContext == TypeParamListContext::Definition) {
 | |
|       // Diagnose this problem for forward declarations and definitions.
 | |
|       SourceLocation insertionLoc
 | |
|         = S.getLocForEndOfToken(newTypeParam->getLocation());
 | |
|       std::string newCode
 | |
|         = " : " + prevTypeParam->getUnderlyingType().getAsString(
 | |
|                     S.Context.getPrintingPolicy());
 | |
|       S.Diag(newTypeParam->getLocation(),
 | |
|              diag::err_objc_type_param_bound_missing)
 | |
|         << prevTypeParam->getUnderlyingType()
 | |
|         << newTypeParam->getDeclName()
 | |
|         << (newContext == TypeParamListContext::ForwardDeclaration)
 | |
|         << FixItHint::CreateInsertion(insertionLoc, newCode);
 | |
| 
 | |
|       S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
 | |
|         << prevTypeParam->getDeclName();
 | |
|     }
 | |
| 
 | |
|     // Update the new type parameter's bound to match the previous one.
 | |
|     newTypeParam->setTypeSourceInfo(
 | |
|       S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Decl *Sema::
 | |
| ActOnStartClassInterface(Scope *S, SourceLocation AtInterfaceLoc,
 | |
|                          IdentifierInfo *ClassName, SourceLocation ClassLoc,
 | |
|                          ObjCTypeParamList *typeParamList,
 | |
|                          IdentifierInfo *SuperName, SourceLocation SuperLoc,
 | |
|                          ArrayRef<ParsedType> SuperTypeArgs,
 | |
|                          SourceRange SuperTypeArgsRange,
 | |
|                          Decl * const *ProtoRefs, unsigned NumProtoRefs,
 | |
|                          const SourceLocation *ProtoLocs, 
 | |
|                          SourceLocation EndProtoLoc, AttributeList *AttrList) {
 | |
|   assert(ClassName && "Missing class identifier");
 | |
| 
 | |
|   // Check for another declaration kind with the same name.
 | |
|   NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
 | |
|                                          LookupOrdinaryName, ForRedeclaration);
 | |
| 
 | |
|   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
 | |
|     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
 | |
|     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|   }
 | |
| 
 | |
|   // Create a declaration to describe this @interface.
 | |
|   ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
 | |
| 
 | |
|   if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
 | |
|     // A previous decl with a different name is because of
 | |
|     // @compatibility_alias, for example:
 | |
|     // \code
 | |
|     //   @class NewImage;
 | |
|     //   @compatibility_alias OldImage NewImage;
 | |
|     // \endcode
 | |
|     // A lookup for 'OldImage' will return the 'NewImage' decl.
 | |
|     //
 | |
|     // In such a case use the real declaration name, instead of the alias one,
 | |
|     // otherwise we will break IdentifierResolver and redecls-chain invariants.
 | |
|     // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
 | |
|     // has been aliased.
 | |
|     ClassName = PrevIDecl->getIdentifier();
 | |
|   }
 | |
| 
 | |
|   // If there was a forward declaration with type parameters, check
 | |
|   // for consistency.
 | |
|   if (PrevIDecl) {
 | |
|     if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
 | |
|       if (typeParamList) {
 | |
|         // Both have type parameter lists; check for consistency.
 | |
|         if (checkTypeParamListConsistency(*this, prevTypeParamList, 
 | |
|                                           typeParamList,
 | |
|                                           TypeParamListContext::Definition)) {
 | |
|           typeParamList = nullptr;
 | |
|         }
 | |
|       } else {
 | |
|         Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
 | |
|           << ClassName;
 | |
|         Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
 | |
|           << ClassName;
 | |
| 
 | |
|         // Clone the type parameter list.
 | |
|         SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
 | |
|         for (auto typeParam : *prevTypeParamList) {
 | |
|           clonedTypeParams.push_back(
 | |
|             ObjCTypeParamDecl::Create(
 | |
|               Context,
 | |
|               CurContext,
 | |
|               typeParam->getVariance(),
 | |
|               SourceLocation(),
 | |
|               typeParam->getIndex(),
 | |
|               SourceLocation(),
 | |
|               typeParam->getIdentifier(),
 | |
|               SourceLocation(),
 | |
|               Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
 | |
|         }
 | |
| 
 | |
|         typeParamList = ObjCTypeParamList::create(Context, 
 | |
|                                                   SourceLocation(),
 | |
|                                                   clonedTypeParams,
 | |
|                                                   SourceLocation());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ObjCInterfaceDecl *IDecl
 | |
|     = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
 | |
|                                 typeParamList, PrevIDecl, ClassLoc);
 | |
|   if (PrevIDecl) {
 | |
|     // Class already seen. Was it a definition?
 | |
|     if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
 | |
|       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
 | |
|         << PrevIDecl->getDeclName();
 | |
|       Diag(Def->getLocation(), diag::note_previous_definition);
 | |
|       IDecl->setInvalidDecl();
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (AttrList)
 | |
|     ProcessDeclAttributeList(TUScope, IDecl, AttrList);
 | |
|   PushOnScopeChains(IDecl, TUScope);
 | |
| 
 | |
|   // Start the definition of this class. If we're in a redefinition case, there 
 | |
|   // may already be a definition, so we'll end up adding to it.
 | |
|   if (!IDecl->hasDefinition())
 | |
|     IDecl->startDefinition();
 | |
|   
 | |
|   if (SuperName) {
 | |
|     // Diagnose availability in the context of the @interface.
 | |
|     ContextRAII SavedContext(*this, IDecl);
 | |
| 
 | |
|     ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl, 
 | |
|                                     ClassName, ClassLoc, 
 | |
|                                     SuperName, SuperLoc, SuperTypeArgs, 
 | |
|                                     SuperTypeArgsRange);
 | |
|   } else { // we have a root class.
 | |
|     IDecl->setEndOfDefinitionLoc(ClassLoc);
 | |
|   }
 | |
| 
 | |
|   // Check then save referenced protocols.
 | |
|   if (NumProtoRefs) {
 | |
|     diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
 | |
|                            NumProtoRefs, ProtoLocs);
 | |
|     IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
 | |
|                            ProtoLocs, Context);
 | |
|     IDecl->setEndOfDefinitionLoc(EndProtoLoc);
 | |
|   }
 | |
| 
 | |
|   CheckObjCDeclScope(IDecl);
 | |
|   return ActOnObjCContainerStartDefinition(IDecl);
 | |
| }
 | |
| 
 | |
| /// ActOnTypedefedProtocols - this action finds protocol list as part of the
 | |
| /// typedef'ed use for a qualified super class and adds them to the list
 | |
| /// of the protocols.
 | |
| void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
 | |
|                                    IdentifierInfo *SuperName,
 | |
|                                    SourceLocation SuperLoc) {
 | |
|   if (!SuperName)
 | |
|     return;
 | |
|   NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
 | |
|                                       LookupOrdinaryName);
 | |
|   if (!IDecl)
 | |
|     return;
 | |
|   
 | |
|   if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
 | |
|     QualType T = TDecl->getUnderlyingType();
 | |
|     if (T->isObjCObjectType())
 | |
|       if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>())
 | |
|         ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ActOnCompatibilityAlias - this action is called after complete parsing of
 | |
| /// a \@compatibility_alias declaration. It sets up the alias relationships.
 | |
| Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
 | |
|                                     IdentifierInfo *AliasName,
 | |
|                                     SourceLocation AliasLocation,
 | |
|                                     IdentifierInfo *ClassName,
 | |
|                                     SourceLocation ClassLocation) {
 | |
|   // Look for previous declaration of alias name
 | |
|   NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
 | |
|                                       LookupOrdinaryName, ForRedeclaration);
 | |
|   if (ADecl) {
 | |
|     Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
 | |
|     Diag(ADecl->getLocation(), diag::note_previous_declaration);
 | |
|     return nullptr;
 | |
|   }
 | |
|   // Check for class declaration
 | |
|   NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
 | |
|                                        LookupOrdinaryName, ForRedeclaration);
 | |
|   if (const TypedefNameDecl *TDecl =
 | |
|         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
 | |
|     QualType T = TDecl->getUnderlyingType();
 | |
|     if (T->isObjCObjectType()) {
 | |
|       if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
 | |
|         ClassName = IDecl->getIdentifier();
 | |
|         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
 | |
|                                   LookupOrdinaryName, ForRedeclaration);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
 | |
|   if (!CDecl) {
 | |
|     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
 | |
|     if (CDeclU)
 | |
|       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Everything checked out, instantiate a new alias declaration AST.
 | |
|   ObjCCompatibleAliasDecl *AliasDecl =
 | |
|     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
 | |
| 
 | |
|   if (!CheckObjCDeclScope(AliasDecl))
 | |
|     PushOnScopeChains(AliasDecl, TUScope);
 | |
| 
 | |
|   return AliasDecl;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
 | |
|   IdentifierInfo *PName,
 | |
|   SourceLocation &Ploc, SourceLocation PrevLoc,
 | |
|   const ObjCList<ObjCProtocolDecl> &PList) {
 | |
|   
 | |
|   bool res = false;
 | |
|   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
 | |
|        E = PList.end(); I != E; ++I) {
 | |
|     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
 | |
|                                                  Ploc)) {
 | |
|       if (PDecl->getIdentifier() == PName) {
 | |
|         Diag(Ploc, diag::err_protocol_has_circular_dependency);
 | |
|         Diag(PrevLoc, diag::note_previous_definition);
 | |
|         res = true;
 | |
|       }
 | |
|       
 | |
|       if (!PDecl->hasDefinition())
 | |
|         continue;
 | |
|       
 | |
|       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
 | |
|             PDecl->getLocation(), PDecl->getReferencedProtocols()))
 | |
|         res = true;
 | |
|     }
 | |
|   }
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| Decl *
 | |
| Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
 | |
|                                   IdentifierInfo *ProtocolName,
 | |
|                                   SourceLocation ProtocolLoc,
 | |
|                                   Decl * const *ProtoRefs,
 | |
|                                   unsigned NumProtoRefs,
 | |
|                                   const SourceLocation *ProtoLocs,
 | |
|                                   SourceLocation EndProtoLoc,
 | |
|                                   AttributeList *AttrList) {
 | |
|   bool err = false;
 | |
|   // FIXME: Deal with AttrList.
 | |
|   assert(ProtocolName && "Missing protocol identifier");
 | |
|   ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
 | |
|                                               ForRedeclaration);
 | |
|   ObjCProtocolDecl *PDecl = nullptr;
 | |
|   if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
 | |
|     // If we already have a definition, complain.
 | |
|     Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
 | |
|     Diag(Def->getLocation(), diag::note_previous_definition);
 | |
| 
 | |
|     // Create a new protocol that is completely distinct from previous
 | |
|     // declarations, and do not make this protocol available for name lookup.
 | |
|     // That way, we'll end up completely ignoring the duplicate.
 | |
|     // FIXME: Can we turn this into an error?
 | |
|     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
 | |
|                                      ProtocolLoc, AtProtoInterfaceLoc,
 | |
|                                      /*PrevDecl=*/nullptr);
 | |
|     PDecl->startDefinition();
 | |
|   } else {
 | |
|     if (PrevDecl) {
 | |
|       // Check for circular dependencies among protocol declarations. This can
 | |
|       // only happen if this protocol was forward-declared.
 | |
|       ObjCList<ObjCProtocolDecl> PList;
 | |
|       PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
 | |
|       err = CheckForwardProtocolDeclarationForCircularDependency(
 | |
|               ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
 | |
|     }
 | |
| 
 | |
|     // Create the new declaration.
 | |
|     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
 | |
|                                      ProtocolLoc, AtProtoInterfaceLoc,
 | |
|                                      /*PrevDecl=*/PrevDecl);
 | |
|     
 | |
|     PushOnScopeChains(PDecl, TUScope);
 | |
|     PDecl->startDefinition();
 | |
|   }
 | |
|   
 | |
|   if (AttrList)
 | |
|     ProcessDeclAttributeList(TUScope, PDecl, AttrList);
 | |
|   
 | |
|   // Merge attributes from previous declarations.
 | |
|   if (PrevDecl)
 | |
|     mergeDeclAttributes(PDecl, PrevDecl);
 | |
| 
 | |
|   if (!err && NumProtoRefs ) {
 | |
|     /// Check then save referenced protocols.
 | |
|     diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
 | |
|                            NumProtoRefs, ProtoLocs);
 | |
|     PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
 | |
|                            ProtoLocs, Context);
 | |
|   }
 | |
| 
 | |
|   CheckObjCDeclScope(PDecl);
 | |
|   return ActOnObjCContainerStartDefinition(PDecl);
 | |
| }
 | |
| 
 | |
| static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
 | |
|                                           ObjCProtocolDecl *&UndefinedProtocol) {
 | |
|   if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
 | |
|     UndefinedProtocol = PDecl;
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   for (auto *PI : PDecl->protocols())
 | |
|     if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
 | |
|       UndefinedProtocol = PI;
 | |
|       return true;
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FindProtocolDeclaration - This routine looks up protocols and
 | |
| /// issues an error if they are not declared. It returns list of
 | |
| /// protocol declarations in its 'Protocols' argument.
 | |
| void
 | |
| Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
 | |
|                               ArrayRef<IdentifierLocPair> ProtocolId,
 | |
|                               SmallVectorImpl<Decl *> &Protocols) {
 | |
|   for (const IdentifierLocPair &Pair : ProtocolId) {
 | |
|     ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
 | |
|     if (!PDecl) {
 | |
|       TypoCorrection Corrected = CorrectTypo(
 | |
|           DeclarationNameInfo(Pair.first, Pair.second),
 | |
|           LookupObjCProtocolName, TUScope, nullptr,
 | |
|           llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
 | |
|           CTK_ErrorRecovery);
 | |
|       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
 | |
|         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
 | |
|                                     << Pair.first);
 | |
|     }
 | |
| 
 | |
|     if (!PDecl) {
 | |
|       Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
 | |
|       continue;
 | |
|     }
 | |
|     // If this is a forward protocol declaration, get its definition.
 | |
|     if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
 | |
|       PDecl = PDecl->getDefinition();
 | |
| 
 | |
|     // For an objc container, delay protocol reference checking until after we
 | |
|     // can set the objc decl as the availability context, otherwise check now.
 | |
|     if (!ForObjCContainer) {
 | |
|       (void)DiagnoseUseOfDecl(PDecl, Pair.second);
 | |
|     }
 | |
| 
 | |
|     // If this is a forward declaration and we are supposed to warn in this
 | |
|     // case, do it.
 | |
|     // FIXME: Recover nicely in the hidden case.
 | |
|     ObjCProtocolDecl *UndefinedProtocol;
 | |
|     
 | |
|     if (WarnOnDeclarations &&
 | |
|         NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
 | |
|       Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
 | |
|       Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
 | |
|         << UndefinedProtocol;
 | |
|     }
 | |
|     Protocols.push_back(PDecl);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Callback to only accept typo corrections that are either
 | |
| // Objective-C protocols or valid Objective-C type arguments.
 | |
| class ObjCTypeArgOrProtocolValidatorCCC : public CorrectionCandidateCallback {
 | |
|   ASTContext &Context;
 | |
|   Sema::LookupNameKind LookupKind;
 | |
|  public:
 | |
|   ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
 | |
|                                     Sema::LookupNameKind lookupKind)
 | |
|     : Context(context), LookupKind(lookupKind) { }
 | |
| 
 | |
|   bool ValidateCandidate(const TypoCorrection &candidate) override {
 | |
|     // If we're allowed to find protocols and we have a protocol, accept it.
 | |
|     if (LookupKind != Sema::LookupOrdinaryName) {
 | |
|       if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // If we're allowed to find type names and we have one, accept it.
 | |
|     if (LookupKind != Sema::LookupObjCProtocolName) {
 | |
|       // If we have a type declaration, we might accept this result.
 | |
|       if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
 | |
|         // If we found a tag declaration outside of C++, skip it. This
 | |
|         // can happy because we look for any name when there is no
 | |
|         // bias to protocol or type names.
 | |
|         if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
 | |
|           return false;
 | |
| 
 | |
|         // Make sure the type is something we would accept as a type
 | |
|         // argument.
 | |
|         auto type = Context.getTypeDeclType(typeDecl);
 | |
|         if (type->isObjCObjectPointerType() ||
 | |
|             type->isBlockPointerType() ||
 | |
|             type->isDependentType() ||
 | |
|             type->isObjCObjectType())
 | |
|           return true;
 | |
| 
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // If we have an Objective-C class type, accept it; there will
 | |
|       // be another fix to add the '*'.
 | |
|       if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
 | |
|         return true;
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
 | |
|        Scope *S,
 | |
|        ParsedType baseType,
 | |
|        SourceLocation lAngleLoc,
 | |
|        ArrayRef<IdentifierInfo *> identifiers,
 | |
|        ArrayRef<SourceLocation> identifierLocs,
 | |
|        SourceLocation rAngleLoc,
 | |
|        SourceLocation &typeArgsLAngleLoc,
 | |
|        SmallVectorImpl<ParsedType> &typeArgs,
 | |
|        SourceLocation &typeArgsRAngleLoc,
 | |
|        SourceLocation &protocolLAngleLoc,
 | |
|        SmallVectorImpl<Decl *> &protocols,
 | |
|        SourceLocation &protocolRAngleLoc,
 | |
|        bool warnOnIncompleteProtocols) {
 | |
|   // Local function that updates the declaration specifiers with
 | |
|   // protocol information.
 | |
|   unsigned numProtocolsResolved = 0;
 | |
|   auto resolvedAsProtocols = [&] {
 | |
|     assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
 | |
|     
 | |
|     // Determine whether the base type is a parameterized class, in
 | |
|     // which case we want to warn about typos such as
 | |
|     // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
 | |
|     ObjCInterfaceDecl *baseClass = nullptr;
 | |
|     QualType base = GetTypeFromParser(baseType, nullptr);
 | |
|     bool allAreTypeNames = false;
 | |
|     SourceLocation firstClassNameLoc;
 | |
|     if (!base.isNull()) {
 | |
|       if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
 | |
|         baseClass = objcObjectType->getInterface();
 | |
|         if (baseClass) {
 | |
|           if (auto typeParams = baseClass->getTypeParamList()) {
 | |
|             if (typeParams->size() == numProtocolsResolved) {
 | |
|               // Note that we should be looking for type names, too.
 | |
|               allAreTypeNames = true;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
 | |
|       ObjCProtocolDecl *&proto 
 | |
|         = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
 | |
|       // For an objc container, delay protocol reference checking until after we
 | |
|       // can set the objc decl as the availability context, otherwise check now.
 | |
|       if (!warnOnIncompleteProtocols) {
 | |
|         (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
 | |
|       }
 | |
| 
 | |
|       // If this is a forward protocol declaration, get its definition.
