forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			6856 lines
		
	
	
		
			270 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			6856 lines
		
	
	
		
			270 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// \file
 | |
| /// \brief Implements semantic analysis for C++ expressions.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "TreeTransform.h"
 | |
| #include "TypeLocBuilder.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/ASTLambda.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/CharUnits.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/AST/ExprObjC.h"
 | |
| #include "clang/AST/RecursiveASTVisitor.h"
 | |
| #include "clang/AST/TypeLoc.h"
 | |
| #include "clang/Basic/PartialDiagnostic.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "clang/Sema/DeclSpec.h"
 | |
| #include "clang/Sema/Initialization.h"
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/Sema/ParsedTemplate.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "clang/Sema/SemaLambda.h"
 | |
| #include "clang/Sema/TemplateDeduction.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| using namespace clang;
 | |
| using namespace sema;
 | |
| 
 | |
| /// \brief Handle the result of the special case name lookup for inheriting
 | |
| /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
 | |
| /// constructor names in member using declarations, even if 'X' is not the
 | |
| /// name of the corresponding type.
 | |
| ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
 | |
|                                               SourceLocation NameLoc,
 | |
|                                               IdentifierInfo &Name) {
 | |
|   NestedNameSpecifier *NNS = SS.getScopeRep();
 | |
| 
 | |
|   // Convert the nested-name-specifier into a type.
 | |
|   QualType Type;
 | |
|   switch (NNS->getKind()) {
 | |
|   case NestedNameSpecifier::TypeSpec:
 | |
|   case NestedNameSpecifier::TypeSpecWithTemplate:
 | |
|     Type = QualType(NNS->getAsType(), 0);
 | |
|     break;
 | |
| 
 | |
|   case NestedNameSpecifier::Identifier:
 | |
|     // Strip off the last layer of the nested-name-specifier and build a
 | |
|     // typename type for it.
 | |
|     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
 | |
|     Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
 | |
|                                         NNS->getAsIdentifier());
 | |
|     break;
 | |
| 
 | |
|   case NestedNameSpecifier::Global:
 | |
|   case NestedNameSpecifier::Super:
 | |
|   case NestedNameSpecifier::Namespace:
 | |
|   case NestedNameSpecifier::NamespaceAlias:
 | |
|     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
 | |
|   }
 | |
| 
 | |
|   // This reference to the type is located entirely at the location of the
 | |
|   // final identifier in the qualified-id.
 | |
|   return CreateParsedType(Type,
 | |
|                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
 | |
| }
 | |
| 
 | |
| ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
 | |
|                                    IdentifierInfo &II,
 | |
|                                    SourceLocation NameLoc,
 | |
|                                    Scope *S, CXXScopeSpec &SS,
 | |
|                                    ParsedType ObjectTypePtr,
 | |
|                                    bool EnteringContext) {
 | |
|   // Determine where to perform name lookup.
 | |
| 
 | |
|   // FIXME: This area of the standard is very messy, and the current
 | |
|   // wording is rather unclear about which scopes we search for the
 | |
|   // destructor name; see core issues 399 and 555. Issue 399 in
 | |
|   // particular shows where the current description of destructor name
 | |
|   // lookup is completely out of line with existing practice, e.g.,
 | |
|   // this appears to be ill-formed:
 | |
|   //
 | |
|   //   namespace N {
 | |
|   //     template <typename T> struct S {
 | |
|   //       ~S();
 | |
|   //     };
 | |
|   //   }
 | |
|   //
 | |
|   //   void f(N::S<int>* s) {
 | |
|   //     s->N::S<int>::~S();
 | |
|   //   }
 | |
|   //
 | |
|   // See also PR6358 and PR6359.
 | |
|   // For this reason, we're currently only doing the C++03 version of this
 | |
|   // code; the C++0x version has to wait until we get a proper spec.
 | |
|   QualType SearchType;
 | |
|   DeclContext *LookupCtx = nullptr;
 | |
|   bool isDependent = false;
 | |
|   bool LookInScope = false;
 | |
| 
 | |
|   if (SS.isInvalid())
 | |
|     return ParsedType();
 | |
| 
 | |
|   // If we have an object type, it's because we are in a
 | |
|   // pseudo-destructor-expression or a member access expression, and
 | |
|   // we know what type we're looking for.
 | |
|   if (ObjectTypePtr)
 | |
|     SearchType = GetTypeFromParser(ObjectTypePtr);
 | |
| 
 | |
|   if (SS.isSet()) {
 | |
|     NestedNameSpecifier *NNS = SS.getScopeRep();
 | |
| 
 | |
|     bool AlreadySearched = false;
 | |
|     bool LookAtPrefix = true;
 | |
|     // C++11 [basic.lookup.qual]p6:
 | |
|     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
 | |
|     //   the type-names are looked up as types in the scope designated by the
 | |
|     //   nested-name-specifier. Similarly, in a qualified-id of the form:
 | |
|     //
 | |
|     //     nested-name-specifier[opt] class-name :: ~ class-name
 | |
|     //
 | |
|     //   the second class-name is looked up in the same scope as the first.
 | |
|     //
 | |
|     // Here, we determine whether the code below is permitted to look at the
 | |
|     // prefix of the nested-name-specifier.
 | |
|     DeclContext *DC = computeDeclContext(SS, EnteringContext);
 | |
|     if (DC && DC->isFileContext()) {
 | |
|       AlreadySearched = true;
 | |
|       LookupCtx = DC;
 | |
|       isDependent = false;
 | |
|     } else if (DC && isa<CXXRecordDecl>(DC)) {
 | |
|       LookAtPrefix = false;
 | |
|       LookInScope = true;
 | |
|     }
 | |
| 
 | |
|     // The second case from the C++03 rules quoted further above.
 | |
|     NestedNameSpecifier *Prefix = nullptr;
 | |
|     if (AlreadySearched) {
 | |
|       // Nothing left to do.
 | |
|     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
 | |
|       CXXScopeSpec PrefixSS;
 | |
|       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
 | |
|       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
 | |
|       isDependent = isDependentScopeSpecifier(PrefixSS);
 | |
|     } else if (ObjectTypePtr) {
 | |
|       LookupCtx = computeDeclContext(SearchType);
 | |
|       isDependent = SearchType->isDependentType();
 | |
|     } else {
 | |
|       LookupCtx = computeDeclContext(SS, EnteringContext);
 | |
|       isDependent = LookupCtx && LookupCtx->isDependentContext();
 | |
|     }
 | |
|   } else if (ObjectTypePtr) {
 | |
|     // C++ [basic.lookup.classref]p3:
 | |
|     //   If the unqualified-id is ~type-name, the type-name is looked up
 | |
|     //   in the context of the entire postfix-expression. If the type T
 | |
|     //   of the object expression is of a class type C, the type-name is
 | |
|     //   also looked up in the scope of class C. At least one of the
 | |
|     //   lookups shall find a name that refers to (possibly
 | |
|     //   cv-qualified) T.
 | |
|     LookupCtx = computeDeclContext(SearchType);
 | |
|     isDependent = SearchType->isDependentType();
 | |
|     assert((isDependent || !SearchType->isIncompleteType()) &&
 | |
|            "Caller should have completed object type");
 | |
| 
 | |
|     LookInScope = true;
 | |
|   } else {
 | |
|     // Perform lookup into the current scope (only).
 | |
|     LookInScope = true;
 | |
|   }
 | |
| 
 | |
|   TypeDecl *NonMatchingTypeDecl = nullptr;
 | |
|   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
 | |
|   for (unsigned Step = 0; Step != 2; ++Step) {
 | |
|     // Look for the name first in the computed lookup context (if we
 | |
|     // have one) and, if that fails to find a match, in the scope (if
 | |
|     // we're allowed to look there).
 | |
|     Found.clear();
 | |
|     if (Step == 0 && LookupCtx)
 | |
|       LookupQualifiedName(Found, LookupCtx);
 | |
|     else if (Step == 1 && LookInScope && S)
 | |
|       LookupName(Found, S);
 | |
|     else
 | |
|       continue;
 | |
| 
 | |
|     // FIXME: Should we be suppressing ambiguities here?
 | |
|     if (Found.isAmbiguous())
 | |
|       return ParsedType();
 | |
| 
 | |
|     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
 | |
|       QualType T = Context.getTypeDeclType(Type);
 | |
|       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
 | |
| 
 | |
|       if (SearchType.isNull() || SearchType->isDependentType() ||
 | |
|           Context.hasSameUnqualifiedType(T, SearchType)) {
 | |
|         // We found our type!
 | |
| 
 | |
|         return CreateParsedType(T,
 | |
|                                 Context.getTrivialTypeSourceInfo(T, NameLoc));
 | |
|       }
 | |
| 
 | |
|       if (!SearchType.isNull())
 | |
|         NonMatchingTypeDecl = Type;
 | |
|     }
 | |
| 
 | |
|     // If the name that we found is a class template name, and it is
 | |
|     // the same name as the template name in the last part of the
 | |
|     // nested-name-specifier (if present) or the object type, then
 | |
|     // this is the destructor for that class.
 | |
|     // FIXME: This is a workaround until we get real drafting for core
 | |
|     // issue 399, for which there isn't even an obvious direction.
 | |
|     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
 | |
|       QualType MemberOfType;
 | |
|       if (SS.isSet()) {
 | |
|         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
 | |
|           // Figure out the type of the context, if it has one.
 | |
|           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
 | |
|             MemberOfType = Context.getTypeDeclType(Record);
 | |
|         }
 | |
|       }
 | |
|       if (MemberOfType.isNull())
 | |
|         MemberOfType = SearchType;
 | |
| 
 | |
|       if (MemberOfType.isNull())
 | |
|         continue;
 | |
| 
 | |
|       // We're referring into a class template specialization. If the
 | |
|       // class template we found is the same as the template being
 | |
|       // specialized, we found what we are looking for.
 | |
|       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
 | |
|         if (ClassTemplateSpecializationDecl *Spec
 | |
|               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
 | |
|           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
 | |
|                 Template->getCanonicalDecl())
 | |
|             return CreateParsedType(
 | |
|                 MemberOfType,
 | |
|                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
 | |
|         }
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // We're referring to an unresolved class template
 | |
|       // specialization. Determine whether we class template we found
 | |
|       // is the same as the template being specialized or, if we don't
 | |
|       // know which template is being specialized, that it at least
 | |
|       // has the same name.
 | |
|       if (const TemplateSpecializationType *SpecType
 | |
|             = MemberOfType->getAs<TemplateSpecializationType>()) {
 | |
|         TemplateName SpecName = SpecType->getTemplateName();
 | |
| 
 | |
|         // The class template we found is the same template being
 | |
|         // specialized.
 | |
|         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
 | |
|           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
 | |
|             return CreateParsedType(
 | |
|                 MemberOfType,
 | |
|                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
 | |
| 
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // The class template we found has the same name as the
 | |
|         // (dependent) template name being specialized.
 | |
|         if (DependentTemplateName *DepTemplate
 | |
|                                     = SpecName.getAsDependentTemplateName()) {
 | |
|           if (DepTemplate->isIdentifier() &&
 | |
|               DepTemplate->getIdentifier() == Template->getIdentifier())
 | |
|             return CreateParsedType(
 | |
|                 MemberOfType,
 | |
|                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
 | |
| 
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isDependent) {
 | |
|     // We didn't find our type, but that's okay: it's dependent
 | |
|     // anyway.
 | |
|     
 | |
|     // FIXME: What if we have no nested-name-specifier?
 | |
|     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
 | |
|                                    SS.getWithLocInContext(Context),
 | |
|                                    II, NameLoc);
 | |
|     return ParsedType::make(T);
 | |
|   }
 | |
| 
 | |
|   if (NonMatchingTypeDecl) {
 | |
|     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
 | |
|     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
 | |
|       << T << SearchType;
 | |
|     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
 | |
|       << T;
 | |
|   } else if (ObjectTypePtr)
 | |
|     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
 | |
|       << &II;
 | |
|   else {
 | |
|     SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
 | |
|                                           diag::err_destructor_class_name);
 | |
|     if (S) {
 | |
|       const DeclContext *Ctx = S->getEntity();
 | |
|       if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
 | |
|         DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
 | |
|                                                  Class->getNameAsString());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ParsedType();
 | |
| }
 | |
| 
 | |
| ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
 | |
|     if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
 | |
|       return ParsedType();
 | |
|     assert(DS.getTypeSpecType() == DeclSpec::TST_decltype 
 | |
|            && "only get destructor types from declspecs");
 | |
|     QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
 | |
|     QualType SearchType = GetTypeFromParser(ObjectType);
 | |
|     if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
 | |
|       return ParsedType::make(T);
 | |
|     }
 | |
|       
 | |
|     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
 | |
|       << T << SearchType;
 | |
|     return ParsedType();
 | |
| }
 | |
| 
 | |
| bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
 | |
|                                   const UnqualifiedId &Name) {
 | |
|   assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId);
 | |
| 
 | |
|   if (!SS.isValid())
 | |
|     return false;
 | |
| 
 | |
|   switch (SS.getScopeRep()->getKind()) {
 | |
|   case NestedNameSpecifier::Identifier:
 | |
|   case NestedNameSpecifier::TypeSpec:
 | |
|   case NestedNameSpecifier::TypeSpecWithTemplate:
 | |
|     // Per C++11 [over.literal]p2, literal operators can only be declared at
 | |
|     // namespace scope. Therefore, this unqualified-id cannot name anything.
 | |
|     // Reject it early, because we have no AST representation for this in the
 | |
|     // case where the scope is dependent.
 | |
|     Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
 | |
|       << SS.getScopeRep();
 | |
|     return true;
 | |
| 
 | |
|   case NestedNameSpecifier::Global:
 | |
|   case NestedNameSpecifier::Super:
 | |
|   case NestedNameSpecifier::Namespace:
 | |
|   case NestedNameSpecifier::NamespaceAlias:
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unknown nested name specifier kind");
 | |
| }
 | |
| 
 | |
| /// \brief Build a C++ typeid expression with a type operand.
 | |
| ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
 | |
|                                 SourceLocation TypeidLoc,
 | |
|                                 TypeSourceInfo *Operand,
 | |
|                                 SourceLocation RParenLoc) {
 | |
|   // C++ [expr.typeid]p4:
 | |
|   //   The top-level cv-qualifiers of the lvalue expression or the type-id
 | |
|   //   that is the operand of typeid are always ignored.
 | |
|   //   If the type of the type-id is a class type or a reference to a class
 | |
|   //   type, the class shall be completely-defined.
 | |
|   Qualifiers Quals;
 | |
|   QualType T
 | |
|     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
 | |
|                                       Quals);
 | |
|   if (T->getAs<RecordType>() &&
 | |
|       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (T->isVariablyModifiedType())
 | |
|     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
 | |
| 
 | |
|   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
 | |
|                                      SourceRange(TypeidLoc, RParenLoc));
 | |
| }
 | |
| 
 | |
| /// \brief Build a C++ typeid expression with an expression operand.
 | |
| ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
 | |
|                                 SourceLocation TypeidLoc,
 | |
|                                 Expr *E,
 | |
|                                 SourceLocation RParenLoc) {
 | |
|   bool WasEvaluated = false;
 | |
|   if (E && !E->isTypeDependent()) {
 | |
|     if (E->getType()->isPlaceholderType()) {
 | |
|       ExprResult result = CheckPlaceholderExpr(E);
 | |
|       if (result.isInvalid()) return ExprError();
 | |
|       E = result.get();
 | |
|     }
 | |
| 
 | |
|     QualType T = E->getType();
 | |
|     if (const RecordType *RecordT = T->getAs<RecordType>()) {
 | |
|       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
 | |
|       // C++ [expr.typeid]p3:
 | |
|       //   [...] If the type of the expression is a class type, the class
 | |
|       //   shall be completely-defined.
 | |
|       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
 | |
|         return ExprError();
 | |
| 
 | |
|       // C++ [expr.typeid]p3:
 | |
|       //   When typeid is applied to an expression other than an glvalue of a
 | |
|       //   polymorphic class type [...] [the] expression is an unevaluated
 | |
|       //   operand. [...]
 | |
|       if (RecordD->isPolymorphic() && E->isGLValue()) {
 | |
|         // The subexpression is potentially evaluated; switch the context
 | |
|         // and recheck the subexpression.
 | |
|         ExprResult Result = TransformToPotentiallyEvaluated(E);
 | |
|         if (Result.isInvalid()) return ExprError();
 | |
|         E = Result.get();
 | |
| 
 | |
|         // We require a vtable to query the type at run time.
 | |
|         MarkVTableUsed(TypeidLoc, RecordD);
 | |
|         WasEvaluated = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // C++ [expr.typeid]p4:
 | |
|     //   [...] If the type of the type-id is a reference to a possibly
 | |
|     //   cv-qualified type, the result of the typeid expression refers to a
 | |
|     //   std::type_info object representing the cv-unqualified referenced
 | |
|     //   type.
 | |
|     Qualifiers Quals;
 | |
|     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
 | |
|     if (!Context.hasSameType(T, UnqualT)) {
 | |
|       T = UnqualT;
 | |
|       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (E->getType()->isVariablyModifiedType())
 | |
|     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
 | |
|                      << E->getType());
 | |
|   else if (ActiveTemplateInstantiations.empty() &&
 | |
|            E->HasSideEffects(Context, WasEvaluated)) {
 | |
|     // The expression operand for typeid is in an unevaluated expression
 | |
|     // context, so side effects could result in unintended consequences.
 | |
|     Diag(E->getExprLoc(), WasEvaluated
 | |
|                               ? diag::warn_side_effects_typeid
 | |
|                               : diag::warn_side_effects_unevaluated_context);
 | |
|   }
 | |
| 
 | |
|   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
 | |
|                                      SourceRange(TypeidLoc, RParenLoc));
 | |
| }
 | |
| 
 | |
| /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
 | |
| ExprResult
 | |
| Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
 | |
|                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
 | |
|   // Find the std::type_info type.
 | |
|   if (!getStdNamespace())
 | |
|     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
 | |
| 
 | |
|   if (!CXXTypeInfoDecl) {
 | |
|     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
 | |
|     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
 | |
|     LookupQualifiedName(R, getStdNamespace());
 | |
|     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
 | |
|     // Microsoft's typeinfo doesn't have type_info in std but in the global
 | |
|     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
 | |
|     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
 | |
|       LookupQualifiedName(R, Context.getTranslationUnitDecl());
 | |
|       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
 | |
|     }
 | |
|     if (!CXXTypeInfoDecl)
 | |
|       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
 | |
|   }
 | |
| 
 | |
|   if (!getLangOpts().RTTI) {
 | |
|     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
 | |
|   }
 | |
| 
 | |
|   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
 | |
| 
 | |
|   if (isType) {
 | |
|     // The operand is a type; handle it as such.
 | |
|     TypeSourceInfo *TInfo = nullptr;
 | |
|     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
 | |
|                                    &TInfo);
 | |
|     if (T.isNull())
 | |
|       return ExprError();
 | |
| 
 | |
|     if (!TInfo)
 | |
|       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
 | |
| 
 | |
|     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   // The operand is an expression.
 | |
|   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
 | |
| }
 | |
| 
 | |
| /// \brief Build a Microsoft __uuidof expression with a type operand.
 | |
| ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
 | |
|                                 SourceLocation TypeidLoc,
 | |
|                                 TypeSourceInfo *Operand,
 | |
|                                 SourceLocation RParenLoc) {
 | |
|   if (!Operand->getType()->isDependentType()) {
 | |
|     bool HasMultipleGUIDs = false;
 | |
|     if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(),
 | |
|                                           &HasMultipleGUIDs)) {
 | |
|       if (HasMultipleGUIDs)
 | |
|         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
 | |
|       else
 | |
|         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand,
 | |
|                                      SourceRange(TypeidLoc, RParenLoc));
 | |
| }
 | |
| 
 | |
| /// \brief Build a Microsoft __uuidof expression with an expression operand.
 | |
| ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
 | |
|                                 SourceLocation TypeidLoc,
 | |
|                                 Expr *E,
 | |
|                                 SourceLocation RParenLoc) {
 | |
|   if (!E->getType()->isDependentType()) {
 | |
|     bool HasMultipleGUIDs = false;
 | |
|     if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) &&
 | |
|         !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
 | |
|       if (HasMultipleGUIDs)
 | |
|         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
 | |
|       else
 | |
|         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E,
 | |
|                                      SourceRange(TypeidLoc, RParenLoc));
 | |
| }
 | |
| 
 | |
| /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
 | |
| ExprResult
 | |
| Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
 | |
|                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
 | |
|   // If MSVCGuidDecl has not been cached, do the lookup.
 | |
|   if (!MSVCGuidDecl) {
 | |
|     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
 | |
|     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
 | |
|     LookupQualifiedName(R, Context.getTranslationUnitDecl());
 | |
|     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
 | |
|     if (!MSVCGuidDecl)
 | |
|       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
 | |
|   }
 | |
| 
 | |
|   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
 | |
| 
 | |
|   if (isType) {
 | |
|     // The operand is a type; handle it as such.
 | |
|     TypeSourceInfo *TInfo = nullptr;
 | |
|     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
 | |
|                                    &TInfo);
 | |
|     if (T.isNull())
 | |
|       return ExprError();
 | |
| 
 | |
|     if (!TInfo)
 | |
|       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
 | |
| 
 | |
|     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   // The operand is an expression.
 | |
|   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
 | |
| }
 | |
| 
 | |
| /// ActOnCXXBoolLiteral - Parse {true,false} literals.
 | |
| ExprResult
 | |
| Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
 | |
|   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
 | |
|          "Unknown C++ Boolean value!");
 | |
|   return new (Context)
 | |
|       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
 | |
| }
 | |
| 
 | |
| /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
 | |
| ExprResult
 | |
| Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
 | |
|   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
 | |
| }
 | |
| 
 | |
| /// ActOnCXXThrow - Parse throw expressions.
 | |
| ExprResult
 | |
| Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
 | |
|   bool IsThrownVarInScope = false;
 | |
|   if (Ex) {
 | |
|     // C++0x [class.copymove]p31:
 | |
|     //   When certain criteria are met, an implementation is allowed to omit the
 | |
|     //   copy/move construction of a class object [...]
 | |
|     //
 | |
|     //     - in a throw-expression, when the operand is the name of a
 | |
|     //       non-volatile automatic object (other than a function or catch-
 | |
|     //       clause parameter) whose scope does not extend beyond the end of the
 | |
|     //       innermost enclosing try-block (if there is one), the copy/move
 | |
|     //       operation from the operand to the exception object (15.1) can be
 | |
|     //       omitted by constructing the automatic object directly into the
 | |
|     //       exception object
 | |
|     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
 | |
|       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
 | |
|         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
 | |
|           for( ; S; S = S->getParent()) {
 | |
|             if (S->isDeclScope(Var)) {
 | |
|               IsThrownVarInScope = true;
 | |
|               break;
 | |
|             }
 | |
|             
 | |
|             if (S->getFlags() &
 | |
|                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
 | |
|                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
 | |
|                  Scope::TryScope))
 | |
|               break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 
 | |
|                                bool IsThrownVarInScope) {
 | |
|   // Don't report an error if 'throw' is used in system headers.
 | |
|   if (!getLangOpts().CXXExceptions &&
 | |
|       !getSourceManager().isInSystemHeader(OpLoc))
 | |
|     Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
 | |
| 
 | |
|   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
 | |
|     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
 | |
| 
 | |
|   if (Ex && !Ex->isTypeDependent()) {
 | |
|     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
 | |
|     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
 | |
|       return ExprError();
 | |
| 
 | |
|     // Initialize the exception result.  This implicitly weeds out
 | |
|     // abstract types or types with inaccessible copy constructors.
 | |
| 
 | |
|     // C++0x [class.copymove]p31:
 | |
|     //   When certain criteria are met, an implementation is allowed to omit the
 | |
|     //   copy/move construction of a class object [...]
 | |
|     //
 | |
|     //     - in a throw-expression, when the operand is the name of a
 | |
|     //       non-volatile automatic object (other than a function or
 | |
|     //       catch-clause
 | |
|     //       parameter) whose scope does not extend beyond the end of the
 | |
|     //       innermost enclosing try-block (if there is one), the copy/move
 | |
|     //       operation from the operand to the exception object (15.1) can be
 | |
|     //       omitted by constructing the automatic object directly into the
 | |
|     //       exception object
 | |
|     const VarDecl *NRVOVariable = nullptr;
 | |
|     if (IsThrownVarInScope)
 | |
|       NRVOVariable = getCopyElisionCandidate(QualType(), Ex, false);
 | |
| 
 | |
|     InitializedEntity Entity = InitializedEntity::InitializeException(
 | |
|         OpLoc, ExceptionObjectTy,
 | |
|         /*NRVO=*/NRVOVariable != nullptr);
 | |
|     ExprResult Res = PerformMoveOrCopyInitialization(
 | |
|         Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
 | |
|     if (Res.isInvalid())
 | |
|       return ExprError();
 | |
|     Ex = Res.get();
 | |
|   }
 | |
| 
 | |
|   return new (Context)
 | |
|       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
 | |
| }
 | |
| 
 | |
| static void
 | |
| collectPublicBases(CXXRecordDecl *RD,
 | |
|                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
 | |
|                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
 | |
|                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
 | |
|                    bool ParentIsPublic) {
 | |
|   for (const CXXBaseSpecifier &BS : RD->bases()) {
 | |
|     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
 | |
|     bool NewSubobject;
 | |
|     // Virtual bases constitute the same subobject.  Non-virtual bases are
 | |
|     // always distinct subobjects.
 | |
|     if (BS.isVirtual())
 | |
|       NewSubobject = VBases.insert(BaseDecl).second;
 | |
|     else
 | |
|       NewSubobject = true;
 | |
| 
 | |
|     if (NewSubobject)
 | |
|       ++SubobjectsSeen[BaseDecl];
 | |
| 
 | |
|     // Only add subobjects which have public access throughout the entire chain.
 | |
|     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
 | |
|     if (PublicPath)
 | |
|       PublicSubobjectsSeen.insert(BaseDecl);
 | |
| 
 | |
|     // Recurse on to each base subobject.
 | |
|     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
 | |
|                        PublicPath);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void getUnambiguousPublicSubobjects(
 | |
|     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
 | |
|   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
 | |
|   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
 | |
|   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
 | |
|   SubobjectsSeen[RD] = 1;
 | |
|   PublicSubobjectsSeen.insert(RD);
 | |
|   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
 | |
|                      /*ParentIsPublic=*/true);
 | |
| 
 | |
|   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
 | |
|     // Skip ambiguous objects.
 | |
|     if (SubobjectsSeen[PublicSubobject] > 1)
 | |
|       continue;
 | |
| 
 | |
|     Objects.push_back(PublicSubobject);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CheckCXXThrowOperand - Validate the operand of a throw.
 | |
| bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
 | |
|                                 QualType ExceptionObjectTy, Expr *E) {
 | |
|   //   If the type of the exception would be an incomplete type or a pointer
 | |
|   //   to an incomplete type other than (cv) void the program is ill-formed.
 | |
|   QualType Ty = ExceptionObjectTy;
 | |
|   bool isPointer = false;
 | |
|   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
 | |
|     Ty = Ptr->getPointeeType();
 | |
|     isPointer = true;
 | |
|   }
 | |
|   if (!isPointer || !Ty->isVoidType()) {
 | |
|     if (RequireCompleteType(ThrowLoc, Ty,
 | |
|                             isPointer ? diag::err_throw_incomplete_ptr
 | |
|                                       : diag::err_throw_incomplete,
 | |
|                             E->getSourceRange()))
 | |
|       return true;
 | |
| 
 | |
|     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
 | |
|                                diag::err_throw_abstract_type, E))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // If the exception has class type, we need additional handling.
 | |
|   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
 | |
|   if (!RD)
 | |
|     return false;
 | |
| 
 | |
|   // If we are throwing a polymorphic class type or pointer thereof,
 | |
|   // exception handling will make use of the vtable.
 | |
|   MarkVTableUsed(ThrowLoc, RD);
 | |
| 
 | |
|   // If a pointer is thrown, the referenced object will not be destroyed.
 | |
|   if (isPointer)
 | |
|     return false;
 | |
| 
 | |
|   // If the class has a destructor, we must be able to call it.
 | |
|   if (!RD->hasIrrelevantDestructor()) {
 | |
|     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
 | |
|       MarkFunctionReferenced(E->getExprLoc(), Destructor);
 | |
|       CheckDestructorAccess(E->getExprLoc(), Destructor,
 | |
|                             PDiag(diag::err_access_dtor_exception) << Ty);
 | |
|       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The MSVC ABI creates a list of all types which can catch the exception
 | |
|   // object.  This list also references the appropriate copy constructor to call
 | |
|   // if the object is caught by value and has a non-trivial copy constructor.
 | |
|   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
 | |
|     // We are only interested in the public, unambiguous bases contained within
 | |
|     // the exception object.  Bases which are ambiguous or otherwise
 | |
|     // inaccessible are not catchable types.
 | |
|     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
 | |
|     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
 | |
| 
 | |
|     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
 | |
|       // Attempt to lookup the copy constructor.  Various pieces of machinery
 | |
|       // will spring into action, like template instantiation, which means this
 | |
|       // cannot be a simple walk of the class's decls.  Instead, we must perform
 | |
|       // lookup and overload resolution.
 | |
|       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
 | |
|       if (!CD)
 | |
|         continue;
 | |
| 
 | |
|       // Mark the constructor referenced as it is used by this throw expression.
 | |
|       MarkFunctionReferenced(E->getExprLoc(), CD);
 | |
| 
 | |
|       // Skip this copy constructor if it is trivial, we don't need to record it
 | |
|       // in the catchable type data.
 | |
|       if (CD->isTrivial())
 | |
|         continue;
 | |
| 
 | |
|       // The copy constructor is non-trivial, create a mapping from this class
 | |
|       // type to this constructor.
 | |
|       // N.B.  The selection of copy constructor is not sensitive to this
 | |
|       // particular throw-site.  Lookup will be performed at the catch-site to
 | |
|       // ensure that the copy constructor is, in fact, accessible (via
 | |
|       // friendship or any other means).
 | |
|       Context.addCopyConstructorForExceptionObject(Subobject, CD);
 | |
| 
 | |
|       // We don't keep the instantiated default argument expressions around so
 | |
|       // we must rebuild them here.
 | |
|       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
 | |
|         // Skip any default arguments that we've already instantiated.
 | |
|         if (Context.getDefaultArgExprForConstructor(CD, I))
 | |
|           continue;
 | |
| 
 | |
|         Expr *DefaultArg =
 | |
|             BuildCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)).get();
 | |
|         Context.addDefaultArgExprForConstructor(CD, I, DefaultArg);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| QualType Sema::getCurrentThisType() {
 | |
|   DeclContext *DC = getFunctionLevelDeclContext();
 | |
|   QualType ThisTy = CXXThisTypeOverride;
 | |
|   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
 | |
|     if (method && method->isInstance())
 | |
|       ThisTy = method->getThisType(Context);
 | |
|   }
 | |
|   if (ThisTy.isNull()) {
 | |
|     if (isGenericLambdaCallOperatorSpecialization(CurContext) &&
 | |
|         CurContext->getParent()->getParent()->isRecord()) {
 | |
|       // This is a generic lambda call operator that is being instantiated
 | |
|       // within a default initializer - so use the enclosing class as 'this'.
 | |
|       // There is no enclosing member function to retrieve the 'this' pointer
 | |
|       // from.
 | |
|       QualType ClassTy = Context.getTypeDeclType(
 | |
|           cast<CXXRecordDecl>(CurContext->getParent()->getParent()));
 | |
|       // There are no cv-qualifiers for 'this' within default initializers, 
 | |
|       // per [expr.prim.general]p4.
 | |
|       return Context.getPointerType(ClassTy);
 | |
|     }
 | |
|   }
 | |
|   return ThisTy;
 | |
| }
 | |
| 
 | |
| Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 
 | |
|                                          Decl *ContextDecl,
 | |
|                                          unsigned CXXThisTypeQuals,
 | |
|                                          bool Enabled) 
 | |
|   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
 | |
| {
 | |
|   if (!Enabled || !ContextDecl)
 | |
|     return;
 | |
| 
 | |
|   CXXRecordDecl *Record = nullptr;
 | |
|   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
 | |
|     Record = Template->getTemplatedDecl();
 | |
|   else
 | |
|     Record = cast<CXXRecordDecl>(ContextDecl);
 | |
|     
 | |
|   S.CXXThisTypeOverride
 | |
|     = S.Context.getPointerType(
 | |
|         S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
 | |
|   
 | |
|   this->Enabled = true;
 | |
| }
 | |
| 
 | |
| 
 | |
| Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
 | |
|   if (Enabled) {
 | |
|     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
 | |
|                          QualType ThisTy, SourceLocation Loc) {
 | |
|   FieldDecl *Field
 | |
|     = FieldDecl::Create(Context, RD, Loc, Loc, nullptr, ThisTy,
 | |
|                         Context.getTrivialTypeSourceInfo(ThisTy, Loc),
 | |
|                         nullptr, false, ICIS_NoInit);
 | |
|   Field->setImplicit(true);
 | |
|   Field->setAccess(AS_private);
 | |
|   RD->addDecl(Field);
 | |
|   return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
 | |
| }
 | |
| 
 | |
| bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit, 
 | |
|     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) {
 | |
|   // We don't need to capture this in an unevaluated context.
 | |
|   if (isUnevaluatedContext() && !Explicit)
 | |
|     return true;
 | |
| 
 | |
|   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
 | |
|     *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;  
 | |
|  // Otherwise, check that we can capture 'this'.
 | |
|   unsigned NumClosures = 0;
 | |
|   for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
 | |
|     if (CapturingScopeInfo *CSI =
 | |
|             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
 | |
|       if (CSI->CXXThisCaptureIndex != 0) {
 | |
|         // 'this' is already being captured; there isn't anything more to do.
 | |
|         break;
 | |
|       }
 | |
|       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
 | |
|       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
 | |
|         // This context can't implicitly capture 'this'; fail out.