 | |
|       if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
 | |
|         proto = proto->getDefinition();
 | |
| 
 | |
|       // If this is a forward declaration and we are supposed to warn in this
 | |
|       // case, do it.
 | |
|       // FIXME: Recover nicely in the hidden case.
 | |
|       ObjCProtocolDecl *forwardDecl = nullptr;
 | |
|       if (warnOnIncompleteProtocols &&
 | |
|           NestedProtocolHasNoDefinition(proto, forwardDecl)) {
 | |
|         Diag(identifierLocs[i], diag::warn_undef_protocolref)
 | |
|           << proto->getDeclName();
 | |
|         Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
 | |
|           << forwardDecl;
 | |
|       }
 | |
| 
 | |
|       // If everything this far has been a type name (and we care
 | |
|       // about such things), check whether this name refers to a type
 | |
|       // as well.
 | |
|       if (allAreTypeNames) {
 | |
|         if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
 | |
|                                           LookupOrdinaryName)) {
 | |
|           if (isa<ObjCInterfaceDecl>(decl)) {
 | |
|             if (firstClassNameLoc.isInvalid())
 | |
|               firstClassNameLoc = identifierLocs[i];
 | |
|           } else if (!isa<TypeDecl>(decl)) {
 | |
|             // Not a type.
 | |
|             allAreTypeNames = false;
 | |
|           }
 | |
|         } else {
 | |
|           allAreTypeNames = false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // All of the protocols listed also have type names, and at least
 | |
|     // one is an Objective-C class name. Check whether all of the
 | |
|     // protocol conformances are declared by the base class itself, in
 | |
|     // which case we warn.
 | |
|     if (allAreTypeNames && firstClassNameLoc.isValid()) {
 | |
|       llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
 | |
|       Context.CollectInheritedProtocols(baseClass, knownProtocols);
 | |
|       bool allProtocolsDeclared = true;
 | |
|       for (auto proto : protocols) {
 | |
|         if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
 | |
|           allProtocolsDeclared = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (allProtocolsDeclared) {
 | |
|         Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
 | |
|           << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
 | |
|           << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
 | |
|                                         " *");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     protocolLAngleLoc = lAngleLoc;
 | |
|     protocolRAngleLoc = rAngleLoc;
 | |
|     assert(protocols.size() == identifierLocs.size());
 | |
|   };
 | |
| 
 | |
|   // Attempt to resolve all of the identifiers as protocols.
 | |
|   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
 | |
|     ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
 | |
|     protocols.push_back(proto);
 | |
|     if (proto)
 | |
|       ++numProtocolsResolved;
 | |
|   }
 | |
| 
 | |
|   // If all of the names were protocols, these were protocol qualifiers.
 | |
|   if (numProtocolsResolved == identifiers.size())
 | |
|     return resolvedAsProtocols();
 | |
| 
 | |
|   // Attempt to resolve all of the identifiers as type names or
 | |
|   // Objective-C class names. The latter is technically ill-formed,
 | |
|   // but is probably something like \c NSArray<NSView *> missing the
 | |
|   // \c*.
 | |
|   typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
 | |
|   SmallVector<TypeOrClassDecl, 4> typeDecls;
 | |
|   unsigned numTypeDeclsResolved = 0;
 | |
|   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
 | |
|     NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
 | |
|                                        LookupOrdinaryName);
 | |
|     if (!decl) {
 | |
|       typeDecls.push_back(TypeOrClassDecl());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
 | |
|       typeDecls.push_back(typeDecl);
 | |
|       ++numTypeDeclsResolved;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
 | |
|       typeDecls.push_back(objcClass);
 | |
|       ++numTypeDeclsResolved;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     typeDecls.push_back(TypeOrClassDecl());
 | |
|   }
 | |
| 
 | |
|   AttributeFactory attrFactory;
 | |
| 
 | |
|   // Local function that forms a reference to the given type or
 | |
|   // Objective-C class declaration.
 | |
|   auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc) 
 | |
|                                 -> TypeResult {
 | |
|     // Form declaration specifiers. They simply refer to the type.
 | |
|     DeclSpec DS(attrFactory);
 | |
|     const char* prevSpec; // unused
 | |
|     unsigned diagID; // unused
 | |
|     QualType type;
 | |
|     if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
 | |
|       type = Context.getTypeDeclType(actualTypeDecl);
 | |
|     else
 | |
|       type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
 | |
|     TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
 | |
|     ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
 | |
|     DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
 | |
|                        parsedType, Context.getPrintingPolicy());
 | |
|     // Use the identifier location for the type source range.
 | |
|     DS.SetRangeStart(loc);
 | |
|     DS.SetRangeEnd(loc);
 | |
| 
 | |
|     // Form the declarator.
 | |
|     Declarator D(DS, Declarator::TypeNameContext);
 | |
| 
 | |
|     // If we have a typedef of an Objective-C class type that is missing a '*',
 | |
|     // add the '*'.
 | |
|     if (type->getAs<ObjCInterfaceType>()) {
 | |
|       SourceLocation starLoc = getLocForEndOfToken(loc);
 | |
|       ParsedAttributes parsedAttrs(attrFactory);
 | |
|       D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
 | |
|                                                 SourceLocation(),
 | |
|                                                 SourceLocation(),
 | |
|                                                 SourceLocation(),
 | |
|                                                 SourceLocation()),
 | |
|                                                 parsedAttrs,
 | |
|                                                 starLoc);
 | |
| 
 | |
|       // Diagnose the missing '*'.
 | |
|       Diag(loc, diag::err_objc_type_arg_missing_star)
 | |
|         << type
 | |
|         << FixItHint::CreateInsertion(starLoc, " *");
 | |
|     }
 | |
| 
 | |
|     // Convert this to a type.
 | |
|     return ActOnTypeName(S, D);
 | |
|   };
 | |
| 
 | |
|   // Local function that updates the declaration specifiers with
 | |
|   // type argument information.
 | |
|   auto resolvedAsTypeDecls = [&] {
 | |
|     // We did not resolve these as protocols.
 | |
|     protocols.clear();
 | |
| 
 | |
|     assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
 | |
|     // Map type declarations to type arguments.
 | |
|     for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
 | |
|       // Map type reference to a type.
 | |
|       TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
 | |
|       if (!type.isUsable()) {
 | |
|         typeArgs.clear();
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       typeArgs.push_back(type.get());
 | |
|     }
 | |
| 
 | |
|     typeArgsLAngleLoc = lAngleLoc;
 | |
|     typeArgsRAngleLoc = rAngleLoc;
 | |
|   };
 | |
| 
 | |
|   // If all of the identifiers can be resolved as type names or
 | |
|   // Objective-C class names, we have type arguments.
 | |
|   if (numTypeDeclsResolved == identifiers.size())
 | |
|     return resolvedAsTypeDecls();
 | |
| 
 | |
|   // Error recovery: some names weren't found, or we have a mix of
 | |
|   // type and protocol names. Go resolve all of the unresolved names
 | |
|   // and complain if we can't find a consistent answer.
 | |
|   LookupNameKind lookupKind = LookupAnyName;
 | |
|   for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
 | |
|     // If we already have a protocol or type. Check whether it is the
 | |
|     // right thing.
 | |
|     if (protocols[i] || typeDecls[i]) {
 | |
|       // If we haven't figured out whether we want types or protocols
 | |
|       // yet, try to figure it out from this name.
 | |
|       if (lookupKind == LookupAnyName) {
 | |
|         // If this name refers to both a protocol and a type (e.g., \c
 | |
|         // NSObject), don't conclude anything yet.
 | |
|         if (protocols[i] && typeDecls[i])
 | |
|           continue;
 | |
| 
 | |
|         // Otherwise, let this name decide whether we'll be correcting
 | |
|         // toward types or protocols.
 | |
|         lookupKind = protocols[i] ? LookupObjCProtocolName
 | |
|                                   : LookupOrdinaryName;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If we want protocols and we have a protocol, there's nothing
 | |
|       // more to do.
 | |
|       if (lookupKind == LookupObjCProtocolName && protocols[i])
 | |
|         continue;
 | |
| 
 | |
|       // If we want types and we have a type declaration, there's
 | |
|       // nothing more to do.
 | |
|       if (lookupKind == LookupOrdinaryName && typeDecls[i])
 | |
|         continue;
 | |
| 
 | |
|       // We have a conflict: some names refer to protocols and others
 | |
|       // refer to types.
 | |
|       Diag(identifierLocs[i], diag::err_objc_type_args_and_protocols)
 | |
|         << (protocols[i] != nullptr)
 | |
|         << identifiers[i]
 | |
|         << identifiers[0]
 | |
|         << SourceRange(identifierLocs[0]);
 | |
| 
 | |
|       protocols.clear();
 | |
|       typeArgs.clear();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Perform typo correction on the name.
 | |
|     TypoCorrection corrected = CorrectTypo(
 | |
|         DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
 | |
|         nullptr,
 | |
|         llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(Context,
 | |
|                                                              lookupKind),
 | |
|         CTK_ErrorRecovery);
 | |
|     if (corrected) {
 | |
|       // Did we find a protocol?
 | |
|       if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
 | |
|         diagnoseTypo(corrected,
 | |
|                      PDiag(diag::err_undeclared_protocol_suggest)
 | |
|                        << identifiers[i]);
 | |
|         lookupKind = LookupObjCProtocolName;
 | |
|         protocols[i] = proto;
 | |
|         ++numProtocolsResolved;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Did we find a type?
 | |
|       if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
 | |
|         diagnoseTypo(corrected,
 | |
|                      PDiag(diag::err_unknown_typename_suggest)
 | |
|                        << identifiers[i]);
 | |
|         lookupKind = LookupOrdinaryName;
 | |
|         typeDecls[i] = typeDecl;
 | |
|         ++numTypeDeclsResolved;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Did we find an Objective-C class?
 | |
|       if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
 | |
|         diagnoseTypo(corrected,
 | |
|                      PDiag(diag::err_unknown_type_or_class_name_suggest)
 | |
|                        << identifiers[i] << true);
 | |
|         lookupKind = LookupOrdinaryName;
 | |
|         typeDecls[i] = objcClass;
 | |
|         ++numTypeDeclsResolved;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // We couldn't find anything.
 | |
|     Diag(identifierLocs[i],
 | |
|          (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
 | |
|           : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
 | |
|           : diag::err_unknown_typename))
 | |
|       << identifiers[i];
 | |
|     protocols.clear();
 | |
|     typeArgs.clear();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If all of the names were (corrected to) protocols, these were
 | |
|   // protocol qualifiers.
 | |
|   if (numProtocolsResolved == identifiers.size())
 | |
|     return resolvedAsProtocols();
 | |
| 
 | |
|   // Otherwise, all of the names were (corrected to) types.
 | |
|   assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
 | |
|   return resolvedAsTypeDecls();
 | |
| }
 | |
| 
 | |
| /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
 | |
| /// a class method in its extension.
 | |
| ///
 | |
| void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
 | |
|                                             ObjCInterfaceDecl *ID) {
 | |
|   if (!ID)
 | |
|     return;  // Possibly due to previous error
 | |
| 
 | |
|   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
 | |
|   for (auto *MD : ID->methods())
 | |
|     MethodMap[MD->getSelector()] = MD;
 | |
| 
 | |
|   if (MethodMap.empty())
 | |
|     return;
 | |
|   for (const auto *Method : CAT->methods()) {
 | |
|     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
 | |
|     if (PrevMethod &&
 | |
|         (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
 | |
|         !MatchTwoMethodDeclarations(Method, PrevMethod)) {
 | |
|       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
 | |
|             << Method->getDeclName();
 | |
|       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
 | |
| Sema::DeclGroupPtrTy
 | |
| Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
 | |
|                                       ArrayRef<IdentifierLocPair> IdentList,
 | |
|                                       AttributeList *attrList) {
 | |
|   SmallVector<Decl *, 8> DeclsInGroup;
 | |
|   for (const IdentifierLocPair &IdentPair : IdentList) {
 | |
|     IdentifierInfo *Ident = IdentPair.first;
 | |
|     ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
 | |
|                                                 ForRedeclaration);
 | |
|     ObjCProtocolDecl *PDecl
 | |
|       = ObjCProtocolDecl::Create(Context, CurContext, Ident, 
 | |
|                                  IdentPair.second, AtProtocolLoc,
 | |
|                                  PrevDecl);
 | |
|         
 | |
|     PushOnScopeChains(PDecl, TUScope);
 | |
|     CheckObjCDeclScope(PDecl);
 | |
|     
 | |
|     if (attrList)
 | |
|       ProcessDeclAttributeList(TUScope, PDecl, attrList);
 | |
|     
 | |
|     if (PrevDecl)
 | |
|       mergeDeclAttributes(PDecl, PrevDecl);
 | |
| 
 | |
|     DeclsInGroup.push_back(PDecl);
 | |
|   }
 | |
| 
 | |
|   return BuildDeclaratorGroup(DeclsInGroup, false);
 | |
| }
 | |
| 
 | |
| Decl *Sema::
 | |
| ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
 | |
|                             IdentifierInfo *ClassName, SourceLocation ClassLoc,
 | |
|                             ObjCTypeParamList *typeParamList,
 | |
|                             IdentifierInfo *CategoryName,
 | |
|                             SourceLocation CategoryLoc,
 | |
|                             Decl * const *ProtoRefs,
 | |
|                             unsigned NumProtoRefs,
 | |
|                             const SourceLocation *ProtoLocs,
 | |
|                             SourceLocation EndProtoLoc) {
 | |
|   ObjCCategoryDecl *CDecl;
 | |
|   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
 | |
| 
 | |
|   /// Check that class of this category is already completely declared.
 | |
| 
 | |
|   if (!IDecl 
 | |
|       || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
 | |
|                              diag::err_category_forward_interface,
 | |
|                              CategoryName == nullptr)) {
 | |
|     // Create an invalid ObjCCategoryDecl to serve as context for
 | |
|     // the enclosing method declarations.  We mark the decl invalid
 | |
|     // to make it clear that this isn't a valid AST.
 | |
|     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
 | |
|                                      ClassLoc, CategoryLoc, CategoryName,
 | |
|                                      IDecl, typeParamList);
 | |
|     CDecl->setInvalidDecl();
 | |
|     CurContext->addDecl(CDecl);
 | |
|         
 | |
|     if (!IDecl)
 | |
|       Diag(ClassLoc, diag::err_undef_interface) << ClassName;
 | |
|     return ActOnObjCContainerStartDefinition(CDecl);
 | |
|   }
 | |
| 
 | |
|   if (!CategoryName && IDecl->getImplementation()) {
 | |
|     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
 | |
|     Diag(IDecl->getImplementation()->getLocation(), 
 | |
|           diag::note_implementation_declared);
 | |
|   }
 | |
| 
 | |
|   if (CategoryName) {
 | |
|     /// Check for duplicate interface declaration for this category
 | |
|     if (ObjCCategoryDecl *Previous
 | |
|           = IDecl->FindCategoryDeclaration(CategoryName)) {
 | |
|       // Class extensions can be declared multiple times, categories cannot.
 | |
|       Diag(CategoryLoc, diag::warn_dup_category_def)
 | |
|         << ClassName << CategoryName;
 | |
|       Diag(Previous->getLocation(), diag::note_previous_definition);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we have a type parameter list, check it.
 | |
|   if (typeParamList) {
 | |
|     if (auto prevTypeParamList = IDecl->getTypeParamList()) {
 | |
|       if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
 | |
|                                         CategoryName
 | |
|                                           ? TypeParamListContext::Category
 | |
|                                           : TypeParamListContext::Extension))
 | |
|         typeParamList = nullptr;
 | |
|     } else {
 | |
|       Diag(typeParamList->getLAngleLoc(),
 | |
|            diag::err_objc_parameterized_category_nonclass)
 | |
|         << (CategoryName != nullptr)
 | |
|         << ClassName
 | |
|         << typeParamList->getSourceRange();
 | |
| 
 | |
|       typeParamList = nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
 | |
|                                    ClassLoc, CategoryLoc, CategoryName, IDecl,
 | |
|                                    typeParamList);
 | |
|   // FIXME: PushOnScopeChains?
 | |
|   CurContext->addDecl(CDecl);
 | |
| 
 | |
|   if (NumProtoRefs) {
 | |
|     diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
 | |
|                            NumProtoRefs, ProtoLocs);
 | |
|     CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
 | |
|                            ProtoLocs, Context);
 | |
|     // Protocols in the class extension belong to the class.
 | |
|     if (CDecl->IsClassExtension())
 | |
|      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs, 
 | |
|                                             NumProtoRefs, Context); 
 | |
|   }
 | |
| 
 | |
|   CheckObjCDeclScope(CDecl);
 | |
|   return ActOnObjCContainerStartDefinition(CDecl);
 | |
| }
 | |
| 
 | |
| /// ActOnStartCategoryImplementation - Perform semantic checks on the
 | |
| /// category implementation declaration and build an ObjCCategoryImplDecl
 | |
| /// object.
 | |
| Decl *Sema::ActOnStartCategoryImplementation(
 | |
|                       SourceLocation AtCatImplLoc,
 | |
|                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
 | |
|                       IdentifierInfo *CatName, SourceLocation CatLoc) {
 | |
|   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
 | |
|   ObjCCategoryDecl *CatIDecl = nullptr;
 | |
|   if (IDecl && IDecl->hasDefinition()) {
 | |
|     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
 | |
|     if (!CatIDecl) {
 | |
|       // Category @implementation with no corresponding @interface.
 | |
|       // Create and install one.
 | |
|       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
 | |
|                                           ClassLoc, CatLoc,
 | |
|                                           CatName, IDecl,
 | |
|                                           /*typeParamList=*/nullptr);
 | |
|       CatIDecl->setImplicit();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ObjCCategoryImplDecl *CDecl =
 | |
|     ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
 | |
|                                  ClassLoc, AtCatImplLoc, CatLoc);
 | |
|   /// Check that class of this category is already completely declared.
 | |
|   if (!IDecl) {
 | |
|     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
 | |
|     CDecl->setInvalidDecl();
 | |
|   } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
 | |
|                                  diag::err_undef_interface)) {
 | |
|     CDecl->setInvalidDecl();
 | |
|   }
 | |
| 
 | |
|   // FIXME: PushOnScopeChains?
 | |
|   CurContext->addDecl(CDecl);
 | |
| 
 | |
|   // If the interface is deprecated/unavailable, warn/error about it.
 | |
|   if (IDecl)
 | |
|     DiagnoseUseOfDecl(IDecl, ClassLoc);
 | |
| 
 | |
|   /// Check that CatName, category name, is not used in another implementation.
 | |
|   if (CatIDecl) {
 | |
|     if (CatIDecl->getImplementation()) {
 | |
|       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
 | |
|         << CatName;
 | |
|       Diag(CatIDecl->getImplementation()->getLocation(),
 | |
|            diag::note_previous_definition);
 | |
|       CDecl->setInvalidDecl();
 | |
|     } else {
 | |
|       CatIDecl->setImplementation(CDecl);
 | |
|       // Warn on implementating category of deprecated class under 
 | |
|       // -Wdeprecated-implementations flag.