 | |
|         if (BuildAndDiagnose)
 | |
|           Diag(Loc, diag::err_this_capture) << Explicit;
 | |
|         return true;
 | |
|       }
 | |
|       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
 | |
|           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
 | |
|           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
 | |
|           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
 | |
|           Explicit) {
 | |
|         // This closure can capture 'this'; continue looking upwards.
 | |
|         NumClosures++;
 | |
|         Explicit = false;
 | |
|         continue;
 | |
|       }
 | |
|       // This context can't implicitly capture 'this'; fail out.
 | |
|       if (BuildAndDiagnose)
 | |
|         Diag(Loc, diag::err_this_capture) << Explicit;
 | |
|       return true;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   if (!BuildAndDiagnose) return false;
 | |
|   // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
 | |
|   // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
 | |
|   // contexts.
 | |
|   for (unsigned idx = MaxFunctionScopesIndex; NumClosures; 
 | |
|       --idx, --NumClosures) {
 | |
|     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
 | |
|     Expr *ThisExpr = nullptr;
 | |
|     QualType ThisTy = getCurrentThisType();
 | |
|     if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
 | |
|       // For lambda expressions, build a field and an initializing expression.
 | |
|       ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
 | |
|     else if (CapturedRegionScopeInfo *RSI
 | |
|         = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
 | |
|       ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
 | |
| 
 | |
|     bool isNested = NumClosures > 1;
 | |
|     CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
 | |
|   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
 | |
|   /// is a non-lvalue expression whose value is the address of the object for
 | |
|   /// which the function is called.
 | |
| 
 | |
|   QualType ThisTy = getCurrentThisType();
 | |
|   if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
 | |
| 
 | |
|   CheckCXXThisCapture(Loc);
 | |
|   return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
 | |
| }
 | |
| 
 | |
| bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
 | |
|   // If we're outside the body of a member function, then we'll have a specified
 | |
|   // type for 'this'.
 | |
|   if (CXXThisTypeOverride.isNull())
 | |
|     return false;
 | |
|   
 | |
|   // Determine whether we're looking into a class that's currently being
 | |
|   // defined.
 | |
|   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
 | |
|   return Class && Class->isBeingDefined();
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
 | |
|                                 SourceLocation LParenLoc,
 | |
|                                 MultiExprArg exprs,
 | |
|                                 SourceLocation RParenLoc) {
 | |
|   if (!TypeRep)
 | |
|     return ExprError();
 | |
| 
 | |
|   TypeSourceInfo *TInfo;
 | |
|   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
 | |
|   if (!TInfo)
 | |
|     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
 | |
| 
 | |
|   return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
 | |
| }
 | |
| 
 | |
| /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
 | |
| /// Can be interpreted either as function-style casting ("int(x)")
 | |
| /// or class type construction ("ClassType(x,y,z)")
 | |
| /// or creation of a value-initialized type ("int()").
 | |
| ExprResult
 | |
| Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
 | |
|                                 SourceLocation LParenLoc,
 | |
|                                 MultiExprArg Exprs,
 | |
|                                 SourceLocation RParenLoc) {
 | |
|   QualType Ty = TInfo->getType();
 | |
|   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
 | |
| 
 | |
|   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
 | |
|     return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs,
 | |
|                                               RParenLoc);
 | |
|   }
 | |
| 
 | |
|   bool ListInitialization = LParenLoc.isInvalid();
 | |
|   assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
 | |
|          && "List initialization must have initializer list as expression.");
 | |
|   SourceRange FullRange = SourceRange(TyBeginLoc,
 | |
|       ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
 | |
| 
 | |
|   // C++ [expr.type.conv]p1:
 | |
|   // If the expression list is a single expression, the type conversion
 | |
|   // expression is equivalent (in definedness, and if defined in meaning) to the
 | |
|   // corresponding cast expression.
 | |
|   if (Exprs.size() == 1 && !ListInitialization) {
 | |
|     Expr *Arg = Exprs[0];
 | |
|     return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   // C++14 [expr.type.conv]p2: The expression T(), where T is a
 | |
|   //   simple-type-specifier or typename-specifier for a non-array complete
 | |
|   //   object type or the (possibly cv-qualified) void type, creates a prvalue
 | |
|   //   of the specified type, whose value is that produced by value-initializing
 | |
|   //   an object of type T.
 | |
|   QualType ElemTy = Ty;
 | |
|   if (Ty->isArrayType()) {
 | |
|     if (!ListInitialization)
 | |
|       return ExprError(Diag(TyBeginLoc,
 | |
|                             diag::err_value_init_for_array_type) << FullRange);
 | |
|     ElemTy = Context.getBaseElementType(Ty);
 | |
|   }
 | |
| 
 | |
|   if (!ListInitialization && Ty->isFunctionType())
 | |
|     return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_function_type)
 | |
|                      << FullRange);
 | |
| 
 | |
|   if (!Ty->isVoidType() &&
 | |
|       RequireCompleteType(TyBeginLoc, ElemTy,
 | |
|                           diag::err_invalid_incomplete_type_use, FullRange))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (RequireNonAbstractType(TyBeginLoc, Ty,
 | |
|                              diag::err_allocation_of_abstract_type))
 | |
|     return ExprError();
 | |
| 
 | |
|   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
 | |
|   InitializationKind Kind =
 | |
|       Exprs.size() ? ListInitialization
 | |
|       ? InitializationKind::CreateDirectList(TyBeginLoc)
 | |
|       : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
 | |
|       : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
 | |
|   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
 | |
|   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
 | |
| 
 | |
|   if (Result.isInvalid() || !ListInitialization)
 | |
|     return Result;
 | |
| 
 | |
|   Expr *Inner = Result.get();
 | |
|   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
 | |
|     Inner = BTE->getSubExpr();
 | |
|   if (!isa<CXXTemporaryObjectExpr>(Inner)) {
 | |
|     // If we created a CXXTemporaryObjectExpr, that node also represents the
 | |
|     // functional cast. Otherwise, create an explicit cast to represent
 | |
|     // the syntactic form of a functional-style cast that was used here.
 | |
|     //
 | |
|     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
 | |
|     // would give a more consistent AST representation than using a
 | |
|     // CXXTemporaryObjectExpr. It's also weird that the functional cast
 | |
|     // is sometimes handled by initialization and sometimes not.
 | |
|     QualType ResultType = Result.get()->getType();
 | |
|     Result = CXXFunctionalCastExpr::Create(
 | |
|         Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo,
 | |
|         CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// doesUsualArrayDeleteWantSize - Answers whether the usual
 | |
| /// operator delete[] for the given type has a size_t parameter.
 | |
| static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
 | |
|                                          QualType allocType) {
 | |
|   const RecordType *record =
 | |
|     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
 | |
|   if (!record) return false;
 | |
| 
 | |
|   // Try to find an operator delete[] in class scope.
 | |
| 
 | |
|   DeclarationName deleteName =
 | |
|     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
 | |
|   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
 | |
|   S.LookupQualifiedName(ops, record->getDecl());
 | |
| 
 | |
|   // We're just doing this for information.
 | |
|   ops.suppressDiagnostics();
 | |
| 
 | |
|   // Very likely: there's no operator delete[].
 | |
|   if (ops.empty()) return false;
 | |
| 
 | |
|   // If it's ambiguous, it should be illegal to call operator delete[]
 | |
|   // on this thing, so it doesn't matter if we allocate extra space or not.
 | |
|   if (ops.isAmbiguous()) return false;
 | |
| 
 | |
|   LookupResult::Filter filter = ops.makeFilter();
 | |
|   while (filter.hasNext()) {
 | |
|     NamedDecl *del = filter.next()->getUnderlyingDecl();
 | |
| 
 | |
|     // C++0x [basic.stc.dynamic.deallocation]p2:
 | |
|     //   A template instance is never a usual deallocation function,
 | |
|     //   regardless of its signature.
 | |
|     if (isa<FunctionTemplateDecl>(del)) {
 | |
|       filter.erase();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // C++0x [basic.stc.dynamic.deallocation]p2:
 | |
|     //   If class T does not declare [an operator delete[] with one
 | |
|     //   parameter] but does declare a member deallocation function
 | |
|     //   named operator delete[] with exactly two parameters, the
 | |
|     //   second of which has type std::size_t, then this function
 | |
|     //   is a usual deallocation function.
 | |
|     if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
 | |
|       filter.erase();
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
|   filter.done();
 | |
| 
 | |
|   if (!ops.isSingleResult()) return false;
 | |
| 
 | |
|   const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
 | |
|   return (del->getNumParams() == 2);
 | |
| }
 | |
| 
 | |
| /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
 | |
| ///
 | |
| /// E.g.:
 | |
| /// @code new (memory) int[size][4] @endcode
 | |
| /// or
 | |
| /// @code ::new Foo(23, "hello") @endcode
 | |
| ///
 | |
| /// \param StartLoc The first location of the expression.
 | |
| /// \param UseGlobal True if 'new' was prefixed with '::'.
 | |
| /// \param PlacementLParen Opening paren of the placement arguments.
 | |
| /// \param PlacementArgs Placement new arguments.
 | |
| /// \param PlacementRParen Closing paren of the placement arguments.
 | |
| /// \param TypeIdParens If the type is in parens, the source range.
 | |
| /// \param D The type to be allocated, as well as array dimensions.
 | |
| /// \param Initializer The initializing expression or initializer-list, or null
 | |
| ///   if there is none.
 | |
| ExprResult
 | |
| Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
 | |
|                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
 | |
|                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
 | |
|                   Declarator &D, Expr *Initializer) {
 | |
|   bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
 | |
| 
 | |
|   Expr *ArraySize = nullptr;
 | |
|   // If the specified type is an array, unwrap it and save the expression.
 | |
|   if (D.getNumTypeObjects() > 0 &&
 | |
|       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
 | |
|      DeclaratorChunk &Chunk = D.getTypeObject(0);
 | |
|     if (TypeContainsAuto)
 | |
|       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
 | |
|         << D.getSourceRange());
 | |
|     if (Chunk.Arr.hasStatic)
 | |
|       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
 | |
|         << D.getSourceRange());
 | |
|     if (!Chunk.Arr.NumElts)
 | |
|       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
 | |
|         << D.getSourceRange());
 | |
| 
 | |
|     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
 | |
|     D.DropFirstTypeObject();
 | |
|   }
 | |
| 
 | |
|   // Every dimension shall be of constant size.
 | |
|   if (ArraySize) {
 | |
|     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
 | |
|       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
 | |
|         break;
 | |
| 
 | |
|       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
 | |
|       if (Expr *NumElts = (Expr *)Array.NumElts) {
 | |
|         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
 | |
|           if (getLangOpts().CPlusPlus14) {
 | |
| 	    // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
 | |
| 	    //   shall be a converted constant expression (5.19) of type std::size_t
 | |
| 	    //   and shall evaluate to a strictly positive value.
 | |
|             unsigned IntWidth = Context.getTargetInfo().getIntWidth();
 | |
|             assert(IntWidth && "Builtin type of size 0?");
 | |
|             llvm::APSInt Value(IntWidth);
 | |
|             Array.NumElts
 | |
|              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
 | |
|                                                 CCEK_NewExpr)
 | |
|                  .get();
 | |
|           } else {
 | |
|             Array.NumElts
 | |
|               = VerifyIntegerConstantExpression(NumElts, nullptr,
 | |
|                                                 diag::err_new_array_nonconst)
 | |
|                   .get();
 | |
|           }
 | |
|           if (!Array.NumElts)
 | |
|             return ExprError();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
 | |
|   QualType AllocType = TInfo->getType();
 | |
|   if (D.isInvalidType())
 | |
|     return ExprError();
 | |
| 
 | |
|   SourceRange DirectInitRange;
 | |
|   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
 | |
|     DirectInitRange = List->getSourceRange();
 | |
| 
 | |
|   return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
 | |
|                      PlacementLParen,
 | |
|                      PlacementArgs,
 | |
|                      PlacementRParen,
 | |
|                      TypeIdParens,
 | |
|                      AllocType,
 | |
|                      TInfo,
 | |
|                      ArraySize,
 | |
|                      DirectInitRange,
 | |
|                      Initializer,
 | |
|                      TypeContainsAuto);
 | |
| }
 | |
| 
 | |
| static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
 | |
|                                        Expr *Init) {
 | |
|   if (!Init)
 | |
|     return true;
 | |
|   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
 | |
|     return PLE->getNumExprs() == 0;
 | |
|   if (isa<ImplicitValueInitExpr>(Init))
 | |
|     return true;
 | |
|   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
 | |
|     return !CCE->isListInitialization() &&
 | |
|            CCE->getConstructor()->isDefaultConstructor();
 | |
|   else if (Style == CXXNewExpr::ListInit) {
 | |
|     assert(isa<InitListExpr>(Init) &&
 | |
|            "Shouldn't create list CXXConstructExprs for arrays.");
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
 | |
|                   SourceLocation PlacementLParen,
 | |
|                   MultiExprArg PlacementArgs,
 | |
|                   SourceLocation PlacementRParen,
 | |
|                   SourceRange TypeIdParens,
 | |
|                   QualType AllocType,
 | |
|                   TypeSourceInfo *AllocTypeInfo,
 | |
|                   Expr *ArraySize,
 | |
|                   SourceRange DirectInitRange,
 | |
|                   Expr *Initializer,
 | |
|                   bool TypeMayContainAuto) {
 | |
|   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
 | |
|   SourceLocation StartLoc = Range.getBegin();
 | |
| 
 | |
|   CXXNewExpr::InitializationStyle initStyle;
 | |
|   if (DirectInitRange.isValid()) {
 | |
|     assert(Initializer && "Have parens but no initializer.");
 | |
|     initStyle = CXXNewExpr::CallInit;
 | |
|   } else if (Initializer && isa<InitListExpr>(Initializer))
 | |
|     initStyle = CXXNewExpr::ListInit;
 | |
|   else {
 | |
|     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
 | |
|             isa<CXXConstructExpr>(Initializer)) &&
 | |
|            "Initializer expression that cannot have been implicitly created.");
 | |
|     initStyle = CXXNewExpr::NoInit;
 | |
|   }
 | |
| 
 | |
|   Expr **Inits = &Initializer;
 | |
|   unsigned NumInits = Initializer ? 1 : 0;
 | |
|   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
 | |
|     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
 | |
|     Inits = List->getExprs();
 | |
|     NumInits = List->getNumExprs();
 | |
|   }
 | |
| 
 | |
|   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
 | |
|   if (TypeMayContainAuto && AllocType->isUndeducedType()) {
 | |
|     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
 | |
|       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
 | |
|                        << AllocType << TypeRange);
 | |
|     if (initStyle == CXXNewExpr::ListInit ||
 | |
|         (NumInits == 1 && isa<InitListExpr>(Inits[0])))
 | |
|       return ExprError(Diag(Inits[0]->getLocStart(),
 | |
|                             diag::err_auto_new_list_init)
 | |
|                        << AllocType << TypeRange);
 | |
|     if (NumInits > 1) {
 | |
|       Expr *FirstBad = Inits[1];
 | |
|       return ExprError(Diag(FirstBad->getLocStart(),
 | |
|                             diag::err_auto_new_ctor_multiple_expressions)
 | |
|                        << AllocType << TypeRange);
 | |
|     }
 | |
|     Expr *Deduce = Inits[0];
 | |
|     QualType DeducedType;
 | |
|     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
 | |
|       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
 | |
|                        << AllocType << Deduce->getType()
 | |
|                        << TypeRange << Deduce->getSourceRange());
 | |
|     if (DeducedType.isNull())
 | |
|       return ExprError();
 | |
|     AllocType = DeducedType;
 | |
|   }
 | |
| 
 | |
|   // Per C++0x [expr.new]p5, the type being constructed may be a
 | |
|   // typedef of an array type.
 | |
|   if (!ArraySize) {
 | |
|     if (const ConstantArrayType *Array
 | |
|                               = Context.getAsConstantArrayType(AllocType)) {
 | |
|       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
 | |
|                                          Context.getSizeType(),
 | |
|                                          TypeRange.getEnd());
 | |
|       AllocType = Array->getElementType();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (initStyle == CXXNewExpr::ListInit &&
 | |
|       isStdInitializerList(AllocType, nullptr)) {
 | |
|     Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
 | |
|          diag::warn_dangling_std_initializer_list)
 | |
|         << /*at end of FE*/0 << Inits[0]->getSourceRange();
 | |
|   }
 | |
| 
 | |
|   // In ARC, infer 'retaining' for the allocated 
 | |
|   if (getLangOpts().ObjCAutoRefCount &&
 | |
|       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
 | |
|       AllocType->isObjCLifetimeType()) {
 | |
|     AllocType = Context.getLifetimeQualifiedType(AllocType,
 | |
|                                     AllocType->getObjCARCImplicitLifetime());
 | |
|   }
 | |
| 
 | |
|   QualType ResultType = Context.getPointerType(AllocType);
 | |
|     
 | |
|   if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
 | |
|     ExprResult result = CheckPlaceholderExpr(ArraySize);
 | |
|     if (result.isInvalid()) return ExprError();
 | |
|     ArraySize = result.get();
 | |
|   }
 | |
|   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
 | |
|   //   integral or enumeration type with a non-negative value."
 | |
|   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
 | |
|   //   enumeration type, or a class type for which a single non-explicit
 | |
|   //   conversion function to integral or unscoped enumeration type exists.
 | |
|   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
 | |
|   //   std::size_t.
 | |
|   if (ArraySize && !ArraySize->isTypeDependent()) {
 | |
|     ExprResult ConvertedSize;
 | |
|     if (getLangOpts().CPlusPlus14) {
 | |
|       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
 | |
| 
 | |
|       ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
 | |
| 						AA_Converting);
 | |
| 
 | |
|       if (!ConvertedSize.isInvalid() && 
 | |
|           ArraySize->getType()->getAs<RecordType>())
 | |
|         // Diagnose the compatibility of this conversion.
 | |
|         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
 | |
|           << ArraySize->getType() << 0 << "'size_t'";
 | |
|     } else {
 | |
|       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
 | |
|       protected:
 | |
|         Expr *ArraySize;
 | |
|   
 | |
|       public:
 | |
|         SizeConvertDiagnoser(Expr *ArraySize)
 | |
|             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
 | |
|               ArraySize(ArraySize) {}
 | |
| 
 | |
|         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
 | |
|                                              QualType T) override {
 | |
|           return S.Diag(Loc, diag::err_array_size_not_integral)
 | |
|                    << S.getLangOpts().CPlusPlus11 << T;
 | |
|         }
 | |
| 
 | |
|         SemaDiagnosticBuilder diagnoseIncomplete(
 | |
|             Sema &S, SourceLocation Loc, QualType T) override {
 | |
|           return S.Diag(Loc, diag::err_array_size_incomplete_type)
 | |
|                    << T << ArraySize->getSourceRange();
 | |
|         }
 | |
| 
 | |
|         SemaDiagnosticBuilder diagnoseExplicitConv(
 | |
|             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
 | |
|           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
 | |
|         }
 | |
| 
 | |
|         SemaDiagnosticBuilder noteExplicitConv(
 | |
|             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
 | |
|           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
 | |
|                    << ConvTy->isEnumeralType() << ConvTy;
 | |
|         }
 | |
| 
 | |
|         SemaDiagnosticBuilder diagnoseAmbiguous(
 | |
|             Sema &S, SourceLocation Loc, QualType T) override {
 | |
|           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
 | |
|         }
 | |
| 
 | |
|         SemaDiagnosticBuilder noteAmbiguous(
 | |
|             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
 | |
|           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
 | |
|                    << ConvTy->isEnumeralType() << ConvTy;
 | |
|         }
 | |
| 
 | |
|         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
 | |
|                                                  QualType T,
 | |
|                                                  QualType ConvTy) override {
 | |
|           return S.Diag(Loc,
 | |
|                         S.getLangOpts().CPlusPlus11
 | |
|                           ? diag::warn_cxx98_compat_array_size_conversion
 | |
|                           : diag::ext_array_size_conversion)
 | |
|                    << T << ConvTy->isEnumeralType() << ConvTy;
 | |
|         }
 | |
|       } SizeDiagnoser(ArraySize);
 | |
| 
 | |
|       ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
 | |
|                                                           SizeDiagnoser);
 | |
|     }
 | |
|     if (ConvertedSize.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     ArraySize = ConvertedSize.get();
 | |
|     QualType SizeType = ArraySize->getType();
 | |
| 
 | |
|     if (!SizeType->isIntegralOrUnscopedEnumerationType())
 | |
|       return ExprError();
 | |
| 
 | |
|     // C++98 [expr.new]p7:
 | |
|     //   The expression in a direct-new-declarator shall have integral type
 | |
|     //   with a non-negative value.
 | |
|     //
 | |
|     // Let's see if this is a constant < 0. If so, we reject it out of
 | |
|     // hand. Otherwise, if it's not a constant, we must have an unparenthesized
 | |
|     // array type.
 | |
|     //
 | |
|     // Note: such a construct has well-defined semantics in C++11: it throws
 | |
|     // std::bad_array_new_length.
 | |
|     if (!ArraySize->isValueDependent()) {
 | |
|       llvm::APSInt Value;
 | |
|       // We've already performed any required implicit conversion to integer or
 | |
|       // unscoped enumeration type.
 | |
|       if (ArraySize->isIntegerConstantExpr(Value, Context)) {
 | |
|         if (Value < llvm::APSInt(
 | |
|                         llvm::APInt::getNullValue(Value.getBitWidth()),
 | |
|                                  Value.isUnsigned())) {
 | |
|           if (getLangOpts().CPlusPlus11)
 | |
|             Diag(ArraySize->getLocStart(),
 | |
|                  diag::warn_typecheck_negative_array_new_size)
 | |
|               << ArraySize->getSourceRange();
 | |
|           else
 | |
|             return ExprError(Diag(ArraySize->getLocStart(),
 | |
|                                   diag::err_typecheck_negative_array_size)
 | |
|                              << ArraySize->getSourceRange());
 | |
|         } else if (!AllocType->isDependentType()) {
 | |
|           unsigned ActiveSizeBits =
 | |
|             ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
 | |
|           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
 | |
|             if (getLangOpts().CPlusPlus11)
 | |
|               Diag(ArraySize->getLocStart(),
 | |
|                    diag::warn_array_new_too_large)
 | |
|                 << Value.toString(10)
 | |
|                 << ArraySize->getSourceRange();
 | |
|             else
 | |
|               return ExprError(Diag(ArraySize->getLocStart(),
 | |
|                                     diag::err_array_too_large)
 | |
|                                << Value.toString(10)
 | |
|                                << ArraySize->getSourceRange());
 | |
|           }
 | |
|         }
 | |
|       } else if (TypeIdParens.isValid()) {
 | |
|         // Can't have dynamic array size when the type-id is in parentheses.
 | |
|         Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
 | |
|           << ArraySize->getSourceRange()
 | |
|           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
 | |
|           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
 | |
| 
 | |
|         TypeIdParens = SourceRange();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Note that we do *not* convert the argument in any way.  It can
 | |
|     // be signed, larger than size_t, whatever.
 | |
|   }
 | |
| 
 | |
|   FunctionDecl *OperatorNew = nullptr;
 | |
|   FunctionDecl *OperatorDelete = nullptr;
 | |
| 
 | |
|   if (!AllocType->isDependentType() &&
 | |
|       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
 | |
|       FindAllocationFunctions(StartLoc,
 | |
|                               SourceRange(PlacementLParen, PlacementRParen),
 | |
|                               UseGlobal, AllocType, ArraySize, PlacementArgs,
 | |
|                               OperatorNew, OperatorDelete))
 | |
|     return ExprError();
 | |
| 
 | |
|   // If this is an array allocation, compute whether the usual array
 | |
|   // deallocation function for the type has a size_t parameter.
 | |
|   bool UsualArrayDeleteWantsSize = false;
 | |
|   if (ArraySize && !AllocType->isDependentType())
 | |
|     UsualArrayDeleteWantsSize
 | |
|       = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
 | |
| 
 | |
|   SmallVector<Expr *, 8> AllPlaceArgs;
 | |
|   if (OperatorNew) {
 | |
|     const FunctionProtoType *Proto =
 | |
|         OperatorNew->getType()->getAs<FunctionProtoType>();
 | |
|     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
 | |
|                                                     : VariadicDoesNotApply;
 | |
| 
 | |
|     // We've already converted the placement args, just fill in any default
 | |
|     // arguments. Skip the first parameter because we don't have a corresponding
 | |
|     // argument.
 | |
|     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
 | |
|                                PlacementArgs, AllPlaceArgs, CallType))
 | |
|       return ExprError();
 | |
| 
 | |
|     if (!AllPlaceArgs.empty())
 | |
|       PlacementArgs = AllPlaceArgs;
 | |
| 
 | |
|     // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
 | |
|     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
 | |
| 
 | |
|     // FIXME: Missing call to CheckFunctionCall or equivalent
 | |
|   }
 | |
| 
 | |
|   // Warn if the type is over-aligned and is being allocated by global operator
 | |
|   // new.
 | |
|   if (PlacementArgs.empty() && OperatorNew &&
 | |
|       (OperatorNew->isImplicit() ||
 | |
|        getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
 | |
|     if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
 | |
|       unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
 | |
|       if (Align > SuitableAlign)
 | |
|         Diag(StartLoc, diag::warn_overaligned_type)
 | |
|             << AllocType
 | |
|             << unsigned(Align / Context.getCharWidth())
 | |
|             << unsigned(SuitableAlign / Context.getCharWidth());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   QualType InitType = AllocType;
 | |
|   // Array 'new' can't have any initializers except empty parentheses.
 | |
|   // Initializer lists are also allowed, in C++11. Rely on the parser for the
 | |
|   // dialect distinction.
 | |
|   if (ResultType->isArrayType() || ArraySize) {
 | |
|     if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
 | |
|       SourceRange InitRange(Inits[0]->getLocStart(),
 | |
|                             Inits[NumInits - 1]->getLocEnd());
 | |
|       Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
 | |
|       return ExprError();
 | |
|     }
 | |
|     if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
 | |
|       // We do the initialization typechecking against the array type
 | |
|       // corresponding to the number of initializers + 1 (to also check
 | |
|       // default-initialization).
 | |
|       unsigned NumElements = ILE->getNumInits() + 1;
 | |
|       InitType = Context.getConstantArrayType(AllocType,
 | |
|           llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
 | |
|                                               ArrayType::Normal, 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we can perform the initialization, and we've not already done so,
 | |
|   // do it now.
 | |
|   if (!AllocType->isDependentType() &&
 | |
|       !Expr::hasAnyTypeDependentArguments(
 | |
|           llvm::makeArrayRef(Inits, NumInits))) {
 | |
|     // C++11 [expr.new]p15:
 | |
|     //   A new-expression that creates an object of type T initializes that
 | |
|     //   object as follows:
 | |
|     InitializationKind Kind
 | |
|     //     - If the new-initializer is omitted, the object is default-
 | |
|     //       initialized (8.5); if no initialization is performed,
 | |
|     //       the object has indeterminate value
 | |
|       = initStyle == CXXNewExpr::NoInit
 | |
|           ? InitializationKind::CreateDefault(TypeRange.getBegin())
 | |
|     //     - Otherwise, the new-initializer is interpreted according to the
 | |
|     //       initialization rules of 8.5 for direct-initialization.
 | |
|           : initStyle == CXXNewExpr::ListInit
 | |
|               ? InitializationKind::CreateDirectList(TypeRange.getBegin())
 | |
|               : InitializationKind::CreateDirect(TypeRange.getBegin(),
 | |
|                                                  DirectInitRange.getBegin(),
 | |
|                                                  DirectInitRange.getEnd());
 | |
| 
 | |
|     InitializedEntity Entity
 | |
|       = InitializedEntity::InitializeNew(StartLoc, InitType);
 | |
|     InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
 | |
|     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
 | |
|                                           MultiExprArg(Inits, NumInits));
 | |
|     if (FullInit.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
 | |
|     // we don't want the initialized object to be destructed.
 | |
|     if (CXXBindTemporaryExpr *Binder =
 | |
|             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
 | |
|       FullInit = Binder->getSubExpr();
 | |
| 
 | |
|     Initializer = FullInit.get();
 | |
|   }
 | |
| 
 | |
|   // Mark the new and delete operators as referenced.
 | |
|   if (OperatorNew) {
 | |
|     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
 | |
|       return ExprError();
 | |
|     MarkFunctionReferenced(StartLoc, OperatorNew);
 | |
|   }
 | |
|   if (OperatorDelete) {
 | |
|     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
 | |
|       return ExprError();
 | |
|     MarkFunctionReferenced(StartLoc, OperatorDelete);
 | |
|   }
 | |
| 
 | |
|   // C++0x [expr.new]p17:
 | |
|   //   If the new expression creates an array of objects of class type,
 | |
|   //   access and ambiguity control are done for the destructor.
 | |
|   QualType BaseAllocType = Context.getBaseElementType(AllocType);
 | |
|   if (ArraySize && !BaseAllocType->isDependentType()) {
 | |
|     if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
 | |
|       if (CXXDestructorDecl *dtor = LookupDestructor(
 | |
|               cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
 | |
|         MarkFunctionReferenced(StartLoc, dtor);
 | |
|         CheckDestructorAccess(StartLoc, dtor, 
 | |
|                               PDiag(diag::err_access_dtor)
 | |
|                                 << BaseAllocType);
 | |
|         if (DiagnoseUseOfDecl(dtor, StartLoc))
 | |
|           return ExprError();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return new (Context)
 | |
|       CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete,
 | |
|                  UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
 | |
|                  ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
 | |
|                  Range, DirectInitRange);
 | |
| }
 | |
| 
 | |
| /// \brief Checks that a type is suitable as the allocated type
 | |
| /// in a new-expression.
 | |
| bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
 | |
|                               SourceRange R) {
 | |
|   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
 | |
|   //   abstract class type or array thereof.
 | |
|   if (AllocType->isFunctionType())
 | |
|     return Diag(Loc, diag::err_bad_new_type)
 | |
|       << AllocType << 0 << R;
 | |
|   else if (AllocType->isReferenceType())
 | |
|     return Diag(Loc, diag::err_bad_new_type)
 | |
|       << AllocType << 1 << R;
 | |
|   else if (!AllocType->isDependentType() &&
 | |
|            RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
 | |
|     return true;
 | |
|   else if (RequireNonAbstractType(Loc, AllocType,
 | |
|                                   diag::err_allocation_of_abstract_type))
 | |
|     return true;
 | |
|   else if (AllocType->isVariablyModifiedType())
 | |
|     return Diag(Loc, diag::err_variably_modified_new_type)
 | |
|              << AllocType;
 | |
|   else if (unsigned AddressSpace = AllocType.getAddressSpace())
 | |
|     return Diag(Loc, diag::err_address_space_qualified_new)
 | |
|       << AllocType.getUnqualifiedType() << AddressSpace;
 | |
|   else if (getLangOpts().ObjCAutoRefCount) {
 | |
|     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
 | |
|       QualType BaseAllocType = Context.getBaseElementType(AT);
 | |
|       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
 | |
|           BaseAllocType->isObjCLifetimeType())
 | |
|         return Diag(Loc, diag::err_arc_new_array_without_ownership)
 | |
|           << BaseAllocType;
 | |
|     }
 | |
|   }
 | |
|            
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given function is a non-placement
 | |
| /// deallocation function.
 | |
| static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
 | |
|   if (FD->isInvalidDecl())
 | |
|     return false;
 | |
| 
 | |
|   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
 | |
|     return Method->isUsualDeallocationFunction();
 | |
| 
 | |
|   if (FD->getOverloadedOperator() != OO_Delete &&
 | |
|       FD->getOverloadedOperator() != OO_Array_Delete)
 | |
|     return false;
 | |
| 
 | |
|   if (FD->getNumParams() == 1)
 | |
|     return true;
 | |
| 
 | |
|   return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 &&
 | |
|          S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(),
 | |
|                                           S.Context.getSizeType());
 | |
| }
 | |
| 
 | |
| /// FindAllocationFunctions - Finds the overloads of operator new and delete
 | |
| /// that are appropriate for the allocation.
 | |
| bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
 | |
|                                    bool UseGlobal, QualType AllocType,
 | |
|                                    bool IsArray, MultiExprArg PlaceArgs,
 | |
|                                    FunctionDecl *&OperatorNew,
 | |
|                                    FunctionDecl *&OperatorDelete) {
 | |
|   // --- Choosing an allocation function ---
 | |
|   // C++ 5.3.4p8 - 14 & 18
 | |
|   // 1) If UseGlobal is true, only look in the global scope. Else, also look
 | |
|   //   in the scope of the allocated class.
 | |
|   // 2) If an array size is given, look for operator new[], else look for
 | |
|   //   operator new.
 | |
|   // 3) The first argument is always size_t. Append the arguments from the
 | |
|   //   placement form.
 | |
| 
 | |
|   SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
 | |
|   // We don't care about the actual value of this argument.
 | |
|   // FIXME: Should the Sema create the expression and embed it in the syntax
 | |
|   // tree? Or should the consumer just recalculate the value?
 | |
|   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
 | |
|                       Context.getTargetInfo().getPointerWidth(0)),
 | |
|                       Context.getSizeType(),
 | |
|                       SourceLocation());
 | |
|   AllocArgs[0] = &Size;
 | |
|   std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
 | |
| 
 | |
|   // C++ [expr.new]p8:
 | |
|   //   If the allocated type is a non-array type, the allocation
 | |
|   //   function's name is operator new and the deallocation function's
 | |
|   //   name is operator delete. If the allocated type is an array
 | |
|   //   type, the allocation function's name is operator new[] and the
 | |
|   //   deallocation function's name is operator delete[].
 | |
|   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
 | |
|                                         IsArray ? OO_Array_New : OO_New);
 | |
|   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
 | |
|                                         IsArray ? OO_Array_Delete : OO_Delete);
 | |
| 
 | |
|   QualType AllocElemType = Context.getBaseElementType(AllocType);
 | |
| 
 | |
|   if (AllocElemType->isRecordType() && !UseGlobal) {
 | |
|     CXXRecordDecl *Record
 | |
|       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
 | |
|     if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
 | |
|                                /*AllowMissing=*/true, OperatorNew))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   if (!OperatorNew) {
 | |
|     // Didn't find a member overload. Look for a global one.
 | |
|     DeclareGlobalNewDelete();
 | |
|     DeclContext *TUDecl = Context.getTranslationUnitDecl();
 | |
|     bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat;
 | |
|     if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
 | |
|                                /*AllowMissing=*/FallbackEnabled, OperatorNew,
 | |
|                                /*Diagnose=*/!FallbackEnabled)) {
 | |
|       if (!FallbackEnabled)
 | |
|         return true;
 | |
| 
 | |
|       // MSVC will fall back on trying to find a matching global operator new
 | |
|       // if operator new[] cannot be found.  Also, MSVC will leak by not
 | |
|       // generating a call to operator delete or operator delete[], but we
 | |
|       // will not replicate that bug.
 | |
|       NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
 | |
|       DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
 | |
|       if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
 | |
|                                /*AllowMissing=*/false, OperatorNew))
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We don't need an operator delete if we're running under
 | |
|   // -fno-exceptions.
 | |
|   if (!getLangOpts().Exceptions) {
 | |
|     OperatorDelete = nullptr;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // C++ [expr.new]p19:
 | |
|   //
 | |
|   //   If the new-expression begins with a unary :: operator, the
 | |
|   //   deallocation function's name is looked up in the global
 | |
|   //   scope. Otherwise, if the allocated type is a class type T or an
 | |
|   //   array thereof, the deallocation function's name is looked up in
 | |
|   //   the scope of T. If this lookup fails to find the name, or if
 | |
|   //   the allocated type is not a class type or array thereof, the
 | |
|   //   deallocation function's name is looked up in the global scope.
 | |
|   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
 | |
|   if (AllocElemType->isRecordType() && !UseGlobal) {
 | |
|     CXXRecordDecl *RD
 | |
|       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
 | |
|     LookupQualifiedName(FoundDelete, RD);
 | |
|   }
 | |
|   if (FoundDelete.isAmbiguous())
 | |
|     return true; // FIXME: clean up expressions?
 | |
| 
 | |
|   if (FoundDelete.empty()) {
 | |
|     DeclareGlobalNewDelete();
 | |
|     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
 | |
|   }
 | |
| 
 | |
|   FoundDelete.suppressDiagnostics();
 | |
| 
 | |
|   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
 | |
| 
 | |
|   // Whether we're looking for a placement operator delete is dictated
 | |
|   // by whether we selected a placement operator new, not by whether
 | |
|   // we had explicit placement arguments.  This matters for things like
 | |
|   //   struct A { void *operator new(size_t, int = 0); ... };
 | |
|   //   A *a = new A()
 | |
|   bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
 | |
| 
 | |
|   if (isPlacementNew) {
 | |
|     // C++ [expr.new]p20:
 | |
|     //   A declaration of a placement deallocation function matches the
 | |
|     //   declaration of a placement allocation function if it has the
 | |
|     //   same number of parameters and, after parameter transformations
 | |
|     //   (8.3.5), all parameter types except the first are
 | |
|     //   identical. [...]
 | |
|     //
 | |
|     // To perform this comparison, we compute the function type that
 | |
|     // the deallocation function should have, and use that type both
 | |
|     // for template argument deduction and for comparison purposes.
 | |
|     //
 | |
|     // FIXME: this comparison should ignore CC and the like.
 | |
|     QualType ExpectedFunctionType;
 | |
|     {
 | |
|       const FunctionProtoType *Proto
 | |
|         = OperatorNew->getType()->getAs<FunctionProtoType>();
 | |
| 
 | |
|       SmallVector<QualType, 4> ArgTypes;
 | |
|       ArgTypes.push_back(Context.VoidPtrTy);
 | |
|       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
 | |
|         ArgTypes.push_back(Proto->getParamType(I));
 | |
| 
 | |
|       FunctionProtoType::ExtProtoInfo EPI;
 | |
|       EPI.Variadic = Proto->isVariadic();
 | |
| 
 | |
|       ExpectedFunctionType
 | |
|         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
 | |
|     }
 | |
| 
 | |
|     for (LookupResult::iterator D = FoundDelete.begin(),
 | |
|                              DEnd = FoundDelete.end();
 | |
|          D != DEnd; ++D) {
 | |
|       FunctionDecl *Fn = nullptr;
 | |
|       if (FunctionTemplateDecl *FnTmpl
 | |
|             = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
 | |
|         // Perform template argument deduction to try to match the
 | |
|         // expected function type.
 | |
|         TemplateDeductionInfo Info(StartLoc);
 | |
|         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
 | |
|                                     Info))
 | |
|           continue;
 | |
|       } else
 | |
|         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
 | |
| 
 | |
|       if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
 | |
|         Matches.push_back(std::make_pair(D.getPair(), Fn));
 | |
|     }
 | |
|   } else {
 | |
|     // C++ [expr.new]p20:
 | |
|     //   [...] Any non-placement deallocation function matches a
 | |
|     //   non-placement allocation function. [...]
 | |
|     for (LookupResult::iterator D = FoundDelete.begin(),
 | |
|                              DEnd = FoundDelete.end();
 | |
|          D != DEnd; ++D) {
 | |
|       if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
 | |
|         if (isNonPlacementDeallocationFunction(*this, Fn))
 | |
|           Matches.push_back(std::make_pair(D.getPair(), Fn));
 | |
|     }
 | |
| 
 | |
|     // C++1y [expr.new]p22:
 | |
|     //   For a non-placement allocation function, the normal deallocation
 | |
|     //   function lookup is used
 | |
|     // C++1y [expr.delete]p?:
 | |
|     //   If [...] deallocation function lookup finds both a usual deallocation
 | |
|     //   function with only a pointer parameter and a usual deallocation
 | |
|     //   function with both a pointer parameter and a size parameter, then the
 | |
|     //   selected deallocation function shall be the one with two parameters.
 | |
|     //   Otherwise, the selected deallocation function shall be the function
 | |
|     //   with one parameter.
 | |
|     if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
 | |
|       if (Matches[0].second->getNumParams() == 1)
 | |
|         Matches.erase(Matches.begin());
 | |
|       else
 | |
|         Matches.erase(Matches.begin() + 1);
 | |
|       assert(Matches[0].second->getNumParams() == 2 &&
 | |
|              "found an unexpected usual deallocation function");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [expr.new]p20:
 | |
|   //   [...] If the lookup finds a single matching deallocation
 | |
|   //   function, that function will be called; otherwise, no
 | |
|   //   deallocation function will be called.
 | |
|   if (Matches.size() == 1) {
 | |
|     OperatorDelete = Matches[0].second;
 | |
| 
 | |
|     // C++0x [expr.new]p20:
 | |
|     //   If the lookup finds the two-parameter form of a usual
 | |
|     //   deallocation function (3.7.4.2) and that function, considered
 | |
|     //   as a placement deallocation function, would have been
 | |
|     //   selected as a match for the allocation function, the program
 | |
|     //   is ill-formed.
 | |
|     if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
 | |
|         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
 | |
|       Diag(StartLoc, diag::err_placement_new_non_placement_delete)
 | |
|         << SourceRange(PlaceArgs.front()->getLocStart(),
 | |
|                        PlaceArgs.back()->getLocEnd());
 | |
|       if (!OperatorDelete->isImplicit())
 | |
|         Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
 | |
|           << DeleteName;
 | |
|     } else {
 | |
|       CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
 | |
|                             Matches[0].first);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Find an fitting overload for the allocation function
 | |
| /// in the specified scope.
 | |
| ///
 | |
| /// \param StartLoc The location of the 'new' token.
 | |
| /// \param Range The range of the placement arguments.
 | |
| /// \param Name The name of the function ('operator new' or 'operator new[]').
 | |
| /// \param Args The placement arguments specified.
 | |
| /// \param Ctx The scope in which we should search; either a class scope or the
 | |
| ///        translation unit.
 | |
| /// \param AllowMissing If \c true, report an error if we can't find any
 | |
| ///        allocation functions. Otherwise, succeed but don't fill in \p
 | |
| ///        Operator.
 | |
| /// \param Operator Filled in with the found allocation function. Unchanged if
 | |
| ///        no allocation function was found.
 | |
| /// \param Diagnose If \c true, issue errors if the allocation function is not
 | |
| ///        usable.
 | |
| bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
 | |
|                                   DeclarationName Name, MultiExprArg Args,
 | |
|                                   DeclContext *Ctx,
 | |
|                                   bool AllowMissing, FunctionDecl *&Operator,
 | |
|                                   bool Diagnose) {
 | |
|   LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
 | |
|   LookupQualifiedName(R, Ctx);
 | |
|   if (R.empty()) {
 | |
|     if (AllowMissing || !Diagnose)
 | |
|       return false;
 | |
|     return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
 | |
|       << Name << Range;
 | |
|   }
 | |
| 
 | |
|   if (R.isAmbiguous())
 | |
|     return true;
 | |
| 
 | |
|   R.suppressDiagnostics();
 | |
| 
 | |
|   OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal);
 | |
|   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
 | |
|        Alloc != AllocEnd; ++Alloc) {
 | |
|     // Even member operator new/delete are implicitly treated as
 | |
|     // static, so don't use AddMemberCandidate.
 | |
|     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
 | |
| 
 | |
|     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
 | |
|       AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
 | |
|                                    /*ExplicitTemplateArgs=*/nullptr,
 | |
|                                    Args, Candidates,
 | |
|                                    /*SuppressUserConversions=*/false);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     FunctionDecl *Fn = cast<FunctionDecl>(D);
 | |
|     AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
 | |
|                          /*SuppressUserConversions=*/false);
 | |
|   }
 | |
| 
 | |
|   // Do the resolution.
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
 | |
|   case OR_Success: {
 | |
|     // Got one!
 | |
|     FunctionDecl *FnDecl = Best->Function;
 | |
|     if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
 | |
|                               Best->FoundDecl, Diagnose) == AR_inaccessible)
 | |
|       return true;
 | |
| 
 | |
|     Operator = FnDecl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case OR_No_Viable_Function:
 | |
|     if (Diagnose) {
 | |
|       Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
 | |
|         << Name << Range;
 | |
|       Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
 | |
|     }
 | |
|     return true;
 | |
| 
 | |
|   case OR_Ambiguous:
 | |
|     if (Diagnose) {
 | |
|       Diag(StartLoc, diag::err_ovl_ambiguous_call)
 | |
|         << Name << Range;
 | |
|       Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
 | |
|     }
 | |
|     return true;
 | |
| 
 | |
|   case OR_Deleted: {
 | |
|     if (Diagnose) {
 | |
|       Diag(StartLoc, diag::err_ovl_deleted_call)
 | |
|         << Best->Function->isDeleted()
 | |
|         << Name 
 | |
|         << getDeletedOrUnavailableSuffix(Best->Function)
 | |
|         << Range;
 | |
|       Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
|   llvm_unreachable("Unreachable, bad result from BestViableFunction");
 | |
| }
 | |
| 
 | |
| 
 | |
| /// DeclareGlobalNewDelete - Declare the global forms of operator new and
 | |
| /// delete. These are:
 | |
| /// @code
 | |
| ///   // C++03:
 | |
| ///   void* operator new(std::size_t) throw(std::bad_alloc);
 | |
| ///   void* operator new[](std::size_t) throw(std::bad_alloc);
 | |
| ///   void operator delete(void *) throw();
 | |
| ///   void operator delete[](void *) throw();
 | |
| ///   // C++11:
 | |
| ///   void* operator new(std::size_t);
 | |
| ///   void* operator new[](std::size_t);
 | |
| ///   void operator delete(void *) noexcept;
 | |
| ///   void operator delete[](void *) noexcept;
 | |
| ///   // C++1y:
 | |
| ///   void* operator new(std::size_t);
 | |
| ///   void* operator new[](std::size_t);
 | |
| ///   void operator delete(void *) noexcept;
 | |
| ///   void operator delete[](void *) noexcept;
 | |
| ///   void operator delete(void *, std::size_t) noexcept;
 | |
| ///   void operator delete[](void *, std::size_t) noexcept;
 | |
| /// @endcode
 | |
| /// Note that the placement and nothrow forms of new are *not* implicitly
 | |
| /// declared. Their use requires including \<new\>.
 | |
| void Sema::DeclareGlobalNewDelete() {
 | |
|   if (GlobalNewDeleteDeclared)
 | |
|     return;
 | |
| 
 | |
|   // C++ [basic.std.dynamic]p2:
 | |
|   //   [...] The following allocation and deallocation functions (18.4) are
 | |
|   //   implicitly declared in global scope in each translation unit of a
 | |
|   //   program
 | |
|   //
 | |
|   //     C++03:
 | |
|   //     void* operator new(std::size_t) throw(std::bad_alloc);
 | |
|   //     void* operator new[](std::size_t) throw(std::bad_alloc);
 | |
|   //     void  operator delete(void*) throw();
 | |
|   //     void  operator delete[](void*) throw();
 | |
|   //     C++11:
 | |
|   //     void* operator new(std::size_t);
 | |
|   //     void* operator new[](std::size_t);
 | |
|   //     void  operator delete(void*) noexcept;
 | |
|   //     void  operator delete[](void*) noexcept;
 | |
|   //     C++1y:
 | |
|   //     void* operator new(std::size_t);
 | |
|   //     void* operator new[](std::size_t);
 | |
|   //     void  operator delete(void*) noexcept;
 | |
|   //     void  operator delete[](void*) noexcept;
 | |
|   //     void  operator delete(void*, std::size_t) noexcept;
 | |
|   //     void  operator delete[](void*, std::size_t) noexcept;
 | |
|   //
 | |
|   //   These implicit declarations introduce only the function names operator
 | |
|   //   new, operator new[], operator delete, operator delete[].
 | |
|   //
 | |
|   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
 | |
|   // "std" or "bad_alloc" as necessary to form the exception specification.
 | |
|   // However, we do not make these implicit declarations visible to name
 | |
|   // lookup.
 | |
|   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
 | |
|     // The "std::bad_alloc" class has not yet been declared, so build it
 | |
|     // implicitly.
 | |
|     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
 | |
|                                         getOrCreateStdNamespace(),
 | |
|                                         SourceLocation(), SourceLocation(),
 | |
|                                       &PP.getIdentifierTable().get("bad_alloc"),
 | |
|                                         nullptr);
 | |
|     getStdBadAlloc()->setImplicit(true);
 | |
|   }
 | |
| 
 | |
|   GlobalNewDeleteDeclared = true;
 | |
| 
 | |
|   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
 | |
|   QualType SizeT = Context.getSizeType();
 | |
|   bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
 | |
| 
 | |
|   DeclareGlobalAllocationFunction(
 | |
|       Context.DeclarationNames.getCXXOperatorName(OO_New),
 | |
|       VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
 | |
|   DeclareGlobalAllocationFunction(
 | |
|       Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
 | |
|       VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
 | |
|   DeclareGlobalAllocationFunction(
 | |
|       Context.DeclarationNames.getCXXOperatorName(OO_Delete),
 | |
|       Context.VoidTy, VoidPtr);
 | |
|   DeclareGlobalAllocationFunction(
 | |
|       Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
 | |
|       Context.VoidTy, VoidPtr);
 | |
|   if (getLangOpts().SizedDeallocation) {
 | |
|     DeclareGlobalAllocationFunction(
 | |
|         Context.DeclarationNames.getCXXOperatorName(OO_Delete),
 | |
|         Context.VoidTy, VoidPtr, Context.getSizeType());
 | |
|     DeclareGlobalAllocationFunction(
 | |
|         Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
 | |
|         Context.VoidTy, VoidPtr, Context.getSizeType());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// DeclareGlobalAllocationFunction - Declares a single implicit global
 | |
| /// allocation function if it doesn't already exist.
 | |
| void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
 | |
|                                            QualType Return,
 | |
|                                            QualType Param1, QualType Param2,
 | |
|                                            bool AddRestrictAttr) {
 | |
|   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
 | |
|   unsigned NumParams = Param2.isNull() ? 1 : 2;
 | |
| 
 | |
|   // Check if this function is already declared.
 | |
|   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
 | |
|   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
 | |
|        Alloc != AllocEnd; ++Alloc) {
 | |
|     // Only look at non-template functions, as it is the predefined,
 | |
|     // non-templated allocation function we are trying to declare here.
 | |
|     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
 | |
|       if (Func->getNumParams() == NumParams) {
 | |
|         QualType InitialParam1Type =
 | |
|             Context.getCanonicalType(Func->getParamDecl(0)
 | |
|                                          ->getType().getUnqualifiedType());
 | |
|         QualType InitialParam2Type =
 | |
|             NumParams == 2
 | |
|                 ? Context.getCanonicalType(Func->getParamDecl(1)
 | |
|                                                ->getType().getUnqualifiedType())
 | |
|                 : QualType();
 | |
|         // FIXME: Do we need to check for default arguments here?
 | |
|         if (InitialParam1Type == Param1 &&
 | |
|             (NumParams == 1 || InitialParam2Type == Param2)) {
 | |
|           if (AddRestrictAttr && !Func->hasAttr<RestrictAttr>())
 | |
|             Func->addAttr(RestrictAttr::CreateImplicit(
 | |
|                 Context, RestrictAttr::GNU_malloc));
 | |
|           // Make the function visible to name lookup, even if we found it in
 | |
|           // an unimported module. It either is an implicitly-declared global
 | |
|           // allocation function, or is suppressing that function.
 | |
|           Func->setHidden(false);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   FunctionProtoType::ExtProtoInfo EPI;
 | |
| 
 | |
|   QualType BadAllocType;
 | |
|   bool HasBadAllocExceptionSpec
 | |
|     = (Name.getCXXOverloadedOperator() == OO_New ||
 | |
|        Name.getCXXOverloadedOperator() == OO_Array_New);
 | |
|   if (HasBadAllocExceptionSpec) {
 | |
|     if (!getLangOpts().CPlusPlus11) {
 | |
|       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
 | |
|       assert(StdBadAlloc && "Must have std::bad_alloc declared");
 | |
|       EPI.ExceptionSpec.Type = EST_Dynamic;
 | |
|       EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
 | |
|     }
 | |
|   } else {
 | |
|     EPI.ExceptionSpec =
 | |
|         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
 | |
|   }
 | |
| 
 | |
|   QualType Params[] = { Param1, Param2 };
 | |
| 
 | |
|   QualType FnType = Context.getFunctionType(
 | |
|       Return, llvm::makeArrayRef(Params, NumParams), EPI);
 | |
|   FunctionDecl *Alloc =
 | |
|     FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
 | |
|                          SourceLocation(), Name,
 | |
|                          FnType, /*TInfo=*/nullptr, SC_None, false, true);
 | |
|   Alloc->setImplicit();
 | |
|   
 | |
|   // Implicit sized deallocation functions always have default visibility.
 | |
|   Alloc->addAttr(VisibilityAttr::CreateImplicit(Context,
 | |
|                                                 VisibilityAttr::Default));
 | |
| 
 | |
|   if (AddRestrictAttr)
 | |
|     Alloc->addAttr(
 | |
|         RestrictAttr::CreateImplicit(Context, RestrictAttr::GNU_malloc));
 | |
| 
 | |
|   ParmVarDecl *ParamDecls[2];
 | |
|   for (unsigned I = 0; I != NumParams; ++I) {
 | |
|     ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
 | |
|                                         SourceLocation(), nullptr,
 | |
|                                         Params[I], /*TInfo=*/nullptr,
 | |
|                                         SC_None, nullptr);
 | |
|     ParamDecls[I]->setImplicit();
 | |
|   }
 | |
|   Alloc->setParams(llvm::makeArrayRef(ParamDecls, NumParams));
 | |
| 
 | |
|   Context.getTranslationUnitDecl()->addDecl(Alloc);
 | |
|   IdResolver.tryAddTopLevelDecl(Alloc, Name);
 | |
| }
 | |
| 
 | |
| FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
 | |
|                                                   bool CanProvideSize,
 | |
|                                                   DeclarationName Name) {
 | |
|   DeclareGlobalNewDelete();
 | |
| 
 | |
|   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
 | |
|   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
 | |
| 
 | |
|   // C++ [expr.new]p20:
 | |
|   //   [...] Any non-placement deallocation function matches a
 | |
|   //   non-placement allocation function. [...]
 | |
|   llvm::SmallVector<FunctionDecl*, 2> Matches;
 | |
|   for (LookupResult::iterator D = FoundDelete.begin(),
 | |
|                            DEnd = FoundDelete.end();
 | |
|        D != DEnd; ++D) {
 | |
|     if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D))
 | |
|       if (isNonPlacementDeallocationFunction(*this, Fn))
 | |
|         Matches.push_back(Fn);
 | |
|   }
 | |
| 
 | |
|   // C++1y [expr.delete]p?:
 | |
|   //   If the type is complete and deallocation function lookup finds both a
 | |
|   //   usual deallocation function with only a pointer parameter and a usual
 | |
|   //   deallocation function with both a pointer parameter and a size
 | |
|   //   parameter, then the selected deallocation function shall be the one
 | |
|   //   with two parameters.  Otherwise, the selected deallocation function
 | |
|   //   shall be the function with one parameter.
 | |
|   if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
 | |
|     unsigned NumArgs = CanProvideSize ? 2 : 1;
 | |
|     if (Matches[0]->getNumParams() != NumArgs)
 | |
|       Matches.erase(Matches.begin());
 | |
|     else
 | |
|       Matches.erase(Matches.begin() + 1);
 | |
|     assert(Matches[0]->getNumParams() == NumArgs &&
 | |
|            "found an unexpected usual deallocation function");
 | |
|   }
 | |
| 
 | |
|   if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads)
 | |
|     EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
 | |
| 
 | |
|   assert(Matches.size() == 1 &&
 | |
|          "unexpectedly have multiple usual deallocation functions");
 | |
|   return Matches.front();
 | |
| }
 | |
| 
 | |
| bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
 | |
|                                     DeclarationName Name,
 | |
|                                     FunctionDecl* &Operator, bool Diagnose) {
 | |
|   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
 | |
|   // Try to find operator delete/operator delete[] in class scope.
 | |
|   LookupQualifiedName(Found, RD);
 | |
| 
 | |
|   if (Found.isAmbiguous())
 | |
|     return true;
 | |
| 
 | |
|   Found.suppressDiagnostics();
 | |
| 
 | |
|   SmallVector<DeclAccessPair,4> Matches;
 | |
|   for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
 | |
|        F != FEnd; ++F) {
 | |
|     NamedDecl *ND = (*F)->getUnderlyingDecl();
 | |
| 
 | |
|     // Ignore template operator delete members from the check for a usual
 | |
|     // deallocation function.
 | |
|     if (isa<FunctionTemplateDecl>(ND))
 | |
|       continue;
 | |
| 
 | |
|     if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
 | |
|       Matches.push_back(F.getPair());
 | |
|   }
 | |
| 
 | |
|   if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads)
 | |
|     EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
 | |
| 
 | |
|   // There's exactly one suitable operator;  pick it.
 | |
|   if (Matches.size() == 1) {
 | |
|     Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
 | |
| 
 | |
|     if (Operator->isDeleted()) {
 | |
|       if (Diagnose) {
 | |
|         Diag(StartLoc, diag::err_deleted_function_use);
 | |
|         NoteDeletedFunction(Operator);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
 | |
|                               Matches[0], Diagnose) == AR_inaccessible)
 | |
|       return true;
 | |
| 
 | |
|     return false;
 | |
| 
 | |
|   // We found multiple suitable operators;  complain about the ambiguity.
 | |
|   } else if (!Matches.empty()) {
 | |
|     if (Diagnose) {
 | |
|       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
 | |
|         << Name << RD;
 | |
| 
 | |
|       for (SmallVectorImpl<DeclAccessPair>::iterator
 | |
|              F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
 | |
|         Diag((*F)->getUnderlyingDecl()->getLocation(),
 | |
|              diag::note_member_declared_here) << Name;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // We did find operator delete/operator delete[] declarations, but
 | |
|   // none of them were suitable.
 | |
|   if (!Found.empty()) {
 | |
|     if (Diagnose) {
 | |
|       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
 | |
|         << Name << RD;
 | |
| 
 | |
|       for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
 | |
|            F != FEnd; ++F)
 | |
|         Diag((*F)->getUnderlyingDecl()->getLocation(),
 | |
|              diag::note_member_declared_here) << Name;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Operator = nullptr;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief Checks whether delete-expression, and new-expression used for
 | |
| ///  initializing deletee have the same array form.
 | |
| class MismatchingNewDeleteDetector {
 | |
| public:
 | |
|   enum MismatchResult {
 | |
|     /// Indicates that there is no mismatch or a mismatch cannot be proven.
 | |
|     NoMismatch,
 | |
|     /// Indicates that variable is initialized with mismatching form of \a new.
 | |
|     VarInitMismatches,
 | |
|     /// Indicates that member is initialized with mismatching form of \a new.
 | |
|     MemberInitMismatches,
 | |
|     /// Indicates that 1 or more constructors' definitions could not been
 | |
|     /// analyzed, and they will be checked again at the end of translation unit.
 | |
|     AnalyzeLater
 | |
|   };
 | |
| 
 | |
|   /// \param EndOfTU True, if this is the final analysis at the end of
 | |
|   /// translation unit. False, if this is the initial analysis at the point
 | |
|   /// delete-expression was encountered.
 | |
|   explicit MismatchingNewDeleteDetector(bool EndOfTU)
 | |
|       : IsArrayForm(false), Field(nullptr), EndOfTU(EndOfTU),
 | |
|         HasUndefinedConstructors(false) {}
 | |
| 
 | |
|   /// \brief Checks whether pointee of a delete-expression is initialized with
 | |
|   /// matching form of new-expression.
 | |
|   ///
 | |
|   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
 | |
|   /// point where delete-expression is encountered, then a warning will be
 | |
|   /// issued immediately. If return value is \c AnalyzeLater at the point where
 | |
|   /// delete-expression is seen, then member will be analyzed at the end of
 | |
|   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
 | |
|   /// couldn't be analyzed. If at least one constructor initializes the member
 | |
|   /// with matching type of new, the return value is \c NoMismatch.
 | |
|   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
 | |
|   /// \brief Analyzes a class member.
 | |
|   /// \param Field Class member to analyze.
 | |
|   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
 | |
|   /// for deleting the \p Field.
 | |
|   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
 | |
|   /// List of mismatching new-expressions used for initialization of the pointee
 | |
|   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
 | |
|   /// Indicates whether delete-expression was in array form.
 | |
|   bool IsArrayForm;
 | |
|   FieldDecl *Field;
 | |
| 
 | |
| private:
 | |
|   const bool EndOfTU;
 | |
|   /// \brief Indicates that there is at least one constructor without body.
 | |
|   bool HasUndefinedConstructors;
 | |
|   /// \brief Returns \c CXXNewExpr from given initialization expression.
 | |
|   /// \param E Expression used for initializing pointee in delete-expression.
 | |
|   /// E can be a single-element \c InitListExpr consisting of new-expression.
 | |
|   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
 | |
|   /// \brief Returns whether member is initialized with mismatching form of
 | |
|   /// \c new either by the member initializer or in-class initialization.
 | |
|   ///
 | |
|   /// If bodies of all constructors are not visible at the end of translation
 | |
|   /// unit or at least one constructor initializes member with the matching
 | |
|   /// form of \c new, mismatch cannot be proven, and this function will return
 | |
|   /// \c NoMismatch.
 | |
|   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
 | |
|   /// \brief Returns whether variable is initialized with mismatching form of
 | |
|   /// \c new.
 | |
|   ///
 | |
|   /// If variable is initialized with matching form of \c new or variable is not
 | |
|   /// initialized with a \c new expression, this function will return true.
 | |
|   /// If variable is initialized with mismatching form of \c new, returns false.
 | |
|   /// \param D Variable to analyze.
 | |
|   bool hasMatchingVarInit(const DeclRefExpr *D);
 | |
|   /// \brief Checks whether the constructor initializes pointee with mismatching
 | |
|   /// form of \c new.
 | |
|   ///
 | |
|   /// Returns true, if member is initialized with matching form of \c new in
 | |
|   /// member initializer list. Returns false, if member is initialized with the
 | |
|   /// matching form of \c new in this constructor's initializer or given
 | |
|   /// constructor isn't defined at the point where delete-expression is seen, or
 | |
|   /// member isn't initialized by the constructor.
 | |
|   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
 | |
|   /// \brief Checks whether member is initialized with matching form of
 | |
|   /// \c new in member initializer list.
 | |
|   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
 | |
|   /// Checks whether member is initialized with mismatching form of \c new by
 | |
|   /// in-class initializer.
 | |
|   MismatchResult analyzeInClassInitializer();
 | |
| };
 | |
| }
 | |
| 
 | |
| MismatchingNewDeleteDetector::MismatchResult
 | |
| MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
 | |
|   NewExprs.clear();
 | |
|   assert(DE && "Expected delete-expression");
 | |
|   IsArrayForm = DE->isArrayForm();
 | |
|   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
 | |
|   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
 | |
|     return analyzeMemberExpr(ME);
 | |
|   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
 | |
|     if (!hasMatchingVarInit(D))
 | |
|       return VarInitMismatches;
 | |
|   }
 | |
|   return NoMismatch;
 | |
| }
 | |
| 
 | |
| const CXXNewExpr *
 | |
| MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
 | |
|   assert(E != nullptr && "Expected a valid initializer expression");
 | |
|   E = E->IgnoreParenImpCasts();
 | |
|   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
 | |
|     if (ILE->getNumInits() == 1)
 | |
|       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
 | |
|   }
 | |
| 
 | |
|   return dyn_cast_or_null<const CXXNewExpr>(E);
 | |
| }
 | |
| 
 | |
| bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
 | |
|     const CXXCtorInitializer *CI) {
 | |
|   const CXXNewExpr *NE = nullptr;
 | |
|   if (Field == CI->getMember() &&
 | |
|       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
 | |
|     if (NE->isArray() == IsArrayForm)
 | |
|       return true;
 | |
|     else
 | |
|       NewExprs.push_back(NE);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
 | |
|     const CXXConstructorDecl *CD) {
 | |
|   if (CD->isImplicit())
 | |
|     return false;
 | |
|   const FunctionDecl *Definition = CD;
 | |
|   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
 | |
|     HasUndefinedConstructors = true;
 | |
|     return EndOfTU;
 | |
|   }
 | |
|   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
 | |
|     if (hasMatchingNewInCtorInit(CI))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| MismatchingNewDeleteDetector::MismatchResult
 | |
| MismatchingNewDeleteDetector::analyzeInClassInitializer() {
 | |
|   assert(Field != nullptr && "This should be called only for members");
 | |
|   const Expr *InitExpr = Field->getInClassInitializer();
 | |
|   if (!InitExpr)
 | |
|     return EndOfTU ? NoMismatch : AnalyzeLater;
 | |
|   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
 | |
|     if (NE->isArray() != IsArrayForm) {
 | |
|       NewExprs.push_back(NE);
 | |
|       return MemberInitMismatches;
 | |
|     }
 | |
|   }
 | |
|   return NoMismatch;
 | |
| }
 | |
| 
 | |
| MismatchingNewDeleteDetector::MismatchResult
 | |
| MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
 | |
|                                            bool DeleteWasArrayForm) {
 | |
|   assert(Field != nullptr && "Analysis requires a valid class member.");
 | |
|   this->Field = Field;
 | |
|   IsArrayForm = DeleteWasArrayForm;
 | |
|   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
 | |
|   for (const auto *CD : RD->ctors()) {
 | |
|     if (hasMatchingNewInCtor(CD))
 | |
|       return NoMismatch;
 | |
|   }
 | |
|   if (HasUndefinedConstructors)
 | |
|     return EndOfTU ? NoMismatch : AnalyzeLater;
 | |
|   if (!NewExprs.empty())
 | |
|     return MemberInitMismatches;
 | |
|   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
 | |
|                                         : NoMismatch;
 | |
| }
 | |
| 
 | |
| MismatchingNewDeleteDetector::MismatchResult
 | |
| MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
 | |
|   assert(ME != nullptr && "Expected a member expression");
 | |
|   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
 | |
|     return analyzeField(F, IsArrayForm);
 | |
|   return NoMismatch;
 | |
| }
 | |
| 
 | |
| bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
 | |
|   const CXXNewExpr *NE = nullptr;
 | |
|   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
 | |
|     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
 | |
|         NE->isArray() != IsArrayForm) {
 | |
|       NewExprs.push_back(NE);
 | |
|     }
 | |
|   }
 | |
|   return NewExprs.empty();
 | |
| }
 | |
| 
 | |
| static void
 | |
| DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
 | |
|                             const MismatchingNewDeleteDetector &Detector) {
 | |
|   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
 | |
|   FixItHint H;
 | |
|   if (!Detector.IsArrayForm)
 | |
|     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
 | |
|   else {
 | |
|     SourceLocation RSquare = Lexer::findLocationAfterToken(
 | |
|         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
 | |
|         SemaRef.getLangOpts(), true);
 | |
|     if (RSquare.isValid())
 | |
|       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
 | |
|   }
 | |
|   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
 | |
|       << Detector.IsArrayForm << H;
 | |
| 
 | |
|   for (const auto *NE : Detector.NewExprs)
 | |
|     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
 | |
|         << Detector.IsArrayForm;
 | |
| }
 | |
| 
 | |
| void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
 | |
|   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
 | |
|     return;
 | |
|   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
 | |
|   switch (Detector.analyzeDeleteExpr(DE)) {
 | |
|   case MismatchingNewDeleteDetector::VarInitMismatches:
 | |
|   case MismatchingNewDeleteDetector::MemberInitMismatches: {
 | |
|     DiagnoseMismatchedNewDelete(*this, DE->getLocStart(), Detector);
 | |
|     break;
 | |
|   }
 | |
|   case MismatchingNewDeleteDetector::AnalyzeLater: {
 | |
|     DeleteExprs[Detector.Field].push_back(
 | |
|         std::make_pair(DE->getLocStart(), DE->isArrayForm()));
 | |
|     break;
 | |
|   }
 | |
|   case MismatchingNewDeleteDetector::NoMismatch:
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
 | |
|                                      bool DeleteWasArrayForm) {
 | |
|   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
 | |
|   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
 | |
|   case MismatchingNewDeleteDetector::VarInitMismatches:
 | |
|     llvm_unreachable("This analysis should have been done for class members.");
 | |
|   case MismatchingNewDeleteDetector::AnalyzeLater:
 | |
|     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
 | |
|                      "translation unit.");
 | |
|   case MismatchingNewDeleteDetector::MemberInitMismatches:
 | |
|     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
 | |
|     break;
 | |
|   case MismatchingNewDeleteDetector::NoMismatch:
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
 | |
| /// @code ::delete ptr; @endcode
 | |
| /// or
 | |
| /// @code delete [] ptr; @endcode
 | |
| ExprResult
 | |
| Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
 | |
|                      bool ArrayForm, Expr *ExE) {
 | |
|   // C++ [expr.delete]p1:
 | |
|   //   The operand shall have a pointer type, or a class type having a single
 | |
|   //   non-explicit conversion function to a pointer type. The result has type
 | |
|   //   void.