 | |
|       DiagnoseObjCImplementedDeprecations(*this, 
 | |
|                                           dyn_cast<NamedDecl>(IDecl), 
 | |
|                                           CDecl->getLocation(), 2);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CheckObjCDeclScope(CDecl);
 | |
|   return ActOnObjCContainerStartDefinition(CDecl);
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnStartClassImplementation(
 | |
|                       SourceLocation AtClassImplLoc,
 | |
|                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
 | |
|                       IdentifierInfo *SuperClassname,
 | |
|                       SourceLocation SuperClassLoc) {
 | |
|   ObjCInterfaceDecl *IDecl = nullptr;
 | |
|   // Check for another declaration kind with the same name.
 | |
|   NamedDecl *PrevDecl
 | |
|     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
 | |
|                        ForRedeclaration);
 | |
|   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
 | |
|     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
 | |
|     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
 | |
|     RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
 | |
|                         diag::warn_undef_interface);
 | |
|   } else {
 | |
|     // We did not find anything with the name ClassName; try to correct for
 | |
|     // typos in the class name.
 | |
|     TypoCorrection Corrected = CorrectTypo(
 | |
|         DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
 | |
|         nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
 | |
|     if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
 | |
|       // Suggest the (potentially) correct interface name. Don't provide a
 | |
|       // code-modification hint or use the typo name for recovery, because
 | |
|       // this is just a warning. The program may actually be correct.
 | |
|       diagnoseTypo(Corrected,
 | |
|                    PDiag(diag::warn_undef_interface_suggest) << ClassName,
 | |
|                    /*ErrorRecovery*/false);
 | |
|     } else {
 | |
|       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that super class name is valid class name
 | |
|   ObjCInterfaceDecl *SDecl = nullptr;
 | |
|   if (SuperClassname) {
 | |
|     // Check if a different kind of symbol declared in this scope.
 | |
|     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
 | |
|                                 LookupOrdinaryName);
 | |
|     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
 | |
|       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
 | |
|         << SuperClassname;
 | |
|       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|     } else {
 | |
|       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
 | |
|       if (SDecl && !SDecl->hasDefinition())
 | |
|         SDecl = nullptr;
 | |
|       if (!SDecl)
 | |
|         Diag(SuperClassLoc, diag::err_undef_superclass)
 | |
|           << SuperClassname << ClassName;
 | |
|       else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
 | |
|         // This implementation and its interface do not have the same
 | |
|         // super class.
 | |
|         Diag(SuperClassLoc, diag::err_conflicting_super_class)
 | |
|           << SDecl->getDeclName();
 | |
|         Diag(SDecl->getLocation(), diag::note_previous_definition);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!IDecl) {
 | |
|     // Legacy case of @implementation with no corresponding @interface.
 | |
|     // Build, chain & install the interface decl into the identifier.
 | |
| 
 | |
|     // FIXME: Do we support attributes on the @implementation? If so we should
 | |
|     // copy them over.
 | |
|     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
 | |
|                                       ClassName, /*typeParamList=*/nullptr,
 | |
|                                       /*PrevDecl=*/nullptr, ClassLoc,
 | |
|                                       true);
 | |
|     IDecl->startDefinition();
 | |
|     if (SDecl) {
 | |
|       IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
 | |
|                              Context.getObjCInterfaceType(SDecl),
 | |
|                              SuperClassLoc));
 | |
|       IDecl->setEndOfDefinitionLoc(SuperClassLoc);
 | |
|     } else {
 | |
|       IDecl->setEndOfDefinitionLoc(ClassLoc);
 | |
|     }
 | |
|     
 | |
|     PushOnScopeChains(IDecl, TUScope);
 | |
|   } else {
 | |
|     // Mark the interface as being completed, even if it was just as
 | |
|     //   @class ....;
 | |
|     // declaration; the user cannot reopen it.
 | |
|     if (!IDecl->hasDefinition())
 | |
|       IDecl->startDefinition();
 | |
|   }
 | |
| 
 | |
|   ObjCImplementationDecl* IMPDecl =
 | |
|     ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
 | |
|                                    ClassLoc, AtClassImplLoc, SuperClassLoc);
 | |
| 
 | |
|   if (CheckObjCDeclScope(IMPDecl))
 | |
|     return ActOnObjCContainerStartDefinition(IMPDecl);
 | |
| 
 | |
|   // Check that there is no duplicate implementation of this class.
 | |
|   if (IDecl->getImplementation()) {
 | |
|     // FIXME: Don't leak everything!
 | |
|     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
 | |
|     Diag(IDecl->getImplementation()->getLocation(),
 | |
|          diag::note_previous_definition);
 | |
|     IMPDecl->setInvalidDecl();
 | |
|   } else { // add it to the list.
 | |
|     IDecl->setImplementation(IMPDecl);
 | |
|     PushOnScopeChains(IMPDecl, TUScope);
 | |
|     // Warn on implementating deprecated class under 
 | |
|     // -Wdeprecated-implementations flag.
 | |
|     DiagnoseObjCImplementedDeprecations(*this, 
 | |
|                                         dyn_cast<NamedDecl>(IDecl), 
 | |
|                                         IMPDecl->getLocation(), 1);
 | |
|   }
 | |
|   return ActOnObjCContainerStartDefinition(IMPDecl);
 | |
| }
 | |
| 
 | |
| Sema::DeclGroupPtrTy
 | |
| Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
 | |
|   SmallVector<Decl *, 64> DeclsInGroup;
 | |
|   DeclsInGroup.reserve(Decls.size() + 1);
 | |
| 
 | |
|   for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
 | |
|     Decl *Dcl = Decls[i];
 | |
|     if (!Dcl)
 | |
|       continue;
 | |
|     if (Dcl->getDeclContext()->isFileContext())
 | |
|       Dcl->setTopLevelDeclInObjCContainer();
 | |
|     DeclsInGroup.push_back(Dcl);
 | |
|   }
 | |
| 
 | |
|   DeclsInGroup.push_back(ObjCImpDecl);
 | |
| 
 | |
|   return BuildDeclaratorGroup(DeclsInGroup, false);
 | |
| }
 | |
| 
 | |
| void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
 | |
|                                     ObjCIvarDecl **ivars, unsigned numIvars,
 | |
|                                     SourceLocation RBrace) {
 | |
|   assert(ImpDecl && "missing implementation decl");
 | |
|   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
 | |
|   if (!IDecl)
 | |
|     return;
 | |
|   /// Check case of non-existing \@interface decl.
 | |
|   /// (legacy objective-c \@implementation decl without an \@interface decl).
 | |
|   /// Add implementations's ivar to the synthesize class's ivar list.
 | |
|   if (IDecl->isImplicitInterfaceDecl()) {
 | |
|     IDecl->setEndOfDefinitionLoc(RBrace);
 | |
|     // Add ivar's to class's DeclContext.
 | |
|     for (unsigned i = 0, e = numIvars; i != e; ++i) {
 | |
|       ivars[i]->setLexicalDeclContext(ImpDecl);
 | |
|       IDecl->makeDeclVisibleInContext(ivars[i]);
 | |
|       ImpDecl->addDecl(ivars[i]);
 | |
|     }
 | |
|     
 | |
|     return;
 | |
|   }
 | |
|   // If implementation has empty ivar list, just return.
 | |
|   if (numIvars == 0)
 | |
|     return;
 | |
| 
 | |
|   assert(ivars && "missing @implementation ivars");
 | |
|   if (LangOpts.ObjCRuntime.isNonFragile()) {
 | |
|     if (ImpDecl->getSuperClass())
 | |
|       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
 | |
|     for (unsigned i = 0; i < numIvars; i++) {
 | |
|       ObjCIvarDecl* ImplIvar = ivars[i];
 | |
|       if (const ObjCIvarDecl *ClsIvar = 
 | |
|             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
 | |
|         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 
 | |
|         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
 | |
|         continue;
 | |
|       }
 | |
|       // Check class extensions (unnamed categories) for duplicate ivars.
 | |
|       for (const auto *CDecl : IDecl->visible_extensions()) {
 | |
|         if (const ObjCIvarDecl *ClsExtIvar = 
 | |
|             CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
 | |
|           Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration); 
 | |
|           Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       // Instance ivar to Implementation's DeclContext.
 | |
|       ImplIvar->setLexicalDeclContext(ImpDecl);
 | |
|       IDecl->makeDeclVisibleInContext(ImplIvar);
 | |
|       ImpDecl->addDecl(ImplIvar);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   // Check interface's Ivar list against those in the implementation.
 | |
|   // names and types must match.
 | |
|   //
 | |
|   unsigned j = 0;
 | |
|   ObjCInterfaceDecl::ivar_iterator
 | |
|     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
 | |
|   for (; numIvars > 0 && IVI != IVE; ++IVI) {
 | |
|     ObjCIvarDecl* ImplIvar = ivars[j++];
 | |
|     ObjCIvarDecl* ClsIvar = *IVI;
 | |
|     assert (ImplIvar && "missing implementation ivar");
 | |
|     assert (ClsIvar && "missing class ivar");
 | |
| 
 | |
|     // First, make sure the types match.
 | |
|     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
 | |
|       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
 | |
|         << ImplIvar->getIdentifier()
 | |
|         << ImplIvar->getType() << ClsIvar->getType();
 | |
|       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
 | |
|     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
 | |
|                ImplIvar->getBitWidthValue(Context) !=
 | |
|                ClsIvar->getBitWidthValue(Context)) {
 | |
|       Diag(ImplIvar->getBitWidth()->getLocStart(),
 | |
|            diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
 | |
|       Diag(ClsIvar->getBitWidth()->getLocStart(),
 | |
|            diag::note_previous_definition);
 | |
|     }
 | |
|     // Make sure the names are identical.
 | |
|     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
 | |
|       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
 | |
|         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
 | |
|       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
 | |
|     }
 | |
|     --numIvars;
 | |
|   }
 | |
| 
 | |
|   if (numIvars > 0)
 | |
|     Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
 | |
|   else if (IVI != IVE)
 | |
|     Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
 | |
| }
 | |
| 
 | |
| static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
 | |
|                                 ObjCMethodDecl *method,
 | |
|                                 bool &IncompleteImpl,
 | |
|                                 unsigned DiagID,
 | |
|                                 NamedDecl *NeededFor = nullptr) {
 | |
|   // No point warning no definition of method which is 'unavailable'.
 | |
|   switch (method->getAvailability()) {
 | |
|   case AR_Available:
 | |
|   case AR_Deprecated:
 | |
|     break;
 | |
| 
 | |
|       // Don't warn about unavailable or not-yet-introduced methods.
 | |
|   case AR_NotYetIntroduced:
 | |
|   case AR_Unavailable:
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // FIXME: For now ignore 'IncompleteImpl'.
 | |
|   // Previously we grouped all unimplemented methods under a single
 | |
|   // warning, but some users strongly voiced that they would prefer
 | |
|   // separate warnings.  We will give that approach a try, as that
 | |
|   // matches what we do with protocols.
 | |
|   {
 | |
|     const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
 | |
|     B << method;
 | |
|     if (NeededFor)
 | |
|       B << NeededFor;
 | |
|   }
 | |
| 
 | |
|   // Issue a note to the original declaration.
 | |
|   SourceLocation MethodLoc = method->getLocStart();
 | |
|   if (MethodLoc.isValid())
 | |
|     S.Diag(MethodLoc, diag::note_method_declared_at) << method;
 | |
| }
 | |
| 
 | |
| /// Determines if type B can be substituted for type A.  Returns true if we can
 | |
| /// guarantee that anything that the user will do to an object of type A can 
 | |
| /// also be done to an object of type B.  This is trivially true if the two 
 | |
| /// types are the same, or if B is a subclass of A.  It becomes more complex
 | |
| /// in cases where protocols are involved.
 | |
| ///
 | |
| /// Object types in Objective-C describe the minimum requirements for an
 | |
| /// object, rather than providing a complete description of a type.  For
 | |
| /// example, if A is a subclass of B, then B* may refer to an instance of A.
 | |
| /// The principle of substitutability means that we may use an instance of A
 | |
| /// anywhere that we may use an instance of B - it will implement all of the
 | |
| /// ivars of B and all of the methods of B.  
 | |
| ///
 | |
| /// This substitutability is important when type checking methods, because 
 | |
| /// the implementation may have stricter type definitions than the interface.
 | |
| /// The interface specifies minimum requirements, but the implementation may
 | |
| /// have more accurate ones.  For example, a method may privately accept 
 | |
| /// instances of B, but only publish that it accepts instances of A.  Any
 | |
| /// object passed to it will be type checked against B, and so will implicitly
 | |
| /// by a valid A*.  Similarly, a method may return a subclass of the class that
 | |
| /// it is declared as returning.
 | |
| ///
 | |
| /// This is most important when considering subclassing.  A method in a
 | |
| /// subclass must accept any object as an argument that its superclass's
 | |
| /// implementation accepts.  It may, however, accept a more general type
 | |
| /// without breaking substitutability (i.e. you can still use the subclass
 | |
| /// anywhere that you can use the superclass, but not vice versa).  The
 | |
| /// converse requirement applies to return types: the return type for a
 | |
| /// subclass method must be a valid object of the kind that the superclass
 | |
| /// advertises, but it may be specified more accurately.  This avoids the need
 | |
| /// for explicit down-casting by callers.
 | |
| ///
 | |
| /// Note: This is a stricter requirement than for assignment.  
 | |
| static bool isObjCTypeSubstitutable(ASTContext &Context,
 | |
|                                     const ObjCObjectPointerType *A,
 | |
|                                     const ObjCObjectPointerType *B,
 | |
|                                     bool rejectId) {
 | |
|   // Reject a protocol-unqualified id.
 | |
|   if (rejectId && B->isObjCIdType()) return false;
 | |
| 
 | |
|   // If B is a qualified id, then A must also be a qualified id and it must
 | |
|   // implement all of the protocols in B.  It may not be a qualified class.
 | |
|   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
 | |
|   // stricter definition so it is not substitutable for id<A>.
 | |
|   if (B->isObjCQualifiedIdType()) {
 | |
|     return A->isObjCQualifiedIdType() &&
 | |
|            Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
 | |
|                                                      QualType(B,0),
 | |
|                                                      false);
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   // id is a special type that bypasses type checking completely.  We want a
 | |
|   // warning when it is used in one place but not another.
 | |
|   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
 | |
| 
 | |
| 
 | |
|   // If B is a qualified id, then A must also be a qualified id (which it isn't
 | |
|   // if we've got this far)
 | |
|   if (B->isObjCQualifiedIdType()) return false;
 | |
|   */
 | |
| 
 | |
|   // Now we know that A and B are (potentially-qualified) class types.  The
 | |
|   // normal rules for assignment apply.
 | |
|   return Context.canAssignObjCInterfaces(A, B);
 | |
| }
 | |
| 
 | |
| static SourceRange getTypeRange(TypeSourceInfo *TSI) {
 | |
|   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
 | |
| }
 | |
| 
 | |
| /// Determine whether two set of Objective-C declaration qualifiers conflict.
 | |
| static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
 | |
|                                   Decl::ObjCDeclQualifier y) {
 | |
|   return (x & ~Decl::OBJC_TQ_CSNullability) !=
 | |
|          (y & ~Decl::OBJC_TQ_CSNullability);
 | |
| }
 | |
| 
 | |
| static bool CheckMethodOverrideReturn(Sema &S,
 | |
|                                       ObjCMethodDecl *MethodImpl,
 | |
|                                       ObjCMethodDecl *MethodDecl,
 | |
|                                       bool IsProtocolMethodDecl,
 | |
|                                       bool IsOverridingMode,
 | |
|                                       bool Warn) {
 | |
|   if (IsProtocolMethodDecl &&
 | |
|       objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
 | |
|                             MethodImpl->getObjCDeclQualifier())) {
 | |
|     if (Warn) {
 | |
|       S.Diag(MethodImpl->getLocation(),
 | |
|              (IsOverridingMode
 | |
|                   ? diag::warn_conflicting_overriding_ret_type_modifiers
 | |
|                   : diag::warn_conflicting_ret_type_modifiers))
 | |
|           << MethodImpl->getDeclName()
 | |
|           << MethodImpl->getReturnTypeSourceRange();
 | |
|       S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
 | |
|           << MethodDecl->getReturnTypeSourceRange();
 | |
|     }
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
|   if (Warn && IsOverridingMode &&
 | |
|       !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
 | |
|       !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
 | |
|                                                  MethodDecl->getReturnType(),
 | |
|                                                  false)) {
 | |
|     auto nullabilityMethodImpl =
 | |
|       *MethodImpl->getReturnType()->getNullability(S.Context);
 | |
|     auto nullabilityMethodDecl =
 | |
|       *MethodDecl->getReturnType()->getNullability(S.Context);
 | |
|       S.Diag(MethodImpl->getLocation(),
 | |
|              diag::warn_conflicting_nullability_attr_overriding_ret_types)
 | |
|         << DiagNullabilityKind(
 | |
|              nullabilityMethodImpl,
 | |
|              ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
 | |
|               != 0))
 | |
|         << DiagNullabilityKind(
 | |
|              nullabilityMethodDecl,
 | |
|              ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
 | |
|                 != 0));
 | |
|       S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
 | |
|   }
 | |
|     
 | |
|   if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
 | |
|                                        MethodDecl->getReturnType()))
 | |
|     return true;
 | |
|   if (!Warn)
 | |
|     return false;
 | |
| 
 | |
|   unsigned DiagID = 
 | |
|     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types 
 | |
|                      : diag::warn_conflicting_ret_types;
 | |
| 
 | |
|   // Mismatches between ObjC pointers go into a different warning
 | |
|   // category, and sometimes they're even completely whitelisted.
 | |
|   if (const ObjCObjectPointerType *ImplPtrTy =
 | |
|           MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
 | |
|     if (const ObjCObjectPointerType *IfacePtrTy =
 | |
|             MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
 | |
|       // Allow non-matching return types as long as they don't violate
 | |
|       // the principle of substitutability.  Specifically, we permit
 | |
|       // return types that are subclasses of the declared return type,
 | |
|       // or that are more-qualified versions of the declared type.
 | |
|       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
 | |
|         return false;
 | |
| 
 | |
|       DiagID = 
 | |
|         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types 
 | |
|                          : diag::warn_non_covariant_ret_types;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   S.Diag(MethodImpl->getLocation(), DiagID)
 | |
|       << MethodImpl->getDeclName() << MethodDecl->getReturnType()
 | |
|       << MethodImpl->getReturnType()
 | |
|       << MethodImpl->getReturnTypeSourceRange();
 | |
|   S.Diag(MethodDecl->getLocation(), IsOverridingMode
 | |
|                                         ? diag::note_previous_declaration
 | |
|                                         : diag::note_previous_definition)
 | |
|       << MethodDecl->getReturnTypeSourceRange();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool CheckMethodOverrideParam(Sema &S,
 | |
|                                      ObjCMethodDecl *MethodImpl,
 | |
|                                      ObjCMethodDecl *MethodDecl,
 | |
|                                      ParmVarDecl *ImplVar,
 | |
|                                      ParmVarDecl *IfaceVar,
 | |
|                                      bool IsProtocolMethodDecl,
 | |
|                                      bool IsOverridingMode,
 | |
|                                      bool Warn) {
 | |
|   if (IsProtocolMethodDecl &&
 | |
|       objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
 | |
|                             IfaceVar->getObjCDeclQualifier())) {
 | |
|     if (Warn) {
 | |
|       if (IsOverridingMode)
 | |
|         S.Diag(ImplVar->getLocation(), 
 | |
|                diag::warn_conflicting_overriding_param_modifiers)
 | |
|             << getTypeRange(ImplVar->getTypeSourceInfo())
 | |
|             << MethodImpl->getDeclName();
 | |
|       else S.Diag(ImplVar->getLocation(), 
 | |
|              diag::warn_conflicting_param_modifiers)
 | |
|           << getTypeRange(ImplVar->getTypeSourceInfo())
 | |
|           << MethodImpl->getDeclName();
 | |
|       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
 | |
|           << getTypeRange(IfaceVar->getTypeSourceInfo());   
 | |
|     }
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
|       
 | |
|   QualType ImplTy = ImplVar->getType();
 | |
|   QualType IfaceTy = IfaceVar->getType();
 | |
|   if (Warn && IsOverridingMode &&
 | |
|       !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
 | |
|       !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
 | |
|     S.Diag(ImplVar->getLocation(),
 | |
|            diag::warn_conflicting_nullability_attr_overriding_param_types)
 | |
|       << DiagNullabilityKind(
 | |
|            *ImplTy->getNullability(S.Context),
 | |
|            ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
 | |
|             != 0))
 | |
|       << DiagNullabilityKind(
 | |
|            *IfaceTy->getNullability(S.Context),
 | |
|            ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
 | |
|             != 0));
 | |
|     S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
 | |
|   }
 | |
|   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
 | |
|     return true;
 | |
|   
 | |
|   if (!Warn)
 | |
|     return false;
 | |
|   unsigned DiagID = 
 | |
|     IsOverridingMode ? diag::warn_conflicting_overriding_param_types 
 | |
|                      : diag::warn_conflicting_param_types;
 | |
| 
 | |
|   // Mismatches between ObjC pointers go into a different warning
 | |
|   // category, and sometimes they're even completely whitelisted.
 | |
|   if (const ObjCObjectPointerType *ImplPtrTy =
 | |
|         ImplTy->getAs<ObjCObjectPointerType>()) {
 | |
|     if (const ObjCObjectPointerType *IfacePtrTy =
 | |
|           IfaceTy->getAs<ObjCObjectPointerType>()) {
 | |
|       // Allow non-matching argument types as long as they don't
 | |
|       // violate the principle of substitutability.  Specifically, the
 | |
|       // implementation must accept any objects that the superclass
 | |
|       // accepts, however it may also accept others.
 | |
|       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
 | |
|         return false;
 | |
| 
 | |
|       DiagID = 
 | |
|       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types 
 | |
|                        : diag::warn_non_contravariant_param_types;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   S.Diag(ImplVar->getLocation(), DiagID)
 | |
|     << getTypeRange(ImplVar->getTypeSourceInfo())
 | |
|     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
 | |
|   S.Diag(IfaceVar->getLocation(), 
 | |
|          (IsOverridingMode ? diag::note_previous_declaration 
 | |
|                            : diag::note_previous_definition))
 | |
|     << getTypeRange(IfaceVar->getTypeSourceInfo());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// In ARC, check whether the conventional meanings of the two methods
 | |
| /// match.  If they don't, it's a hard error.
 | |
| static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
 | |
|                                       ObjCMethodDecl *decl) {
 | |
|   ObjCMethodFamily implFamily = impl->getMethodFamily();
 | |
|   ObjCMethodFamily declFamily = decl->getMethodFamily();
 | |
|   if (implFamily == declFamily) return false;
 | |
| 
 | |
|   // Since conventions are sorted by selector, the only possibility is
 | |
|   // that the types differ enough to cause one selector or the other
 | |
|   // to fall out of the family.
 | |
|   assert(implFamily == OMF_None || declFamily == OMF_None);
 | |
| 
 | |
|   // No further diagnostics required on invalid declarations.
 | |
|   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
 | |
| 
 | |
|   const ObjCMethodDecl *unmatched = impl;
 | |
|   ObjCMethodFamily family = declFamily;
 | |
|   unsigned errorID = diag::err_arc_lost_method_convention;
 | |
|   unsigned noteID = diag::note_arc_lost_method_convention;
 | |
|   if (declFamily == OMF_None) {
 | |
|     unmatched = decl;
 | |
|     family = implFamily;
 | |
|     errorID = diag::err_arc_gained_method_convention;
 | |
|     noteID = diag::note_arc_gained_method_convention;
 | |
|   }
 | |
| 
 | |
|   // Indexes into a %select clause in the diagnostic.
 | |
|   enum FamilySelector {
 | |
|     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
 | |
|   };
 | |
|   FamilySelector familySelector = FamilySelector();
 | |
| 
 | |
|   switch (family) {
 | |
|   case OMF_None: llvm_unreachable("logic error, no method convention");
 | |
|   case OMF_retain:
 | |
|   case OMF_release:
 | |
|   case OMF_autorelease:
 | |
|   case OMF_dealloc:
 | |
|   case OMF_finalize:
 | |
|   case OMF_retainCount:
 | |
|   case OMF_self:
 | |
|   case OMF_initialize:
 | |
|   case OMF_performSelector:
 | |
|     // Mismatches for these methods don't change ownership
 | |
|     // conventions, so we don't care.
 | |
|     return false;
 | |
| 
 | |
|   case OMF_init: familySelector = F_init; break;
 | |
|   case OMF_alloc: familySelector = F_alloc; break;
 | |
|   case OMF_copy: familySelector = F_copy; break;
 | |
|   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
 | |
|   case OMF_new: familySelector = F_new; break;
 | |
|   }
 | |
| 
 | |
|   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
 | |
|   ReasonSelector reasonSelector;
 | |
| 
 | |
|   // The only reason these methods don't fall within their families is
 | |
|   // due to unusual result types.
 | |
|   if (unmatched->getReturnType()->isObjCObjectPointerType()) {
 | |
|     reasonSelector = R_UnrelatedReturn;
 | |
|   } else {
 | |
|     reasonSelector = R_NonObjectReturn;
 | |
|   }
 | |
| 
 | |
|   S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
 | |
|   S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
 | |
|                                        ObjCMethodDecl *MethodDecl,
 | |
|                                        bool IsProtocolMethodDecl) {
 | |
|   if (getLangOpts().ObjCAutoRefCount &&
 | |
|       checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
 | |
|     return;
 | |
| 
 | |
|   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 
 | |
|                             IsProtocolMethodDecl, false, 
 | |
|                             true);
 | |
| 
 | |
|   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
 | |
|        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
 | |
|        EF = MethodDecl->param_end();
 | |
|        IM != EM && IF != EF; ++IM, ++IF) {
 | |
|     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
 | |
|                              IsProtocolMethodDecl, false, true);
 | |
|   }
 | |
| 
 | |
|   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
 | |
|     Diag(ImpMethodDecl->getLocation(), 
 | |
|          diag::warn_conflicting_variadic);
 | |
|     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
 | |
|                                        ObjCMethodDecl *Overridden,
 | |
|                                        bool IsProtocolMethodDecl) {
 | |
|   
 | |
|   CheckMethodOverrideReturn(*this, Method, Overridden, 
 | |
|                             IsProtocolMethodDecl, true, 
 | |
|                             true);
 | |
|   
 | |
|   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
 | |
|        IF = Overridden->param_begin(), EM = Method->param_end(),
 | |
|        EF = Overridden->param_end();
 | |
|        IM != EM && IF != EF; ++IM, ++IF) {
 | |
|     CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
 | |
|                              IsProtocolMethodDecl, true, true);
 | |
|   }
 | |
|   
 | |
|   if (Method->isVariadic() != Overridden->isVariadic()) {
 | |
|     Diag(Method->getLocation(), 
 | |
|          diag::warn_conflicting_overriding_variadic);
 | |
|     Diag(Overridden->getLocation(), diag::note_previous_declaration);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// WarnExactTypedMethods - This routine issues a warning if method
 | |
| /// implementation declaration matches exactly that of its declaration.
 | |
| void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
 | |
|                                  ObjCMethodDecl *MethodDecl,
 | |
|                                  bool IsProtocolMethodDecl) {
 | |
|   // don't issue warning when protocol method is optional because primary
 | |
|   // class is not required to implement it and it is safe for protocol
 | |
|   // to implement it.
 | |
|   if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
 | |
|     return;
 | |
|   // don't issue warning when primary class's method is 
 | |
|   // depecated/unavailable.
 | |
|   if (MethodDecl->hasAttr<UnavailableAttr>() ||
 | |
|       MethodDecl->hasAttr<DeprecatedAttr>())
 | |
|     return;
 | |
|   
 | |
|   bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl, 
 | |
|                                       IsProtocolMethodDecl, false, false);
 | |
|   if (match)
 | |
|     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
 | |
|          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
 | |
|          EF = MethodDecl->param_end();
 | |
|          IM != EM && IF != EF; ++IM, ++IF) {
 | |
|       match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, 
 | |
|                                        *IM, *IF,
 | |
|                                        IsProtocolMethodDecl, false, false);
 | |
|       if (!match)
 | |
|         break;
 | |
|     }
 | |
|   if (match)
 | |
|     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
 | |
|   if (match)
 | |
|     match = !(MethodDecl->isClassMethod() &&
 | |
|               MethodDecl->getSelector() == GetNullarySelector("load", Context));
 | |
|   
 | |
|   if (match) {
 | |
|     Diag(ImpMethodDecl->getLocation(), 
 | |
|          diag::warn_category_method_impl_match);
 | |
|     Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
 | |
|       << MethodDecl->getDeclName();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
 | |
| /// improve the efficiency of selector lookups and type checking by associating
 | |
| /// with each protocol / interface / category the flattened instance tables. If
 | |
| /// we used an immutable set to keep the table then it wouldn't add significant
 | |
| /// memory cost and it would be handy for lookups.
 | |
| 
 | |
| typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
 | |
| typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
 | |
| 
 | |
| static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
 | |
|                                            ProtocolNameSet &PNS) {
 | |
|   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
 | |
|     PNS.insert(PDecl->getIdentifier());
 | |
|   for (const auto *PI : PDecl->protocols())
 | |
|     findProtocolsWithExplicitImpls(PI, PNS);
 | |
| }
 | |
| 
 | |
| /// Recursively populates a set with all conformed protocols in a class
 | |
| /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
 | |
| /// attribute.
 | |
| static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
 | |
|                                            ProtocolNameSet &PNS) {
 | |
|   if (!Super)
 | |
|     return;
 | |
| 
 | |
|   for (const auto *I : Super->all_referenced_protocols())
 | |
|     findProtocolsWithExplicitImpls(I, PNS);
 | |
| 
 | |
|   findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
 | |
| }
 | |
| 
 | |
| /// CheckProtocolMethodDefs - This routine checks unimplemented methods
 | |
| /// Declared in protocol, and those referenced by it.
 | |
| static void CheckProtocolMethodDefs(Sema &S,
 | |
|                                     SourceLocation ImpLoc,
 | |
|                                     ObjCProtocolDecl *PDecl,
 | |
|                                     bool& IncompleteImpl,
 | |
|                                     const Sema::SelectorSet &InsMap,
 | |
|                                     const Sema::SelectorSet &ClsMap,
 | |
|                                     ObjCContainerDecl *CDecl,
 | |
|                                     LazyProtocolNameSet &ProtocolsExplictImpl) {
 | |
|   ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
 | |
|   ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() 
 | |
|                                : dyn_cast<ObjCInterfaceDecl>(CDecl);
 | |
|   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
 | |
|   
 | |
|   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
 | |
|   ObjCInterfaceDecl *NSIDecl = nullptr;
 | |
| 
 | |
|   // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
 | |
|   // then we should check if any class in the super class hierarchy also
 | |
|   // conforms to this protocol, either directly or via protocol inheritance.
 | |
|   // If so, we can skip checking this protocol completely because we
 | |
|   // know that a parent class already satisfies this protocol.
 | |
|   //
 | |
|   // Note: we could generalize this logic for all protocols, and merely
 | |
|   // add the limit on looking at the super class chain for just
 | |
|   // specially marked protocols.  This may be a good optimization.  This
 | |
|   // change is restricted to 'objc_protocol_requires_explicit_implementation'
 | |
|   // protocols for now for controlled evaluation.
 | |
|   if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
 | |
|     if (!ProtocolsExplictImpl) {
 | |
|       ProtocolsExplictImpl.reset(new ProtocolNameSet);
 | |
|       findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
 | |
|     }
 | |
|     if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
 | |
|         ProtocolsExplictImpl->end())
 | |
|       return;
 | |
| 
 | |
|     // If no super class conforms to the protocol, we should not search
 | |
|     // for methods in the super class to implicitly satisfy the protocol.
 | |
|     Super = nullptr;
 | |
|   }
 | |
| 
 | |
|   if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
 | |
|     // check to see if class implements forwardInvocation method and objects
 | |
|     // of this class are derived from 'NSProxy' so that to forward requests
 | |
|     // from one object to another.
 | |
|     // Under such conditions, which means that every method possible is
 | |
|     // implemented in the class, we should not issue "Method definition not
 | |
|     // found" warnings.
 | |
|     // FIXME: Use a general GetUnarySelector method for this.
 | |
|     IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
 | |
|     Selector fISelector = S.Context.Selectors.getSelector(1, &II);
 | |
|     if (InsMap.count(fISelector))
 | |
|       // Is IDecl derived from 'NSProxy'? If so, no instance methods
 | |
|       // need be implemented in the implementation.
 | |
|       NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
 | |
|   }
 | |
| 
 | |
|   // If this is a forward protocol declaration, get its definition.
 | |
|   if (!PDecl->isThisDeclarationADefinition() &&
 | |
|       PDecl->getDefinition())
 | |
|     PDecl = PDecl->getDefinition();
 | |
|   
 | |
|   // If a method lookup fails locally we still need to look and see if
 | |
|   // the method was implemented by a base class or an inherited
 | |
|   // protocol. This lookup is slow, but occurs rarely in correct code
 | |
|   // and otherwise would terminate in a warning.
 | |
| 
 | |
|   // check unimplemented instance methods.
 | |
|   if (!NSIDecl)
 | |
|     for (auto *method : PDecl->instance_methods()) {
 | |
|       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
 | |
|           !method->isPropertyAccessor() &&
 | |
|           !InsMap.count(method->getSelector()) &&
 | |
|           (!Super || !Super->lookupMethod(method->getSelector(),
 | |
|                                           true /* instance */,
 | |
|                                           false /* shallowCategory */,
 | |
|                                           true /* followsSuper */,
 | |
|                                           nullptr /* category */))) {
 | |
|             // If a method is not implemented in the category implementation but
 | |
|             // has been declared in its primary class, superclass,
 | |
|             // or in one of their protocols, no need to issue the warning. 
 | |
|             // This is because method will be implemented in the primary class 
 | |
|             // or one of its super class implementation.
 | |
|             
 | |
|             // Ugly, but necessary. Method declared in protcol might have
 | |
|             // have been synthesized due to a property declared in the class which
 | |
|             // uses the protocol.
 | |
|             if (ObjCMethodDecl *MethodInClass =
 | |
|                   IDecl->lookupMethod(method->getSelector(),
 | |
|                                       true /* instance */,
 | |
|                                       true /* shallowCategoryLookup */,
 | |
|                                       false /* followSuper */))
 | |
|               if (C || MethodInClass->isPropertyAccessor())
 | |
|                 continue;
 | |
|             unsigned DIAG = diag::warn_unimplemented_protocol_method;
 | |
|             if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
 | |
|               WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
 | |
|                                   PDecl);
 | |
|             }
 | |
|           }
 | |
|     }
 | |
|   // check unimplemented class methods
 | |
|   for (auto *method : PDecl->class_methods()) {
 | |
|     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
 | |
|         !ClsMap.count(method->getSelector()) &&
 | |
|         (!Super || !Super->lookupMethod(method->getSelector(),
 | |
|                                         false /* class method */,
 | |
|                                         false /* shallowCategoryLookup */,
 | |
|                                         true  /* followSuper */,
 | |
|                                         nullptr /* category */))) {
 | |
|       // See above comment for instance method lookups.
 | |
|       if (C && IDecl->lookupMethod(method->getSelector(),
 | |
|                                    false /* class */,
 | |
|                                    true /* shallowCategoryLookup */,
 | |
|                                    false /* followSuper */))
 | |
|         continue;
 | |
| 
 | |
|       unsigned DIAG = diag::warn_unimplemented_protocol_method;
 | |
|       if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
 | |
|         WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Check on this protocols's referenced protocols, recursively.
 | |
|   for (auto *PI : PDecl->protocols())
 | |
|     CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
 | |
|                             CDecl, ProtocolsExplictImpl);
 | |
| }
 | |
| 
 | |
| /// MatchAllMethodDeclarations - Check methods declared in interface
 | |
| /// or protocol against those declared in their implementations.
 | |
| ///
 | |
| void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
 | |
|                                       const SelectorSet &ClsMap,
 | |
|                                       SelectorSet &InsMapSeen,
 | |
|                                       SelectorSet &ClsMapSeen,
 | |
|                                       ObjCImplDecl* IMPDecl,
 | |
|                                       ObjCContainerDecl* CDecl,
 | |
|                                       bool &IncompleteImpl,
 | |
|                                       bool ImmediateClass,
 | |
|                                       bool WarnCategoryMethodImpl) {
 | |
|   // Check and see if instance methods in class interface have been
 | |
|   // implemented in the implementation class. If so, their types match.
 | |
|   for (auto *I : CDecl->instance_methods()) {
 | |
|     if (!InsMapSeen.insert(I->getSelector()).second)
 | |
|       continue;
 | |
|     if (!I->isPropertyAccessor() &&
 | |
|         !InsMap.count(I->getSelector())) {
 | |
|       if (ImmediateClass)
 | |
|         WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
 | |
|                             diag::warn_undef_method_impl);
 | |
|       continue;
 | |
|     } else {
 | |
|       ObjCMethodDecl *ImpMethodDecl =
 | |
|         IMPDecl->getInstanceMethod(I->getSelector());
 | |
|       assert(CDecl->getInstanceMethod(I->getSelector()) &&
 | |
|              "Expected to find the method through lookup as well");
 | |
|       // ImpMethodDecl may be null as in a @dynamic property.