 | |
|   //
 | |
|   // DR599 amends "pointer type" to "pointer to object type" in both cases.
 | |
| 
 | |
|   ExprResult Ex = ExE;
 | |
|   FunctionDecl *OperatorDelete = nullptr;
 | |
|   bool ArrayFormAsWritten = ArrayForm;
 | |
|   bool UsualArrayDeleteWantsSize = false;
 | |
| 
 | |
|   if (!Ex.get()->isTypeDependent()) {
 | |
|     // Perform lvalue-to-rvalue cast, if needed.
 | |
|     Ex = DefaultLvalueConversion(Ex.get());
 | |
|     if (Ex.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     QualType Type = Ex.get()->getType();
 | |
| 
 | |
|     class DeleteConverter : public ContextualImplicitConverter {
 | |
|     public:
 | |
|       DeleteConverter() : ContextualImplicitConverter(false, true) {}
 | |
| 
 | |
|       bool match(QualType ConvType) override {
 | |
|         // FIXME: If we have an operator T* and an operator void*, we must pick
 | |
|         // the operator T*.
 | |
|         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
 | |
|           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
 | |
|             return true;
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
 | |
|                                             QualType T) override {
 | |
|         return S.Diag(Loc, diag::err_delete_operand) << T;
 | |
|       }
 | |
| 
 | |
|       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
 | |
|                                                QualType T) override {
 | |
|         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
 | |
|       }
 | |
| 
 | |
|       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
 | |
|                                                  QualType T,
 | |
|                                                  QualType ConvTy) override {
 | |
|         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
 | |
|       }
 | |
| 
 | |
|       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
 | |
|                                              QualType ConvTy) override {
 | |
|         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
 | |
|           << ConvTy;
 | |
|       }
 | |
| 
 | |
|       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
 | |
|                                               QualType T) override {
 | |
|         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
 | |
|       }
 | |
| 
 | |
|       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
 | |
|                                           QualType ConvTy) override {
 | |
|         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
 | |
|           << ConvTy;
 | |
|       }
 | |
| 
 | |
|       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
 | |
|                                                QualType T,
 | |
|                                                QualType ConvTy) override {
 | |
|         llvm_unreachable("conversion functions are permitted");
 | |
|       }
 | |
|     } Converter;
 | |
| 
 | |
|     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
 | |
|     if (Ex.isInvalid())
 | |
|       return ExprError();
 | |
|     Type = Ex.get()->getType();
 | |
|     if (!Converter.match(Type))
 | |
|       // FIXME: PerformContextualImplicitConversion should return ExprError
 | |
|       //        itself in this case.
 | |
|       return ExprError();
 | |
| 
 | |
|     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
 | |
|     QualType PointeeElem = Context.getBaseElementType(Pointee);
 | |
| 
 | |
|     if (unsigned AddressSpace = Pointee.getAddressSpace())
 | |
|       return Diag(Ex.get()->getLocStart(), 
 | |
|                   diag::err_address_space_qualified_delete)
 | |
|                << Pointee.getUnqualifiedType() << AddressSpace;
 | |
| 
 | |
|     CXXRecordDecl *PointeeRD = nullptr;
 | |
|     if (Pointee->isVoidType() && !isSFINAEContext()) {
 | |
|       // The C++ standard bans deleting a pointer to a non-object type, which
 | |
|       // effectively bans deletion of "void*". However, most compilers support
 | |
|       // this, so we treat it as a warning unless we're in a SFINAE context.
 | |
|       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
 | |
|         << Type << Ex.get()->getSourceRange();
 | |
|     } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
 | |
|       return ExprError(Diag(StartLoc, diag::err_delete_operand)
 | |
|         << Type << Ex.get()->getSourceRange());
 | |
|     } else if (!Pointee->isDependentType()) {
 | |
|       if (!RequireCompleteType(StartLoc, Pointee,
 | |
|                                diag::warn_delete_incomplete, Ex.get())) {
 | |
|         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
 | |
|           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Pointee->isArrayType() && !ArrayForm) {
 | |
|       Diag(StartLoc, diag::warn_delete_array_type)
 | |
|           << Type << Ex.get()->getSourceRange()
 | |
|           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
 | |
|       ArrayForm = true;
 | |
|     }
 | |
| 
 | |
|     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
 | |
|                                       ArrayForm ? OO_Array_Delete : OO_Delete);
 | |
| 
 | |
|     if (PointeeRD) {
 | |
|       if (!UseGlobal &&
 | |
|           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
 | |
|                                    OperatorDelete))
 | |
|         return ExprError();
 | |
| 
 | |
|       // If we're allocating an array of records, check whether the
 | |
|       // usual operator delete[] has a size_t parameter.
 | |
|       if (ArrayForm) {
 | |
|         // If the user specifically asked to use the global allocator,
 | |
|         // we'll need to do the lookup into the class.
 | |
|         if (UseGlobal)
 | |
|           UsualArrayDeleteWantsSize =
 | |
|             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
 | |
| 
 | |
|         // Otherwise, the usual operator delete[] should be the
 | |
|         // function we just found.
 | |
|         else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
 | |
|           UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
 | |
|       }
 | |
| 
 | |
|       if (!PointeeRD->hasIrrelevantDestructor())
 | |
|         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
 | |
|           MarkFunctionReferenced(StartLoc,
 | |
|                                     const_cast<CXXDestructorDecl*>(Dtor));
 | |
|           if (DiagnoseUseOfDecl(Dtor, StartLoc))
 | |
|             return ExprError();
 | |
|         }
 | |
| 
 | |
|       // C++ [expr.delete]p3:
 | |
|       //   In the first alternative (delete object), if the static type of the
 | |
|       //   object to be deleted is different from its dynamic type, the static
 | |
|       //   type shall be a base class of the dynamic type of the object to be
 | |
|       //   deleted and the static type shall have a virtual destructor or the
 | |
|       //   behavior is undefined.
 | |
|       //
 | |
|       // Note: a final class cannot be derived from, no issue there
 | |
|       if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
 | |
|         CXXDestructorDecl *dtor = PointeeRD->getDestructor();
 | |
|         if (dtor && !dtor->isVirtual()) {
 | |
|           if (PointeeRD->isAbstract()) {
 | |
|             // If the class is abstract, we warn by default, because we're
 | |
|             // sure the code has undefined behavior.
 | |
|             Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
 | |
|                 << PointeeElem;
 | |
|           } else if (!ArrayForm) {
 | |
|             // Otherwise, if this is not an array delete, it's a bit suspect,
 | |
|             // but not necessarily wrong.
 | |
|             Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     if (!OperatorDelete)
 | |
|       // Look for a global declaration.
 | |
|       OperatorDelete = FindUsualDeallocationFunction(
 | |
|           StartLoc, !RequireCompleteType(StartLoc, Pointee, 0) &&
 | |
|                     (!ArrayForm || UsualArrayDeleteWantsSize ||
 | |
|                      Pointee.isDestructedType()),
 | |
|           DeleteName);
 | |
| 
 | |
|     MarkFunctionReferenced(StartLoc, OperatorDelete);
 | |
| 
 | |
|     // Check access and ambiguity of operator delete and destructor.
 | |
|     if (PointeeRD) {
 | |
|       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
 | |
|           CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 
 | |
|                       PDiag(diag::err_access_dtor) << PointeeElem);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
 | |
|       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
 | |
|       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
 | |
|   AnalyzeDeleteExprMismatch(Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// \brief Check the use of the given variable as a C++ condition in an if,
 | |
| /// while, do-while, or switch statement.
 | |
| ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
 | |
|                                         SourceLocation StmtLoc,
 | |
|                                         bool ConvertToBoolean) {
 | |
|   if (ConditionVar->isInvalidDecl())
 | |
|     return ExprError();
 | |
| 
 | |
|   QualType T = ConditionVar->getType();
 | |
| 
 | |
|   // C++ [stmt.select]p2:
 | |
|   //   The declarator shall not specify a function or an array.
 | |
|   if (T->isFunctionType())
 | |
|     return ExprError(Diag(ConditionVar->getLocation(),
 | |
|                           diag::err_invalid_use_of_function_type)
 | |
|                        << ConditionVar->getSourceRange());
 | |
|   else if (T->isArrayType())
 | |
|     return ExprError(Diag(ConditionVar->getLocation(),
 | |
|                           diag::err_invalid_use_of_array_type)
 | |
|                      << ConditionVar->getSourceRange());
 | |
| 
 | |
|   ExprResult Condition = DeclRefExpr::Create(
 | |
|       Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
 | |
|       /*enclosing*/ false, ConditionVar->getLocation(),
 | |
|       ConditionVar->getType().getNonReferenceType(), VK_LValue);
 | |
| 
 | |
|   MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
 | |
| 
 | |
|   if (ConvertToBoolean) {
 | |
|     Condition = CheckBooleanCondition(Condition.get(), StmtLoc);
 | |
|     if (Condition.isInvalid())
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   return Condition;
 | |
| }
 | |
| 
 | |
| /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
 | |
| ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
 | |
|   // C++ 6.4p4:
 | |
|   // The value of a condition that is an initialized declaration in a statement
 | |
|   // other than a switch statement is the value of the declared variable
 | |
|   // implicitly converted to type bool. If that conversion is ill-formed, the
 | |
|   // program is ill-formed.
 | |
|   // The value of a condition that is an expression is the value of the
 | |
|   // expression, implicitly converted to bool.
 | |
|   //
 | |
|   return PerformContextuallyConvertToBool(CondExpr);
 | |
| }
 | |
| 
 | |
| /// Helper function to determine whether this is the (deprecated) C++
 | |
| /// conversion from a string literal to a pointer to non-const char or
 | |
| /// non-const wchar_t (for narrow and wide string literals,
 | |
| /// respectively).
 | |
| bool
 | |
| Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
 | |
|   // Look inside the implicit cast, if it exists.
 | |
|   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
 | |
|     From = Cast->getSubExpr();
 | |
| 
 | |
|   // A string literal (2.13.4) that is not a wide string literal can
 | |
|   // be converted to an rvalue of type "pointer to char"; a wide
 | |
|   // string literal can be converted to an rvalue of type "pointer
 | |
|   // to wchar_t" (C++ 4.2p2).
 | |
|   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
 | |
|     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
 | |
|       if (const BuiltinType *ToPointeeType
 | |
|           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
 | |
|         // This conversion is considered only when there is an
 | |
|         // explicit appropriate pointer target type (C++ 4.2p2).
 | |
|         if (!ToPtrType->getPointeeType().hasQualifiers()) {
 | |
|           switch (StrLit->getKind()) {
 | |
|             case StringLiteral::UTF8:
 | |
|             case StringLiteral::UTF16:
 | |
|             case StringLiteral::UTF32:
 | |
|               // We don't allow UTF literals to be implicitly converted
 | |
|               break;
 | |
|             case StringLiteral::Ascii:
 | |
|               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
 | |
|                       ToPointeeType->getKind() == BuiltinType::Char_S);
 | |
|             case StringLiteral::Wide:
 | |
|               return ToPointeeType->isWideCharType();
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static ExprResult BuildCXXCastArgument(Sema &S,
 | |
|                                        SourceLocation CastLoc,
 | |
|                                        QualType Ty,
 | |
|                                        CastKind Kind,
 | |
|                                        CXXMethodDecl *Method,
 | |
|                                        DeclAccessPair FoundDecl,
 | |
|                                        bool HadMultipleCandidates,
 | |
|                                        Expr *From) {
 | |
|   switch (Kind) {
 | |
|   default: llvm_unreachable("Unhandled cast kind!");
 | |
|   case CK_ConstructorConversion: {
 | |
|     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
 | |
|     SmallVector<Expr*, 8> ConstructorArgs;
 | |
| 
 | |
|     if (S.RequireNonAbstractType(CastLoc, Ty,
 | |
|                                  diag::err_allocation_of_abstract_type))
 | |
|       return ExprError();
 | |
| 
 | |
|     if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
 | |
|       return ExprError();
 | |
| 
 | |
|     S.CheckConstructorAccess(CastLoc, Constructor,
 | |
|                              InitializedEntity::InitializeTemporary(Ty),
 | |
|                              Constructor->getAccess());
 | |
|     if (S.DiagnoseUseOfDecl(Method, CastLoc))
 | |
|       return ExprError();
 | |
| 
 | |
|     ExprResult Result = S.BuildCXXConstructExpr(
 | |
|         CastLoc, Ty, cast<CXXConstructorDecl>(Method),
 | |
|         ConstructorArgs, HadMultipleCandidates,
 | |
|         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
 | |
|         CXXConstructExpr::CK_Complete, SourceRange());
 | |
|     if (Result.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     return S.MaybeBindToTemporary(Result.getAs<Expr>());
 | |
|   }
 | |
| 
 | |
|   case CK_UserDefinedConversion: {
 | |
|     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
 | |
| 
 | |
|     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
 | |
|     if (S.DiagnoseUseOfDecl(Method, CastLoc))
 | |
|       return ExprError();
 | |
| 
 | |
|     // Create an implicit call expr that calls it.
 | |
|     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
 | |
|     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
 | |
|                                                  HadMultipleCandidates);
 | |
|     if (Result.isInvalid())
 | |
|       return ExprError();
 | |
|     // Record usage of conversion in an implicit cast.
 | |
|     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
 | |
|                                       CK_UserDefinedConversion, Result.get(),
 | |
|                                       nullptr, Result.get()->getValueKind());
 | |
| 
 | |
|     return S.MaybeBindToTemporary(Result.get());
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// PerformImplicitConversion - Perform an implicit conversion of the
 | |
| /// expression From to the type ToType using the pre-computed implicit
 | |
| /// conversion sequence ICS. Returns the converted
 | |
| /// expression. Action is the kind of conversion we're performing,
 | |
| /// used in the error message.
 | |
| ExprResult
 | |
| Sema::PerformImplicitConversion(Expr *From, QualType ToType,
 | |
|                                 const ImplicitConversionSequence &ICS,
 | |
|                                 AssignmentAction Action, 
 | |
|                                 CheckedConversionKind CCK) {
 | |
|   switch (ICS.getKind()) {
 | |
|   case ImplicitConversionSequence::StandardConversion: {
 | |
|     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
 | |
|                                                Action, CCK);
 | |
|     if (Res.isInvalid())
 | |
|       return ExprError();
 | |
|     From = Res.get();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ImplicitConversionSequence::UserDefinedConversion: {
 | |
| 
 | |
|       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
 | |
|       CastKind CastKind;
 | |
|       QualType BeforeToType;
 | |
|       assert(FD && "no conversion function for user-defined conversion seq");
 | |
|       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
 | |
|         CastKind = CK_UserDefinedConversion;
 | |
| 
 | |
|         // If the user-defined conversion is specified by a conversion function,
 | |
|         // the initial standard conversion sequence converts the source type to
 | |
|         // the implicit object parameter of the conversion function.
 | |
|         BeforeToType = Context.getTagDeclType(Conv->getParent());
 | |
|       } else {
 | |
|         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
 | |
|         CastKind = CK_ConstructorConversion;
 | |
|         // Do no conversion if dealing with ... for the first conversion.
 | |
|         if (!ICS.UserDefined.EllipsisConversion) {
 | |
|           // If the user-defined conversion is specified by a constructor, the
 | |
|           // initial standard conversion sequence converts the source type to
 | |
|           // the type required by the argument of the constructor
 | |
|           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
 | |
|         }
 | |
|       }
 | |
|       // Watch out for ellipsis conversion.
 | |
|       if (!ICS.UserDefined.EllipsisConversion) {
 | |
|         ExprResult Res =
 | |
|           PerformImplicitConversion(From, BeforeToType,
 | |
|                                     ICS.UserDefined.Before, AA_Converting,
 | |
|                                     CCK);
 | |
|         if (Res.isInvalid())
 | |
|           return ExprError();
 | |
|         From = Res.get();
 | |
|       }
 | |
| 
 | |
|       ExprResult CastArg
 | |
|         = BuildCXXCastArgument(*this,
 | |
|                                From->getLocStart(),
 | |
|                                ToType.getNonReferenceType(),
 | |
|                                CastKind, cast<CXXMethodDecl>(FD),
 | |
|                                ICS.UserDefined.FoundConversionFunction,
 | |
|                                ICS.UserDefined.HadMultipleCandidates,
 | |
|                                From);
 | |
| 
 | |
|       if (CastArg.isInvalid())
 | |
|         return ExprError();
 | |
| 
 | |
|       From = CastArg.get();
 | |
| 
 | |
|       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
 | |
|                                        AA_Converting, CCK);
 | |
|   }
 | |
| 
 | |
|   case ImplicitConversionSequence::AmbiguousConversion:
 | |
|     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
 | |
|                           PDiag(diag::err_typecheck_ambiguous_condition)
 | |
|                             << From->getSourceRange());
 | |
|      return ExprError();
 | |
| 
 | |
|   case ImplicitConversionSequence::EllipsisConversion:
 | |
|     llvm_unreachable("Cannot perform an ellipsis conversion");
 | |
| 
 | |
|   case ImplicitConversionSequence::BadConversion:
 | |
|     return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Everything went well.
 | |
|   return From;
 | |
| }
 | |
| 
 | |
| /// PerformImplicitConversion - Perform an implicit conversion of the
 | |
| /// expression From to the type ToType by following the standard
 | |
| /// conversion sequence SCS. Returns the converted
 | |
| /// expression. Flavor is the context in which we're performing this
 | |
| /// conversion, for use in error messages.
 | |
| ExprResult
 | |
| Sema::PerformImplicitConversion(Expr *From, QualType ToType,
 | |
|                                 const StandardConversionSequence& SCS,
 | |
|                                 AssignmentAction Action, 
 | |
|                                 CheckedConversionKind CCK) {
 | |
|   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
 | |
|   
 | |
|   // Overall FIXME: we are recomputing too many types here and doing far too
 | |
|   // much extra work. What this means is that we need to keep track of more
 | |
|   // information that is computed when we try the implicit conversion initially,
 | |
|   // so that we don't need to recompute anything here.
 | |
|   QualType FromType = From->getType();
 | |
|   
 | |
|   if (SCS.CopyConstructor) {
 | |
|     // FIXME: When can ToType be a reference type?
 | |
|     assert(!ToType->isReferenceType());
 | |
|     if (SCS.Second == ICK_Derived_To_Base) {
 | |
|       SmallVector<Expr*, 8> ConstructorArgs;
 | |
|       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
 | |
|                                   From, /*FIXME:ConstructLoc*/SourceLocation(),
 | |
|                                   ConstructorArgs))
 | |
|         return ExprError();
 | |
|       return BuildCXXConstructExpr(
 | |
|           /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
 | |
|           ConstructorArgs, /*HadMultipleCandidates*/ false,
 | |
|           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
 | |
|           CXXConstructExpr::CK_Complete, SourceRange());
 | |
|     }
 | |
|     return BuildCXXConstructExpr(
 | |
|         /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
 | |
|         From, /*HadMultipleCandidates*/ false,
 | |
|         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
 | |
|         CXXConstructExpr::CK_Complete, SourceRange());
 | |
|   }
 | |
| 
 | |
|   // Resolve overloaded function references.
 | |
|   if (Context.hasSameType(FromType, Context.OverloadTy)) {
 | |
|     DeclAccessPair Found;
 | |
|     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
 | |
|                                                           true, Found);
 | |
|     if (!Fn)
 | |
|       return ExprError();
 | |
| 
 | |
|     if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
 | |
|       return ExprError();
 | |
| 
 | |
|     From = FixOverloadedFunctionReference(From, Found, Fn);
 | |
|     FromType = From->getType();
 | |
|   }
 | |
| 
 | |
|   // If we're converting to an atomic type, first convert to the corresponding
 | |
|   // non-atomic type.
 | |
|   QualType ToAtomicType;
 | |
|   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
 | |
|     ToAtomicType = ToType;
 | |
|     ToType = ToAtomic->getValueType();
 | |
|   }
 | |
| 
 | |
|   QualType InitialFromType = FromType;
 | |
|   // Perform the first implicit conversion.
 | |
|   switch (SCS.First) {
 | |
|   case ICK_Identity:
 | |
|     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
 | |
|       FromType = FromAtomic->getValueType().getUnqualifiedType();
 | |
|       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
 | |
|                                       From, /*BasePath=*/nullptr, VK_RValue);
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ICK_Lvalue_To_Rvalue: {
 | |
|     assert(From->getObjectKind() != OK_ObjCProperty);
 | |
|     ExprResult FromRes = DefaultLvalueConversion(From);
 | |
|     assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
 | |
|     From = FromRes.get();
 | |
|     FromType = From->getType();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ICK_Array_To_Pointer:
 | |
|     FromType = Context.getArrayDecayedType(FromType);
 | |
|     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, 
 | |
|                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Function_To_Pointer:
 | |
|     FromType = Context.getPointerType(FromType);
 | |
|     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 
 | |
|                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     llvm_unreachable("Improper first standard conversion");
 | |
|   }
 | |
| 
 | |
|   // Perform the second implicit conversion
 | |
|   switch (SCS.Second) {
 | |
|   case ICK_Identity:
 | |
|     // C++ [except.spec]p5:
 | |
|     //   [For] assignment to and initialization of pointers to functions,
 | |
|     //   pointers to member functions, and references to functions: the
 | |
|     //   target entity shall allow at least the exceptions allowed by the
 | |
|     //   source value in the assignment or initialization.
 | |
|     switch (Action) {
 | |
|     case AA_Assigning:
 | |
|     case AA_Initializing:
 | |
|       // Note, function argument passing and returning are initialization.
 | |
|     case AA_Passing:
 | |
|     case AA_Returning:
 | |
|     case AA_Sending:
 | |
|     case AA_Passing_CFAudited:
 | |
|       if (CheckExceptionSpecCompatibility(From, ToType))
 | |
|         return ExprError();
 | |
|       break;
 | |
| 
 | |
|     case AA_Casting:
 | |
|     case AA_Converting:
 | |
|       // Casts and implicit conversions are not initialization, so are not
 | |
|       // checked for exception specification mismatches.
 | |
|       break;
 | |
|     }
 | |
|     // Nothing else to do.
 | |
|     break;
 | |
| 
 | |
|   case ICK_NoReturn_Adjustment:
 | |
|     // If both sides are functions (or pointers/references to them), there could
 | |
|     // be incompatible exception declarations.
 | |
|     if (CheckExceptionSpecCompatibility(From, ToType))
 | |
|       return ExprError();
 | |
| 
 | |
|     From = ImpCastExprToType(From, ToType, CK_NoOp, 
 | |
|                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Integral_Promotion:
 | |
|   case ICK_Integral_Conversion:
 | |
|     if (ToType->isBooleanType()) {
 | |
|       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
 | |
|              SCS.Second == ICK_Integral_Promotion &&
 | |
|              "only enums with fixed underlying type can promote to bool");
 | |
|       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
 | |
|                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
|     } else {
 | |
|       From = ImpCastExprToType(From, ToType, CK_IntegralCast,
 | |
|                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ICK_Floating_Promotion:
 | |
|   case ICK_Floating_Conversion:
 | |
|     From = ImpCastExprToType(From, ToType, CK_FloatingCast, 
 | |
|                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Complex_Promotion:
 | |
|   case ICK_Complex_Conversion: {
 | |
|     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
 | |
|     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
 | |
|     CastKind CK;
 | |
|     if (FromEl->isRealFloatingType()) {
 | |
|       if (ToEl->isRealFloatingType())
 | |
|         CK = CK_FloatingComplexCast;
 | |
|       else
 | |
|         CK = CK_FloatingComplexToIntegralComplex;
 | |
|     } else if (ToEl->isRealFloatingType()) {
 | |
|       CK = CK_IntegralComplexToFloatingComplex;
 | |
|     } else {
 | |
|       CK = CK_IntegralComplexCast;
 | |
|     }
 | |
|     From = ImpCastExprToType(From, ToType, CK, 
 | |
|                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ICK_Floating_Integral:
 | |
|     if (ToType->isRealFloatingType())
 | |
|       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, 
 | |
|                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
|     else
 | |
|       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, 
 | |
|                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Compatible_Conversion:
 | |
|       From = ImpCastExprToType(From, ToType, CK_NoOp, 
 | |
|                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Writeback_Conversion:
 | |
|   case ICK_Pointer_Conversion: {
 | |
|     if (SCS.IncompatibleObjC && Action != AA_Casting) {
 | |
|       // Diagnose incompatible Objective-C conversions
 | |
|       if (Action == AA_Initializing || Action == AA_Assigning)
 | |
|         Diag(From->getLocStart(),
 | |
|              diag::ext_typecheck_convert_incompatible_pointer)
 | |
|           << ToType << From->getType() << Action
 | |
|           << From->getSourceRange() << 0;
 | |
|       else
 | |
|         Diag(From->getLocStart(),
 | |
|              diag::ext_typecheck_convert_incompatible_pointer)
 | |
|           << From->getType() << ToType << Action
 | |
|           << From->getSourceRange() << 0;
 | |
| 
 | |
|       if (From->getType()->isObjCObjectPointerType() &&
 | |
|           ToType->isObjCObjectPointerType())
 | |
|         EmitRelatedResultTypeNote(From);
 | |
|     } 
 | |
|     else if (getLangOpts().ObjCAutoRefCount &&
 | |
|              !CheckObjCARCUnavailableWeakConversion(ToType, 
 | |
|                                                     From->getType())) {
 | |
|       if (Action == AA_Initializing)
 | |
|         Diag(From->getLocStart(), 
 | |
|              diag::err_arc_weak_unavailable_assign);
 | |
|       else
 | |
|         Diag(From->getLocStart(),
 | |
|              diag::err_arc_convesion_of_weak_unavailable) 
 | |
|           << (Action == AA_Casting) << From->getType() << ToType 
 | |
|           << From->getSourceRange();
 | |
|     }
 | |
|              
 | |
|     CastKind Kind = CK_Invalid;
 | |
|     CXXCastPath BasePath;
 | |
|     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
 | |
|       return ExprError();
 | |
| 
 | |
|     // Make sure we extend blocks if necessary.
 | |
|     // FIXME: doing this here is really ugly.
 | |
|     if (Kind == CK_BlockPointerToObjCPointerCast) {
 | |
|       ExprResult E = From;
 | |
|       (void) PrepareCastToObjCObjectPointer(E);
 | |
|       From = E.get();
 | |
|     }
 | |
|     if (getLangOpts().ObjCAutoRefCount)
 | |
|       CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
 | |
|     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
 | |
|              .get();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ICK_Pointer_Member: {
 | |
|     CastKind Kind = CK_Invalid;
 | |
|     CXXCastPath BasePath;
 | |
|     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
 | |
|       return ExprError();
 | |
|     if (CheckExceptionSpecCompatibility(From, ToType))
 | |
|       return ExprError();
 | |
| 
 | |
|     // We may not have been able to figure out what this member pointer resolved
 | |
|     // to up until this exact point.  Attempt to lock-in it's inheritance model.
 | |
|     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
 | |
|       RequireCompleteType(From->getExprLoc(), From->getType(), 0);
 | |
|       RequireCompleteType(From->getExprLoc(), ToType, 0);
 | |
|     }
 | |
| 
 | |
|     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
 | |
|              .get();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ICK_Boolean_Conversion:
 | |
|     // Perform half-to-boolean conversion via float.
 | |
|     if (From->getType()->isHalfType()) {
 | |
|       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
 | |
|       FromType = Context.FloatTy;
 | |
|     }
 | |
| 
 | |
|     From = ImpCastExprToType(From, Context.BoolTy,
 | |
|                              ScalarTypeToBooleanCastKind(FromType), 
 | |
|                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Derived_To_Base: {
 | |
|     CXXCastPath BasePath;
 | |
|     if (CheckDerivedToBaseConversion(From->getType(),
 | |
|                                      ToType.getNonReferenceType(),
 | |
|                                      From->getLocStart(),
 | |
|                                      From->getSourceRange(),
 | |
|                                      &BasePath,
 | |
|                                      CStyle))
 | |
|       return ExprError();
 | |
| 
 | |
|     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
 | |
|                       CK_DerivedToBase, From->getValueKind(),
 | |
|                       &BasePath, CCK).get();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ICK_Vector_Conversion:
 | |
|     From = ImpCastExprToType(From, ToType, CK_BitCast, 
 | |
|                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Vector_Splat:
 | |
|     // Vector splat from any arithmetic type to a vector.
 | |
|     // Cast to the element type.
 | |
|     {
 | |
|       QualType elType = ToType->getAs<ExtVectorType>()->getElementType();
 | |
|       if (elType != From->getType()) {
 | |
|         ExprResult E = From;
 | |
|         From = ImpCastExprToType(From, elType,
 | |
|                                  PrepareScalarCast(E, elType)).get();
 | |
|       }
 | |
|       From = ImpCastExprToType(From, ToType, CK_VectorSplat,
 | |
|                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ICK_Complex_Real:
 | |
|     // Case 1.  x -> _Complex y
 | |
|     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
 | |
|       QualType ElType = ToComplex->getElementType();
 | |
|       bool isFloatingComplex = ElType->isRealFloatingType();
 | |
| 
 | |
|       // x -> y
 | |
|       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
 | |
|         // do nothing
 | |
|       } else if (From->getType()->isRealFloatingType()) {
 | |
|         From = ImpCastExprToType(From, ElType,
 | |
|                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
 | |
|       } else {
 | |
|         assert(From->getType()->isIntegerType());
 | |
|         From = ImpCastExprToType(From, ElType,
 | |
|                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
 | |
|       }
 | |
|       // y -> _Complex y
 | |
|       From = ImpCastExprToType(From, ToType,
 | |
|                    isFloatingComplex ? CK_FloatingRealToComplex
 | |
|                                      : CK_IntegralRealToComplex).get();
 | |
| 
 | |
|     // Case 2.  _Complex x -> y
 | |
|     } else {
 | |
|       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
 | |
|       assert(FromComplex);
 | |
| 
 | |
|       QualType ElType = FromComplex->getElementType();
 | |
|       bool isFloatingComplex = ElType->isRealFloatingType();
 | |
| 
 | |
|       // _Complex x -> x
 | |
|       From = ImpCastExprToType(From, ElType,
 | |
|                    isFloatingComplex ? CK_FloatingComplexToReal
 | |
|                                      : CK_IntegralComplexToReal, 
 | |
|                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
| 
 | |
|       // x -> y
 | |
|       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
 | |
|         // do nothing
 | |
|       } else if (ToType->isRealFloatingType()) {
 | |
|         From = ImpCastExprToType(From, ToType,
 | |
|                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating, 
 | |
|                                  VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
|       } else {
 | |
|         assert(ToType->isIntegerType());
 | |
|         From = ImpCastExprToType(From, ToType,
 | |
|                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast, 
 | |
|                                  VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   
 | |
|   case ICK_Block_Pointer_Conversion: {
 | |
|     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
 | |
|                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
 | |
|     break;
 | |
|   }
 | |
|       
 | |
|   case ICK_TransparentUnionConversion: {
 | |
|     ExprResult FromRes = From;
 | |
|     Sema::AssignConvertType ConvTy =
 | |
|       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
 | |
|     if (FromRes.isInvalid())
 | |
|       return ExprError();
 | |
|     From = FromRes.get();
 | |
|     assert ((ConvTy == Sema::Compatible) &&
 | |
|             "Improper transparent union conversion");
 | |
|     (void)ConvTy;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ICK_Zero_Event_Conversion:
 | |
|     From = ImpCastExprToType(From, ToType,
 | |
|                              CK_ZeroToOCLEvent,
 | |
|                              From->getValueKind()).get();
 | |
|     break;
 | |
| 
 | |
|   case ICK_Lvalue_To_Rvalue:
 | |
|   case ICK_Array_To_Pointer:
 | |
|   case ICK_Function_To_Pointer:
 | |
|   case ICK_Qualification:
 | |
|   case ICK_Num_Conversion_Kinds:
 | |
|   case ICK_C_Only_Conversion:
 | |
|     llvm_unreachable("Improper second standard conversion");
 | |
|   }
 | |
| 
 | |
|   switch (SCS.Third) {
 | |
|   case ICK_Identity:
 | |
|     // Nothing to do.
 | |
|     break;
 | |
| 
 | |
|   case ICK_Qualification: {
 | |
|     // The qualification keeps the category of the inner expression, unless the
 | |
|     // target type isn't a reference.
 | |
|     ExprValueKind VK = ToType->isReferenceType() ?
 | |
|                                   From->getValueKind() : VK_RValue;
 | |
|     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
 | |
|                              CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get();
 | |
| 
 | |
|     if (SCS.DeprecatedStringLiteralToCharPtr &&
 | |
|         !getLangOpts().WritableStrings) {
 | |
|       Diag(From->getLocStart(), getLangOpts().CPlusPlus11
 | |
|            ? diag::ext_deprecated_string_literal_conversion
 | |
|            : diag::warn_deprecated_string_literal_conversion)
 | |
|         << ToType.getNonReferenceType();
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     llvm_unreachable("Improper third standard conversion");
 | |
|   }
 | |
| 
 | |
|   // If this conversion sequence involved a scalar -> atomic conversion, perform
 | |
|   // that conversion now.
 | |
|   if (!ToAtomicType.isNull()) {
 | |
|     assert(Context.hasSameType(
 | |
|         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
 | |
|     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
 | |
|                              VK_RValue, nullptr, CCK).get();
 | |
|   }
 | |
| 
 | |
|   // If this conversion sequence succeeded and involved implicitly converting a
 | |
|   // _Nullable type to a _Nonnull one, complain.