 | |
|       if (ImpMethodDecl) {
 | |
|         if (!WarnCategoryMethodImpl)
 | |
|           WarnConflictingTypedMethods(ImpMethodDecl, I,
 | |
|                                       isa<ObjCProtocolDecl>(CDecl));
 | |
|         else if (!I->isPropertyAccessor())
 | |
|           WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check and see if class methods in class interface have been
 | |
|   // implemented in the implementation class. If so, their types match.
 | |
|   for (auto *I : CDecl->class_methods()) {
 | |
|     if (!ClsMapSeen.insert(I->getSelector()).second)
 | |
|       continue;
 | |
|     if (!ClsMap.count(I->getSelector())) {
 | |
|       if (ImmediateClass)
 | |
|         WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
 | |
|                             diag::warn_undef_method_impl);
 | |
|     } else {
 | |
|       ObjCMethodDecl *ImpMethodDecl =
 | |
|         IMPDecl->getClassMethod(I->getSelector());
 | |
|       assert(CDecl->getClassMethod(I->getSelector()) &&
 | |
|              "Expected to find the method through lookup as well");
 | |
|       if (!WarnCategoryMethodImpl)
 | |
|         WarnConflictingTypedMethods(ImpMethodDecl, I, 
 | |
|                                     isa<ObjCProtocolDecl>(CDecl));
 | |
|       else
 | |
|         WarnExactTypedMethods(ImpMethodDecl, I,
 | |
|                               isa<ObjCProtocolDecl>(CDecl));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
 | |
|     // Also, check for methods declared in protocols inherited by
 | |
|     // this protocol.
 | |
|     for (auto *PI : PD->protocols())
 | |
|       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | |
|                                  IMPDecl, PI, IncompleteImpl, false,
 | |
|                                  WarnCategoryMethodImpl);
 | |
|   }
 | |
|   
 | |
|   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
 | |
|     // when checking that methods in implementation match their declaration,
 | |
|     // i.e. when WarnCategoryMethodImpl is false, check declarations in class
 | |
|     // extension; as well as those in categories.
 | |
|     if (!WarnCategoryMethodImpl) {
 | |
|       for (auto *Cat : I->visible_categories())
 | |
|         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | |
|                                    IMPDecl, Cat, IncompleteImpl,
 | |
|                                    ImmediateClass && Cat->IsClassExtension(),
 | |
|                                    WarnCategoryMethodImpl);
 | |
|     } else {
 | |
|       // Also methods in class extensions need be looked at next.
 | |
|       for (auto *Ext : I->visible_extensions())
 | |
|         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | |
|                                    IMPDecl, Ext, IncompleteImpl, false,
 | |
|                                    WarnCategoryMethodImpl);
 | |
|     }
 | |
| 
 | |
|     // Check for any implementation of a methods declared in protocol.
 | |
|     for (auto *PI : I->all_referenced_protocols())
 | |
|       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | |
|                                  IMPDecl, PI, IncompleteImpl, false,
 | |
|                                  WarnCategoryMethodImpl);
 | |
| 
 | |
|     // FIXME. For now, we are not checking for extact match of methods 
 | |
|     // in category implementation and its primary class's super class. 
 | |
|     if (!WarnCategoryMethodImpl && I->getSuperClass())
 | |
|       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | |
|                                  IMPDecl,
 | |
|                                  I->getSuperClass(), IncompleteImpl, false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
 | |
| /// category matches with those implemented in its primary class and
 | |
| /// warns each time an exact match is found. 
 | |
| void Sema::CheckCategoryVsClassMethodMatches(
 | |
|                                   ObjCCategoryImplDecl *CatIMPDecl) {
 | |
|   // Get category's primary class.
 | |
|   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
 | |
|   if (!CatDecl)
 | |
|     return;
 | |
|   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
 | |
|   if (!IDecl)
 | |
|     return;
 | |
|   ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
 | |
|   SelectorSet InsMap, ClsMap;
 | |
|   
 | |
|   for (const auto *I : CatIMPDecl->instance_methods()) {
 | |
|     Selector Sel = I->getSelector();
 | |
|     // When checking for methods implemented in the category, skip over
 | |
|     // those declared in category class's super class. This is because
 | |
|     // the super class must implement the method.
 | |
|     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
 | |
|       continue;
 | |
|     InsMap.insert(Sel);
 | |
|   }
 | |
|   
 | |
|   for (const auto *I : CatIMPDecl->class_methods()) {
 | |
|     Selector Sel = I->getSelector();
 | |
|     if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
 | |
|       continue;
 | |
|     ClsMap.insert(Sel);
 | |
|   }
 | |
|   if (InsMap.empty() && ClsMap.empty())
 | |
|     return;
 | |
|   
 | |
|   SelectorSet InsMapSeen, ClsMapSeen;
 | |
|   bool IncompleteImpl = false;
 | |
|   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | |
|                              CatIMPDecl, IDecl,
 | |
|                              IncompleteImpl, false, 
 | |
|                              true /*WarnCategoryMethodImpl*/);
 | |
| }
 | |
| 
 | |
| void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
 | |
|                                      ObjCContainerDecl* CDecl,
 | |
|                                      bool IncompleteImpl) {
 | |
|   SelectorSet InsMap;
 | |
|   // Check and see if instance methods in class interface have been
 | |
|   // implemented in the implementation class.
 | |
|   for (const auto *I : IMPDecl->instance_methods())
 | |
|     InsMap.insert(I->getSelector());
 | |
| 
 | |
|   // Add the selectors for getters/setters of @dynamic properties.
 | |
|   for (const auto *PImpl : IMPDecl->property_impls()) {
 | |
|     // We only care about @dynamic implementations.
 | |
|     if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
 | |
|       continue;
 | |
| 
 | |
|     const auto *P = PImpl->getPropertyDecl();
 | |
|     if (!P) continue;
 | |
| 
 | |
|     InsMap.insert(P->getGetterName());
 | |
|     if (!P->getSetterName().isNull())
 | |
|       InsMap.insert(P->getSetterName());
 | |
|   }
 | |
| 
 | |
|   // Check and see if properties declared in the interface have either 1)
 | |
|   // an implementation or 2) there is a @synthesize/@dynamic implementation
 | |
|   // of the property in the @implementation.
 | |
|   if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
 | |
|     bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
 | |
|                                 LangOpts.ObjCRuntime.isNonFragile() &&
 | |
|                                 !IDecl->isObjCRequiresPropertyDefs();
 | |
|     DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
 | |
|   }
 | |
| 
 | |
|   // Diagnose null-resettable synthesized setters.
 | |
|   diagnoseNullResettableSynthesizedSetters(IMPDecl);
 | |
| 
 | |
|   SelectorSet ClsMap;
 | |
|   for (const auto *I : IMPDecl->class_methods())
 | |
|     ClsMap.insert(I->getSelector());
 | |
| 
 | |
|   // Check for type conflict of methods declared in a class/protocol and
 | |
|   // its implementation; if any.
 | |
|   SelectorSet InsMapSeen, ClsMapSeen;
 | |
|   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
 | |
|                              IMPDecl, CDecl,
 | |
|                              IncompleteImpl, true);
 | |
|   
 | |
|   // check all methods implemented in category against those declared
 | |
|   // in its primary class.
 | |
|   if (ObjCCategoryImplDecl *CatDecl = 
 | |
|         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
 | |
|     CheckCategoryVsClassMethodMatches(CatDecl);
 | |
| 
 | |
|   // Check the protocol list for unimplemented methods in the @implementation
 | |
|   // class.
 | |
|   // Check and see if class methods in class interface have been
 | |
|   // implemented in the implementation class.
 | |
| 
 | |
|   LazyProtocolNameSet ExplicitImplProtocols;
 | |
| 
 | |
|   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
 | |
|     for (auto *PI : I->all_referenced_protocols())
 | |
|       CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
 | |
|                               InsMap, ClsMap, I, ExplicitImplProtocols);
 | |
|   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
 | |
|     // For extended class, unimplemented methods in its protocols will
 | |
|     // be reported in the primary class.
 | |
|     if (!C->IsClassExtension()) {
 | |
|       for (auto *P : C->protocols())
 | |
|         CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
 | |
|                                 IncompleteImpl, InsMap, ClsMap, CDecl,
 | |
|                                 ExplicitImplProtocols);
 | |
|       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
 | |
|                                       /*SynthesizeProperties=*/false);
 | |
|     } 
 | |
|   } else
 | |
|     llvm_unreachable("invalid ObjCContainerDecl type.");
 | |
| }
 | |
| 
 | |
| Sema::DeclGroupPtrTy
 | |
| Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
 | |
|                                    IdentifierInfo **IdentList,
 | |
|                                    SourceLocation *IdentLocs,
 | |
|                                    ArrayRef<ObjCTypeParamList *> TypeParamLists,
 | |
|                                    unsigned NumElts) {
 | |
|   SmallVector<Decl *, 8> DeclsInGroup;
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     // Check for another declaration kind with the same name.
 | |
|     NamedDecl *PrevDecl
 | |
|       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i], 
 | |
|                          LookupOrdinaryName, ForRedeclaration);
 | |
|     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
 | |
|       // GCC apparently allows the following idiom:
 | |
|       //
 | |
|       // typedef NSObject < XCElementTogglerP > XCElementToggler;
 | |
|       // @class XCElementToggler;
 | |
|       //
 | |
|       // Here we have chosen to ignore the forward class declaration
 | |
|       // with a warning. Since this is the implied behavior.
 | |
|       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
 | |
|       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
 | |
|         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
 | |
|         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|       } else {
 | |
|         // a forward class declaration matching a typedef name of a class refers
 | |
|         // to the underlying class. Just ignore the forward class with a warning
 | |
|         // as this will force the intended behavior which is to lookup the
 | |
|         // typedef name.
 | |
|         if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
 | |
|           Diag(AtClassLoc, diag::warn_forward_class_redefinition)
 | |
|               << IdentList[i];
 | |
|           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Create a declaration to describe this forward declaration.
 | |
|     ObjCInterfaceDecl *PrevIDecl
 | |
|       = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
 | |
| 
 | |
|     IdentifierInfo *ClassName = IdentList[i];
 | |
|     if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
 | |
|       // A previous decl with a different name is because of
 | |
|       // @compatibility_alias, for example:
 | |
|       // \code
 | |
|       //   @class NewImage;
 | |
|       //   @compatibility_alias OldImage NewImage;
 | |
|       // \endcode
 | |
|       // A lookup for 'OldImage' will return the 'NewImage' decl.
 | |
|       //
 | |
|       // In such a case use the real declaration name, instead of the alias one,
 | |
|       // otherwise we will break IdentifierResolver and redecls-chain invariants.
 | |
|       // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
 | |
|       // has been aliased.
 | |
|       ClassName = PrevIDecl->getIdentifier();
 | |
|     }
 | |
| 
 | |
|     // If this forward declaration has type parameters, compare them with the
 | |
|     // type parameters of the previous declaration.
 | |
|     ObjCTypeParamList *TypeParams = TypeParamLists[i];
 | |
|     if (PrevIDecl && TypeParams) {
 | |
|       if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
 | |
|         // Check for consistency with the previous declaration.
 | |
|         if (checkTypeParamListConsistency(
 | |
|               *this, PrevTypeParams, TypeParams,
 | |
|               TypeParamListContext::ForwardDeclaration)) {
 | |
|           TypeParams = nullptr;
 | |
|         }
 | |
|       } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
 | |
|         // The @interface does not have type parameters. Complain.
 | |
|         Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
 | |
|           << ClassName
 | |
|           << TypeParams->getSourceRange();
 | |
|         Diag(Def->getLocation(), diag::note_defined_here)
 | |
|           << ClassName;
 | |
| 
 | |
|         TypeParams = nullptr;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ObjCInterfaceDecl *IDecl
 | |
|       = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
 | |
|                                   ClassName, TypeParams, PrevIDecl,
 | |
|                                   IdentLocs[i]);
 | |
|     IDecl->setAtEndRange(IdentLocs[i]);
 | |
|     
 | |
|     PushOnScopeChains(IDecl, TUScope);
 | |
|     CheckObjCDeclScope(IDecl);
 | |
|     DeclsInGroup.push_back(IDecl);
 | |
|   }
 | |
| 
 | |
|   return BuildDeclaratorGroup(DeclsInGroup, false);
 | |
| }
 | |
| 
 | |
| static bool tryMatchRecordTypes(ASTContext &Context,
 | |
|                                 Sema::MethodMatchStrategy strategy,
 | |
|                                 const Type *left, const Type *right);
 | |
| 
 | |
| static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
 | |
|                        QualType leftQT, QualType rightQT) {
 | |
|   const Type *left =
 | |
|     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
 | |
|   const Type *right =
 | |
|     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
 | |
| 
 | |
|   if (left == right) return true;
 | |
| 
 | |
|   // If we're doing a strict match, the types have to match exactly.
 | |
|   if (strategy == Sema::MMS_strict) return false;
 | |
| 
 | |
|   if (left->isIncompleteType() || right->isIncompleteType()) return false;
 | |
| 
 | |
|   // Otherwise, use this absurdly complicated algorithm to try to
 | |
|   // validate the basic, low-level compatibility of the two types.
 | |
| 
 | |
|   // As a minimum, require the sizes and alignments to match.
 | |
|   TypeInfo LeftTI = Context.getTypeInfo(left);
 | |
|   TypeInfo RightTI = Context.getTypeInfo(right);
 | |
|   if (LeftTI.Width != RightTI.Width)
 | |
|     return false;
 | |
| 
 | |
|   if (LeftTI.Align != RightTI.Align)
 | |
|     return false;
 | |
| 
 | |
|   // Consider all the kinds of non-dependent canonical types:
 | |
|   // - functions and arrays aren't possible as return and parameter types
 | |
|   
 | |
|   // - vector types of equal size can be arbitrarily mixed
 | |
|   if (isa<VectorType>(left)) return isa<VectorType>(right);
 | |
|   if (isa<VectorType>(right)) return false;
 | |
| 
 | |
|   // - references should only match references of identical type
 | |
|   // - structs, unions, and Objective-C objects must match more-or-less
 | |
|   //   exactly
 | |
|   // - everything else should be a scalar
 | |
|   if (!left->isScalarType() || !right->isScalarType())
 | |
|     return tryMatchRecordTypes(Context, strategy, left, right);
 | |
| 
 | |
|   // Make scalars agree in kind, except count bools as chars, and group
 | |
|   // all non-member pointers together.
 | |
|   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
 | |
|   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
 | |
|   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
 | |
|   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
 | |
|   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
 | |
|     leftSK = Type::STK_ObjCObjectPointer;
 | |
|   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
 | |
|     rightSK = Type::STK_ObjCObjectPointer;
 | |
| 
 | |
|   // Note that data member pointers and function member pointers don't
 | |
|   // intermix because of the size differences.
 | |
| 
 | |
|   return (leftSK == rightSK);
 | |
| }
 | |
| 
 | |
| static bool tryMatchRecordTypes(ASTContext &Context,
 | |
|                                 Sema::MethodMatchStrategy strategy,
 | |
|                                 const Type *lt, const Type *rt) {
 | |
|   assert(lt && rt && lt != rt);
 | |
| 
 | |
|   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
 | |
|   RecordDecl *left = cast<RecordType>(lt)->getDecl();
 | |
|   RecordDecl *right = cast<RecordType>(rt)->getDecl();
 | |
| 
 | |
|   // Require union-hood to match.
 | |
|   if (left->isUnion() != right->isUnion()) return false;
 | |
| 
 | |
|   // Require an exact match if either is non-POD.
 | |
|   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
 | |
|       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
 | |
|     return false;
 | |
| 
 | |
|   // Require size and alignment to match.
 | |
|   TypeInfo LeftTI = Context.getTypeInfo(lt);
 | |
|   TypeInfo RightTI = Context.getTypeInfo(rt);
 | |
|   if (LeftTI.Width != RightTI.Width)
 | |
|     return false;
 | |
| 
 | |
|   if (LeftTI.Align != RightTI.Align)
 | |
|     return false;
 | |
| 
 | |
|   // Require fields to match.
 | |
|   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
 | |
|   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
 | |
|   for (; li != le && ri != re; ++li, ++ri) {
 | |
|     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
 | |
|       return false;
 | |
|   }
 | |
|   return (li == le && ri == re);
 | |
| }
 | |
| 
 | |
| /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
 | |
| /// returns true, or false, accordingly.
 | |
| /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
 | |
| bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
 | |
|                                       const ObjCMethodDecl *right,
 | |
|                                       MethodMatchStrategy strategy) {
 | |
|   if (!matchTypes(Context, strategy, left->getReturnType(),
 | |
|                   right->getReturnType()))
 | |
|     return false;
 | |
| 
 | |
|   // If either is hidden, it is not considered to match.
 | |
|   if (left->isHidden() || right->isHidden())
 | |
|     return false;
 | |
| 
 | |
|   if (getLangOpts().ObjCAutoRefCount &&
 | |
|       (left->hasAttr<NSReturnsRetainedAttr>()
 | |
|          != right->hasAttr<NSReturnsRetainedAttr>() ||
 | |
|        left->hasAttr<NSConsumesSelfAttr>()
 | |
|          != right->hasAttr<NSConsumesSelfAttr>()))
 | |
|     return false;
 | |
| 
 | |
|   ObjCMethodDecl::param_const_iterator
 | |
|     li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
 | |
|     re = right->param_end();
 | |
| 
 | |
|   for (; li != le && ri != re; ++li, ++ri) {
 | |
|     assert(ri != right->param_end() && "Param mismatch");
 | |
|     const ParmVarDecl *lparm = *li, *rparm = *ri;
 | |
| 
 | |
|     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
 | |
|       return false;
 | |
| 
 | |
|     if (getLangOpts().ObjCAutoRefCount &&
 | |
|         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Sema::addMethodToGlobalList(ObjCMethodList *List,
 | |
|                                  ObjCMethodDecl *Method) {
 | |
|   // Record at the head of the list whether there were 0, 1, or >= 2 methods
 | |
|   // inside categories.
 | |
|   if (ObjCCategoryDecl *CD =
 | |
|           dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
 | |
|     if (!CD->IsClassExtension() && List->getBits() < 2)
 | |
|       List->setBits(List->getBits() + 1);
 | |
| 
 | |
|   // If the list is empty, make it a singleton list.
 | |
|   if (List->getMethod() == nullptr) {
 | |
|     List->setMethod(Method);
 | |
|     List->setNext(nullptr);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We've seen a method with this name, see if we have already seen this type
 | |
|   // signature.
 | |
|   ObjCMethodList *Previous = List;
 | |
|   for (; List; Previous = List, List = List->getNext()) {
 | |
|     // If we are building a module, keep all of the methods.