 | |
|   if (CCK == CCK_ImplicitConversion)
 | |
|     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
 | |
|                                         From->getLocStart());
 | |
| 
 | |
|   return From;
 | |
| }
 | |
| 
 | |
| /// \brief Check the completeness of a type in a unary type trait.
 | |
| ///
 | |
| /// If the particular type trait requires a complete type, tries to complete
 | |
| /// it. If completing the type fails, a diagnostic is emitted and false
 | |
| /// returned. If completing the type succeeds or no completion was required,
 | |
| /// returns true.
 | |
| static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
 | |
|                                                 SourceLocation Loc,
 | |
|                                                 QualType ArgTy) {
 | |
|   // C++0x [meta.unary.prop]p3:
 | |
|   //   For all of the class templates X declared in this Clause, instantiating
 | |
|   //   that template with a template argument that is a class template
 | |
|   //   specialization may result in the implicit instantiation of the template
 | |
|   //   argument if and only if the semantics of X require that the argument
 | |
|   //   must be a complete type.
 | |
|   // We apply this rule to all the type trait expressions used to implement
 | |
|   // these class templates. We also try to follow any GCC documented behavior
 | |
|   // in these expressions to ensure portability of standard libraries.
 | |
|   switch (UTT) {
 | |
|   default: llvm_unreachable("not a UTT");
 | |
|     // is_complete_type somewhat obviously cannot require a complete type.
 | |
|   case UTT_IsCompleteType:
 | |
|     // Fall-through
 | |
| 
 | |
|     // These traits are modeled on the type predicates in C++0x
 | |
|     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
 | |
|     // requiring a complete type, as whether or not they return true cannot be
 | |
|     // impacted by the completeness of the type.
 | |
|   case UTT_IsVoid:
 | |
|   case UTT_IsIntegral:
 | |
|   case UTT_IsFloatingPoint:
 | |
|   case UTT_IsArray:
 | |
|   case UTT_IsPointer:
 | |
|   case UTT_IsLvalueReference:
 | |
|   case UTT_IsRvalueReference:
 | |
|   case UTT_IsMemberFunctionPointer:
 | |
|   case UTT_IsMemberObjectPointer:
 | |
|   case UTT_IsEnum:
 | |
|   case UTT_IsUnion:
 | |
|   case UTT_IsClass:
 | |
|   case UTT_IsFunction:
 | |
|   case UTT_IsReference:
 | |
|   case UTT_IsArithmetic:
 | |
|   case UTT_IsFundamental:
 | |
|   case UTT_IsObject:
 | |
|   case UTT_IsScalar:
 | |
|   case UTT_IsCompound:
 | |
|   case UTT_IsMemberPointer:
 | |
|     // Fall-through
 | |
| 
 | |
|     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
 | |
|     // which requires some of its traits to have the complete type. However,
 | |
|     // the completeness of the type cannot impact these traits' semantics, and
 | |
|     // so they don't require it. This matches the comments on these traits in
 | |
|     // Table 49.
 | |
|   case UTT_IsConst:
 | |
|   case UTT_IsVolatile:
 | |
|   case UTT_IsSigned:
 | |
|   case UTT_IsUnsigned:
 | |
| 
 | |
|   // This type trait always returns false, checking the type is moot.
 | |
|   case UTT_IsInterfaceClass:
 | |
|     return true;
 | |
| 
 | |
|   // C++14 [meta.unary.prop]:
 | |
|   //   If T is a non-union class type, T shall be a complete type.
 | |
|   case UTT_IsEmpty:
 | |
|   case UTT_IsPolymorphic:
 | |
|   case UTT_IsAbstract:
 | |
|     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
 | |
|       if (!RD->isUnion())
 | |
|         return !S.RequireCompleteType(
 | |
|             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
 | |
|     return true;
 | |
| 
 | |
|   // C++14 [meta.unary.prop]:
 | |
|   //   If T is a class type, T shall be a complete type.
 | |
|   case UTT_IsFinal:
 | |
|   case UTT_IsSealed:
 | |
|     if (ArgTy->getAsCXXRecordDecl())
 | |
|       return !S.RequireCompleteType(
 | |
|           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
 | |
|     return true;
 | |
| 
 | |
|   // C++0x [meta.unary.prop] Table 49 requires the following traits to be
 | |
|   // applied to a complete type.
 | |
|   case UTT_IsTrivial:
 | |
|   case UTT_IsTriviallyCopyable:
 | |
|   case UTT_IsStandardLayout:
 | |
|   case UTT_IsPOD:
 | |
|   case UTT_IsLiteral:
 | |
| 
 | |
|   case UTT_IsDestructible:
 | |
|   case UTT_IsNothrowDestructible:
 | |
|     // Fall-through
 | |
| 
 | |
|     // These trait expressions are designed to help implement predicates in
 | |
|     // [meta.unary.prop] despite not being named the same. They are specified
 | |
|     // by both GCC and the Embarcadero C++ compiler, and require the complete
 | |
|     // type due to the overarching C++0x type predicates being implemented
 | |
|     // requiring the complete type.
 | |
|   case UTT_HasNothrowAssign:
 | |
|   case UTT_HasNothrowMoveAssign:
 | |
|   case UTT_HasNothrowConstructor:
 | |
|   case UTT_HasNothrowCopy:
 | |
|   case UTT_HasTrivialAssign:
 | |
|   case UTT_HasTrivialMoveAssign:
 | |
|   case UTT_HasTrivialDefaultConstructor:
 | |
|   case UTT_HasTrivialMoveConstructor:
 | |
|   case UTT_HasTrivialCopy:
 | |
|   case UTT_HasTrivialDestructor:
 | |
|   case UTT_HasVirtualDestructor:
 | |
|     // Arrays of unknown bound are expressly allowed.
 | |
|     QualType ElTy = ArgTy;
 | |
|     if (ArgTy->isIncompleteArrayType())
 | |
|       ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
 | |
| 
 | |
|     // The void type is expressly allowed.
 | |
|     if (ElTy->isVoidType())
 | |
|       return true;
 | |
| 
 | |
|     return !S.RequireCompleteType(
 | |
|       Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
 | |
|                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
 | |
|                                bool (CXXRecordDecl::*HasTrivial)() const, 
 | |
|                                bool (CXXRecordDecl::*HasNonTrivial)() const, 
 | |
|                                bool (CXXMethodDecl::*IsDesiredOp)() const)
 | |
| {
 | |
|   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
 | |
|     return true;
 | |
| 
 | |
|   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
 | |
|   DeclarationNameInfo NameInfo(Name, KeyLoc);
 | |
|   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
 | |
|   if (Self.LookupQualifiedName(Res, RD)) {
 | |
|     bool FoundOperator = false;
 | |
|     Res.suppressDiagnostics();
 | |
|     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
 | |
|          Op != OpEnd; ++Op) {
 | |
|       if (isa<FunctionTemplateDecl>(*Op))
 | |
|         continue;
 | |
| 
 | |
|       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
 | |
|       if((Operator->*IsDesiredOp)()) {
 | |
|         FoundOperator = true;
 | |
|         const FunctionProtoType *CPT =
 | |
|           Operator->getType()->getAs<FunctionProtoType>();
 | |
|         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
 | |
|         if (!CPT || !CPT->isNothrow(C))
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|     return FoundOperator;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
 | |
|                                    SourceLocation KeyLoc, QualType T) {
 | |
|   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
 | |
| 
 | |
|   ASTContext &C = Self.Context;
 | |
|   switch(UTT) {
 | |
|   default: llvm_unreachable("not a UTT");
 | |
|     // Type trait expressions corresponding to the primary type category
 | |
|     // predicates in C++0x [meta.unary.cat].
 | |
|   case UTT_IsVoid:
 | |
|     return T->isVoidType();
 | |
|   case UTT_IsIntegral:
 | |
|     return T->isIntegralType(C);
 | |
|   case UTT_IsFloatingPoint:
 | |
|     return T->isFloatingType();
 | |
|   case UTT_IsArray:
 | |
|     return T->isArrayType();
 | |
|   case UTT_IsPointer:
 | |
|     return T->isPointerType();
 | |
|   case UTT_IsLvalueReference:
 | |
|     return T->isLValueReferenceType();
 | |
|   case UTT_IsRvalueReference:
 | |
|     return T->isRValueReferenceType();
 | |
|   case UTT_IsMemberFunctionPointer:
 | |
|     return T->isMemberFunctionPointerType();
 | |
|   case UTT_IsMemberObjectPointer:
 | |
|     return T->isMemberDataPointerType();
 | |
|   case UTT_IsEnum:
 | |
|     return T->isEnumeralType();
 | |
|   case UTT_IsUnion:
 | |
|     return T->isUnionType();
 | |
|   case UTT_IsClass:
 | |
|     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
 | |
|   case UTT_IsFunction:
 | |
|     return T->isFunctionType();
 | |
| 
 | |
|     // Type trait expressions which correspond to the convenient composition
 | |
|     // predicates in C++0x [meta.unary.comp].
 | |
|   case UTT_IsReference:
 | |
|     return T->isReferenceType();
 | |
|   case UTT_IsArithmetic:
 | |
|     return T->isArithmeticType() && !T->isEnumeralType();
 | |
|   case UTT_IsFundamental:
 | |
|     return T->isFundamentalType();
 | |
|   case UTT_IsObject:
 | |
|     return T->isObjectType();
 | |
|   case UTT_IsScalar:
 | |
|     // Note: semantic analysis depends on Objective-C lifetime types to be
 | |
|     // considered scalar types. However, such types do not actually behave
 | |
|     // like scalar types at run time (since they may require retain/release
 | |
|     // operations), so we report them as non-scalar.
 | |
|     if (T->isObjCLifetimeType()) {
 | |
|       switch (T.getObjCLifetime()) {
 | |
|       case Qualifiers::OCL_None:
 | |
|       case Qualifiers::OCL_ExplicitNone:
 | |
|         return true;
 | |
| 
 | |
|       case Qualifiers::OCL_Strong:
 | |
|       case Qualifiers::OCL_Weak:
 | |
|       case Qualifiers::OCL_Autoreleasing:
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|       
 | |
|     return T->isScalarType();
 | |
|   case UTT_IsCompound:
 | |
|     return T->isCompoundType();
 | |
|   case UTT_IsMemberPointer:
 | |
|     return T->isMemberPointerType();
 | |
| 
 | |
|     // Type trait expressions which correspond to the type property predicates
 | |
|     // in C++0x [meta.unary.prop].
 | |
|   case UTT_IsConst:
 | |
|     return T.isConstQualified();
 | |
|   case UTT_IsVolatile:
 | |
|     return T.isVolatileQualified();
 | |
|   case UTT_IsTrivial:
 | |
|     return T.isTrivialType(C);
 | |
|   case UTT_IsTriviallyCopyable:
 | |
|     return T.isTriviallyCopyableType(C);
 | |
|   case UTT_IsStandardLayout:
 | |
|     return T->isStandardLayoutType();
 | |
|   case UTT_IsPOD:
 | |
|     return T.isPODType(C);
 | |
|   case UTT_IsLiteral:
 | |
|     return T->isLiteralType(C);
 | |
|   case UTT_IsEmpty:
 | |
|     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
 | |
|       return !RD->isUnion() && RD->isEmpty();
 | |
|     return false;
 | |
|   case UTT_IsPolymorphic:
 | |
|     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
 | |
|       return !RD->isUnion() && RD->isPolymorphic();
 | |
|     return false;
 | |
|   case UTT_IsAbstract:
 | |
|     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
 | |
|       return !RD->isUnion() && RD->isAbstract();
 | |
|     return false;
 | |
|   // __is_interface_class only returns true when CL is invoked in /CLR mode and
 | |
|   // even then only when it is used with the 'interface struct ...' syntax
 | |
|   // Clang doesn't support /CLR which makes this type trait moot.
 | |
|   case UTT_IsInterfaceClass:
 | |
|     return false;
 | |
|   case UTT_IsFinal:
 | |
|   case UTT_IsSealed:
 | |
|     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
 | |
|       return RD->hasAttr<FinalAttr>();
 | |
|     return false;
 | |
|   case UTT_IsSigned:
 | |
|     return T->isSignedIntegerType();
 | |
|   case UTT_IsUnsigned:
 | |
|     return T->isUnsignedIntegerType();
 | |
| 
 | |
|     // Type trait expressions which query classes regarding their construction,
 | |
|     // destruction, and copying. Rather than being based directly on the
 | |
|     // related type predicates in the standard, they are specified by both
 | |
|     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
 | |
|     // specifications.
 | |
|     //
 | |
|     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
 | |
|     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
 | |
|     //
 | |
|     // Note that these builtins do not behave as documented in g++: if a class
 | |
|     // has both a trivial and a non-trivial special member of a particular kind,
 | |
|     // they return false! For now, we emulate this behavior.
 | |
|     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
 | |
|     // does not correctly compute triviality in the presence of multiple special
 | |
|     // members of the same kind. Revisit this once the g++ bug is fixed.
 | |
|   case UTT_HasTrivialDefaultConstructor:
 | |
|     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | |
|     //   If __is_pod (type) is true then the trait is true, else if type is
 | |
|     //   a cv class or union type (or array thereof) with a trivial default
 | |
|     //   constructor ([class.ctor]) then the trait is true, else it is false.
 | |
|     if (T.isPODType(C))
 | |
|       return true;
 | |
|     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
 | |
|       return RD->hasTrivialDefaultConstructor() &&
 | |
|              !RD->hasNonTrivialDefaultConstructor();
 | |
|     return false;
 | |
|   case UTT_HasTrivialMoveConstructor:
 | |
|     //  This trait is implemented by MSVC 2012 and needed to parse the
 | |
|     //  standard library headers. Specifically this is used as the logic
 | |
|     //  behind std::is_trivially_move_constructible (20.9.4.3).
 | |
|     if (T.isPODType(C))
 | |
|       return true;
 | |
|     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
 | |
|       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
 | |
|     return false;
 | |
|   case UTT_HasTrivialCopy:
 | |
|     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | |
|     //   If __is_pod (type) is true or type is a reference type then
 | |
|     //   the trait is true, else if type is a cv class or union type
 | |
|     //   with a trivial copy constructor ([class.copy]) then the trait
 | |
|     //   is true, else it is false.
 | |
|     if (T.isPODType(C) || T->isReferenceType())
 | |
|       return true;
 | |
|     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
 | |
|       return RD->hasTrivialCopyConstructor() &&
 | |
|              !RD->hasNonTrivialCopyConstructor();
 | |
|     return false;
 | |
|   case UTT_HasTrivialMoveAssign:
 | |
|     //  This trait is implemented by MSVC 2012 and needed to parse the
 | |
|     //  standard library headers. Specifically it is used as the logic
 | |
|     //  behind std::is_trivially_move_assignable (20.9.4.3)
 | |
|     if (T.isPODType(C))
 | |
|       return true;
 | |
|     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
 | |
|       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
 | |
|     return false;
 | |
|   case UTT_HasTrivialAssign:
 | |
|     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | |
|     //   If type is const qualified or is a reference type then the
 | |
|     //   trait is false. Otherwise if __is_pod (type) is true then the
 | |
|     //   trait is true, else if type is a cv class or union type with
 | |
|     //   a trivial copy assignment ([class.copy]) then the trait is
 | |
|     //   true, else it is false.
 | |
|     // Note: the const and reference restrictions are interesting,
 | |
|     // given that const and reference members don't prevent a class
 | |
|     // from having a trivial copy assignment operator (but do cause
 | |
|     // errors if the copy assignment operator is actually used, q.v.
 | |
|     // [class.copy]p12).
 | |
| 
 | |
|     if (T.isConstQualified())
 | |
|       return false;
 | |
|     if (T.isPODType(C))
 | |
|       return true;
 | |
|     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
 | |
|       return RD->hasTrivialCopyAssignment() &&
 | |
|              !RD->hasNonTrivialCopyAssignment();
 | |
|     return false;
 | |
|   case UTT_IsDestructible:
 | |
|   case UTT_IsNothrowDestructible:
 | |
|     // C++14 [meta.unary.prop]:
 | |
|     //   For reference types, is_destructible<T>::value is true.
 | |
|     if (T->isReferenceType())
 | |
|       return true;
 | |
| 
 | |
|     // Objective-C++ ARC: autorelease types don't require destruction.
 | |
|     if (T->isObjCLifetimeType() &&
 | |
|         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
 | |
|       return true;
 | |
| 
 | |
|     // C++14 [meta.unary.prop]:
 | |
|     //   For incomplete types and function types, is_destructible<T>::value is
 | |
|     //   false.
 | |
|     if (T->isIncompleteType() || T->isFunctionType())
 | |
|       return false;
 | |
| 
 | |
|     // C++14 [meta.unary.prop]:
 | |
|     //   For object types and given U equal to remove_all_extents_t<T>, if the
 | |
|     //   expression std::declval<U&>().~U() is well-formed when treated as an
 | |
|     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
 | |
|     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
 | |
|       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
 | |
|       if (!Destructor)
 | |
|         return false;
 | |
|       //  C++14 [dcl.fct.def.delete]p2:
 | |
|       //    A program that refers to a deleted function implicitly or
 | |
|       //    explicitly, other than to declare it, is ill-formed.
 | |
|       if (Destructor->isDeleted())
 | |
|         return false;
 | |
|       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
 | |
|         return false;
 | |
|       if (UTT == UTT_IsNothrowDestructible) {
 | |
|         const FunctionProtoType *CPT =
 | |
|             Destructor->getType()->getAs<FunctionProtoType>();
 | |
|         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
 | |
|         if (!CPT || !CPT->isNothrow(C))
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
| 
 | |
|   case UTT_HasTrivialDestructor:
 | |
|     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
 | |
|     //   If __is_pod (type) is true or type is a reference type
 | |
|     //   then the trait is true, else if type is a cv class or union
 | |
|     //   type (or array thereof) with a trivial destructor
 | |
|     //   ([class.dtor]) then the trait is true, else it is
 | |
|     //   false.
 | |
|     if (T.isPODType(C) || T->isReferenceType())
 | |
|       return true;
 | |
|       
 | |
|     // Objective-C++ ARC: autorelease types don't require destruction.
 | |
|     if (T->isObjCLifetimeType() && 
 | |
|         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
 | |
|       return true;
 | |
|       
 | |
|     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
 | |
|       return RD->hasTrivialDestructor();
 | |
|     return false;
 | |
|   // TODO: Propagate nothrowness for implicitly declared special members.
 | |
|   case UTT_HasNothrowAssign:
 | |
|     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | |
|     //   If type is const qualified or is a reference type then the
 | |
|     //   trait is false. Otherwise if __has_trivial_assign (type)
 | |
|     //   is true then the trait is true, else if type is a cv class
 | |
|     //   or union type with copy assignment operators that are known
 | |
|     //   not to throw an exception then the trait is true, else it is
 | |
|     //   false.
 | |
|     if (C.getBaseElementType(T).isConstQualified())
 | |
|       return false;
 | |
|     if (T->isReferenceType())
 | |
|       return false;
 | |
|     if (T.isPODType(C) || T->isObjCLifetimeType())
 | |
|       return true;
 | |
| 
 | |
|     if (const RecordType *RT = T->getAs<RecordType>())
 | |
|       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
 | |
|                                 &CXXRecordDecl::hasTrivialCopyAssignment,
 | |
|                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
 | |
|                                 &CXXMethodDecl::isCopyAssignmentOperator);
 | |
|     return false;
 | |
|   case UTT_HasNothrowMoveAssign:
 | |
|     //  This trait is implemented by MSVC 2012 and needed to parse the
 | |
|     //  standard library headers. Specifically this is used as the logic
 | |
|     //  behind std::is_nothrow_move_assignable (20.9.4.3).
 | |
|     if (T.isPODType(C))
 | |
|       return true;
 | |
| 
 | |
|     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
 | |
|       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
 | |
|                                 &CXXRecordDecl::hasTrivialMoveAssignment,
 | |
|                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
 | |
|                                 &CXXMethodDecl::isMoveAssignmentOperator);
 | |
|     return false;
 | |
|   case UTT_HasNothrowCopy:
 | |
|     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | |
|     //   If __has_trivial_copy (type) is true then the trait is true, else
 | |
|     //   if type is a cv class or union type with copy constructors that are
 | |
|     //   known not to throw an exception then the trait is true, else it is
 | |
|     //   false.
 | |
|     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
 | |
|       return true;
 | |
|     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
 | |
|       if (RD->hasTrivialCopyConstructor() &&
 | |
|           !RD->hasNonTrivialCopyConstructor())
 | |
|         return true;
 | |
| 
 | |
|       bool FoundConstructor = false;
 | |
|       unsigned FoundTQs;
 | |
|       for (const auto *ND : Self.LookupConstructors(RD)) {
 | |
|         // A template constructor is never a copy constructor.
 | |
|         // FIXME: However, it may actually be selected at the actual overload
 | |
|         // resolution point.
 | |
|         if (isa<FunctionTemplateDecl>(ND))
 | |
|           continue;
 | |
|         const CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(ND);
 | |
|         if (Constructor->isCopyConstructor(FoundTQs)) {
 | |
|           FoundConstructor = true;
 | |
|           const FunctionProtoType *CPT
 | |
|               = Constructor->getType()->getAs<FunctionProtoType>();
 | |
|           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
 | |
|           if (!CPT)
 | |
|             return false;
 | |
|           // TODO: check whether evaluating default arguments can throw.
 | |
|           // For now, we'll be conservative and assume that they can throw.
 | |
|           if (!CPT->isNothrow(C) || CPT->getNumParams() > 1)
 | |
|             return false;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return FoundConstructor;
 | |
|     }
 | |
|     return false;
 | |
|   case UTT_HasNothrowConstructor:
 | |
|     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
 | |
|     //   If __has_trivial_constructor (type) is true then the trait is
 | |
|     //   true, else if type is a cv class or union type (or array
 | |
|     //   thereof) with a default constructor that is known not to
 | |
|     //   throw an exception then the trait is true, else it is false.
 | |
|     if (T.isPODType(C) || T->isObjCLifetimeType())
 | |
|       return true;
 | |
|     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
 | |
|       if (RD->hasTrivialDefaultConstructor() &&
 | |
|           !RD->hasNonTrivialDefaultConstructor())
 | |
|         return true;
 | |
| 
 | |
|       bool FoundConstructor = false;
 | |
|       for (const auto *ND : Self.LookupConstructors(RD)) {
 | |
|         // FIXME: In C++0x, a constructor template can be a default constructor.
 | |
|         if (isa<FunctionTemplateDecl>(ND))
 | |
|           continue;
 | |
|         const CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(ND);
 | |
|         if (Constructor->isDefaultConstructor()) {
 | |
|           FoundConstructor = true;
 | |
|           const FunctionProtoType *CPT
 | |
|               = Constructor->getType()->getAs<FunctionProtoType>();
 | |
|           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
 | |
|           if (!CPT)
 | |
|             return false;
 | |
|           // FIXME: check whether evaluating default arguments can throw.
 | |
|           // For now, we'll be conservative and assume that they can throw.
 | |
|           if (!CPT->isNothrow(C) || CPT->getNumParams() > 0)
 | |
|             return false;
 | |
|         }
 | |
|       }
 | |
|       return FoundConstructor;
 | |
|     }
 | |
|     return false;
 | |
|   case UTT_HasVirtualDestructor:
 | |
|     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
 | |
|     //   If type is a class type with a virtual destructor ([class.dtor])
 | |
|     //   then the trait is true, else it is false.
 | |
|     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
 | |
|       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
 | |
|         return Destructor->isVirtual();
 | |
|     return false;
 | |
| 
 | |
|     // These type trait expressions are modeled on the specifications for the
 | |
|     // Embarcadero C++0x type trait functions:
 | |
|     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
 | |
|   case UTT_IsCompleteType:
 | |
|     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
 | |
|     //   Returns True if and only if T is a complete type at the point of the
 | |
|     //   function call.
 | |
|     return !T->isIncompleteType();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether T has a non-trivial Objective-C lifetime in
 | |
| /// ARC mode.
 | |
| static bool hasNontrivialObjCLifetime(QualType T) {
 | |
|   switch (T.getObjCLifetime()) {
 | |
|   case Qualifiers::OCL_ExplicitNone:
 | |
|     return false;
 | |
| 
 | |
|   case Qualifiers::OCL_Strong:
 | |
|   case Qualifiers::OCL_Weak:
 | |
|   case Qualifiers::OCL_Autoreleasing:
 | |
|     return true;
 | |
| 
 | |
|   case Qualifiers::OCL_None:
 | |
|     return T->isObjCLifetimeType();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unknown ObjC lifetime qualifier");
 | |
| }
 | |
| 
 | |
| static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
 | |
|                                     QualType RhsT, SourceLocation KeyLoc);
 | |
| 
 | |
| static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
 | |
|                               ArrayRef<TypeSourceInfo *> Args,
 | |
|                               SourceLocation RParenLoc) {
 | |
|   if (Kind <= UTT_Last)
 | |
|     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
 | |
| 
 | |
|   if (Kind <= BTT_Last)
 | |
|     return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
 | |
|                                    Args[1]->getType(), RParenLoc);
 | |
| 
 | |
|   switch (Kind) {
 | |
|   case clang::TT_IsConstructible:
 | |
|   case clang::TT_IsNothrowConstructible:
 | |
|   case clang::TT_IsTriviallyConstructible: {
 | |
|     // C++11 [meta.unary.prop]:
 | |
|     //   is_trivially_constructible is defined as:
 | |
|     //
 | |
|     //     is_constructible<T, Args...>::value is true and the variable
 | |
|     //     definition for is_constructible, as defined below, is known to call
 | |
|     //     no operation that is not trivial.
 | |
|     //
 | |
|     //   The predicate condition for a template specialization 
 | |
|     //   is_constructible<T, Args...> shall be satisfied if and only if the 
 | |
|     //   following variable definition would be well-formed for some invented 
 | |
|     //   variable t:
 | |
|     //
 | |
|     //     T t(create<Args>()...);
 | |
|     assert(!Args.empty());
 | |
| 
 | |
|     // Precondition: T and all types in the parameter pack Args shall be
 | |
|     // complete types, (possibly cv-qualified) void, or arrays of
 | |
|     // unknown bound.
 | |
|     for (const auto *TSI : Args) {
 | |
|       QualType ArgTy = TSI->getType();
 | |
|       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
 | |
|         continue;
 | |
| 
 | |
|       if (S.RequireCompleteType(KWLoc, ArgTy, 
 | |
|           diag::err_incomplete_type_used_in_type_trait_expr))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Make sure the first argument is not incomplete nor a function type.
 | |
|     QualType T = Args[0]->getType();
 | |
|     if (T->isIncompleteType() || T->isFunctionType())
 | |
|       return false;
 | |
| 
 | |
|     // Make sure the first argument is not an abstract type.
 | |
|     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
 | |
|     if (RD && RD->isAbstract())
 | |
|       return false;
 | |
| 
 | |
|     SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
 | |
|     SmallVector<Expr *, 2> ArgExprs;
 | |
|     ArgExprs.reserve(Args.size() - 1);
 | |
|     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
 | |
|       QualType ArgTy = Args[I]->getType();
 | |
|       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
 | |
|         ArgTy = S.Context.getRValueReferenceType(ArgTy);
 | |
|       OpaqueArgExprs.push_back(
 | |
|           OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
 | |
|                           ArgTy.getNonLValueExprType(S.Context),
 | |
|                           Expr::getValueKindForType(ArgTy)));
 | |
|     }
 | |
|     for (Expr &E : OpaqueArgExprs)
 | |
|       ArgExprs.push_back(&E);
 | |
| 
 | |
|     // Perform the initialization in an unevaluated context within a SFINAE 
 | |
|     // trap at translation unit scope.
 | |
|     EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
 | |
|     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
 | |
|     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
 | |
|     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
 | |
|     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
 | |
|                                                                  RParenLoc));
 | |
|     InitializationSequence Init(S, To, InitKind, ArgExprs);
 | |
|     if (Init.Failed())
 | |
|       return false;
 | |
| 
 | |
|     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
 | |
|     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
 | |
|       return false;
 | |
| 
 | |
|     if (Kind == clang::TT_IsConstructible)
 | |
|       return true;
 | |
| 
 | |
|     if (Kind == clang::TT_IsNothrowConstructible)
 | |
|       return S.canThrow(Result.get()) == CT_Cannot;
 | |
| 
 | |
|     if (Kind == clang::TT_IsTriviallyConstructible) {
 | |
|       // Under Objective-C ARC, if the destination has non-trivial Objective-C
 | |
|       // lifetime, this is a non-trivial construction.
 | |
|       if (S.getLangOpts().ObjCAutoRefCount &&
 | |
|           hasNontrivialObjCLifetime(T.getNonReferenceType()))
 | |
|         return false;
 | |
| 
 | |
|       // The initialization succeeded; now make sure there are no non-trivial
 | |
|       // calls.
 | |
|       return !Result.get()->hasNonTrivialCall(S.Context);
 | |
|     }
 | |
| 
 | |
|     llvm_unreachable("unhandled type trait");
 | |
|     return false;
 | |
|   }
 | |
|     default: llvm_unreachable("not a TT");
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 
 | |
|                                 ArrayRef<TypeSourceInfo *> Args, 
 | |
|                                 SourceLocation RParenLoc) {
 | |
|   QualType ResultType = Context.getLogicalOperationType();
 | |
| 
 | |
|   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
 | |
|                                *this, Kind, KWLoc, Args[0]->getType()))
 | |
|     return ExprError();
 | |
| 
 | |
|   bool Dependent = false;
 | |
|   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
 | |
|     if (Args[I]->getType()->isDependentType()) {
 | |
|       Dependent = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool Result = false;
 | |
|   if (!Dependent)
 | |
|     Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
 | |
| 
 | |
|   return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
 | |
|                                RParenLoc, Result);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
 | |
|                                 ArrayRef<ParsedType> Args,
 | |
|                                 SourceLocation RParenLoc) {
 | |
|   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
 | |
|   ConvertedArgs.reserve(Args.size());
 | |
|   
 | |
|   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
 | |
|     TypeSourceInfo *TInfo;
 | |
|     QualType T = GetTypeFromParser(Args[I], &TInfo);
 | |
|     if (!TInfo)
 | |
|       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
 | |
|     
 | |
|     ConvertedArgs.push_back(TInfo);    
 | |
|   }
 | |
| 
 | |
|   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
 | |
| }
 | |
| 
 | |
| static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
 | |
|                                     QualType RhsT, SourceLocation KeyLoc) {
 | |
|   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
 | |
|          "Cannot evaluate traits of dependent types");
 | |
| 
 | |
|   switch(BTT) {
 | |
|   case BTT_IsBaseOf: {
 | |
|     // C++0x [meta.rel]p2
 | |
|     // Base is a base class of Derived without regard to cv-qualifiers or
 | |
|     // Base and Derived are not unions and name the same class type without
 | |
|     // regard to cv-qualifiers.
 | |
| 
 | |
|     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
 | |
|     if (!lhsRecord) return false;
 | |
| 
 | |
|     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
 | |
|     if (!rhsRecord) return false;
 | |
| 
 | |
|     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
 | |
|              == (lhsRecord == rhsRecord));
 | |
| 
 | |
|     if (lhsRecord == rhsRecord)
 | |
|       return !lhsRecord->getDecl()->isUnion();
 | |
| 
 | |
|     // C++0x [meta.rel]p2:
 | |
|     //   If Base and Derived are class types and are different types
 | |
|     //   (ignoring possible cv-qualifiers) then Derived shall be a
 | |
|     //   complete type.
 | |
|     if (Self.RequireCompleteType(KeyLoc, RhsT, 
 | |
|                           diag::err_incomplete_type_used_in_type_trait_expr))
 | |
|       return false;
 | |
| 
 | |
|     return cast<CXXRecordDecl>(rhsRecord->getDecl())
 | |
|       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
 | |
|   }
 | |
|   case BTT_IsSame:
 | |
|     return Self.Context.hasSameType(LhsT, RhsT);
 | |
|   case BTT_TypeCompatible:
 | |
|     return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
 | |
|                                            RhsT.getUnqualifiedType());
 | |
|   case BTT_IsConvertible:
 | |
|   case BTT_IsConvertibleTo: {
 | |
|     // C++0x [meta.rel]p4:
 | |
|     //   Given the following function prototype:
 | |
|     //
 | |
|     //     template <class T> 
 | |
|     //       typename add_rvalue_reference<T>::type create();
 | |
|     //
 | |
|     //   the predicate condition for a template specialization 
 | |
|     //   is_convertible<From, To> shall be satisfied if and only if 
 | |
|     //   the return expression in the following code would be 
 | |
|     //   well-formed, including any implicit conversions to the return
 | |
|     //   type of the function:
 | |
|     //
 | |
|     //     To test() { 
 | |
|     //       return create<From>();
 | |
|     //     }
 | |
|     //
 | |
|     //   Access checking is performed as if in a context unrelated to To and 
 | |
|     //   From. Only the validity of the immediate context of the expression 
 | |
|     //   of the return-statement (including conversions to the return type)
 | |
|     //   is considered.
 | |
|     //
 | |
|     // We model the initialization as a copy-initialization of a temporary
 | |
|     // of the appropriate type, which for this expression is identical to the
 | |
|     // return statement (since NRVO doesn't apply).
 | |
| 
 | |
|     // Functions aren't allowed to return function or array types.
 | |
|     if (RhsT->isFunctionType() || RhsT->isArrayType())
 | |
|       return false;
 | |
| 
 | |
|     // A return statement in a void function must have void type.
 | |
|     if (RhsT->isVoidType())
 | |
|       return LhsT->isVoidType();
 | |
| 
 | |
|     // A function definition requires a complete, non-abstract return type.
 | |
|     if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
 | |
|         Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
 | |
|       return false;
 | |
| 
 | |
|     // Compute the result of add_rvalue_reference.
 | |
|     if (LhsT->isObjectType() || LhsT->isFunctionType())
 | |
|       LhsT = Self.Context.getRValueReferenceType(LhsT);
 | |
| 
 | |
|     // Build a fake source and destination for initialization.