 | |
|     if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty())
 | |
|       continue;
 | |
| 
 | |
|     if (!MatchTwoMethodDeclarations(Method, List->getMethod())) {
 | |
|       // Even if two method types do not match, we would like to say
 | |
|       // there is more than one declaration so unavailability/deprecated
 | |
|       // warning is not too noisy.
 | |
|       if (!Method->isDefined())
 | |
|         List->setHasMoreThanOneDecl(true);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     ObjCMethodDecl *PrevObjCMethod = List->getMethod();
 | |
| 
 | |
|     // Propagate the 'defined' bit.
 | |
|     if (Method->isDefined())
 | |
|       PrevObjCMethod->setDefined(true);
 | |
|     else {
 | |
|       // Objective-C doesn't allow an @interface for a class after its
 | |
|       // @implementation. So if Method is not defined and there already is
 | |
|       // an entry for this type signature, Method has to be for a different
 | |
|       // class than PrevObjCMethod.
 | |
|       List->setHasMoreThanOneDecl(true);
 | |
|     }
 | |
| 
 | |
|     // If a method is deprecated, push it in the global pool.
 | |
|     // This is used for better diagnostics.
 | |
|     if (Method->isDeprecated()) {
 | |
|       if (!PrevObjCMethod->isDeprecated())
 | |
|         List->setMethod(Method);
 | |
|     }
 | |
|     // If the new method is unavailable, push it into global pool
 | |
|     // unless previous one is deprecated.
 | |
|     if (Method->isUnavailable()) {
 | |
|       if (PrevObjCMethod->getAvailability() < AR_Deprecated)
 | |
|         List->setMethod(Method);
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We have a new signature for an existing method - add it.
 | |
|   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
 | |
|   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
 | |
|   Previous->setNext(new (Mem) ObjCMethodList(Method));
 | |
| }
 | |
| 
 | |
| /// \brief Read the contents of the method pool for a given selector from
 | |
| /// external storage.
 | |
| void Sema::ReadMethodPool(Selector Sel) {
 | |
|   assert(ExternalSource && "We need an external AST source");
 | |
|   ExternalSource->ReadMethodPool(Sel);
 | |
| }
 | |
| 
 | |
| void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
 | |
|                                  bool instance) {
 | |
|   // Ignore methods of invalid containers.
 | |
|   if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
 | |
|     return;
 | |
| 
 | |
|   if (ExternalSource)
 | |
|     ReadMethodPool(Method->getSelector());
 | |
|   
 | |
|   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
 | |
|   if (Pos == MethodPool.end())
 | |
|     Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
 | |
|                                            GlobalMethods())).first;
 | |
| 
 | |
|   Method->setDefined(impl);
 | |
|   
 | |
|   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
 | |
|   addMethodToGlobalList(&Entry, Method);
 | |
| }
 | |
| 
 | |
| /// Determines if this is an "acceptable" loose mismatch in the global
 | |
| /// method pool.  This exists mostly as a hack to get around certain
 | |
| /// global mismatches which we can't afford to make warnings / errors.
 | |
| /// Really, what we want is a way to take a method out of the global
 | |
| /// method pool.
 | |
| static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
 | |
|                                        ObjCMethodDecl *other) {
 | |
|   if (!chosen->isInstanceMethod())
 | |
|     return false;
 | |
| 
 | |
|   Selector sel = chosen->getSelector();
 | |
|   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
 | |
|     return false;
 | |
| 
 | |
|   // Don't complain about mismatches for -length if the method we
 | |
|   // chose has an integral result type.
 | |
|   return (chosen->getReturnType()->isIntegerType());
 | |
| }
 | |
| 
 | |
| bool Sema::CollectMultipleMethodsInGlobalPool(
 | |
|     Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, bool instance) {
 | |
|   if (ExternalSource)
 | |
|     ReadMethodPool(Sel);
 | |
| 
 | |
|   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
 | |
|   if (Pos == MethodPool.end())
 | |
|     return false;
 | |
|   // Gather the non-hidden methods.
 | |
|   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
 | |
|   for (ObjCMethodList *M = &MethList; M; M = M->getNext())
 | |
|     if (M->getMethod() && !M->getMethod()->isHidden())
 | |
|       Methods.push_back(M->getMethod());
 | |
|   return Methods.size() > 1;
 | |
| }
 | |
| 
 | |
| bool Sema::AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
 | |
|                                           SourceRange R,
 | |
|                                           bool receiverIdOrClass) {
 | |
|   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
 | |
|   // Test for no method in the pool which should not trigger any warning by
 | |
|   // caller.
 | |
|   if (Pos == MethodPool.end())
 | |
|     return true;
 | |
|   ObjCMethodList &MethList =
 | |
|     BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
 | |
|   
 | |
|   // Diagnose finding more than one method in global pool
 | |
|   SmallVector<ObjCMethodDecl *, 4> Methods;
 | |
|   Methods.push_back(BestMethod);
 | |
|   for (ObjCMethodList *ML = &MethList; ML; ML = ML->getNext())
 | |
|     if (ObjCMethodDecl *M = ML->getMethod())
 | |
|       if (!M->isHidden() && M != BestMethod && !M->hasAttr<UnavailableAttr>())
 | |
|         Methods.push_back(M);
 | |
|   if (Methods.size() > 1)
 | |
|     DiagnoseMultipleMethodInGlobalPool(Methods, Sel, R, receiverIdOrClass);
 | |
| 
 | |
|   return MethList.hasMoreThanOneDecl();
 | |
| }
 | |
| 
 | |
| ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
 | |
|                                                bool receiverIdOrClass,
 | |
|                                                bool instance) {
 | |
|   if (ExternalSource)
 | |
|     ReadMethodPool(Sel);
 | |
|     
 | |
|   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
 | |
|   if (Pos == MethodPool.end())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Gather the non-hidden methods.
 | |
|   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
 | |
|   SmallVector<ObjCMethodDecl *, 4> Methods;
 | |
|   for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
 | |
|     if (M->getMethod() && !M->getMethod()->isHidden())
 | |
|       return M->getMethod();
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
 | |
|                                               Selector Sel, SourceRange R,
 | |
|                                               bool receiverIdOrClass) {
 | |
|   // We found multiple methods, so we may have to complain.
 | |
|   bool issueDiagnostic = false, issueError = false;
 | |
| 
 | |
|   // We support a warning which complains about *any* difference in
 | |
|   // method signature.
 | |
|   bool strictSelectorMatch =
 | |
|   receiverIdOrClass &&
 | |
|   !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
 | |
|   if (strictSelectorMatch) {
 | |
|     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
 | |
|       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
 | |
|         issueDiagnostic = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we didn't see any strict differences, we won't see any loose
 | |
|   // differences.  In ARC, however, we also need to check for loose
 | |
|   // mismatches, because most of them are errors.
 | |
|   if (!strictSelectorMatch ||
 | |
|       (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
 | |
|     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
 | |
|       // This checks if the methods differ in type mismatch.
 | |
|       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
 | |
|           !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
 | |
|         issueDiagnostic = true;
 | |
|         if (getLangOpts().ObjCAutoRefCount)
 | |
|           issueError = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   
 | |
|   if (issueDiagnostic) {
 | |
|     if (issueError)
 | |
|       Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
 | |
|     else if (strictSelectorMatch)
 | |
|       Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
 | |
|     else
 | |
|       Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
 | |
|     
 | |
|     Diag(Methods[0]->getLocStart(),
 | |
|          issueError ? diag::note_possibility : diag::note_using)
 | |
|     << Methods[0]->getSourceRange();
 | |
|     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
 | |
|       Diag(Methods[I]->getLocStart(), diag::note_also_found)
 | |
|       << Methods[I]->getSourceRange();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
 | |
|   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
 | |
|   if (Pos == MethodPool.end())
 | |
|     return nullptr;
 | |
| 
 | |
|   GlobalMethods &Methods = Pos->second;
 | |
|   for (const ObjCMethodList *Method = &Methods.first; Method;
 | |
|        Method = Method->getNext())
 | |
|     if (Method->getMethod() &&
 | |
|         (Method->getMethod()->isDefined() ||
 | |
|          Method->getMethod()->isPropertyAccessor()))
 | |
|       return Method->getMethod();
 | |
|   
 | |
|   for (const ObjCMethodList *Method = &Methods.second; Method;
 | |
|        Method = Method->getNext())
 | |
|     if (Method->getMethod() &&
 | |
|         (Method->getMethod()->isDefined() ||
 | |
|          Method->getMethod()->isPropertyAccessor()))
 | |
|       return Method->getMethod();
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static void
 | |
| HelperSelectorsForTypoCorrection(
 | |
|                       SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
 | |
|                       StringRef Typo, const ObjCMethodDecl * Method) {
 | |
|   const unsigned MaxEditDistance = 1;
 | |
|   unsigned BestEditDistance = MaxEditDistance + 1;
 | |
|   std::string MethodName = Method->getSelector().getAsString();
 | |
|   
 | |
|   unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
 | |
|   if (MinPossibleEditDistance > 0 &&
 | |
|       Typo.size() / MinPossibleEditDistance < 1)
 | |
|     return;
 | |
|   unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
 | |
|   if (EditDistance > MaxEditDistance)
 | |
|     return;
 | |
|   if (EditDistance == BestEditDistance)
 | |
|     BestMethod.push_back(Method);
 | |
|   else if (EditDistance < BestEditDistance) {
 | |
|     BestMethod.clear();
 | |
|     BestMethod.push_back(Method);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
 | |
|                                      QualType ObjectType) {
 | |
|   if (ObjectType.isNull())
 | |
|     return true;
 | |
|   if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
 | |
|     return true;
 | |
|   return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
 | |
|          nullptr;
 | |
| }
 | |
| 
 | |
| const ObjCMethodDecl *
 | |
| Sema::SelectorsForTypoCorrection(Selector Sel,
 | |
|                                  QualType ObjectType) {
 | |
|   unsigned NumArgs = Sel.getNumArgs();
 | |
|   SmallVector<const ObjCMethodDecl *, 8> Methods;
 | |
|   bool ObjectIsId = true, ObjectIsClass = true;
 | |
|   if (ObjectType.isNull())
 | |
|     ObjectIsId = ObjectIsClass = false;
 | |
|   else if (!ObjectType->isObjCObjectPointerType())
 | |
|     return nullptr;
 | |
|   else if (const ObjCObjectPointerType *ObjCPtr =
 | |
|            ObjectType->getAsObjCInterfacePointerType()) {
 | |
|     ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
 | |
|     ObjectIsId = ObjectIsClass = false;
 | |
|   }
 | |
|   else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
 | |
|     ObjectIsClass = false;
 | |
|   else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
 | |
|     ObjectIsId = false;
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   for (GlobalMethodPool::iterator b = MethodPool.begin(),
 | |
|        e = MethodPool.end(); b != e; b++) {
 | |
|     // instance methods
 | |
|     for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
 | |
|       if (M->getMethod() &&
 | |
|           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
 | |
|           (M->getMethod()->getSelector() != Sel)) {
 | |
|         if (ObjectIsId)
 | |
|           Methods.push_back(M->getMethod());
 | |
|         else if (!ObjectIsClass &&
 | |
|                  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
 | |
|                                           ObjectType))
 | |
|           Methods.push_back(M->getMethod());
 | |
|       }
 | |
|     // class methods
 | |
|     for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
 | |
|       if (M->getMethod() &&
 | |
|           (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
 | |
|           (M->getMethod()->getSelector() != Sel)) {
 | |
|         if (ObjectIsClass)
 | |
|           Methods.push_back(M->getMethod());
 | |
|         else if (!ObjectIsId &&
 | |
|                  HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
 | |
|                                           ObjectType))
 | |
|           Methods.push_back(M->getMethod());
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
 | |
|   for (unsigned i = 0, e = Methods.size(); i < e; i++) {
 | |
|     HelperSelectorsForTypoCorrection(SelectedMethods,
 | |
|                                      Sel.getAsString(), Methods[i]);
 | |
|   }
 | |
|   return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
 | |
| }
 | |
| 
 | |
| /// DiagnoseDuplicateIvars -
 | |
| /// Check for duplicate ivars in the entire class at the start of 
 | |
| /// \@implementation. This becomes necesssary because class extension can
 | |
| /// add ivars to a class in random order which will not be known until
 | |
| /// class's \@implementation is seen.
 | |
| void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, 
 | |
|                                   ObjCInterfaceDecl *SID) {
 | |
|   for (auto *Ivar : ID->ivars()) {
 | |
|     if (Ivar->isInvalidDecl())
 | |
|       continue;
 | |
|     if (IdentifierInfo *II = Ivar->getIdentifier()) {
 | |
|       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
 | |
|       if (prevIvar) {
 | |
|         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
 | |
|         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
 | |
|         Ivar->setInvalidDecl();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
 | |
| static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
 | |
|   if (S.getLangOpts().ObjCWeak) return;
 | |
| 
 | |
|   for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
 | |
|          ivar; ivar = ivar->getNextIvar()) {
 | |
|     if (ivar->isInvalidDecl()) continue;
 | |
|     if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
 | |
|       if (S.getLangOpts().ObjCWeakRuntime) {
 | |
|         S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
 | |
|       } else {
 | |
|         S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
 | |
|   switch (CurContext->getDeclKind()) {
 | |
|     case Decl::ObjCInterface:
 | |
|       return Sema::OCK_Interface;
 | |
|     case Decl::ObjCProtocol:
 | |
|       return Sema::OCK_Protocol;
 | |
|     case Decl::ObjCCategory:
 | |
|       if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
 | |
|         return Sema::OCK_ClassExtension;
 | |
|       return Sema::OCK_Category;
 | |
|     case Decl::ObjCImplementation:
 | |
|       return Sema::OCK_Implementation;
 | |
|     case Decl::ObjCCategoryImpl:
 | |
|       return Sema::OCK_CategoryImplementation;
 | |
| 
 | |
|     default:
 | |
|       return Sema::OCK_None;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Note: For class/category implementations, allMethods is always null.
 | |
| Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
 | |
|                        ArrayRef<DeclGroupPtrTy> allTUVars) {
 | |
|   if (getObjCContainerKind() == Sema::OCK_None)
 | |
|     return nullptr;
 | |
| 
 | |
|   assert(AtEnd.isValid() && "Invalid location for '@end'");
 | |
| 
 | |
|   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
 | |
|   Decl *ClassDecl = cast<Decl>(OCD);
 | |
|   
 | |
|   bool isInterfaceDeclKind =
 | |
|         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
 | |
|          || isa<ObjCProtocolDecl>(ClassDecl);
 | |
|   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
 | |
| 
 | |
|   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
 | |
|   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
 | |
|   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
 | |
| 
 | |
|   for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
 | |
|     ObjCMethodDecl *Method =
 | |
|       cast_or_null<ObjCMethodDecl>(allMethods[i]);
 | |
| 
 | |
|     if (!Method) continue;  // Already issued a diagnostic.
 | |
|     if (Method->isInstanceMethod()) {
 | |
|       /// Check for instance method of the same name with incompatible types
 | |
|       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
 | |
|       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
 | |
|                               : false;
 | |
|       if ((isInterfaceDeclKind && PrevMethod && !match)
 | |
|           || (checkIdenticalMethods && match)) {
 | |
|           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
 | |
|             << Method->getDeclName();
 | |
|           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | |
|         Method->setInvalidDecl();
 | |
|       } else {
 | |
|         if (PrevMethod) {
 | |
|           Method->setAsRedeclaration(PrevMethod);
 | |
|           if (!Context.getSourceManager().isInSystemHeader(
 | |
|                  Method->getLocation()))
 | |
|             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
 | |
|               << Method->getDeclName();
 | |
|           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | |
|         }
 | |
|         InsMap[Method->getSelector()] = Method;
 | |
|         /// The following allows us to typecheck messages to "id".
 | |
|         AddInstanceMethodToGlobalPool(Method);
 | |
|       }
 | |
|     } else {
 | |
|       /// Check for class method of the same name with incompatible types
 | |
|       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
 | |
|       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
 | |
|                               : false;
 | |
|       if ((isInterfaceDeclKind && PrevMethod && !match)
 | |
|           || (checkIdenticalMethods && match)) {
 | |
|         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
 | |
|           << Method->getDeclName();
 | |
|         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | |
|         Method->setInvalidDecl();
 | |
|       } else {
 | |
|         if (PrevMethod) {
 | |
|           Method->setAsRedeclaration(PrevMethod);
 | |
|           if (!Context.getSourceManager().isInSystemHeader(
 | |
|                  Method->getLocation()))
 | |
|             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
 | |
|               << Method->getDeclName();
 | |
|           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | |
|         }
 | |
|         ClsMap[Method->getSelector()] = Method;
 | |
|         AddFactoryMethodToGlobalPool(Method);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (isa<ObjCInterfaceDecl>(ClassDecl)) {
 | |
|     // Nothing to do here.
 | |
|   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
 | |
|     // Categories are used to extend the class by declaring new methods.
 | |
|     // By the same token, they are also used to add new properties. No
 | |
|     // need to compare the added property to those in the class.
 | |
| 
 | |
|     if (C->IsClassExtension()) {
 | |
|       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
 | |
|       DiagnoseClassExtensionDupMethods(C, CCPrimary);
 | |
|     }
 | |
|   }
 | |
|   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
 | |
|     if (CDecl->getIdentifier())
 | |
|       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
 | |
|       // user-defined setter/getter. It also synthesizes setter/getter methods
 | |
|       // and adds them to the DeclContext and global method pools.
 | |
|       for (auto *I : CDecl->properties())
 | |
|         ProcessPropertyDecl(I);
 | |
|     CDecl->setAtEndRange(AtEnd);
 | |
|   }
 | |
|   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
 | |
|     IC->setAtEndRange(AtEnd);
 | |
|     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
 | |
|       // Any property declared in a class extension might have user
 | |
|       // declared setter or getter in current class extension or one
 | |
|       // of the other class extensions. Mark them as synthesized as
 | |
|       // property will be synthesized when property with same name is
 | |
|       // seen in the @implementation.