 | |
|     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
 | |
|     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
 | |
|                          Expr::getValueKindForType(LhsT));
 | |
|     Expr *FromPtr = &From;
 | |
|     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 
 | |
|                                                            SourceLocation()));
 | |
|     
 | |
|     // Perform the initialization in an unevaluated context within a SFINAE 
 | |
|     // trap at translation unit scope.
 | |
|     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
 | |
|     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
 | |
|     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
 | |
|     InitializationSequence Init(Self, To, Kind, FromPtr);
 | |
|     if (Init.Failed())
 | |
|       return false;
 | |
| 
 | |
|     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
 | |
|     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
 | |
|   }
 | |
| 
 | |
|   case BTT_IsNothrowAssignable:
 | |
|   case BTT_IsTriviallyAssignable: {
 | |
|     // C++11 [meta.unary.prop]p3:
 | |
|     //   is_trivially_assignable is defined as:
 | |
|     //     is_assignable<T, U>::value is true and the assignment, as defined by
 | |
|     //     is_assignable, is known to call no operation that is not trivial
 | |
|     //
 | |
|     //   is_assignable is defined as:
 | |
|     //     The expression declval<T>() = declval<U>() is well-formed when 
 | |
|     //     treated as an unevaluated operand (Clause 5).
 | |
|     //
 | |
|     //   For both, T and U shall be complete types, (possibly cv-qualified) 
 | |
|     //   void, or arrays of unknown bound.
 | |
|     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
 | |
|         Self.RequireCompleteType(KeyLoc, LhsT, 
 | |
|           diag::err_incomplete_type_used_in_type_trait_expr))
 | |
|       return false;
 | |
|     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
 | |
|         Self.RequireCompleteType(KeyLoc, RhsT, 
 | |
|           diag::err_incomplete_type_used_in_type_trait_expr))
 | |
|       return false;
 | |
| 
 | |
|     // cv void is never assignable.
 | |
|     if (LhsT->isVoidType() || RhsT->isVoidType())
 | |
|       return false;
 | |
| 
 | |
|     // Build expressions that emulate the effect of declval<T>() and 
 | |
|     // declval<U>().
 | |
|     if (LhsT->isObjectType() || LhsT->isFunctionType())
 | |
|       LhsT = Self.Context.getRValueReferenceType(LhsT);
 | |
|     if (RhsT->isObjectType() || RhsT->isFunctionType())
 | |
|       RhsT = Self.Context.getRValueReferenceType(RhsT);
 | |
|     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
 | |
|                         Expr::getValueKindForType(LhsT));
 | |
|     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
 | |
|                         Expr::getValueKindForType(RhsT));
 | |
|     
 | |
|     // Attempt the assignment in an unevaluated context within a SFINAE 
 | |
|     // trap at translation unit scope.
 | |
|     EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
 | |
|     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
 | |
|     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
 | |
|     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
 | |
|                                         &Rhs);
 | |
|     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
 | |
|       return false;
 | |
| 
 | |
|     if (BTT == BTT_IsNothrowAssignable)
 | |
|       return Self.canThrow(Result.get()) == CT_Cannot;
 | |
| 
 | |
|     if (BTT == BTT_IsTriviallyAssignable) {
 | |
|       // Under Objective-C ARC, if the destination has non-trivial Objective-C
 | |
|       // lifetime, this is a non-trivial assignment.
 | |
|       if (Self.getLangOpts().ObjCAutoRefCount &&
 | |
|           hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
 | |
|         return false;
 | |
| 
 | |
|       return !Result.get()->hasNonTrivialCall(Self.Context);
 | |
|     }
 | |
| 
 | |
|     llvm_unreachable("unhandled type trait");
 | |
|     return false;
 | |
|   }
 | |
|     default: llvm_unreachable("not a BTT");
 | |
|   }
 | |
|   llvm_unreachable("Unknown type trait or not implemented");
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
 | |
|                                      SourceLocation KWLoc,
 | |
|                                      ParsedType Ty,
 | |
|                                      Expr* DimExpr,
 | |
|                                      SourceLocation RParen) {
 | |
|   TypeSourceInfo *TSInfo;
 | |
|   QualType T = GetTypeFromParser(Ty, &TSInfo);
 | |
|   if (!TSInfo)
 | |
|     TSInfo = Context.getTrivialTypeSourceInfo(T);
 | |
| 
 | |
|   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
 | |
| }
 | |
| 
 | |
| static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
 | |
|                                            QualType T, Expr *DimExpr,
 | |
|                                            SourceLocation KeyLoc) {
 | |
|   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
 | |
| 
 | |
|   switch(ATT) {
 | |
|   case ATT_ArrayRank:
 | |
|     if (T->isArrayType()) {
 | |
|       unsigned Dim = 0;
 | |
|       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
 | |
|         ++Dim;
 | |
|         T = AT->getElementType();
 | |
|       }
 | |
|       return Dim;
 | |
|     }
 | |
|     return 0;
 | |
| 
 | |
|   case ATT_ArrayExtent: {
 | |
|     llvm::APSInt Value;
 | |
|     uint64_t Dim;
 | |
|     if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
 | |
|           diag::err_dimension_expr_not_constant_integer,
 | |
|           false).isInvalid())
 | |
|       return 0;
 | |
|     if (Value.isSigned() && Value.isNegative()) {
 | |
|       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
 | |
|         << DimExpr->getSourceRange();
 | |
|       return 0;
 | |
|     }
 | |
|     Dim = Value.getLimitedValue();
 | |
| 
 | |
|     if (T->isArrayType()) {
 | |
|       unsigned D = 0;
 | |
|       bool Matched = false;
 | |
|       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
 | |
|         if (Dim == D) {
 | |
|           Matched = true;
 | |
|           break;
 | |
|         }
 | |
|         ++D;
 | |
|         T = AT->getElementType();
 | |
|       }
 | |
| 
 | |
|       if (Matched && T->isArrayType()) {
 | |
|         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
 | |
|           return CAT->getSize().getLimitedValue();
 | |
|       }
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   }
 | |
|   llvm_unreachable("Unknown type trait or not implemented");
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
 | |
|                                      SourceLocation KWLoc,
 | |
|                                      TypeSourceInfo *TSInfo,
 | |
|                                      Expr* DimExpr,
 | |
|                                      SourceLocation RParen) {
 | |
|   QualType T = TSInfo->getType();
 | |
| 
 | |
|   // FIXME: This should likely be tracked as an APInt to remove any host
 | |
|   // assumptions about the width of size_t on the target.
 | |
|   uint64_t Value = 0;
 | |
|   if (!T->isDependentType())
 | |
|     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
 | |
| 
 | |
|   // While the specification for these traits from the Embarcadero C++
 | |
|   // compiler's documentation says the return type is 'unsigned int', Clang
 | |
|   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
 | |
|   // compiler, there is no difference. On several other platforms this is an
 | |
|   // important distinction.
 | |
|   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
 | |
|                                           RParen, Context.getSizeType());
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
 | |
|                                       SourceLocation KWLoc,
 | |
|                                       Expr *Queried,
 | |
|                                       SourceLocation RParen) {
 | |
|   // If error parsing the expression, ignore.
 | |
|   if (!Queried)
 | |
|     return ExprError();
 | |
| 
 | |
|   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
 | |
|   switch (ET) {
 | |
|   case ET_IsLValueExpr: return E->isLValue();
 | |
|   case ET_IsRValueExpr: return E->isRValue();
 | |
|   }
 | |
|   llvm_unreachable("Expression trait not covered by switch");
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
 | |
|                                       SourceLocation KWLoc,
 | |
|                                       Expr *Queried,
 | |
|                                       SourceLocation RParen) {
 | |
|   if (Queried->isTypeDependent()) {
 | |
|     // Delay type-checking for type-dependent expressions.
 | |
|   } else if (Queried->getType()->isPlaceholderType()) {
 | |
|     ExprResult PE = CheckPlaceholderExpr(Queried);
 | |
|     if (PE.isInvalid()) return ExprError();
 | |
|     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
 | |
|   }
 | |
| 
 | |
|   bool Value = EvaluateExpressionTrait(ET, Queried);
 | |
| 
 | |
|   return new (Context)
 | |
|       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
 | |
| }
 | |
| 
 | |
| QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
 | |
|                                             ExprValueKind &VK,
 | |
|                                             SourceLocation Loc,
 | |
|                                             bool isIndirect) {
 | |
|   assert(!LHS.get()->getType()->isPlaceholderType() &&
 | |
|          !RHS.get()->getType()->isPlaceholderType() &&
 | |
|          "placeholders should have been weeded out by now");
 | |
| 
 | |
|   // The LHS undergoes lvalue conversions if this is ->*.
 | |
|   if (isIndirect) {
 | |
|     LHS = DefaultLvalueConversion(LHS.get());
 | |
|     if (LHS.isInvalid()) return QualType();
 | |
|   }
 | |
| 
 | |
|   // The RHS always undergoes lvalue conversions.
 | |
|   RHS = DefaultLvalueConversion(RHS.get());
 | |
|   if (RHS.isInvalid()) return QualType();
 | |
| 
 | |
|   const char *OpSpelling = isIndirect ? "->*" : ".*";
 | |
|   // C++ 5.5p2
 | |
|   //   The binary operator .* [p3: ->*] binds its second operand, which shall
 | |
|   //   be of type "pointer to member of T" (where T is a completely-defined
 | |
|   //   class type) [...]
 | |
|   QualType RHSType = RHS.get()->getType();
 | |
|   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
 | |
|   if (!MemPtr) {
 | |
|     Diag(Loc, diag::err_bad_memptr_rhs)
 | |
|       << OpSpelling << RHSType << RHS.get()->getSourceRange();
 | |
|     return QualType();
 | |
|   }
 | |
| 
 | |
|   QualType Class(MemPtr->getClass(), 0);
 | |
| 
 | |
|   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
 | |
|   // member pointer points must be completely-defined. However, there is no
 | |
|   // reason for this semantic distinction, and the rule is not enforced by
 | |
|   // other compilers. Therefore, we do not check this property, as it is
 | |
|   // likely to be considered a defect.
 | |
| 
 | |
|   // C++ 5.5p2
 | |
|   //   [...] to its first operand, which shall be of class T or of a class of
 | |
|   //   which T is an unambiguous and accessible base class. [p3: a pointer to
 | |
|   //   such a class]
 | |
|   QualType LHSType = LHS.get()->getType();
 | |
|   if (isIndirect) {
 | |
|     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
 | |
|       LHSType = Ptr->getPointeeType();
 | |
|     else {
 | |
|       Diag(Loc, diag::err_bad_memptr_lhs)
 | |
|         << OpSpelling << 1 << LHSType
 | |
|         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
 | |
|       return QualType();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
 | |
|     // If we want to check the hierarchy, we need a complete type.
 | |
|     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
 | |
|                             OpSpelling, (int)isIndirect)) {
 | |
|       return QualType();
 | |
|     }
 | |
| 
 | |
|     if (!IsDerivedFrom(LHSType, Class)) {
 | |
|       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
 | |
|         << (int)isIndirect << LHS.get()->getType();
 | |
|       return QualType();
 | |
|     }
 | |
| 
 | |
|     CXXCastPath BasePath;
 | |
|     if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
 | |
|                                      SourceRange(LHS.get()->getLocStart(),
 | |
|                                                  RHS.get()->getLocEnd()),
 | |
|                                      &BasePath))
 | |
|       return QualType();
 | |
| 
 | |
|     // Cast LHS to type of use.
 | |
|     QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
 | |
|     ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
 | |
|     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
 | |
|                             &BasePath);
 | |
|   }
 | |
| 
 | |
|   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
 | |
|     // Diagnose use of pointer-to-member type which when used as
 | |
|     // the functional cast in a pointer-to-member expression.
 | |
|     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
 | |
|      return QualType();
 | |
|   }
 | |
| 
 | |
|   // C++ 5.5p2
 | |
|   //   The result is an object or a function of the type specified by the
 | |
|   //   second operand.
 | |
|   // The cv qualifiers are the union of those in the pointer and the left side,
 | |
|   // in accordance with 5.5p5 and 5.2.5.
 | |
|   QualType Result = MemPtr->getPointeeType();
 | |
|   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
 | |
| 
 | |
|   // C++0x [expr.mptr.oper]p6:
 | |
|   //   In a .* expression whose object expression is an rvalue, the program is
 | |
|   //   ill-formed if the second operand is a pointer to member function with
 | |
|   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
 | |
|   //   expression is an lvalue, the program is ill-formed if the second operand
 | |
|   //   is a pointer to member function with ref-qualifier &&.
 | |
|   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
 | |
|     switch (Proto->getRefQualifier()) {
 | |
|     case RQ_None:
 | |
|       // Do nothing
 | |
|       break;
 | |
| 
 | |
|     case RQ_LValue:
 | |
|       if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
 | |
|         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
 | |
|           << RHSType << 1 << LHS.get()->getSourceRange();
 | |
|       break;
 | |
| 
 | |
|     case RQ_RValue:
 | |
|       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
 | |
|         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
 | |
|           << RHSType << 0 << LHS.get()->getSourceRange();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [expr.mptr.oper]p6:
 | |
|   //   The result of a .* expression whose second operand is a pointer
 | |
|   //   to a data member is of the same value category as its
 | |
|   //   first operand. The result of a .* expression whose second
 | |
|   //   operand is a pointer to a member function is a prvalue. The
 | |
|   //   result of an ->* expression is an lvalue if its second operand
 | |
|   //   is a pointer to data member and a prvalue otherwise.
 | |
|   if (Result->isFunctionType()) {
 | |
|     VK = VK_RValue;
 | |
|     return Context.BoundMemberTy;
 | |
|   } else if (isIndirect) {
 | |
|     VK = VK_LValue;
 | |
|   } else {
 | |
|     VK = LHS.get()->getValueKind();
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// \brief Try to convert a type to another according to C++0x 5.16p3.
 | |
| ///
 | |
| /// This is part of the parameter validation for the ? operator. If either
 | |
| /// value operand is a class type, the two operands are attempted to be
 | |
| /// converted to each other. This function does the conversion in one direction.
 | |
| /// It returns true if the program is ill-formed and has already been diagnosed
 | |
| /// as such.
 | |
| static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
 | |
|                                 SourceLocation QuestionLoc,
 | |
|                                 bool &HaveConversion,
 | |
|                                 QualType &ToType) {
 | |
|   HaveConversion = false;
 | |
|   ToType = To->getType();
 | |
| 
 | |
|   InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
 | |
|                                                            SourceLocation());
 | |
|   // C++0x 5.16p3
 | |
|   //   The process for determining whether an operand expression E1 of type T1
 | |
|   //   can be converted to match an operand expression E2 of type T2 is defined
 | |
|   //   as follows:
 | |
|   //   -- If E2 is an lvalue:
 | |
|   bool ToIsLvalue = To->isLValue();
 | |
|   if (ToIsLvalue) {
 | |
|     //   E1 can be converted to match E2 if E1 can be implicitly converted to
 | |
|     //   type "lvalue reference to T2", subject to the constraint that in the
 | |
|     //   conversion the reference must bind directly to E1.
 | |
|     QualType T = Self.Context.getLValueReferenceType(ToType);
 | |
|     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
 | |
| 
 | |
|     InitializationSequence InitSeq(Self, Entity, Kind, From);
 | |
|     if (InitSeq.isDirectReferenceBinding()) {
 | |
|       ToType = T;
 | |
|       HaveConversion = true;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (InitSeq.isAmbiguous())
 | |
|       return InitSeq.Diagnose(Self, Entity, Kind, From);
 | |
|   }
 | |
| 
 | |
|   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
 | |
|   //      -- if E1 and E2 have class type, and the underlying class types are
 | |
|   //         the same or one is a base class of the other:
 | |
|   QualType FTy = From->getType();
 | |
|   QualType TTy = To->getType();
 | |
|   const RecordType *FRec = FTy->getAs<RecordType>();
 | |
|   const RecordType *TRec = TTy->getAs<RecordType>();
 | |
|   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
 | |
|                        Self.IsDerivedFrom(FTy, TTy);
 | |
|   if (FRec && TRec &&
 | |
|       (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
 | |
|     //         E1 can be converted to match E2 if the class of T2 is the
 | |
|     //         same type as, or a base class of, the class of T1, and
 | |
|     //         [cv2 > cv1].
 | |
|     if (FRec == TRec || FDerivedFromT) {
 | |
|       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
 | |
|         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
 | |
|         InitializationSequence InitSeq(Self, Entity, Kind, From);
 | |
|         if (InitSeq) {
 | |
|           HaveConversion = true;
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         if (InitSeq.isAmbiguous())
 | |
|           return InitSeq.Diagnose(Self, Entity, Kind, From);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
 | |
|   //        implicitly converted to the type that expression E2 would have
 | |
|   //        if E2 were converted to an rvalue (or the type it has, if E2 is
 | |
|   //        an rvalue).
 | |
|   //
 | |
|   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
 | |
|   // to the array-to-pointer or function-to-pointer conversions.
 | |
|   if (!TTy->getAs<TagType>())
 | |
|     TTy = TTy.getUnqualifiedType();
 | |
| 
 | |
|   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
 | |
|   InitializationSequence InitSeq(Self, Entity, Kind, From);
 | |
|   HaveConversion = !InitSeq.Failed();
 | |
|   ToType = TTy;
 | |
|   if (InitSeq.isAmbiguous())
 | |
|     return InitSeq.Diagnose(Self, Entity, Kind, From);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Try to find a common type for two according to C++0x 5.16p5.
 | |
| ///
 | |
| /// This is part of the parameter validation for the ? operator. If either
 | |
| /// value operand is a class type, overload resolution is used to find a
 | |
| /// conversion to a common type.
 | |
| static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
 | |
|                                     SourceLocation QuestionLoc) {
 | |
|   Expr *Args[2] = { LHS.get(), RHS.get() };
 | |
|   OverloadCandidateSet CandidateSet(QuestionLoc,
 | |
|                                     OverloadCandidateSet::CSK_Operator);
 | |
|   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
 | |
|                                     CandidateSet);
 | |
| 
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
 | |
|     case OR_Success: {
 | |
|       // We found a match. Perform the conversions on the arguments and move on.
 | |
|       ExprResult LHSRes =
 | |
|         Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
 | |
|                                        Best->Conversions[0], Sema::AA_Converting);
 | |
|       if (LHSRes.isInvalid())
 | |
|         break;
 | |
|       LHS = LHSRes;
 | |
| 
 | |
|       ExprResult RHSRes =
 | |
|         Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
 | |
|                                        Best->Conversions[1], Sema::AA_Converting);
 | |
|       if (RHSRes.isInvalid())
 | |
|         break;
 | |
|       RHS = RHSRes;
 | |
|       if (Best->Function)
 | |
|         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
 | |
|       return false;
 | |
|     }
 | |
|     
 | |
|     case OR_No_Viable_Function:
 | |
| 
 | |
|       // Emit a better diagnostic if one of the expressions is a null pointer
 | |
|       // constant and the other is a pointer type. In this case, the user most
 | |
|       // likely forgot to take the address of the other expression.
 | |
|       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
 | |
|         return true;
 | |
| 
 | |
|       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
 | |
|         << LHS.get()->getType() << RHS.get()->getType()
 | |
|         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|       return true;
 | |
| 
 | |
|     case OR_Ambiguous:
 | |
|       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
 | |
|         << LHS.get()->getType() << RHS.get()->getType()
 | |
|         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|       // FIXME: Print the possible common types by printing the return types of
 | |
|       // the viable candidates.
 | |
|       break;
 | |
| 
 | |
|     case OR_Deleted:
 | |
|       llvm_unreachable("Conditional operator has only built-in overloads");
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Perform an "extended" implicit conversion as returned by
 | |
| /// TryClassUnification.
 | |
| static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
 | |
|   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
 | |
|   InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
 | |
|                                                            SourceLocation());
 | |
|   Expr *Arg = E.get();
 | |
|   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
 | |
|   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
 | |
|   if (Result.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   E = Result;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Check the operands of ?: under C++ semantics.
 | |
| ///
 | |
| /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
 | |
| /// extension. In this case, LHS == Cond. (But they're not aliases.)
 | |
| QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
 | |
|                                            ExprResult &RHS, ExprValueKind &VK,
 | |
|                                            ExprObjectKind &OK,
 | |
|                                            SourceLocation QuestionLoc) {
 | |
|   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
 | |
|   // interface pointers.
 | |
| 
 | |
|   // C++11 [expr.cond]p1
 | |
|   //   The first expression is contextually converted to bool.
 | |
|   if (!Cond.get()->isTypeDependent()) {
 | |
|     ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
 | |
|     if (CondRes.isInvalid())
 | |
|       return QualType();
 | |
|     Cond = CondRes;
 | |
|   }
 | |
| 
 | |
|   // Assume r-value.
 | |
|   VK = VK_RValue;
 | |
|   OK = OK_Ordinary;
 | |
| 
 | |
|   // Either of the arguments dependent?
 | |
|   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
 | |
|     return Context.DependentTy;
 | |
| 
 | |
|   // C++11 [expr.cond]p2
 | |
|   //   If either the second or the third operand has type (cv) void, ...
 | |
|   QualType LTy = LHS.get()->getType();
 | |
|   QualType RTy = RHS.get()->getType();
 | |
|   bool LVoid = LTy->isVoidType();
 | |
|   bool RVoid = RTy->isVoidType();
 | |
|   if (LVoid || RVoid) {
 | |
|     //   ... one of the following shall hold:
 | |
|     //   -- The second or the third operand (but not both) is a (possibly
 | |
|     //      parenthesized) throw-expression; the result is of the type
 | |
|     //      and value category of the other.
 | |
|     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
 | |
|     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
 | |
|     if (LThrow != RThrow) {
 | |
|       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
 | |
|       VK = NonThrow->getValueKind();
 | |
|       // DR (no number yet): the result is a bit-field if the
 | |
|       // non-throw-expression operand is a bit-field.
 | |
|       OK = NonThrow->getObjectKind();
 | |
|       return NonThrow->getType();
 | |
|     }
 | |
| 
 | |
|     //   -- Both the second and third operands have type void; the result is of
 | |
|     //      type void and is a prvalue.
 | |
|     if (LVoid && RVoid)
 | |
|       return Context.VoidTy;
 | |
| 
 | |
|     // Neither holds, error.
 | |
|     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
 | |
|       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
 | |
|       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|     return QualType();
 | |
|   }
 | |
| 
 | |
|   // Neither is void.
 | |
| 
 | |
|   // C++11 [expr.cond]p3
 | |
|   //   Otherwise, if the second and third operand have different types, and
 | |
|   //   either has (cv) class type [...] an attempt is made to convert each of
 | |
|   //   those operands to the type of the other.
 | |
|   if (!Context.hasSameType(LTy, RTy) &&
 | |
|       (LTy->isRecordType() || RTy->isRecordType())) {
 | |
|     // These return true if a single direction is already ambiguous.
 | |
|     QualType L2RType, R2LType;
 | |
|     bool HaveL2R, HaveR2L;
 | |
|     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
 | |
|       return QualType();
 | |
|     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
 | |
|       return QualType();
 | |
| 
 | |
|     //   If both can be converted, [...] the program is ill-formed.
 | |
|     if (HaveL2R && HaveR2L) {
 | |
|       Diag(QuestionLoc, diag::err_conditional_ambiguous)
 | |
|         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|       return QualType();
 | |
|     }
 | |
| 
 | |
|     //   If exactly one conversion is possible, that conversion is applied to
 | |
|     //   the chosen operand and the converted operands are used in place of the
 | |
|     //   original operands for the remainder of this section.
 | |
|     if (HaveL2R) {
 | |
|       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
 | |
|         return QualType();
 | |
|       LTy = LHS.get()->getType();
 | |
|     } else if (HaveR2L) {
 | |
|       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
 | |
|         return QualType();
 | |
|       RTy = RHS.get()->getType();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++11 [expr.cond]p3
 | |
|   //   if both are glvalues of the same value category and the same type except
 | |
|   //   for cv-qualification, an attempt is made to convert each of those
 | |
|   //   operands to the type of the other.
 | |
|   ExprValueKind LVK = LHS.get()->getValueKind();
 | |
|   ExprValueKind RVK = RHS.get()->getValueKind();
 | |
|   if (!Context.hasSameType(LTy, RTy) &&
 | |
|       Context.hasSameUnqualifiedType(LTy, RTy) &&
 | |
|       LVK == RVK && LVK != VK_RValue) {
 | |
|     // Since the unqualified types are reference-related and we require the
 | |
|     // result to be as if a reference bound directly, the only conversion
 | |
|     // we can perform is to add cv-qualifiers.
 | |
|     Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
 | |
|     Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
 | |
|     if (RCVR.isStrictSupersetOf(LCVR)) {
 | |
|       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
 | |
|       LTy = LHS.get()->getType();
 | |
|     }
 | |
|     else if (LCVR.isStrictSupersetOf(RCVR)) {
 | |
|       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
 | |
|       RTy = RHS.get()->getType();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++11 [expr.cond]p4
 | |
|   //   If the second and third operands are glvalues of the same value
 | |
|   //   category and have the same type, the result is of that type and
 | |
|   //   value category and it is a bit-field if the second or the third
 | |
|   //   operand is a bit-field, or if both are bit-fields.
 | |
|   // We only extend this to bitfields, not to the crazy other kinds of
 | |
|   // l-values.
 | |
|   bool Same = Context.hasSameType(LTy, RTy);
 | |
|   if (Same && LVK == RVK && LVK != VK_RValue &&
 | |
|       LHS.get()->isOrdinaryOrBitFieldObject() &&
 | |
|       RHS.get()->isOrdinaryOrBitFieldObject()) {
 | |
|     VK = LHS.get()->getValueKind();
 | |
|     if (LHS.get()->getObjectKind() == OK_BitField ||
 | |
|         RHS.get()->getObjectKind() == OK_BitField)
 | |
|       OK = OK_BitField;
 | |
|     return LTy;
 | |
|   }
 | |
| 
 | |
|   // C++11 [expr.cond]p5
 | |
|   //   Otherwise, the result is a prvalue. If the second and third operands
 | |
|   //   do not have the same type, and either has (cv) class type, ...
 | |
|   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
 | |
|     //   ... overload resolution is used to determine the conversions (if any)
 | |
|     //   to be applied to the operands. If the overload resolution fails, the
 | |
|     //   program is ill-formed.
 | |
|     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
 | |
|       return QualType();
 | |
|   }
 | |
| 
 | |
|   // C++11 [expr.cond]p6
 | |
|   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
 | |
|   //   conversions are performed on the second and third operands.
 | |
|   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
 | |
|   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
 | |
|   if (LHS.isInvalid() || RHS.isInvalid())
 | |
|     return QualType();
 | |
|   LTy = LHS.get()->getType();
 | |
|   RTy = RHS.get()->getType();
 | |
| 
 | |
|   //   After those conversions, one of the following shall hold:
 | |
|   //   -- The second and third operands have the same type; the result
 | |
|   //      is of that type. If the operands have class type, the result
 | |
|   //      is a prvalue temporary of the result type, which is
 | |
|   //      copy-initialized from either the second operand or the third
 | |
|   //      operand depending on the value of the first operand.
 | |
|   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
 | |
|     if (LTy->isRecordType()) {
 | |
|       // The operands have class type. Make a temporary copy.
 | |
|       if (RequireNonAbstractType(QuestionLoc, LTy,
 | |
|                                  diag::err_allocation_of_abstract_type))
 | |
|         return QualType();
 | |
|       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
 | |
| 
 | |
|       ExprResult LHSCopy = PerformCopyInitialization(Entity,
 | |
|                                                      SourceLocation(),
 | |
|                                                      LHS);
 | |
|       if (LHSCopy.isInvalid())
 | |
|         return QualType();
 | |
| 
 | |
|       ExprResult RHSCopy = PerformCopyInitialization(Entity,
 | |
|                                                      SourceLocation(),
 | |
|                                                      RHS);
 | |
|       if (RHSCopy.isInvalid())
 | |
|         return QualType();
 | |
| 
 | |
|       LHS = LHSCopy;
 | |
|       RHS = RHSCopy;
 | |
|     }
 | |
| 
 | |
|     return LTy;
 | |
|   }
 | |
| 
 | |
|   // Extension: conditional operator involving vector types.
 | |
|   if (LTy->isVectorType() || RTy->isVectorType())
 | |
|     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
 | |
|                                /*AllowBothBool*/true,
 | |
|                                /*AllowBoolConversions*/false);
 | |
| 
 | |
|   //   -- The second and third operands have arithmetic or enumeration type;
 | |
|   //      the usual arithmetic conversions are performed to bring them to a
 | |
|   //      common type, and the result is of that type.
 | |
|   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
 | |
|     QualType ResTy = UsualArithmeticConversions(LHS, RHS);
 | |
|     if (LHS.isInvalid() || RHS.isInvalid())
 | |
|       return QualType();
 | |
| 
 | |
|     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
 | |
|     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
 | |
| 
 | |
|     return ResTy;
 | |
|   }
 | |
| 
 | |
|   //   -- The second and third operands have pointer type, or one has pointer
 | |
|   //      type and the other is a null pointer constant, or both are null
 | |
|   //      pointer constants, at least one of which is non-integral; pointer
 | |
|   //      conversions and qualification conversions are performed to bring them
 | |
|   //      to their composite pointer type. The result is of the composite
 | |
|   //      pointer type.
 | |
|   //   -- The second and third operands have pointer to member type, or one has
 | |
|   //      pointer to member type and the other is a null pointer constant;
 | |
|   //      pointer to member conversions and qualification conversions are
 | |
|   //      performed to bring them to a common type, whose cv-qualification
 | |
|   //      shall match the cv-qualification of either the second or the third
 | |
|   //      operand. The result is of the common type.
 | |
|   bool NonStandardCompositeType = false;
 | |
|   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
 | |
|                                  isSFINAEContext() ? nullptr
 | |
|                                                    : &NonStandardCompositeType);
 | |
|   if (!Composite.isNull()) {
 | |
|     if (NonStandardCompositeType)
 | |
|       Diag(QuestionLoc,
 | |
|            diag::ext_typecheck_cond_incompatible_operands_nonstandard)
 | |
|         << LTy << RTy << Composite
 | |
|         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
| 
 | |
|     return Composite;
 | |
|   }
 | |
| 
 | |
|   // Similarly, attempt to find composite type of two objective-c pointers.
 | |
|   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
 | |
|   if (!Composite.isNull())
 | |
|     return Composite;
 | |
| 
 | |
|   // Check if we are using a null with a non-pointer type.
 | |
|   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
 | |
|     return QualType();
 | |
| 
 | |
|   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
 | |
|     << LHS.get()->getType() << RHS.get()->getType()
 | |
|     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
 | |
|   return QualType();
 | |
| }
 | |
| 
 | |
| /// \brief Find a merged pointer type and convert the two expressions to it.
 | |
| ///
 | |
| /// This finds the composite pointer type (or member pointer type) for @p E1
 | |
| /// and @p E2 according to C++11 5.9p2. It converts both expressions to this
 | |
| /// type and returns it.
 | |
| /// It does not emit diagnostics.
 | |
| ///
 | |
| /// \param Loc The location of the operator requiring these two expressions to
 | |
| /// be converted to the composite pointer type.
 | |
| ///
 | |
| /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
 | |
| /// a non-standard (but still sane) composite type to which both expressions
 | |
| /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
 | |
| /// will be set true.
 | |
| QualType Sema::FindCompositePointerType(SourceLocation Loc,
 | |
|                                         Expr *&E1, Expr *&E2,
 | |
|                                         bool *NonStandardCompositeType) {
 | |
|   if (NonStandardCompositeType)
 | |
|     *NonStandardCompositeType = false;
 | |
| 
 | |
|   assert(getLangOpts().CPlusPlus && "This function assumes C++");
 | |
|   QualType T1 = E1->getType(), T2 = E2->getType();
 | |
| 
 | |
|   // C++11 5.9p2
 | |
|   //   Pointer conversions and qualification conversions are performed on
 | |
|   //   pointer operands to bring them to their composite pointer type. If
 | |
|   //   one operand is a null pointer constant, the composite pointer type is
 | |
|   //   std::nullptr_t if the other operand is also a null pointer constant or,
 | |
|   //   if the other operand is a pointer, the type of the other operand.
 | |
|   if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
 | |
|       !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
 | |
|     if (T1->isNullPtrType() &&
 | |
|         E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
 | |
|       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
 | |
|       return T1;
 | |
|     }
 | |
|     if (T2->isNullPtrType() &&
 | |
|         E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
 | |
|       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
 | |
|       return T2;
 | |
|     }
 | |
|     return QualType();
 | |
|   }
 | |
| 
 | |
|   if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
 | |
|     if (T2->isMemberPointerType())
 | |
|       E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get();
 | |
|     else
 | |
|       E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
 | |
|     return T2;
 | |
|   }
 | |
|   if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
 | |
|     if (T1->isMemberPointerType())
 | |
|       E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get();
 | |
|     else
 | |
|       E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
 | |
|     return T1;
 | |
|   }
 | |
| 
 | |
|   // Now both have to be pointers or member pointers.
 | |
|   if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
 | |
|       (!T2->isPointerType() && !T2->isMemberPointerType()))
 | |
|     return QualType();
 | |
| 
 | |
|   //   Otherwise, of one of the operands has type "pointer to cv1 void," then
 | |
|   //   the other has type "pointer to cv2 T" and the composite pointer type is
 | |
|   //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
 | |
|   //   Otherwise, the composite pointer type is a pointer type similar to the
 | |
|   //   type of one of the operands, with a cv-qualification signature that is
 | |
|   //   the union of the cv-qualification signatures of the operand types.
 | |
|   // In practice, the first part here is redundant; it's subsumed by the second.
 | |
|   // What we do here is, we build the two possible composite types, and try the
 | |
|   // conversions in both directions. If only one works, or if the two composite
 | |
|   // types are the same, we have succeeded.
 | |
|   // FIXME: extended qualifiers?