 | |
|       for (const auto *Ext : IDecl->visible_extensions()) {
 | |
|         for (const auto *Property : Ext->properties()) {
 | |
|           // Skip over properties declared @dynamic
 | |
|           if (const ObjCPropertyImplDecl *PIDecl
 | |
|               = IC->FindPropertyImplDecl(Property->getIdentifier()))
 | |
|             if (PIDecl->getPropertyImplementation() 
 | |
|                   == ObjCPropertyImplDecl::Dynamic)
 | |
|               continue;
 | |
| 
 | |
|           for (const auto *Ext : IDecl->visible_extensions()) {
 | |
|             if (ObjCMethodDecl *GetterMethod
 | |
|                   = Ext->getInstanceMethod(Property->getGetterName()))
 | |
|               GetterMethod->setPropertyAccessor(true);
 | |
|             if (!Property->isReadOnly())
 | |
|               if (ObjCMethodDecl *SetterMethod
 | |
|                     = Ext->getInstanceMethod(Property->getSetterName()))
 | |
|                 SetterMethod->setPropertyAccessor(true);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       ImplMethodsVsClassMethods(S, IC, IDecl);
 | |
|       AtomicPropertySetterGetterRules(IC, IDecl);
 | |
|       DiagnoseOwningPropertyGetterSynthesis(IC);
 | |
|       DiagnoseUnusedBackingIvarInAccessor(S, IC);
 | |
|       if (IDecl->hasDesignatedInitializers())
 | |
|         DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
 | |
|       DiagnoseWeakIvars(*this, IC);
 | |
| 
 | |
|       bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
 | |
|       if (IDecl->getSuperClass() == nullptr) {
 | |
|         // This class has no superclass, so check that it has been marked with
 | |
|         // __attribute((objc_root_class)).
 | |
|         if (!HasRootClassAttr) {
 | |
|           SourceLocation DeclLoc(IDecl->getLocation());
 | |
|           SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
 | |
|           Diag(DeclLoc, diag::warn_objc_root_class_missing)
 | |
|             << IDecl->getIdentifier();
 | |
|           // See if NSObject is in the current scope, and if it is, suggest
 | |
|           // adding " : NSObject " to the class declaration.
 | |
|           NamedDecl *IF = LookupSingleName(TUScope,
 | |
|                                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
 | |
|                                            DeclLoc, LookupOrdinaryName);
 | |
|           ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
 | |
|           if (NSObjectDecl && NSObjectDecl->getDefinition()) {
 | |
|             Diag(SuperClassLoc, diag::note_objc_needs_superclass)
 | |
|               << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
 | |
|           } else {
 | |
|             Diag(SuperClassLoc, diag::note_objc_needs_superclass);
 | |
|           }
 | |
|         }
 | |
|       } else if (HasRootClassAttr) {
 | |
|         // Complain that only root classes may have this attribute.
 | |
|         Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
 | |
|       }
 | |
| 
 | |
|       if (LangOpts.ObjCRuntime.isNonFragile()) {
 | |
|         while (IDecl->getSuperClass()) {
 | |
|           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
 | |
|           IDecl = IDecl->getSuperClass();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     SetIvarInitializers(IC);
 | |
|   } else if (ObjCCategoryImplDecl* CatImplClass =
 | |
|                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
 | |
|     CatImplClass->setAtEndRange(AtEnd);
 | |
| 
 | |
|     // Find category interface decl and then check that all methods declared
 | |
|     // in this interface are implemented in the category @implementation.
 | |
|     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
 | |
|       if (ObjCCategoryDecl *Cat
 | |
|             = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
 | |
|         ImplMethodsVsClassMethods(S, CatImplClass, Cat);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (isInterfaceDeclKind) {
 | |
|     // Reject invalid vardecls.
 | |
|     for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
 | |
|       DeclGroupRef DG = allTUVars[i].get();
 | |
|       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
 | |
|         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
 | |
|           if (!VDecl->hasExternalStorage())
 | |
|             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
 | |
|         }
 | |
|     }
 | |
|   }
 | |
|   ActOnObjCContainerFinishDefinition();
 | |
| 
 | |
|   for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
 | |
|     DeclGroupRef DG = allTUVars[i].get();
 | |
|     for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
 | |
|       (*I)->setTopLevelDeclInObjCContainer();
 | |
|     Consumer.HandleTopLevelDeclInObjCContainer(DG);
 | |
|   }
 | |
| 
 | |
|   ActOnDocumentableDecl(ClassDecl);
 | |
|   return ClassDecl;
 | |
| }
 | |
| 
 | |
| /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
 | |
| /// objective-c's type qualifier from the parser version of the same info.
 | |
| static Decl::ObjCDeclQualifier
 | |
| CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
 | |
|   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
 | |
| }
 | |
| 
 | |
| /// \brief Check whether the declared result type of the given Objective-C
 | |
| /// method declaration is compatible with the method's class.
 | |
| ///
 | |
| static Sema::ResultTypeCompatibilityKind 
 | |
| CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
 | |
|                                     ObjCInterfaceDecl *CurrentClass) {
 | |
|   QualType ResultType = Method->getReturnType();
 | |
| 
 | |
|   // If an Objective-C method inherits its related result type, then its 
 | |
|   // declared result type must be compatible with its own class type. The
 | |
|   // declared result type is compatible if:
 | |
|   if (const ObjCObjectPointerType *ResultObjectType
 | |
|                                 = ResultType->getAs<ObjCObjectPointerType>()) {
 | |
|     //   - it is id or qualified id, or
 | |
|     if (ResultObjectType->isObjCIdType() ||
 | |
|         ResultObjectType->isObjCQualifiedIdType())
 | |
|       return Sema::RTC_Compatible;
 | |
|   
 | |
|     if (CurrentClass) {
 | |
|       if (ObjCInterfaceDecl *ResultClass 
 | |
|                                       = ResultObjectType->getInterfaceDecl()) {
 | |
|         //   - it is the same as the method's class type, or
 | |
|         if (declaresSameEntity(CurrentClass, ResultClass))
 | |
|           return Sema::RTC_Compatible;
 | |
|         
 | |
|         //   - it is a superclass of the method's class type
 | |
|         if (ResultClass->isSuperClassOf(CurrentClass))
 | |
|           return Sema::RTC_Compatible;
 | |
|       }      
 | |
|     } else {
 | |
|       // Any Objective-C pointer type might be acceptable for a protocol
 | |
|       // method; we just don't know.
 | |
|       return Sema::RTC_Unknown;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return Sema::RTC_Incompatible;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// A helper class for searching for methods which a particular method
 | |
| /// overrides.
 | |
| class OverrideSearch {
 | |
| public:
 | |
|   Sema &S;
 | |
|   ObjCMethodDecl *Method;
 | |
|   llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
 | |
|   bool Recursive;
 | |
| 
 | |
| public:
 | |
|   OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
 | |
|     Selector selector = method->getSelector();
 | |
| 
 | |
|     // Bypass this search if we've never seen an instance/class method
 | |
|     // with this selector before.
 | |
|     Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
 | |
|     if (it == S.MethodPool.end()) {
 | |
|       if (!S.getExternalSource()) return;
 | |
|       S.ReadMethodPool(selector);
 | |
|       
 | |
|       it = S.MethodPool.find(selector);
 | |
|       if (it == S.MethodPool.end())
 | |
|         return;
 | |
|     }
 | |
|     ObjCMethodList &list =
 | |
|       method->isInstanceMethod() ? it->second.first : it->second.second;
 | |
|     if (!list.getMethod()) return;
 | |
| 
 | |
|     ObjCContainerDecl *container
 | |
|       = cast<ObjCContainerDecl>(method->getDeclContext());
 | |
| 
 | |
|     // Prevent the search from reaching this container again.  This is
 | |
|     // important with categories, which override methods from the
 | |
|     // interface and each other.
 | |
|     if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
 | |
|       searchFromContainer(container);
 | |
|       if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
 | |
|         searchFromContainer(Interface);
 | |
|     } else {
 | |
|       searchFromContainer(container);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
 | |
|   iterator begin() const { return Overridden.begin(); }
 | |
|   iterator end() const { return Overridden.end(); }
 | |
| 
 | |
| private:
 | |
|   void searchFromContainer(ObjCContainerDecl *container) {
 | |
|     if (container->isInvalidDecl()) return;
 | |
| 
 | |
|     switch (container->getDeclKind()) {
 | |
| #define OBJCCONTAINER(type, base) \
 | |
|     case Decl::type: \
 | |
|       searchFrom(cast<type##Decl>(container)); \
 | |
|       break;
 | |
| #define ABSTRACT_DECL(expansion)
 | |
| #define DECL(type, base) \
 | |
|     case Decl::type:
 | |
| #include "clang/AST/DeclNodes.inc"
 | |
|       llvm_unreachable("not an ObjC container!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void searchFrom(ObjCProtocolDecl *protocol) {
 | |
|     if (!protocol->hasDefinition())
 | |
|       return;
 | |
|     
 | |
|     // A method in a protocol declaration overrides declarations from
 | |
|     // referenced ("parent") protocols.
 | |
|     search(protocol->getReferencedProtocols());
 | |
|   }
 | |
| 
 | |
|   void searchFrom(ObjCCategoryDecl *category) {
 | |
|     // A method in a category declaration overrides declarations from
 | |
|     // the main class and from protocols the category references.
 | |
|     // The main class is handled in the constructor.
 | |
|     search(category->getReferencedProtocols());
 | |
|   }
 | |
| 
 | |
|   void searchFrom(ObjCCategoryImplDecl *impl) {
 | |
|     // A method in a category definition that has a category
 | |
|     // declaration overrides declarations from the category
 | |
|     // declaration.
 | |
|     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
 | |
|       search(category);
 | |
|       if (ObjCInterfaceDecl *Interface = category->getClassInterface())
 | |
|         search(Interface);
 | |
| 
 | |
|     // Otherwise it overrides declarations from the class.
 | |
|     } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
 | |
|       search(Interface);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void searchFrom(ObjCInterfaceDecl *iface) {
 | |
|     // A method in a class declaration overrides declarations from
 | |
|     if (!iface->hasDefinition())
 | |
|       return;
 | |
|     
 | |
|     //   - categories,
 | |
|     for (auto *Cat : iface->known_categories())
 | |
|       search(Cat);
 | |
| 
 | |
|     //   - the super class, and
 | |
|     if (ObjCInterfaceDecl *super = iface->getSuperClass())
 | |
|       search(super);
 | |
| 
 | |
|     //   - any referenced protocols.
 | |
|     search(iface->getReferencedProtocols());
 | |
|   }
 | |
| 
 | |
|   void searchFrom(ObjCImplementationDecl *impl) {
 | |
|     // A method in a class implementation overrides declarations from
 | |
|     // the class interface.
 | |
|     if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
 | |
|       search(Interface);
 | |
|   }
 | |
| 
 | |
|   void search(const ObjCProtocolList &protocols) {
 | |
|     for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
 | |
|          i != e; ++i)
 | |
|       search(*i);
 | |
|   }
 | |
| 
 | |
|   void search(ObjCContainerDecl *container) {
 | |
|     // Check for a method in this container which matches this selector.
 | |
|     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
 | |
|                                                 Method->isInstanceMethod(),
 | |
|                                                 /*AllowHidden=*/true);
 | |
| 
 | |
|     // If we find one, record it and bail out.
 | |
|     if (meth) {
 | |
|       Overridden.insert(meth);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, search for methods that a hypothetical method here
 | |
|     // would have overridden.
 | |
| 
 | |
|     // Note that we're now in a recursive case.
 | |
|     Recursive = true;
 | |
| 
 | |
|     searchFromContainer(container);
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
 | |
|                                     ObjCInterfaceDecl *CurrentClass,
 | |
|                                     ResultTypeCompatibilityKind RTC) {
 | |
|   // Search for overridden methods and merge information down from them.
 | |
|   OverrideSearch overrides(*this, ObjCMethod);
 | |
|   // Keep track if the method overrides any method in the class's base classes,
 | |
|   // its protocols, or its categories' protocols; we will keep that info
 | |
|   // in the ObjCMethodDecl.
 | |
|   // For this info, a method in an implementation is not considered as
 | |
|   // overriding the same method in the interface or its categories.
 | |
|   bool hasOverriddenMethodsInBaseOrProtocol = false;
 | |
|   for (OverrideSearch::iterator
 | |
|          i = overrides.begin(), e = overrides.end(); i != e; ++i) {
 | |
|     ObjCMethodDecl *overridden = *i;
 | |
| 
 | |
|     if (!hasOverriddenMethodsInBaseOrProtocol) {
 | |
|       if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
 | |
|           CurrentClass != overridden->getClassInterface() ||
 | |
|           overridden->isOverriding()) {
 | |
|         hasOverriddenMethodsInBaseOrProtocol = true;
 | |
| 
 | |
|       } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
 | |
|         // OverrideSearch will return as "overridden" the same method in the
 | |
|         // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
 | |
|         // check whether a category of a base class introduced a method with the
 | |
|         // same selector, after the interface method declaration.
 | |
|         // To avoid unnecessary lookups in the majority of cases, we use the
 | |
|         // extra info bits in GlobalMethodPool to check whether there were any
 | |
|         // category methods with this selector.
 | |
|         GlobalMethodPool::iterator It =
 | |
|             MethodPool.find(ObjCMethod->getSelector());
 | |
|         if (It != MethodPool.end()) {
 | |
|           ObjCMethodList &List =
 | |
|             ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
 | |
|           unsigned CategCount = List.getBits();
 | |
|           if (CategCount > 0) {
 | |
|             // If the method is in a category we'll do lookup if there were at
 | |
|             // least 2 category methods recorded, otherwise only one will do.
 | |
|             if (CategCount > 1 ||
 | |
|                 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
 | |
|               OverrideSearch overrides(*this, overridden);
 | |
|               for (OverrideSearch::iterator
 | |
|                      OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
 | |
|                 ObjCMethodDecl *SuperOverridden = *OI;
 | |
|                 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
 | |
|                     CurrentClass != SuperOverridden->getClassInterface()) {
 | |
|                   hasOverriddenMethodsInBaseOrProtocol = true;
 | |
|                   overridden->setOverriding(true);
 | |
|                   break;
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Propagate down the 'related result type' bit from overridden methods.
 | |
|     if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
 | |
|       ObjCMethod->SetRelatedResultType();
 | |
| 
 | |
|     // Then merge the declarations.
 | |
|     mergeObjCMethodDecls(ObjCMethod, overridden);
 | |
| 
 | |
|     if (ObjCMethod->isImplicit() && overridden->isImplicit())
 | |
|       continue; // Conflicting properties are detected elsewhere.
 | |
| 
 | |
|     // Check for overriding methods
 | |
|     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) || 
 | |
|         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
 | |
|       CheckConflictingOverridingMethod(ObjCMethod, overridden,
 | |
|               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
 | |
|     
 | |
|     if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
 | |
|         isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
 | |
|         !overridden->isImplicit() /* not meant for properties */) {
 | |
|       ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
 | |
|                                           E = ObjCMethod->param_end();
 | |
|       ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
 | |
|                                      PrevE = overridden->param_end();
 | |
|       for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
 | |
|         assert(PrevI != overridden->param_end() && "Param mismatch");
 | |
|         QualType T1 = Context.getCanonicalType((*ParamI)->getType());
 | |
|         QualType T2 = Context.getCanonicalType((*PrevI)->getType());
 | |
|         // If type of argument of method in this class does not match its
 | |
|         // respective argument type in the super class method, issue warning;
 | |
|         if (!Context.typesAreCompatible(T1, T2)) {
 | |
|           Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
 | |
|             << T1 << T2;
 | |
|           Diag(overridden->getLocation(), diag::note_previous_declaration);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
 | |
| }
 | |
| 
 | |
| /// Merge type nullability from for a redeclaration of the same entity,
 | |
| /// producing the updated type of the redeclared entity.
 | |
| static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
 | |
|                                               QualType type,
 | |
|                                               bool usesCSKeyword,
 | |
|                                               SourceLocation prevLoc,
 | |
|                                               QualType prevType,
 | |
|                                               bool prevUsesCSKeyword) {
 | |
|   // Determine the nullability of both types.
 | |
|   auto nullability = type->getNullability(S.Context);
 | |
|   auto prevNullability = prevType->getNullability(S.Context);
 | |
| 
 | |
|   // Easy case: both have nullability.
 | |
|   if (nullability.hasValue() == prevNullability.hasValue()) {
 | |
|     // Neither has nullability; continue.
 | |
|     if (!nullability)
 | |
|       return type;
 | |
| 
 | |
|     // The nullabilities are equivalent; do nothing.
 | |
|     if (*nullability == *prevNullability)
 | |
|       return type;
 | |
| 
 | |
|     // Complain about mismatched nullability.
 | |
|     S.Diag(loc, diag::err_nullability_conflicting)
 | |
|       << DiagNullabilityKind(*nullability, usesCSKeyword)
 | |
|       << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
 | |
|     return type;
 | |
|   }
 | |
| 
 | |
|   // If it's the redeclaration that has nullability, don't change anything.
 | |
|   if (nullability)
 | |
|     return type;
 | |
| 
 | |
|   // Otherwise, provide the result with the same nullability.
 | |
|   return S.Context.getAttributedType(
 | |
|            AttributedType::getNullabilityAttrKind(*prevNullability),
 | |
|            type, type);
 | |
| }
 | |
| 
 | |
| /// Merge information from the declaration of a method in the \@interface
 | |
| /// (or a category/extension) into the corresponding method in the
 | |
| /// @implementation (for a class or category).
 | |
| static void mergeInterfaceMethodToImpl(Sema &S,
 | |
|                                        ObjCMethodDecl *method,
 | |
|                                        ObjCMethodDecl *prevMethod) {
 | |
|   // Merge the objc_requires_super attribute.
 | |
|   if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
 | |
|       !method->hasAttr<ObjCRequiresSuperAttr>()) {
 | |
|     // merge the attribute into implementation.
 | |
|     method->addAttr(
 | |
|       ObjCRequiresSuperAttr::CreateImplicit(S.Context,
 | |
|                                             method->getLocation()));
 | |
|   }
 | |
| 
 | |
|   // Merge nullability of the result type.
 | |
|   QualType newReturnType
 | |
|     = mergeTypeNullabilityForRedecl(
 | |
|         S, method->getReturnTypeSourceRange().getBegin(),
 | |
|         method->getReturnType(),
 | |
|         method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
 | |
|         prevMethod->getReturnTypeSourceRange().getBegin(),
 | |
|         prevMethod->getReturnType(),
 | |
|         prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
 | |
|   method->setReturnType(newReturnType);
 | |
| 
 | |
|   // Handle each of the parameters.
 | |
|   unsigned numParams = method->param_size();
 | |
|   unsigned numPrevParams = prevMethod->param_size();
 | |
|   for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
 | |
|     ParmVarDecl *param = method->param_begin()[i];
 | |
|     ParmVarDecl *prevParam = prevMethod->param_begin()[i];
 | |
| 
 | |
|     // Merge nullability.
 | |
|     QualType newParamType
 | |
|       = mergeTypeNullabilityForRedecl(
 | |
|           S, param->getLocation(), param->getType(),
 | |
|           param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
 | |
|           prevParam->getLocation(), prevParam->getType(),
 | |
|           prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
 | |
|     param->setType(newParamType);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnMethodDeclaration(
 | |
|     Scope *S,
 | |
|     SourceLocation MethodLoc, SourceLocation EndLoc,
 | |
|     tok::TokenKind MethodType, 
 | |
|     ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
 | |
|     ArrayRef<SourceLocation> SelectorLocs,
 | |
|     Selector Sel,
 | |
|     // optional arguments. The number of types/arguments is obtained
 | |
|     // from the Sel.getNumArgs().
 | |
|     ObjCArgInfo *ArgInfo,
 | |
|     DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
 | |
|     AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
 | |
|     bool isVariadic, bool MethodDefinition) {
 | |
|   // Make sure we can establish a context for the method.
 | |
|   if (!CurContext->isObjCContainer()) {
 | |
|     Diag(MethodLoc, diag::error_missing_method_context);
 | |
|     return nullptr;
 | |
|   }
 | |
|   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
 | |
|   Decl *ClassDecl = cast<Decl>(OCD); 
 | |
|   QualType resultDeclType;
 | |
| 
 | |
|   bool HasRelatedResultType = false;
 | |
|   TypeSourceInfo *ReturnTInfo = nullptr;
 | |
|   if (ReturnType) {
 | |
|     resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
 | |
| 
 | |
|     if (CheckFunctionReturnType(resultDeclType, MethodLoc))
 | |
|       return nullptr;
 | |
| 
 | |
|     QualType bareResultType = resultDeclType;
 | |
|     (void)AttributedType::stripOuterNullability(bareResultType);
 | |
|     HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
 | |
|   } else { // get the type for "id".
 | |
|     resultDeclType = Context.getObjCIdType();
 | |
|     Diag(MethodLoc, diag::warn_missing_method_return_type)
 | |
|       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
 | |
|   }
 | |
| 
 | |
|   ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
 | |
|       Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
 | |
|       MethodType == tok::minus, isVariadic,
 | |
|       /*isPropertyAccessor=*/false,
 | |
|       /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
 | |
|       MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
 | |
|                                            : ObjCMethodDecl::Required,
 | |
|       HasRelatedResultType);
 | |
| 
 | |
|   SmallVector<ParmVarDecl*, 16> Params;
 | |
| 
 | |
|   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
 | |
|     QualType ArgType;
 | |
|     TypeSourceInfo *DI;
 | |
| 
 | |
|     if (!ArgInfo[i].Type) {
 | |
|       ArgType = Context.getObjCIdType();
 | |
|       DI = nullptr;
 | |
|     } else {
 | |
|       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
 | |
|     }
 | |
| 
 | |
|     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc, 
 | |
|                    LookupOrdinaryName, ForRedeclaration);
 | |
|     LookupName(R, S);
 | |
|     if (R.isSingleResult()) {
 | |
|       NamedDecl *PrevDecl = R.getFoundDecl();
 | |
|       if (S->isDeclScope(PrevDecl)) {
 | |
|         Diag(ArgInfo[i].NameLoc, 
 | |
|              (MethodDefinition ? diag::warn_method_param_redefinition 
 | |
|                                : diag::warn_method_param_declaration)) 
 | |
|           << ArgInfo[i].Name;
 | |
|         Diag(PrevDecl->getLocation(), 
 | |
|              diag::note_previous_declaration);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SourceLocation StartLoc = DI
 | |
|       ? DI->getTypeLoc().getBeginLoc()
 | |
|       : ArgInfo[i].NameLoc;
 | |
| 
 | |
|     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
 | |
|                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
 | |
|                                         ArgType, DI, SC_None);
 | |
| 
 | |
|     Param->setObjCMethodScopeInfo(i);
 | |
| 
 | |
|     Param->setObjCDeclQualifier(
 | |
|       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
 | |
| 
 | |
|     // Apply the attributes to the parameter.
 | |
|     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
 | |
| 
 | |
|     if (Param->hasAttr<BlocksAttr>()) {
 | |
|       Diag(Param->getLocation(), diag::err_block_on_nonlocal);
 | |
|       Param->setInvalidDecl();
 | |
|     }
 | |
|     S->AddDecl(Param);
 | |
|     IdResolver.AddDecl(Param);
 | |
| 
 | |
|     Params.push_back(Param);
 | |
|   }
 | |
|   
 | |
|   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
 | |
|     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
 | |
|     QualType ArgType = Param->getType();
 | |
|     if (ArgType.isNull())
 | |
|       ArgType = Context.getObjCIdType();
 | |
|     else
 | |
|       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
 | |
|       ArgType = Context.getAdjustedParameterType(ArgType);
 | |
| 
 | |
|     Param->setDeclContext(ObjCMethod);
 | |
|     Params.push_back(Param);
 | |
|   }
 | |
|   
 | |
|   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
 | |
|   ObjCMethod->setObjCDeclQualifier(
 | |
|     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
 | |
| 
 | |
|   if (AttrList)
 | |
|     ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
 | |
| 
 | |
|   // Add the method now.
 | |
|   const ObjCMethodDecl *PrevMethod = nullptr;
 | |
|   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
 | |
|     if (MethodType == tok::minus) {
 | |
|       PrevMethod = ImpDecl->getInstanceMethod(Sel);
 | |
|       ImpDecl->addInstanceMethod(ObjCMethod);
 | |
|     } else {
 | |
|       PrevMethod = ImpDecl->getClassMethod(Sel);
 | |
|       ImpDecl->addClassMethod(ObjCMethod);
 | |
|     }
 | |
| 
 | |
|     // Merge information from the @interface declaration into the
 | |
|     // @implementation.
 | |
|     if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
 | |
|       if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
 | |
|                                           ObjCMethod->isInstanceMethod())) {
 | |
|         mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
 | |
| 
 | |
|         // Warn about defining -dealloc in a category.
 | |
|         if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
 | |
|             ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
 | |
|           Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
 | |
|             << ObjCMethod->getDeclName();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
 | |
|   }
 | |
| 
 | |
|   if (PrevMethod) {
 | |
|     // You can never have two method definitions with the same name.
 | |
|     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
 | |
|       << ObjCMethod->getDeclName();
 | |
|     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
 | |
|     ObjCMethod->setInvalidDecl();
 | |
|     return ObjCMethod;
 | |
|   }
 | |
| 
 | |
|   // If this Objective-C method does not have a related result type, but we
 | |
|   // are allowed to infer related result types, try to do so based on the
 | |
|   // method family.
 | |
|   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
 | |
|   if (!CurrentClass) {
 | |
|     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
 | |
|       CurrentClass = Cat->getClassInterface();
 | |
|     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
 | |
|       CurrentClass = Impl->getClassInterface();
 | |
|     else if (ObjCCategoryImplDecl *CatImpl
 | |
|                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
 | |
|       CurrentClass = CatImpl->getClassInterface();
 | |
|   }
 | |
| 
 | |
|   ResultTypeCompatibilityKind RTC
 | |
|     = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
 | |
| 
 | |
|   CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
 | |
| 
 | |
|   bool ARCError = false;
 | |
|   if (getLangOpts().ObjCAutoRefCount)
 | |
|     ARCError = CheckARCMethodDecl(ObjCMethod);
 | |
| 
 | |
|   // Infer the related result type when possible.
 | |
|   if (!ARCError && RTC == Sema::RTC_Compatible &&
 | |
|       !ObjCMethod->hasRelatedResultType() &&
 | |
|       LangOpts.ObjCInferRelatedResultType) {
 | |
|     bool InferRelatedResultType = false;
 | |
|     switch (ObjCMethod->getMethodFamily()) {
 | |
|     case OMF_None:
 | |
|     case OMF_copy:
 | |
|     case OMF_dealloc:
 | |
|     case OMF_finalize:
 | |
|     case OMF_mutableCopy:
 | |
|     case OMF_release:
 | |
|     case OMF_retainCount:
 | |
|     case OMF_initialize:
 | |
|     case OMF_performSelector:
 | |
|       break;
 | |
|       
 | |
|     case OMF_alloc:
 | |
|     case OMF_new:
 | |
|         InferRelatedResultType = ObjCMethod->isClassMethod();
 | |
|       break;
 | |
|         
 | |
|     case OMF_init:
 | |
|     case OMF_autorelease:
 | |
|     case OMF_retain:
 | |
|     case OMF_self:
 | |
|       InferRelatedResultType = ObjCMethod->isInstanceMethod();
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     if (InferRelatedResultType &&
 | |
|         !ObjCMethod->getReturnType()->isObjCIndependentClassType())
 | |
|       ObjCMethod->SetRelatedResultType();
 | |
|   }
 | |
| 
 | |
|   ActOnDocumentableDecl(ObjCMethod);
 | |
| 
 | |
|   return ObjCMethod;
 | |
| }
 | |
| 
 | |
| bool Sema::CheckObjCDeclScope(Decl *D) {
 | |
|   // Following is also an error. But it is caused by a missing @end
 | |
|   // and diagnostic is issued elsewhere.
 | |
|   if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
 | |
|     return false;
 | |
| 
 | |
|   // If we switched context to translation unit while we are still lexically in
 | |
|   // an objc container, it means the parser missed emitting an error.
 | |
|   if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
 | |
|     return false;
 | |
|   
 | |
|   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
 | |
|   D->setInvalidDecl();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
 | |
| /// instance variables of ClassName into Decls.
 | |
| void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
 | |
|                      IdentifierInfo *ClassName,
 | |
|                      SmallVectorImpl<Decl*> &Decls) {
 | |
|   // Check that ClassName is a valid class
 | |
|   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
 | |
|   if (!Class) {
 | |
|     Diag(DeclStart, diag::err_undef_interface) << ClassName;
 | |
|     return;
 | |
|   }
 | |
|   if (LangOpts.ObjCRuntime.isNonFragile()) {
 | |
|     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Collect the instance variables
 | |
|   SmallVector<const ObjCIvarDecl*, 32> Ivars;
 | |
|   Context.DeepCollectObjCIvars(Class, true, Ivars);
 | |
|   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
 | |
|   for (unsigned i = 0; i < Ivars.size(); i++) {
 | |
|     const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
 | |
|     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
 | |
|     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
 | |
|                                            /*FIXME: StartL=*/ID->getLocation(),
 | |
|                                            ID->getLocation(),
 | |
|                                            ID->getIdentifier(), ID->getType(),
 | |
|                                            ID->getBitWidth());
 | |
|     Decls.push_back(FD);
 | |
|   }
 | |
| 
 | |
|   // Introduce all of these fields into the appropriate scope.
 | |
|   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
 | |
|        D != Decls.end(); ++D) {
 | |
|     FieldDecl *FD = cast<FieldDecl>(*D);
 | |
|     if (getLangOpts().CPlusPlus)
 | |
|       PushOnScopeChains(cast<FieldDecl>(FD), S);
 | |
|     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
 | |
|       Record->addDecl(FD);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Build a type-check a new Objective-C exception variable declaration.
 | |
| VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
 | |
|                                       SourceLocation StartLoc,
 | |
|                                       SourceLocation IdLoc,
 | |
|                                       IdentifierInfo *Id,
 | |
|                                       bool Invalid) {
 | |
|   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 
 | |
|   // duration shall not be qualified by an address-space qualifier."
 | |
|   // Since all parameters have automatic store duration, they can not have
 | |
|   // an address space.
 | |
|   if (T.getAddressSpace() != 0) {
 | |
|     Diag(IdLoc, diag::err_arg_with_address_space);
 | |
|     Invalid = true;
 | |
|   }
 | |
|   
 | |
|   // An @catch parameter must be an unqualified object pointer type;
 | |
|   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
 | |
|   if (Invalid) {
 | |
|     // Don't do any further checking.
 | |
|   } else if (T->isDependentType()) {
 | |
|     // Okay: we don't know what this type will instantiate to.
 | |
|   } else if (!T->isObjCObjectPointerType()) {
 | |
|     Invalid = true;
 | |
|     Diag(IdLoc ,diag::err_catch_param_not_objc_type);
 | |
|   } else if (T->isObjCQualifiedIdType()) {
 | |
|     Invalid = true;
 | |
|     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
 | |
|   }
 | |
|   
 | |
|   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
 | |
|                                  T, TInfo, SC_None);
 | |
|   New->setExceptionVariable(true);
 | |
|   
 | |
|   // In ARC, infer 'retaining' for variables of retainable type.
 | |
|   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
 | |
|     Invalid = true;
 | |
| 
 | |
|   if (Invalid)
 | |
|     New->setInvalidDecl();
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
 | |
|   const DeclSpec &DS = D.getDeclSpec();
 | |
|   
 | |
|   // We allow the "register" storage class on exception variables because
 | |
|   // GCC did, but we drop it completely. Any other storage class is an error.
 | |
|   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
 | |
|     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
 | |
|       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
 | |
|   } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
 | |
|     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
 | |
|       << DeclSpec::getSpecifierName(SCS);
 | |
|   }
 | |
|   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
 | |
|     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
 | |
|          diag::err_invalid_thread)
 | |
|      << DeclSpec::getSpecifierName(TSCS);
 | |
|   D.getMutableDeclSpec().ClearStorageClassSpecs();
 | |
| 
 | |
|   DiagnoseFunctionSpecifiers(D.getDeclSpec());
 | |
|   
 | |
|   // Check that there are no default arguments inside the type of this
 | |
|   // exception object (C++ only).
 | |
|   if (getLangOpts().CPlusPlus)
 | |
|     CheckExtraCXXDefaultArguments(D);
 | |
|   
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | |
|   QualType ExceptionType = TInfo->getType();
 | |
| 
 | |
|   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
 | |
|                                         D.getSourceRange().getBegin(),
 | |
|                                         D.getIdentifierLoc(),
 | |
|                                         D.getIdentifier(),
 | |
|                                         D.isInvalidType());
 | |
|   
 | |
|   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
 | |
|   if (D.getCXXScopeSpec().isSet()) {
 | |
|     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
 | |
|       << D.getCXXScopeSpec().getRange();
 | |
|     New->setInvalidDecl();
 | |
|   }
 | |
|   
 | |
|   // Add the parameter declaration into this scope.
 | |
|   S->AddDecl(New);
 | |
|   if (D.getIdentifier())
 | |
|     IdResolver.AddDecl(New);
 | |
|   
 | |
|   ProcessDeclAttributes(S, New, D);
 | |
|   
 | |
|   if (New->hasAttr<BlocksAttr>())
 | |
|     Diag(New->getLocation(), diag::err_block_on_nonlocal);
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
 | |
| /// initialization.
 | |
| void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
 | |
|                                 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
 | |
|   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; 
 | |
|        Iv= Iv->getNextIvar()) {
 | |
|     QualType QT = Context.getBaseElementType(Iv->getType());
 | |
|     if (QT->isRecordType())
 | |
|       Ivars.push_back(Iv);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::DiagnoseUseOfUnimplementedSelectors() {
 | |
|   // Load referenced selectors from the external source.
 | |
|   if (ExternalSource) {
 | |
|     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
 | |
|     ExternalSource->ReadReferencedSelectors(Sels);
 | |
|     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
 | |
|       ReferencedSelectors[Sels[I].first] = Sels[I].second;
 | |
|   }
 | |
|   
 | |
|   // Warning will be issued only when selector table is
 | |
|   // generated (which means there is at lease one implementation
 | |
|   // in the TU). This is to match gcc's behavior.
 | |
|   if (ReferencedSelectors.empty() || 
 | |
|       !Context.AnyObjCImplementation())
 | |
|     return;
 | |
|   for (auto &SelectorAndLocation : ReferencedSelectors) {
 | |
|     Selector Sel = SelectorAndLocation.first;
 | |
|     SourceLocation Loc = SelectorAndLocation.second;
 | |
|     if (!LookupImplementedMethodInGlobalPool(Sel))
 | |
|       Diag(Loc, diag::warn_unimplemented_selector) << Sel;
 | |
|   }
 | |
| }
 | |
| 
 | |
| ObjCIvarDecl *
 | |
| Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
 | |
|                                      const ObjCPropertyDecl *&PDecl) const {
 | |
|   if (Method->isClassMethod())
 | |
|     return nullptr;
 | |
|   const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
 | |
|   if (!IDecl)
 | |
|     return nullptr;
 | |
|   Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
 | |
|                                /*shallowCategoryLookup=*/false,
 | |
|                                /*followSuper=*/false);
 | |
|   if (!Method || !Method->isPropertyAccessor())
 | |
|     return nullptr;
 | |
|   if ((PDecl = Method->findPropertyDecl()))
 | |
|     if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
 | |
|       // property backing ivar must belong to property's class
 | |
|       // or be a private ivar in class's implementation.
 | |
|       // FIXME. fix the const-ness issue.
 | |
|       IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
 | |
|                                                         IV->getIdentifier());
 | |
|       return IV;
 | |
|     }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
 | |
|   /// accessor references the backing ivar.
 | |
|   class UnusedBackingIvarChecker :
 | |
|       public RecursiveASTVisitor<UnusedBackingIvarChecker> {
 | |
|   public:
 | |
|     Sema &S;
 | |
|     const ObjCMethodDecl *Method;
 | |
|     const ObjCIvarDecl *IvarD;
 | |
|     bool AccessedIvar;
 | |
|     bool InvokedSelfMethod;
 | |
| 
 | |
|     UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
 | |
|                              const ObjCIvarDecl *IvarD)
 | |
|       : S(S), Method(Method), IvarD(IvarD),
 | |
|         AccessedIvar(false), InvokedSelfMethod(false) {
 | |
|       assert(IvarD);
 | |
|     }
 | |
| 
 | |
|     bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
 | |
|       if (E->getDecl() == IvarD) {
 | |
|         AccessedIvar = true;
 | |
|         return false;
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
 | |
|       if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
 | |
|           S.isSelfExpr(E->getInstanceReceiver(), Method)) {
 | |
|         InvokedSelfMethod = true;
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
 | |
|                                           const ObjCImplementationDecl *ImplD) {
 | |
|   if (S->hasUnrecoverableErrorOccurred())
 | |
|     return;
 | |
| 
 | |
|   for (const auto *CurMethod : ImplD->instance_methods()) {
 | |
|     unsigned DIAG = diag::warn_unused_property_backing_ivar;
 | |
|     SourceLocation Loc = CurMethod->getLocation();
 | |
|     if (Diags.isIgnored(DIAG, Loc))
 | |
|       continue;
 | |
| 
 | |
|     const ObjCPropertyDecl *PDecl;
 | |
|     const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
 | |
|     if (!IV)
 | |
|       continue;
 | |
| 
 | |
|     UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
 | |
|     Checker.TraverseStmt(CurMethod->getBody());
 | |
|     if (Checker.AccessedIvar)
 | |
|       continue;
 | |
| 
 | |
|     // Do not issue this warning if backing ivar is used somewhere and accessor
 | |
|     // implementation makes a self call. This is to prevent false positive in
 | |
|     // cases where the ivar is accessed by another method that the accessor
 | |
|     // delegates to.
 | |
|     if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
 | |
|       Diag(Loc, DIAG) << IV;
 | |
|       Diag(PDecl->getLocation(), diag::note_property_declare);
 | |
|     }
 | |
|   }
 | |
| }
 |