 | |
|   typedef SmallVector<unsigned, 4> QualifierVector;
 | |
|   QualifierVector QualifierUnion;
 | |
|   typedef SmallVector<std::pair<const Type *, const Type *>, 4>
 | |
|       ContainingClassVector;
 | |
|   ContainingClassVector MemberOfClass;
 | |
|   QualType Composite1 = Context.getCanonicalType(T1),
 | |
|            Composite2 = Context.getCanonicalType(T2);
 | |
|   unsigned NeedConstBefore = 0;
 | |
|   do {
 | |
|     const PointerType *Ptr1, *Ptr2;
 | |
|     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
 | |
|         (Ptr2 = Composite2->getAs<PointerType>())) {
 | |
|       Composite1 = Ptr1->getPointeeType();
 | |
|       Composite2 = Ptr2->getPointeeType();
 | |
| 
 | |
|       // If we're allowed to create a non-standard composite type, keep track
 | |
|       // of where we need to fill in additional 'const' qualifiers.
 | |
|       if (NonStandardCompositeType &&
 | |
|           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
 | |
|         NeedConstBefore = QualifierUnion.size();
 | |
| 
 | |
|       QualifierUnion.push_back(
 | |
|                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
 | |
|       MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     const MemberPointerType *MemPtr1, *MemPtr2;
 | |
|     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
 | |
|         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
 | |
|       Composite1 = MemPtr1->getPointeeType();
 | |
|       Composite2 = MemPtr2->getPointeeType();
 | |
| 
 | |
|       // If we're allowed to create a non-standard composite type, keep track
 | |
|       // of where we need to fill in additional 'const' qualifiers.
 | |
|       if (NonStandardCompositeType &&
 | |
|           Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
 | |
|         NeedConstBefore = QualifierUnion.size();
 | |
| 
 | |
|       QualifierUnion.push_back(
 | |
|                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
 | |
|       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
 | |
|                                              MemPtr2->getClass()));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // FIXME: block pointer types?
 | |
| 
 | |
|     // Cannot unwrap any more types.
 | |
|     break;
 | |
|   } while (true);
 | |
| 
 | |
|   if (NeedConstBefore && NonStandardCompositeType) {
 | |
|     // Extension: Add 'const' to qualifiers that come before the first qualifier
 | |
|     // mismatch, so that our (non-standard!) composite type meets the
 | |
|     // requirements of C++ [conv.qual]p4 bullet 3.
 | |
|     for (unsigned I = 0; I != NeedConstBefore; ++I) {
 | |
|       if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
 | |
|         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
 | |
|         *NonStandardCompositeType = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Rewrap the composites as pointers or member pointers with the union CVRs.
 | |
|   ContainingClassVector::reverse_iterator MOC
 | |
|     = MemberOfClass.rbegin();
 | |
|   for (QualifierVector::reverse_iterator
 | |
|          I = QualifierUnion.rbegin(),
 | |
|          E = QualifierUnion.rend();
 | |
|        I != E; (void)++I, ++MOC) {
 | |
|     Qualifiers Quals = Qualifiers::fromCVRMask(*I);
 | |
|     if (MOC->first && MOC->second) {
 | |
|       // Rebuild member pointer type
 | |
|       Composite1 = Context.getMemberPointerType(
 | |
|                                     Context.getQualifiedType(Composite1, Quals),
 | |
|                                     MOC->first);
 | |
|       Composite2 = Context.getMemberPointerType(
 | |
|                                     Context.getQualifiedType(Composite2, Quals),
 | |
|                                     MOC->second);
 | |
|     } else {
 | |
|       // Rebuild pointer type
 | |
|       Composite1
 | |
|         = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
 | |
|       Composite2
 | |
|         = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try to convert to the first composite pointer type.
 | |
|   InitializedEntity Entity1
 | |
|     = InitializedEntity::InitializeTemporary(Composite1);
 | |
|   InitializationKind Kind
 | |
|     = InitializationKind::CreateCopy(Loc, SourceLocation());
 | |
|   InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
 | |
|   InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
 | |
| 
 | |
|   if (E1ToC1 && E2ToC1) {
 | |
|     // Conversion to Composite1 is viable.
 | |
|     if (!Context.hasSameType(Composite1, Composite2)) {
 | |
|       // Composite2 is a different type from Composite1. Check whether
 | |
|       // Composite2 is also viable.
 | |
|       InitializedEntity Entity2
 | |
|         = InitializedEntity::InitializeTemporary(Composite2);
 | |
|       InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
 | |
|       InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
 | |
|       if (E1ToC2 && E2ToC2) {
 | |
|         // Both Composite1 and Composite2 are viable and are different;
 | |
|         // this is an ambiguity.
 | |
|         return QualType();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Convert E1 to Composite1
 | |
|     ExprResult E1Result
 | |
|       = E1ToC1.Perform(*this, Entity1, Kind, E1);
 | |
|     if (E1Result.isInvalid())
 | |
|       return QualType();
 | |
|     E1 = E1Result.getAs<Expr>();
 | |
| 
 | |
|     // Convert E2 to Composite1
 | |
|     ExprResult E2Result
 | |
|       = E2ToC1.Perform(*this, Entity1, Kind, E2);
 | |
|     if (E2Result.isInvalid())
 | |
|       return QualType();
 | |
|     E2 = E2Result.getAs<Expr>();
 | |
| 
 | |
|     return Composite1;
 | |
|   }
 | |
| 
 | |
|   // Check whether Composite2 is viable.
 | |
|   InitializedEntity Entity2
 | |
|     = InitializedEntity::InitializeTemporary(Composite2);
 | |
|   InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
 | |
|   InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
 | |
|   if (!E1ToC2 || !E2ToC2)
 | |
|     return QualType();
 | |
| 
 | |
|   // Convert E1 to Composite2
 | |
|   ExprResult E1Result
 | |
|     = E1ToC2.Perform(*this, Entity2, Kind, E1);
 | |
|   if (E1Result.isInvalid())
 | |
|     return QualType();
 | |
|   E1 = E1Result.getAs<Expr>();
 | |
| 
 | |
|   // Convert E2 to Composite2
 | |
|   ExprResult E2Result
 | |
|     = E2ToC2.Perform(*this, Entity2, Kind, E2);
 | |
|   if (E2Result.isInvalid())
 | |
|     return QualType();
 | |
|   E2 = E2Result.getAs<Expr>();
 | |
| 
 | |
|   return Composite2;
 | |
| }
 | |
| 
 | |
| ExprResult Sema::MaybeBindToTemporary(Expr *E) {
 | |
|   if (!E)
 | |
|     return ExprError();
 | |
| 
 | |
|   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
 | |
| 
 | |
|   // If the result is a glvalue, we shouldn't bind it.
 | |
|   if (!E->isRValue())
 | |
|     return E;
 | |
| 
 | |
|   // In ARC, calls that return a retainable type can return retained,
 | |
|   // in which case we have to insert a consuming cast.
 | |
|   if (getLangOpts().ObjCAutoRefCount &&
 | |
|       E->getType()->isObjCRetainableType()) {
 | |
| 
 | |
|     bool ReturnsRetained;
 | |
| 
 | |
|     // For actual calls, we compute this by examining the type of the
 | |
|     // called value.
 | |
|     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
 | |
|       Expr *Callee = Call->getCallee()->IgnoreParens();
 | |
|       QualType T = Callee->getType();
 | |
| 
 | |
|       if (T == Context.BoundMemberTy) {
 | |
|         // Handle pointer-to-members.
 | |
|         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
 | |
|           T = BinOp->getRHS()->getType();
 | |
|         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
 | |
|           T = Mem->getMemberDecl()->getType();
 | |
|       }
 | |
|       
 | |
|       if (const PointerType *Ptr = T->getAs<PointerType>())
 | |
|         T = Ptr->getPointeeType();
 | |
|       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
 | |
|         T = Ptr->getPointeeType();
 | |
|       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
 | |
|         T = MemPtr->getPointeeType();
 | |
|       
 | |
|       const FunctionType *FTy = T->getAs<FunctionType>();
 | |
|       assert(FTy && "call to value not of function type?");
 | |
|       ReturnsRetained = FTy->getExtInfo().getProducesResult();
 | |
| 
 | |
|     // ActOnStmtExpr arranges things so that StmtExprs of retainable
 | |
|     // type always produce a +1 object.
 | |
|     } else if (isa<StmtExpr>(E)) {
 | |
|       ReturnsRetained = true;
 | |
| 
 | |
|     // We hit this case with the lambda conversion-to-block optimization;
 | |
|     // we don't want any extra casts here.
 | |
|     } else if (isa<CastExpr>(E) &&
 | |
|                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
 | |
|       return E;
 | |
| 
 | |
|     // For message sends and property references, we try to find an
 | |
|     // actual method.  FIXME: we should infer retention by selector in
 | |
|     // cases where we don't have an actual method.
 | |
|     } else {
 | |
|       ObjCMethodDecl *D = nullptr;
 | |
|       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
 | |
|         D = Send->getMethodDecl();
 | |
|       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
 | |
|         D = BoxedExpr->getBoxingMethod();
 | |
|       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
 | |
|         D = ArrayLit->getArrayWithObjectsMethod();
 | |
|       } else if (ObjCDictionaryLiteral *DictLit
 | |
|                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
 | |
|         D = DictLit->getDictWithObjectsMethod();
 | |
|       }
 | |
| 
 | |
|       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
 | |
| 
 | |
|       // Don't do reclaims on performSelector calls; despite their
 | |
|       // return type, the invoked method doesn't necessarily actually
 | |
|       // return an object.
 | |
|       if (!ReturnsRetained &&
 | |
|           D && D->getMethodFamily() == OMF_performSelector)
 | |
|         return E;
 | |
|     }
 | |
| 
 | |
|     // Don't reclaim an object of Class type.
 | |
|     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
 | |
|       return E;
 | |
| 
 | |
|     ExprNeedsCleanups = true;
 | |
| 
 | |
|     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
 | |
|                                    : CK_ARCReclaimReturnedObject);
 | |
|     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
 | |
|                                     VK_RValue);
 | |
|   }
 | |
| 
 | |
|   if (!getLangOpts().CPlusPlus)
 | |
|     return E;
 | |
| 
 | |
|   // Search for the base element type (cf. ASTContext::getBaseElementType) with
 | |
|   // a fast path for the common case that the type is directly a RecordType.
 | |
|   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
 | |
|   const RecordType *RT = nullptr;
 | |
|   while (!RT) {
 | |
|     switch (T->getTypeClass()) {
 | |
|     case Type::Record:
 | |
|       RT = cast<RecordType>(T);
 | |
|       break;
 | |
|     case Type::ConstantArray:
 | |
|     case Type::IncompleteArray:
 | |
|     case Type::VariableArray:
 | |
|     case Type::DependentSizedArray:
 | |
|       T = cast<ArrayType>(T)->getElementType().getTypePtr();
 | |
|       break;
 | |
|     default:
 | |
|       return E;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // That should be enough to guarantee that this type is complete, if we're
 | |
|   // not processing a decltype expression.
 | |
|   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
 | |
|   if (RD->isInvalidDecl() || RD->isDependentContext())
 | |
|     return E;
 | |
| 
 | |
|   bool IsDecltype = ExprEvalContexts.back().IsDecltype;
 | |
|   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
 | |
| 
 | |
|   if (Destructor) {
 | |
|     MarkFunctionReferenced(E->getExprLoc(), Destructor);
 | |
|     CheckDestructorAccess(E->getExprLoc(), Destructor,
 | |
|                           PDiag(diag::err_access_dtor_temp)
 | |
|                             << E->getType());
 | |
|     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
 | |
|       return ExprError();
 | |
| 
 | |
|     // If destructor is trivial, we can avoid the extra copy.
 | |
|     if (Destructor->isTrivial())
 | |
|       return E;
 | |
| 
 | |
|     // We need a cleanup, but we don't need to remember the temporary.
 | |
|     ExprNeedsCleanups = true;
 | |
|   }
 | |
| 
 | |
|   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
 | |
|   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
 | |
| 
 | |
|   if (IsDecltype)
 | |
|     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
 | |
| 
 | |
|   return Bind;
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
 | |
|   if (SubExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   return MaybeCreateExprWithCleanups(SubExpr.get());
 | |
| }
 | |
| 
 | |
| Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
 | |
|   assert(SubExpr && "subexpression can't be null!");
 | |
| 
 | |
|   CleanupVarDeclMarking();
 | |
| 
 | |
|   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
 | |
|   assert(ExprCleanupObjects.size() >= FirstCleanup);
 | |
|   assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
 | |
|   if (!ExprNeedsCleanups)
 | |
|     return SubExpr;
 | |
| 
 | |
|   auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
 | |
|                                      ExprCleanupObjects.size() - FirstCleanup);
 | |
| 
 | |
|   Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
 | |
|   DiscardCleanupsInEvaluationContext();
 | |
| 
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
 | |
|   assert(SubStmt && "sub-statement can't be null!");
 | |
| 
 | |
|   CleanupVarDeclMarking();
 | |
| 
 | |
|   if (!ExprNeedsCleanups)
 | |
|     return SubStmt;
 | |
| 
 | |
|   // FIXME: In order to attach the temporaries, wrap the statement into
 | |
|   // a StmtExpr; currently this is only used for asm statements.
 | |
|   // This is hacky, either create a new CXXStmtWithTemporaries statement or
 | |
|   // a new AsmStmtWithTemporaries.
 | |
|   CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
 | |
|                                                       SourceLocation(),
 | |
|                                                       SourceLocation());
 | |
|   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
 | |
|                                    SourceLocation());
 | |
|   return MaybeCreateExprWithCleanups(E);
 | |
| }
 | |
| 
 | |
| /// Process the expression contained within a decltype. For such expressions,
 | |
| /// certain semantic checks on temporaries are delayed until this point, and
 | |
| /// are omitted for the 'topmost' call in the decltype expression. If the
 | |
| /// topmost call bound a temporary, strip that temporary off the expression.
 | |
| ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
 | |
|   assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
 | |
| 
 | |
|   // C++11 [expr.call]p11:
 | |
|   //   If a function call is a prvalue of object type,
 | |
|   // -- if the function call is either
 | |
|   //   -- the operand of a decltype-specifier, or
 | |
|   //   -- the right operand of a comma operator that is the operand of a
 | |
|   //      decltype-specifier,
 | |
|   //   a temporary object is not introduced for the prvalue.
 | |
| 
 | |
|   // Recursively rebuild ParenExprs and comma expressions to strip out the
 | |
|   // outermost CXXBindTemporaryExpr, if any.
 | |
|   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
 | |
|     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
 | |
|     if (SubExpr.isInvalid())
 | |
|       return ExprError();
 | |
|     if (SubExpr.get() == PE->getSubExpr())
 | |
|       return E;
 | |
|     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
 | |
|   }
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|     if (BO->getOpcode() == BO_Comma) {
 | |
|       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
 | |
|       if (RHS.isInvalid())
 | |
|         return ExprError();
 | |
|       if (RHS.get() == BO->getRHS())
 | |
|         return E;
 | |
|       return new (Context) BinaryOperator(
 | |
|           BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
 | |
|           BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
 | |
|   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
 | |
|                               : nullptr;
 | |
|   if (TopCall)
 | |
|     E = TopCall;
 | |
|   else
 | |
|     TopBind = nullptr;
 | |
| 
 | |
|   // Disable the special decltype handling now.
 | |
|   ExprEvalContexts.back().IsDecltype = false;
 | |
| 
 | |
|   // In MS mode, don't perform any extra checking of call return types within a
 | |
|   // decltype expression.
 | |
|   if (getLangOpts().MSVCCompat)
 | |
|     return E;
 | |
| 
 | |
|   // Perform the semantic checks we delayed until this point.
 | |
|   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
 | |
|        I != N; ++I) {
 | |
|     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
 | |
|     if (Call == TopCall)
 | |
|       continue;
 | |
| 
 | |
|     if (CheckCallReturnType(Call->getCallReturnType(Context),
 | |
|                             Call->getLocStart(),
 | |
|                             Call, Call->getDirectCallee()))
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   // Now all relevant types are complete, check the destructors are accessible
 | |
|   // and non-deleted, and annotate them on the temporaries.
 | |
|   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
 | |
|        I != N; ++I) {
 | |
|     CXXBindTemporaryExpr *Bind =
 | |
|       ExprEvalContexts.back().DelayedDecltypeBinds[I];
 | |
|     if (Bind == TopBind)
 | |
|       continue;
 | |
| 
 | |
|     CXXTemporary *Temp = Bind->getTemporary();
 | |
| 
 | |
|     CXXRecordDecl *RD =
 | |
|       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
 | |
|     CXXDestructorDecl *Destructor = LookupDestructor(RD);
 | |
|     Temp->setDestructor(Destructor);
 | |
| 
 | |
|     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
 | |
|     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
 | |
|                           PDiag(diag::err_access_dtor_temp)
 | |
|                             << Bind->getType());
 | |
|     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
 | |
|       return ExprError();
 | |
| 
 | |
|     // We need a cleanup, but we don't need to remember the temporary.
 | |
|     ExprNeedsCleanups = true;
 | |
|   }
 | |
| 
 | |
|   // Possibly strip off the top CXXBindTemporaryExpr.
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| /// Note a set of 'operator->' functions that were used for a member access.
 | |
| static void noteOperatorArrows(Sema &S,
 | |
|                                ArrayRef<FunctionDecl *> OperatorArrows) {
 | |
|   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
 | |
|   // FIXME: Make this configurable?
 | |
|   unsigned Limit = 9;
 | |
|   if (OperatorArrows.size() > Limit) {
 | |
|     // Produce Limit-1 normal notes and one 'skipping' note.
 | |
|     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
 | |
|     SkipCount = OperatorArrows.size() - (Limit - 1);
 | |
|   }
 | |
| 
 | |
|   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
 | |
|     if (I == SkipStart) {
 | |
|       S.Diag(OperatorArrows[I]->getLocation(),
 | |
|              diag::note_operator_arrows_suppressed)
 | |
|           << SkipCount;
 | |
|       I += SkipCount;
 | |
|     } else {
 | |
|       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
 | |
|           << OperatorArrows[I]->getCallResultType();
 | |
|       ++I;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
 | |
|                                               SourceLocation OpLoc,
 | |
|                                               tok::TokenKind OpKind,
 | |
|                                               ParsedType &ObjectType,
 | |
|                                               bool &MayBePseudoDestructor) {
 | |
|   // Since this might be a postfix expression, get rid of ParenListExprs.
 | |
|   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
 | |
|   if (Result.isInvalid()) return ExprError();
 | |
|   Base = Result.get();
 | |
| 
 | |
|   Result = CheckPlaceholderExpr(Base);
 | |
|   if (Result.isInvalid()) return ExprError();
 | |
|   Base = Result.get();
 | |
| 
 | |
|   QualType BaseType = Base->getType();
 | |
|   MayBePseudoDestructor = false;
 | |
|   if (BaseType->isDependentType()) {
 | |
|     // If we have a pointer to a dependent type and are using the -> operator,
 | |
|     // the object type is the type that the pointer points to. We might still
 | |
|     // have enough information about that type to do something useful.
 | |
|     if (OpKind == tok::arrow)
 | |
|       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
 | |
|         BaseType = Ptr->getPointeeType();
 | |
| 
 | |
|     ObjectType = ParsedType::make(BaseType);
 | |
|     MayBePseudoDestructor = true;
 | |
|     return Base;
 | |
|   }
 | |
| 
 | |
|   // C++ [over.match.oper]p8:
 | |
|   //   [...] When operator->returns, the operator-> is applied  to the value
 | |
|   //   returned, with the original second operand.
 | |
|   if (OpKind == tok::arrow) {
 | |
|     QualType StartingType = BaseType;
 | |
|     bool NoArrowOperatorFound = false;
 | |
|     bool FirstIteration = true;
 | |
|     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
 | |
|     // The set of types we've considered so far.
 | |
|     llvm::SmallPtrSet<CanQualType,8> CTypes;
 | |
|     SmallVector<FunctionDecl*, 8> OperatorArrows;
 | |
|     CTypes.insert(Context.getCanonicalType(BaseType));
 | |
| 
 | |
|     while (BaseType->isRecordType()) {
 | |
|       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
 | |
|         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
 | |
|           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
 | |
|         noteOperatorArrows(*this, OperatorArrows);
 | |
|         Diag(OpLoc, diag::note_operator_arrow_depth)
 | |
|           << getLangOpts().ArrowDepth;
 | |
|         return ExprError();
 | |
|       }
 | |
| 
 | |
|       Result = BuildOverloadedArrowExpr(
 | |
|           S, Base, OpLoc,
 | |
|           // When in a template specialization and on the first loop iteration,
 | |
|           // potentially give the default diagnostic (with the fixit in a
 | |
|           // separate note) instead of having the error reported back to here
 | |
|           // and giving a diagnostic with a fixit attached to the error itself.
 | |
|           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
 | |
|               ? nullptr
 | |
|               : &NoArrowOperatorFound);
 | |
|       if (Result.isInvalid()) {
 | |
|         if (NoArrowOperatorFound) {
 | |
|           if (FirstIteration) {
 | |
|             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
 | |
|               << BaseType << 1 << Base->getSourceRange()
 | |
|               << FixItHint::CreateReplacement(OpLoc, ".");
 | |
|             OpKind = tok::period;
 | |
|             break;
 | |
|           }
 | |
|           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
 | |
|             << BaseType << Base->getSourceRange();
 | |
|           CallExpr *CE = dyn_cast<CallExpr>(Base);
 | |
|           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
 | |
|             Diag(CD->getLocStart(),
 | |
|                  diag::note_member_reference_arrow_from_operator_arrow);
 | |
|           }
 | |
|         }
 | |
|         return ExprError();
 | |
|       }
 | |
|       Base = Result.get();
 | |
|       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
 | |
|         OperatorArrows.push_back(OpCall->getDirectCallee());
 | |
|       BaseType = Base->getType();
 | |
|       CanQualType CBaseType = Context.getCanonicalType(BaseType);
 | |
|       if (!CTypes.insert(CBaseType).second) {
 | |
|         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
 | |
|         noteOperatorArrows(*this, OperatorArrows);
 | |
|         return ExprError();
 | |
|       }
 | |
|       FirstIteration = false;
 | |
|     }
 | |
| 
 | |
|     if (OpKind == tok::arrow &&
 | |
|         (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
 | |
|       BaseType = BaseType->getPointeeType();
 | |
|   }
 | |
| 
 | |
|   // Objective-C properties allow "." access on Objective-C pointer types,
 | |
|   // so adjust the base type to the object type itself.
 | |
|   if (BaseType->isObjCObjectPointerType())
 | |
|     BaseType = BaseType->getPointeeType();
 | |
|   
 | |
|   // C++ [basic.lookup.classref]p2:
 | |
|   //   [...] If the type of the object expression is of pointer to scalar
 | |
|   //   type, the unqualified-id is looked up in the context of the complete
 | |
|   //   postfix-expression.
 | |
|   //
 | |
|   // This also indicates that we could be parsing a pseudo-destructor-name.
 | |
|   // Note that Objective-C class and object types can be pseudo-destructor
 | |
|   // expressions or normal member (ivar or property) access expressions, and
 | |
|   // it's legal for the type to be incomplete if this is a pseudo-destructor
 | |
|   // call.  We'll do more incomplete-type checks later in the lookup process,
 | |
|   // so just skip this check for ObjC types.
 | |
|   if (BaseType->isObjCObjectOrInterfaceType()) {
 | |
|     ObjectType = ParsedType::make(BaseType);
 | |
|     MayBePseudoDestructor = true;
 | |
|     return Base;
 | |
|   } else if (!BaseType->isRecordType()) {
 | |
|     ObjectType = ParsedType();
 | |
|     MayBePseudoDestructor = true;
 | |
|     return Base;
 | |
|   }
 | |
| 
 | |
|   // The object type must be complete (or dependent), or
 | |
|   // C++11 [expr.prim.general]p3:
 | |
|   //   Unlike the object expression in other contexts, *this is not required to
 | |
|   //   be of complete type for purposes of class member access (5.2.5) outside 
 | |
|   //   the member function body.
 | |
|   if (!BaseType->isDependentType() &&
 | |
|       !isThisOutsideMemberFunctionBody(BaseType) &&
 | |
|       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
 | |
|     return ExprError();
 | |
| 
 | |
|   // C++ [basic.lookup.classref]p2:
 | |
|   //   If the id-expression in a class member access (5.2.5) is an
 | |
|   //   unqualified-id, and the type of the object expression is of a class
 | |
|   //   type C (or of pointer to a class type C), the unqualified-id is looked
 | |
|   //   up in the scope of class C. [...]
 | |
|   ObjectType = ParsedType::make(BaseType);
 | |
|   return Base;
 | |
| }
 | |
| 
 | |
| static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base, 
 | |
|                    tok::TokenKind& OpKind, SourceLocation OpLoc) {
 | |
|   if (Base->hasPlaceholderType()) {
 | |
|     ExprResult result = S.CheckPlaceholderExpr(Base);
 | |
|     if (result.isInvalid()) return true;
 | |
|     Base = result.get();
 | |
|   }
 | |
|   ObjectType = Base->getType();
 | |
| 
 | |
|   // C++ [expr.pseudo]p2:
 | |
|   //   The left-hand side of the dot operator shall be of scalar type. The
 | |
|   //   left-hand side of the arrow operator shall be of pointer to scalar type.
 | |
|   //   This scalar type is the object type.
 | |
|   // Note that this is rather different from the normal handling for the
 | |
|   // arrow operator.
 | |
|   if (OpKind == tok::arrow) {
 | |
|     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
 | |
|       ObjectType = Ptr->getPointeeType();
 | |
|     } else if (!Base->isTypeDependent()) {
 | |
|       // The user wrote "p->" when she probably meant "p."; fix it.
 | |
|       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
 | |
|         << ObjectType << true
 | |
|         << FixItHint::CreateReplacement(OpLoc, ".");
 | |
|       if (S.isSFINAEContext())
 | |
|         return true;
 | |
| 
 | |
|       OpKind = tok::period;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
 | |
|                                            SourceLocation OpLoc,
 | |
|                                            tok::TokenKind OpKind,
 | |
|                                            const CXXScopeSpec &SS,
 | |
|                                            TypeSourceInfo *ScopeTypeInfo,
 | |
|                                            SourceLocation CCLoc,
 | |
|                                            SourceLocation TildeLoc,
 | |
|                                          PseudoDestructorTypeStorage Destructed) {
 | |
|   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
 | |
| 
 | |
|   QualType ObjectType;
 | |
|   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
 | |
|     return ExprError();
 | |
| 
 | |
|   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
 | |
|       !ObjectType->isVectorType()) {
 | |
|     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
 | |
|       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
 | |
|     else {
 | |
|       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
 | |
|         << ObjectType << Base->getSourceRange();
 | |
|       return ExprError();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [expr.pseudo]p2:
 | |
|   //   [...] The cv-unqualified versions of the object type and of the type
 | |
|   //   designated by the pseudo-destructor-name shall be the same type.
 | |
|   if (DestructedTypeInfo) {
 | |
|     QualType DestructedType = DestructedTypeInfo->getType();
 | |
|     SourceLocation DestructedTypeStart
 | |
|       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
 | |
|     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
 | |
|       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
 | |
|         Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
 | |
|           << ObjectType << DestructedType << Base->getSourceRange()
 | |
|           << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
 | |
| 
 | |
|         // Recover by setting the destructed type to the object type.
 | |
|         DestructedType = ObjectType;
 | |
|         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
 | |
|                                                            DestructedTypeStart);
 | |
|         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
 | |
|       } else if (DestructedType.getObjCLifetime() != 
 | |
|                                                 ObjectType.getObjCLifetime()) {
 | |
|         
 | |
|         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
 | |
|           // Okay: just pretend that the user provided the correctly-qualified
 | |
|           // type.
 | |
|         } else {
 | |
|           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
 | |
|             << ObjectType << DestructedType << Base->getSourceRange()
 | |
|             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
 | |
|         }
 | |
|         
 | |
|         // Recover by setting the destructed type to the object type.
 | |
|         DestructedType = ObjectType;
 | |
|         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
 | |
|                                                            DestructedTypeStart);
 | |
|         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [expr.pseudo]p2:
 | |
|   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
 | |
|   //   form
 | |
|   //
 | |
|   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
 | |
|   //
 | |
|   //   shall designate the same scalar type.
 | |
|   if (ScopeTypeInfo) {
 | |
|     QualType ScopeType = ScopeTypeInfo->getType();
 | |
|     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
 | |
|         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
 | |
| 
 | |
|       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
 | |
|            diag::err_pseudo_dtor_type_mismatch)
 | |
|         << ObjectType << ScopeType << Base->getSourceRange()
 | |
|         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
 | |
| 
 | |
|       ScopeType = QualType();
 | |
|       ScopeTypeInfo = nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Expr *Result
 | |
|     = new (Context) CXXPseudoDestructorExpr(Context, Base,
 | |
|                                             OpKind == tok::arrow, OpLoc,
 | |
|                                             SS.getWithLocInContext(Context),
 | |
|                                             ScopeTypeInfo,
 | |
|                                             CCLoc,
 | |
|                                             TildeLoc,
 | |
|                                             Destructed);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
 | |
|                                            SourceLocation OpLoc,
 | |
|                                            tok::TokenKind OpKind,
 | |
|                                            CXXScopeSpec &SS,
 | |
|                                            UnqualifiedId &FirstTypeName,
 | |
|                                            SourceLocation CCLoc,
 | |
|                                            SourceLocation TildeLoc,
 | |
|                                            UnqualifiedId &SecondTypeName) {
 | |
|   assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
 | |
|           FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
 | |
|          "Invalid first type name in pseudo-destructor");
 | |
|   assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
 | |
|           SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
 | |
|          "Invalid second type name in pseudo-destructor");
 | |
| 
 | |
|   QualType ObjectType;
 | |
|   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
 | |
|     return ExprError();
 | |
| 
 | |
|   // Compute the object type that we should use for name lookup purposes. Only
 | |
|   // record types and dependent types matter.
 | |
|   ParsedType ObjectTypePtrForLookup;
 | |
|   if (!SS.isSet()) {
 | |
|     if (ObjectType->isRecordType())
 | |
|       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
 | |
|     else if (ObjectType->isDependentType())
 | |
|       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
 | |
|   }
 | |
| 
 | |
|   // Convert the name of the type being destructed (following the ~) into a
 | |
|   // type (with source-location information).
 | |
|   QualType DestructedType;
 | |
|   TypeSourceInfo *DestructedTypeInfo = nullptr;
 | |
|   PseudoDestructorTypeStorage Destructed;
 | |
|   if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
 | |
|     ParsedType T = getTypeName(*SecondTypeName.Identifier,
 | |
|                                SecondTypeName.StartLocation,
 | |
|                                S, &SS, true, false, ObjectTypePtrForLookup);
 | |
|     if (!T &&
 | |
|         ((SS.isSet() && !computeDeclContext(SS, false)) ||
 | |
|          (!SS.isSet() && ObjectType->isDependentType()))) {
 | |
|       // The name of the type being destroyed is a dependent name, and we
 | |
|       // couldn't find anything useful in scope. Just store the identifier and
 | |
|       // it's location, and we'll perform (qualified) name lookup again at
 | |
|       // template instantiation time.
 | |
|       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
 | |
|                                                SecondTypeName.StartLocation);
 | |
|     } else if (!T) {
 | |
|       Diag(SecondTypeName.StartLocation,
 | |
|            diag::err_pseudo_dtor_destructor_non_type)
 | |
|         << SecondTypeName.Identifier << ObjectType;
 | |
|       if (isSFINAEContext())
 | |
|         return ExprError();
 | |
| 
 | |
|       // Recover by assuming we had the right type all along.
 | |
|       DestructedType = ObjectType;
 | |
|     } else
 | |
|       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
 | |
|   } else {
 | |
|     // Resolve the template-id to a type.
 | |
|     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
 | |
|     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
 | |
|                                        TemplateId->NumArgs);
 | |
|     TypeResult T = ActOnTemplateIdType(TemplateId->SS,
 | |
|                                        TemplateId->TemplateKWLoc,
 | |
|                                        TemplateId->Template,
 | |
|                                        TemplateId->TemplateNameLoc,
 | |
|                                        TemplateId->LAngleLoc,
 | |
|                                        TemplateArgsPtr,
 | |
|                                        TemplateId->RAngleLoc);
 | |
|     if (T.isInvalid() || !T.get()) {
 | |
|       // Recover by assuming we had the right type all along.
 | |
|       DestructedType = ObjectType;
 | |
|     } else
 | |
|       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
 | |
|   }
 | |
| 
 | |
|   // If we've performed some kind of recovery, (re-)build the type source
 | |
|   // information.
 | |
|   if (!DestructedType.isNull()) {
 | |
|     if (!DestructedTypeInfo)
 | |
|       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
 | |
|                                                   SecondTypeName.StartLocation);
 | |
|     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
 | |
|   }
 | |
| 
 | |
|   // Convert the name of the scope type (the type prior to '::') into a type.
 | |
|   TypeSourceInfo *ScopeTypeInfo = nullptr;
 | |
|   QualType ScopeType;
 | |
|   if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
 | |
|       FirstTypeName.Identifier) {
 | |
|     if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
 | |
|       ParsedType T = getTypeName(*FirstTypeName.Identifier,
 | |
|                                  FirstTypeName.StartLocation,
 | |
|                                  S, &SS, true, false, ObjectTypePtrForLookup);
 | |
|       if (!T) {
 | |
|         Diag(FirstTypeName.StartLocation,
 | |
|              diag::err_pseudo_dtor_destructor_non_type)
 | |
|           << FirstTypeName.Identifier << ObjectType;
 | |
| 
 | |
|         if (isSFINAEContext())
 | |
|           return ExprError();
 | |
| 
 | |
|         // Just drop this type. It's unnecessary anyway.
 | |
|         ScopeType = QualType();
 | |
|       } else
 | |
|         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
 | |
|     } else {
 | |
|       // Resolve the template-id to a type.
 | |
|       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
 | |
|       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
 | |
|                                          TemplateId->NumArgs);
 | |
|       TypeResult T = ActOnTemplateIdType(TemplateId->SS,
 | |
|                                          TemplateId->TemplateKWLoc,
 | |
|                                          TemplateId->Template,
 | |
|                                          TemplateId->TemplateNameLoc,
 | |
|                                          TemplateId->LAngleLoc,
 | |
|                                          TemplateArgsPtr,
 | |
|                                          TemplateId->RAngleLoc);
 | |
|       if (T.isInvalid() || !T.get()) {
 | |
|         // Recover by dropping this type.
 | |
|         ScopeType = QualType();
 | |
|       } else
 | |
|         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!ScopeType.isNull() && !ScopeTypeInfo)
 | |
|     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
 | |
|                                                   FirstTypeName.StartLocation);
 | |
| 
 | |
| 
 | |
|   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
 | |
|                                    ScopeTypeInfo, CCLoc, TildeLoc,
 | |
|                                    Destructed);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
 | |
|                                            SourceLocation OpLoc,
 | |
|                                            tok::TokenKind OpKind,
 | |
|                                            SourceLocation TildeLoc, 
 | |
|                                            const DeclSpec& DS) {
 | |
|   QualType ObjectType;
 | |
|   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
 | |
|     return ExprError();
 | |
| 
 | |
|   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
 | |
|                                  false);
 | |
| 
 | |
|   TypeLocBuilder TLB;
 | |
|   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
 | |
|   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
 | |
|   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
 | |
|   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
 | |
| 
 | |
|   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
 | |
|                                    nullptr, SourceLocation(), TildeLoc,
 | |
|                                    Destructed);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
 | |
|                                         CXXConversionDecl *Method,
 | |
|                                         bool HadMultipleCandidates) {
 | |
|   if (Method->getParent()->isLambda() &&
 | |
|       Method->getConversionType()->isBlockPointerType()) {
 | |
|     // This is a lambda coversion to block pointer; check if the argument
 | |
|     // is a LambdaExpr.
 | |
|     Expr *SubE = E;
 | |
|     CastExpr *CE = dyn_cast<CastExpr>(SubE);
 | |
|     if (CE && CE->getCastKind() == CK_NoOp)
 | |
|       SubE = CE->getSubExpr();
 | |
|     SubE = SubE->IgnoreParens();
 | |
|     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
 | |
|       SubE = BE->getSubExpr();
 | |
|     if (isa<LambdaExpr>(SubE)) {
 | |
|       // For the conversion to block pointer on a lambda expression, we
 | |
|       // construct a special BlockLiteral instead; this doesn't really make
 | |
|       // a difference in ARC, but outside of ARC the resulting block literal
 | |
|       // follows the normal lifetime rules for block literals instead of being
 | |
|       // autoreleased.
 | |
|       DiagnosticErrorTrap Trap(Diags);
 | |
|       ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
 | |
|                                                      E->getExprLoc(),
 | |
|                                                      Method, E);
 | |
|       if (Exp.isInvalid())
 | |
|         Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
 | |
|       return Exp;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
 | |
|                                           FoundDecl, Method);
 | |
|   if (Exp.isInvalid())
 | |
|     return true;
 | |
| 
 | |
|   MemberExpr *ME = new (Context) MemberExpr(
 | |
|       Exp.get(), /*IsArrow=*/false, SourceLocation(), Method, SourceLocation(),
 | |
|       Context.BoundMemberTy, VK_RValue, OK_Ordinary);
 | |
|   if (HadMultipleCandidates)
 | |
|     ME->setHadMultipleCandidates(true);
 | |
|   MarkMemberReferenced(ME);
 | |
| 
 | |
|   QualType ResultType = Method->getReturnType();
 | |
|   ExprValueKind VK = Expr::getValueKindForType(ResultType);
 | |
|   ResultType = ResultType.getNonLValueExprType(Context);
 | |
| 
 | |
|   CXXMemberCallExpr *CE =
 | |
|     new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
 | |
|                                     Exp.get()->getLocEnd());
 | |
|   return CE;
 | |
| }
 | |
| 
 | |
| ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
 | |
|                                       SourceLocation RParen) {
 | |
|   // If the operand is an unresolved lookup expression, the expression is ill-
 | |
|   // formed per [over.over]p1, because overloaded function names cannot be used
 | |
|   // without arguments except in explicit contexts.
 | |
|   ExprResult R = CheckPlaceholderExpr(Operand);
 | |
|   if (R.isInvalid())
 | |
|     return R;
 | |
| 
 | |
|   // The operand may have been modified when checking the placeholder type.
 | |
|   Operand = R.get();
 | |
| 
 | |
|   if (ActiveTemplateInstantiations.empty() &&
 | |
|       Operand->HasSideEffects(Context, false)) {
 | |
|     // The expression operand for noexcept is in an unevaluated expression
 | |
|     // context, so side effects could result in unintended consequences.
 | |
|     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
 | |
|   }
 | |
| 
 | |
|   CanThrowResult CanThrow = canThrow(Operand);
 | |
|   return new (Context)
 | |
|       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
 | |
|                                    Expr *Operand, SourceLocation RParen) {
 | |
|   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
 | |
| }
 | |
| 
 | |
| static bool IsSpecialDiscardedValue(Expr *E) {
 | |
|   // In C++11, discarded-value expressions of a certain form are special,
 | |
|   // according to [expr]p10:
 | |
|   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
 | |
|   //   expression is an lvalue of volatile-qualified type and it has
 | |
|   //   one of the following forms:
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   //   - id-expression (5.1.1),
 | |
|   if (isa<DeclRefExpr>(E))
 | |
|     return true;
 | |
| 
 | |
|   //   - subscripting (5.2.1),
 | |
|   if (isa<ArraySubscriptExpr>(E))
 | |
|     return true;
 | |
| 
 | |
|   //   - class member access (5.2.5),
 | |
|   if (isa<MemberExpr>(E))
 | |
|     return true;
 | |
| 
 | |
|   //   - indirection (5.3.1),
 | |
|   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
 | |
|     if (UO->getOpcode() == UO_Deref)
 | |
|       return true;
 | |
| 
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | |
|     //   - pointer-to-member operation (5.5),
 | |
|     if (BO->isPtrMemOp())
 | |
|       return true;
 | |
| 
 | |
|     //   - comma expression (5.18) where the right operand is one of the above.
 | |
|     if (BO->getOpcode() == BO_Comma)
 | |
|       return IsSpecialDiscardedValue(BO->getRHS());
 | |
|   }
 | |
| 
 | |
|   //   - conditional expression (5.16) where both the second and the third
 | |
|   //     operands are one of the above, or
 | |
|   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
 | |
|     return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
 | |
|            IsSpecialDiscardedValue(CO->getFalseExpr());
 | |
|   // The related edge case of "*x ?: *x".
 | |
|   if (BinaryConditionalOperator *BCO =
 | |
|           dyn_cast<BinaryConditionalOperator>(E)) {
 | |
|     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
 | |
|       return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
 | |
|              IsSpecialDiscardedValue(BCO->getFalseExpr());
 | |
|   }
 | |
| 
 | |
|   // Objective-C++ extensions to the rule.
 | |
|   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Perform the conversions required for an expression used in a
 | |
| /// context that ignores the result.
 | |
| ExprResult Sema::IgnoredValueConversions(Expr *E) {
 | |
|   if (E->hasPlaceholderType()) {
 | |
|     ExprResult result = CheckPlaceholderExpr(E);
 | |
|     if (result.isInvalid()) return E;
 | |
|     E = result.get();
 | |
|   }
 | |
| 
 | |
|   // C99 6.3.2.1:
 | |
|   //   [Except in specific positions,] an lvalue that does not have
 | |
|   //   array type is converted to the value stored in the
 | |
|   //   designated object (and is no longer an lvalue).
 | |
|   if (E->isRValue()) {
 | |
|     // In C, function designators (i.e. expressions of function type)
 | |
|     // are r-values, but we still want to do function-to-pointer decay
 | |
|     // on them.  This is both technically correct and convenient for
 | |
|     // some clients.
 | |
|     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
 | |
|       return DefaultFunctionArrayConversion(E);
 | |
| 
 | |
|     return E;
 | |
|   }
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus)  {
 | |
|     // The C++11 standard defines the notion of a discarded-value expression;
 | |
|     // normally, we don't need to do anything to handle it, but if it is a
 | |
|     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
 | |
|     // conversion.
 | |
|     if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
 | |
|         E->getType().isVolatileQualified() &&
 | |
|         IsSpecialDiscardedValue(E)) {
 | |
|       ExprResult Res = DefaultLvalueConversion(E);
 | |
|       if (Res.isInvalid())
 | |
|         return E;
 | |
|       E = Res.get();
 | |
|     } 
 | |
|     return E;
 | |
|   }
 | |
| 
 | |
|   // GCC seems to also exclude expressions of incomplete enum type.
 | |
|   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
 | |
|     if (!T->getDecl()->isComplete()) {
 | |
|       // FIXME: stupid workaround for a codegen bug!
 | |
|       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
 | |
|       return E;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
 | |
|   if (Res.isInvalid())
 | |
|     return E;
 | |
|   E = Res.get();
 | |
| 
 | |
|   if (!E->getType()->isVoidType())
 | |
|     RequireCompleteType(E->getExprLoc(), E->getType(),
 | |
|                         diag::err_incomplete_type);
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| // If we can unambiguously determine whether Var can never be used
 | |
| // in a constant expression, return true.
 | |
| //  - if the variable and its initializer are non-dependent, then
 | |
| //    we can unambiguously check if the variable is a constant expression.
 | |
| //  - if the initializer is not value dependent - we can determine whether
 | |
| //    it can be used to initialize a constant expression.  If Init can not
 | |
| //    be used to initialize a constant expression we conclude that Var can 
 | |
| //    never be a constant expression.
 | |
| //  - FXIME: if the initializer is dependent, we can still do some analysis and
 | |
| //    identify certain cases unambiguously as non-const by using a Visitor:
 | |
| //      - such as those that involve odr-use of a ParmVarDecl, involve a new
 | |
| //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
 | |
| static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 
 | |
|     ASTContext &Context) {
 | |
|   if (isa<ParmVarDecl>(Var)) return true;
 | |
|   const VarDecl *DefVD = nullptr;
 | |
| 
 | |
|   // If there is no initializer - this can not be a constant expression.
 | |
|   if (!Var->getAnyInitializer(DefVD)) return true;
 | |
|   assert(DefVD);
 | |
|   if (DefVD->isWeak()) return false;
 | |
|   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
 | |
| 
 | |
|   Expr *Init = cast<Expr>(Eval->Value);
 | |
| 
 | |
|   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
 | |
|     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
 | |
|     // of value-dependent expressions, and use it here to determine whether the
 | |
|     // initializer is a potential constant expression.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return !IsVariableAConstantExpression(Var, Context); 
 | |
| }
 | |
| 
 | |
| /// \brief Check if the current lambda has any potential captures 
 | |
| /// that must be captured by any of its enclosing lambdas that are ready to 
 | |
| /// capture. If there is a lambda that can capture a nested 
 | |
| /// potential-capture, go ahead and do so.  Also, check to see if any 
 | |
| /// variables are uncaptureable or do not involve an odr-use so do not 
 | |
| /// need to be captured.
 | |
| 
 | |
| static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
 | |
|     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
 | |
| 
 | |
|   assert(!S.isUnevaluatedContext());  
 | |
|   assert(S.CurContext->isDependentContext()); 
 | |
|   assert(CurrentLSI->CallOperator == S.CurContext && 
 | |
|       "The current call operator must be synchronized with Sema's CurContext");
 | |
| 
 | |
|   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
 | |
| 
 | |
|   ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef(
 | |
|       S.FunctionScopes.data(), S.FunctionScopes.size());
 | |
|   
 | |
|   // All the potentially captureable variables in the current nested
 | |
|   // lambda (within a generic outer lambda), must be captured by an
 | |
|   // outer lambda that is enclosed within a non-dependent context.
 | |
|   const unsigned NumPotentialCaptures =
 | |
|       CurrentLSI->getNumPotentialVariableCaptures();
 | |
|   for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
 | |
|     Expr *VarExpr = nullptr;
 | |
|     VarDecl *Var = nullptr;
 | |
|     CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
 | |
|     // If the variable is clearly identified as non-odr-used and the full
 | |
|     // expression is not instantiation dependent, only then do we not 
 | |
|     // need to check enclosing lambda's for speculative captures.
 | |
|     // For e.g.:
 | |
|     // Even though 'x' is not odr-used, it should be captured.
 | |
|     // int test() {
 | |
|     //   const int x = 10;
 | |
|     //   auto L = [=](auto a) {
 | |
|     //     (void) +x + a;
 | |
|     //   };
 | |
|     // }
 | |
|     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
 | |
|         !IsFullExprInstantiationDependent)
 | |
|       continue;
 | |
| 
 | |
|     // If we have a capture-capable lambda for the variable, go ahead and
 | |
|     // capture the variable in that lambda (and all its enclosing lambdas).
 | |
|     if (const Optional<unsigned> Index =
 | |
|             getStackIndexOfNearestEnclosingCaptureCapableLambda(
 | |
|                 FunctionScopesArrayRef, Var, S)) {
 | |
|       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
 | |
|       MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
 | |
|                          &FunctionScopeIndexOfCapturableLambda);
 | |
|     } 
 | |
|     const bool IsVarNeverAConstantExpression = 
 | |
|         VariableCanNeverBeAConstantExpression(Var, S.Context);
 | |
|     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
 | |
|       // This full expression is not instantiation dependent or the variable
 | |
|       // can not be used in a constant expression - which means 
 | |
|       // this variable must be odr-used here, so diagnose a 
 | |
|       // capture violation early, if the variable is un-captureable.
 | |
|       // This is purely for diagnosing errors early.  Otherwise, this
 | |
|       // error would get diagnosed when the lambda becomes capture ready.
 | |
|       QualType CaptureType, DeclRefType;
 | |
|       SourceLocation ExprLoc = VarExpr->getExprLoc();
 | |
|       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
 | |
|                           /*EllipsisLoc*/ SourceLocation(), 
 | |
|                           /*BuildAndDiagnose*/false, CaptureType, 
 | |
|                           DeclRefType, nullptr)) {
 | |
|         // We will never be able to capture this variable, and we need
 | |
|         // to be able to in any and all instantiations, so diagnose it.
 | |
|         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
 | |
|                           /*EllipsisLoc*/ SourceLocation(), 
 | |
|                           /*BuildAndDiagnose*/true, CaptureType, 
 | |
|                           DeclRefType, nullptr);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check if 'this' needs to be captured.
 | |
|   if (CurrentLSI->hasPotentialThisCapture()) {
 | |
|     // If we have a capture-capable lambda for 'this', go ahead and capture
 | |
|     // 'this' in that lambda (and all its enclosing lambdas).
 | |
|     if (const Optional<unsigned> Index =
 | |
|             getStackIndexOfNearestEnclosingCaptureCapableLambda(
 | |
|                 FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) {
 | |
|       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
 | |
|       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
 | |
|                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
 | |
|                             &FunctionScopeIndexOfCapturableLambda);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Reset all the potential captures at the end of each full-expression.
 | |
|   CurrentLSI->clearPotentialCaptures();
 | |
| }
 | |
| 
 | |
| static ExprResult attemptRecovery(Sema &SemaRef,
 | |
|                                   const TypoCorrectionConsumer &Consumer,
 | |
|                                   TypoCorrection TC) {
 | |
|   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
 | |
|                  Consumer.getLookupResult().getLookupKind());
 | |
|   const CXXScopeSpec *SS = Consumer.getSS();
 | |
|   CXXScopeSpec NewSS;
 | |
| 
 | |
|   // Use an approprate CXXScopeSpec for building the expr.
 | |
|   if (auto *NNS = TC.getCorrectionSpecifier())
 | |
|     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
 | |
|   else if (SS && !TC.WillReplaceSpecifier())
 | |
|     NewSS = *SS;
 | |
| 
 | |
|   if (auto *ND = TC.getCorrectionDecl()) {
 | |
|     R.setLookupName(ND->getDeclName());
 | |
|     R.addDecl(ND);
 | |
|     if (ND->isCXXClassMember()) {
 | |
|       // Figure out the correct naming class to add to the LookupResult.
 | |
|       CXXRecordDecl *Record = nullptr;
 | |
|       if (auto *NNS = TC.getCorrectionSpecifier())
 | |
|         Record = NNS->getAsType()->getAsCXXRecordDecl();
 | |
|       if (!Record)
 | |
|         Record =
 | |
|             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
 | |
|       if (Record)
 | |
|         R.setNamingClass(Record);
 | |
| 
 | |
|       // Detect and handle the case where the decl might be an implicit
 | |
|       // member.
 | |
|       bool MightBeImplicitMember;
 | |
|       if (!Consumer.isAddressOfOperand())
 | |
|         MightBeImplicitMember = true;
 | |
|       else if (!NewSS.isEmpty())
 | |
|         MightBeImplicitMember = false;
 | |
|       else if (R.isOverloadedResult())
 | |
|         MightBeImplicitMember = false;
 | |
|       else if (R.isUnresolvableResult())
 | |
|         MightBeImplicitMember = true;
 | |
|       else
 | |
|         MightBeImplicitMember = isa<FieldDecl>(ND) ||
 | |
|                                 isa<IndirectFieldDecl>(ND) ||
 | |
|                                 isa<MSPropertyDecl>(ND);
 | |
| 
 | |
|       if (MightBeImplicitMember)
 | |
|         return SemaRef.BuildPossibleImplicitMemberExpr(
 | |
|             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
 | |
|             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
 | |
|     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
 | |
|       return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
 | |
|                                         Ivar->getIdentifier());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
 | |
|                                           /*AcceptInvalidDecl*/ true);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
 | |
|   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
 | |
| 
 | |
| public:
 | |
|   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
 | |
|       : TypoExprs(TypoExprs) {}
 | |
|   bool VisitTypoExpr(TypoExpr *TE) {
 | |
|     TypoExprs.insert(TE);
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class TransformTypos : public TreeTransform<TransformTypos> {
 | |
|   typedef TreeTransform<TransformTypos> BaseTransform;
 | |
| 
 | |
|   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
 | |
|                      // process of being initialized.
 | |
|   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
 | |
|   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
 | |
|   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
 | |
|   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
 | |
| 
 | |
|   /// \brief Emit diagnostics for all of the TypoExprs encountered.
 | |
|   /// If the TypoExprs were successfully corrected, then the diagnostics should
 | |
|   /// suggest the corrections. Otherwise the diagnostics will not suggest
 | |
|   /// anything (having been passed an empty TypoCorrection).
 | |
|   void EmitAllDiagnostics() {
 | |
|     for (auto E : TypoExprs) {
 | |
|       TypoExpr *TE = cast<TypoExpr>(E);
 | |
|       auto &State = SemaRef.getTypoExprState(TE);
 | |
|       if (State.DiagHandler) {
 | |
|         TypoCorrection TC = State.Consumer->getCurrentCorrection();
 | |
|         ExprResult Replacement = TransformCache[TE];
 | |
| 
 | |
|         // Extract the NamedDecl from the transformed TypoExpr and add it to the
 | |
|         // TypoCorrection, replacing the existing decls. This ensures the right
 | |
|         // NamedDecl is used in diagnostics e.g. in the case where overload
 | |
|         // resolution was used to select one from several possible decls that
 | |
|         // had been stored in the TypoCorrection.
 | |
|         if (auto *ND = getDeclFromExpr(
 | |
|                 Replacement.isInvalid() ? nullptr : Replacement.get()))
 | |
|           TC.setCorrectionDecl(ND);
 | |
| 
 | |
|         State.DiagHandler(TC);
 | |
|       }
 | |
|       SemaRef.clearDelayedTypo(TE);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// \brief If corrections for the first TypoExpr have been exhausted for a
 | |
|   /// given combination of the other TypoExprs, retry those corrections against
 | |
|   /// the next combination of substitutions for the other TypoExprs by advancing
 | |
|   /// to the next potential correction of the second TypoExpr. For the second
 | |
|   /// and subsequent TypoExprs, if its stream of corrections has been exhausted,
 | |
|   /// the stream is reset and the next TypoExpr's stream is advanced by one (a
 | |
|   /// TypoExpr's correction stream is advanced by removing the TypoExpr from the
 | |
|   /// TransformCache). Returns true if there is still any untried combinations
 | |
|   /// of corrections.
 | |
|   bool CheckAndAdvanceTypoExprCorrectionStreams() {
 | |
|     for (auto TE : TypoExprs) {
 | |
|       auto &State = SemaRef.getTypoExprState(TE);
 | |
|       TransformCache.erase(TE);
 | |
|       if (!State.Consumer->finished())
 | |
|         return true;
 | |
|       State.Consumer->resetCorrectionStream();
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   NamedDecl *getDeclFromExpr(Expr *E) {
 | |
|     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
 | |
|       E = OverloadResolution[OE];
 | |
| 
 | |
|     if (!E)
 | |
|       return nullptr;
 | |
|     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
 | |
|       return DRE->getDecl();
 | |
|     if (auto *ME = dyn_cast<MemberExpr>(E))
 | |
|       return ME->getMemberDecl();
 | |
|     // FIXME: Add any other expr types that could be be seen by the delayed typo
 | |
|     // correction TreeTransform for which the corresponding TypoCorrection could
 | |
|     // contain multiple decls.
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   ExprResult TryTransform(Expr *E) {
 | |
|     Sema::SFINAETrap Trap(SemaRef);
 | |
|     ExprResult Res = TransformExpr(E);
 | |
|     if (Trap.hasErrorOccurred() || Res.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     return ExprFilter(Res.get());
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
 | |
|       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
 | |
| 
 | |
|   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
 | |
|                                    MultiExprArg Args,
 | |
|                                    SourceLocation RParenLoc,
 | |
|                                    Expr *ExecConfig = nullptr) {
 | |
|     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
 | |
|                                                  RParenLoc, ExecConfig);
 | |
|     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
 | |
|       if (Result.isUsable()) {
 | |
|         Expr *ResultCall = Result.get();
 | |
|         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
 | |
|           ResultCall = BE->getSubExpr();
 | |
|         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
 | |
|           OverloadResolution[OE] = CE->getCallee();
 | |
|       }
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
 | |
| 
 | |
|   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
 | |
| 
 | |
|   ExprResult Transform(Expr *E) {
 | |
|     ExprResult Res;
 | |
|     while (true) {
 | |
|       Res = TryTransform(E);
 | |
| 
 | |
|       // Exit if either the transform was valid or if there were no TypoExprs
 | |
|       // to transform that still have any untried correction candidates..
 | |
|       if (!Res.isInvalid() ||
 | |
|           !CheckAndAdvanceTypoExprCorrectionStreams())
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // Ensure none of the TypoExprs have multiple typo correction candidates
 | |
|     // with the same edit length that pass all the checks and filters.
 | |
|     // TODO: Properly handle various permutations of possible corrections when
 | |
|     // there is more than one potentially ambiguous typo correction.
 | |
|     // Also, disable typo correction while attempting the transform when
 | |
|     // handling potentially ambiguous typo corrections as any new TypoExprs will
 | |
|     // have been introduced by the application of one of the correction
 | |
|     // candidates and add little to no value if corrected.
 | |
|     SemaRef.DisableTypoCorrection = true;
 | |
|     while (!AmbiguousTypoExprs.empty()) {
 | |
|       auto TE  = AmbiguousTypoExprs.back();
 | |
|       auto Cached = TransformCache[TE];
 | |
|       auto &State = SemaRef.getTypoExprState(TE);
 | |
|       State.Consumer->saveCurrentPosition();
 | |
|       TransformCache.erase(TE);
 | |
|       if (!TryTransform(E).isInvalid()) {
 | |
|         State.Consumer->resetCorrectionStream();
 | |
|         TransformCache.erase(TE);
 | |
|         Res = ExprError();
 | |
|         break;
 | |
|       }
 | |
|       AmbiguousTypoExprs.remove(TE);
 | |
|       State.Consumer->restoreSavedPosition();
 | |
|       TransformCache[TE] = Cached;
 | |
|     }
 | |
|     SemaRef.DisableTypoCorrection = false;
 | |
| 
 | |
|     // Ensure that all of the TypoExprs within the current Expr have been found.
 | |
|     if (!Res.isUsable())
 | |
|       FindTypoExprs(TypoExprs).TraverseStmt(E);
 | |
| 
 | |
|     EmitAllDiagnostics();
 | |
| 
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   ExprResult TransformTypoExpr(TypoExpr *E) {
 | |
|     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
 | |
|     // cached transformation result if there is one and the TypoExpr isn't the
 | |
|     // first one that was encountered.
 | |
|     auto &CacheEntry = TransformCache[E];
 | |
|     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
 | |
|       return CacheEntry;
 | |
|     }
 | |
| 
 | |
|     auto &State = SemaRef.getTypoExprState(E);
 | |
|     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
 | |
| 
 | |
|     // For the first TypoExpr and an uncached TypoExpr, find the next likely
 | |
|     // typo correction and return it.
 | |
|     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
 | |
|       if (InitDecl && TC.getCorrectionDecl() == InitDecl)
 | |
|         continue;
 | |
|       ExprResult NE = State.RecoveryHandler ?
 | |
|           State.RecoveryHandler(SemaRef, E, TC) :
 | |
|           attemptRecovery(SemaRef, *State.Consumer, TC);
 | |
|       if (!NE.isInvalid()) {
 | |
|         // Check whether there may be a second viable correction with the same
 | |
|         // edit distance; if so, remember this TypoExpr may have an ambiguous
 | |
|         // correction so it can be more thoroughly vetted later.
 | |
|         TypoCorrection Next;
 | |
|         if ((Next = State.Consumer->peekNextCorrection()) &&
 | |
|             Next.getEditDistance(false) == TC.getEditDistance(false)) {
 | |
|           AmbiguousTypoExprs.insert(E);
 | |
|         } else {
 | |
|           AmbiguousTypoExprs.remove(E);
 | |
|         }
 | |
|         assert(!NE.isUnset() &&
 | |
|                "Typo was transformed into a valid-but-null ExprResult");
 | |
|         return CacheEntry = NE;
 | |
|       }
 | |
|     }
 | |
|     return CacheEntry = ExprError();
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| ExprResult
 | |
| Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
 | |
|                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
 | |
|   // If the current evaluation context indicates there are uncorrected typos
 | |
|   // and the current expression isn't guaranteed to not have typos, try to
 | |
|   // resolve any TypoExpr nodes that might be in the expression.
 | |
|   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
 | |
|       (E->isTypeDependent() || E->isValueDependent() ||
 | |
|        E->isInstantiationDependent())) {
 | |
|     auto TyposInContext = ExprEvalContexts.back().NumTypos;
 | |
|     assert(TyposInContext < ~0U && "Recursive call of CorrectDelayedTyposInExpr");
 | |
|     ExprEvalContexts.back().NumTypos = ~0U;
 | |
|     auto TyposResolved = DelayedTypos.size();
 | |
|     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
 | |
|     ExprEvalContexts.back().NumTypos = TyposInContext;
 | |
|     TyposResolved -= DelayedTypos.size();
 | |
|     if (Result.isInvalid() || Result.get() != E) {
 | |
|       ExprEvalContexts.back().NumTypos -= TyposResolved;
 | |
|       return Result;
 | |
|     }
 | |
|     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
 | |
|   }
 | |
|   return E;
 | |
| }
 | |
| 
 | |
| ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
 | |
|                                      bool DiscardedValue,
 | |
|                                      bool IsConstexpr, 
 | |
|                                      bool IsLambdaInitCaptureInitializer) {
 | |
|   ExprResult FullExpr = FE;
 | |
| 
 | |
|   if (!FullExpr.get())
 | |
|     return ExprError();
 | |
|  
 | |
|   // If we are an init-expression in a lambdas init-capture, we should not 
 | |
|   // diagnose an unexpanded pack now (will be diagnosed once lambda-expr 
 | |
|   // containing full-expression is done).
 | |
|   // template<class ... Ts> void test(Ts ... t) {
 | |
|   //   test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now.
 | |
|   //     return a;
 | |
|   //   }() ...);
 | |
|   // }
 | |
|   // FIXME: This is a hack. It would be better if we pushed the lambda scope
 | |
|   // when we parse the lambda introducer, and teach capturing (but not
 | |
|   // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a
 | |
|   // corresponding class yet (that is, have LambdaScopeInfo either represent a
 | |
|   // lambda where we've entered the introducer but not the body, or represent a
 | |
|   // lambda where we've entered the body, depending on where the
 | |
|   // parser/instantiation has got to).
 | |
|   if (!IsLambdaInitCaptureInitializer && 
 | |
|       DiagnoseUnexpandedParameterPack(FullExpr.get()))
 | |
|     return ExprError();
 | |
| 
 | |
|   // Top-level expressions default to 'id' when we're in a debugger.
 | |
|   if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
 | |
|       FullExpr.get()->getType() == Context.UnknownAnyTy) {
 | |
|     FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
 | |
|     if (FullExpr.isInvalid())
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   if (DiscardedValue) {
 | |
|     FullExpr = CheckPlaceholderExpr(FullExpr.get());
 | |
|     if (FullExpr.isInvalid())
 | |
|       return ExprError();
 | |
| 
 | |
|     FullExpr = IgnoredValueConversions(FullExpr.get());
 | |
|     if (FullExpr.isInvalid())
 | |
|       return ExprError();
 | |
|   }
 | |
| 
 | |
|   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get());
 | |
|   if (FullExpr.isInvalid())
 | |
|     return ExprError();
 | |
| 
 | |
|   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
 | |
| 
 | |
|   // At the end of this full expression (which could be a deeply nested 
 | |
|   // lambda), if there is a potential capture within the nested lambda, 
 | |
|   // have the outer capture-able lambda try and capture it.
 | |
|   // Consider the following code:
 | |
|   // void f(int, int);
 | |
|   // void f(const int&, double);
 | |
|   // void foo() {   
 | |
|   //  const int x = 10, y = 20;
 | |
|   //  auto L = [=](auto a) {
 | |
|   //      auto M = [=](auto b) {
 | |
|   //         f(x, b); <-- requires x to be captured by L and M
 | |
|   //         f(y, a); <-- requires y to be captured by L, but not all Ms
 | |
|   //      };
 | |
|   //   };
 | |
|   // }
 | |
| 
 | |
|   // FIXME: Also consider what happens for something like this that involves 
 | |
|   // the gnu-extension statement-expressions or even lambda-init-captures:   
 | |
|   //   void f() {
 | |
|   //     const int n = 0;
 | |
|   //     auto L =  [&](auto a) {
 | |
|   //       +n + ({ 0; a; });
 | |
|   //     };
 | |
|   //   }
 | |
|   // 
 | |
|   // Here, we see +n, and then the full-expression 0; ends, so we don't 
 | |
|   // capture n (and instead remove it from our list of potential captures), 
 | |
|   // and then the full-expression +n + ({ 0; }); ends, but it's too late 
 | |
|   // for us to see that we need to capture n after all.
 | |
| 
 | |
|   LambdaScopeInfo *const CurrentLSI = getCurLambda();
 | |
|   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 
 | |
|   // even if CurContext is not a lambda call operator. Refer to that Bug Report
 | |
|   // for an example of the code that might cause this asynchrony.  
 | |
|   // By ensuring we are in the context of a lambda's call operator
 | |
|   // we can fix the bug (we only need to check whether we need to capture
 | |
|   // if we are within a lambda's body); but per the comments in that 
 | |
|   // PR, a proper fix would entail :
 | |
|   //   "Alternative suggestion:
 | |
|   //   - Add to Sema an integer holding the smallest (outermost) scope 
 | |
|   //     index that we are *lexically* within, and save/restore/set to 
 | |
|   //     FunctionScopes.size() in InstantiatingTemplate's 
 | |
|   //     constructor/destructor.
 | |
|   //  - Teach the handful of places that iterate over FunctionScopes to 
 | |
|   //    stop at the outermost enclosing lexical scope."
 | |
|   const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext);
 | |
|   if (IsInLambdaDeclContext && CurrentLSI &&
 | |
|       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
 | |
|     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
 | |
|                                                               *this);
 | |
|   return MaybeCreateExprWithCleanups(FullExpr);
 | |
| }
 | |
| 
 | |
| StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
 | |
|   if (!FullStmt) return StmtError();
 | |
| 
 | |
|   return MaybeCreateStmtWithCleanups(FullStmt);
 | |
| }
 | |
| 
 | |
| Sema::IfExistsResult 
 | |
| Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
 | |
|                                    CXXScopeSpec &SS,
 | |
|                                    const DeclarationNameInfo &TargetNameInfo) {
 | |
|   DeclarationName TargetName = TargetNameInfo.getName();
 | |
|   if (!TargetName)
 | |
|     return IER_DoesNotExist;
 | |
|   
 | |
|   // If the name itself is dependent, then the result is dependent.
 | |
|   if (TargetName.isDependentName())
 | |
|     return IER_Dependent;
 | |
|   
 | |
|   // Do the redeclaration lookup in the current scope.
 | |
|   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
 | |
|                  Sema::NotForRedeclaration);
 | |
|   LookupParsedName(R, S, &SS);
 | |
|   R.suppressDiagnostics();
 | |
|   
 | |
|   switch (R.getResultKind()) {
 | |
|   case LookupResult::Found:
 | |
|   case LookupResult::FoundOverloaded:
 | |
|   case LookupResult::FoundUnresolvedValue:
 | |
|   case LookupResult::Ambiguous:
 | |
|     return IER_Exists;
 | |
|     
 | |
|   case LookupResult::NotFound:
 | |
|     return IER_DoesNotExist;
 | |
|     
 | |
|   case LookupResult::NotFoundInCurrentInstantiation:
 | |
|     return IER_Dependent;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid LookupResult Kind!");
 | |
| }
 | |
| 
 | |
| Sema::IfExistsResult 
 | |
| Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
 | |
|                                    bool IsIfExists, CXXScopeSpec &SS,
 | |
|                                    UnqualifiedId &Name) {
 | |
|   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
 | |
|   
 | |
|   // Check for unexpanded parameter packs.
 | |
|   SmallVector<UnexpandedParameterPack, 4> Unexpanded;
 | |
|   collectUnexpandedParameterPacks(SS, Unexpanded);
 | |
|   collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
 | |
|   if (!Unexpanded.empty()) {
 | |
|     DiagnoseUnexpandedParameterPacks(KeywordLoc,
 | |
|                                      IsIfExists? UPPC_IfExists 
 | |
|                                                : UPPC_IfNotExists, 
 | |
|                                      Unexpanded);
 | |
|     return IER_Error;
 | |
|   }
 | |
|   
 | |
|   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
 | |
| }
 |