forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			4994 lines
		
	
	
		
			184 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4994 lines
		
	
	
		
			184 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements name lookup for C, C++, Objective-C, and
 | |
| //  Objective-C++.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Sema/Lookup.h"
 | |
| #include "clang/AST/ASTContext.h"
 | |
| #include "clang/AST/ASTMutationListener.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/Decl.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/DeclLookups.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/AST/DeclTemplate.h"
 | |
| #include "clang/AST/Expr.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/Basic/Builtins.h"
 | |
| #include "clang/Basic/LangOptions.h"
 | |
| #include "clang/Lex/HeaderSearch.h"
 | |
| #include "clang/Lex/ModuleLoader.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "clang/Sema/DeclSpec.h"
 | |
| #include "clang/Sema/ExternalSemaSource.h"
 | |
| #include "clang/Sema/Overload.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "clang/Sema/ScopeInfo.h"
 | |
| #include "clang/Sema/Sema.h"
 | |
| #include "clang/Sema/SemaInternal.h"
 | |
| #include "clang/Sema/TemplateDeduction.h"
 | |
| #include "clang/Sema/TypoCorrection.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/StringMap.h"
 | |
| #include "llvm/ADT/TinyPtrVector.h"
 | |
| #include "llvm/ADT/edit_distance.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include <algorithm>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <list>
 | |
| #include <map>
 | |
| #include <set>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace sema;
 | |
| 
 | |
| namespace {
 | |
|   class UnqualUsingEntry {
 | |
|     const DeclContext *Nominated;
 | |
|     const DeclContext *CommonAncestor;
 | |
| 
 | |
|   public:
 | |
|     UnqualUsingEntry(const DeclContext *Nominated,
 | |
|                      const DeclContext *CommonAncestor)
 | |
|       : Nominated(Nominated), CommonAncestor(CommonAncestor) {
 | |
|     }
 | |
| 
 | |
|     const DeclContext *getCommonAncestor() const {
 | |
|       return CommonAncestor;
 | |
|     }
 | |
| 
 | |
|     const DeclContext *getNominatedNamespace() const {
 | |
|       return Nominated;
 | |
|     }
 | |
| 
 | |
|     // Sort by the pointer value of the common ancestor.
 | |
|     struct Comparator {
 | |
|       bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
 | |
|         return L.getCommonAncestor() < R.getCommonAncestor();
 | |
|       }
 | |
| 
 | |
|       bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
 | |
|         return E.getCommonAncestor() < DC;
 | |
|       }
 | |
| 
 | |
|       bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
 | |
|         return DC < E.getCommonAncestor();
 | |
|       }
 | |
|     };
 | |
|   };
 | |
| 
 | |
|   /// A collection of using directives, as used by C++ unqualified
 | |
|   /// lookup.
 | |
|   class UnqualUsingDirectiveSet {
 | |
|     typedef SmallVector<UnqualUsingEntry, 8> ListTy;
 | |
| 
 | |
|     ListTy list;
 | |
|     llvm::SmallPtrSet<DeclContext*, 8> visited;
 | |
| 
 | |
|   public:
 | |
|     UnqualUsingDirectiveSet() {}
 | |
| 
 | |
|     void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
 | |
|       // C++ [namespace.udir]p1:
 | |
|       //   During unqualified name lookup, the names appear as if they
 | |
|       //   were declared in the nearest enclosing namespace which contains
 | |
|       //   both the using-directive and the nominated namespace.
 | |
|       DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
 | |
|       assert(InnermostFileDC && InnermostFileDC->isFileContext());
 | |
| 
 | |
|       for (; S; S = S->getParent()) {
 | |
|         // C++ [namespace.udir]p1:
 | |
|         //   A using-directive shall not appear in class scope, but may
 | |
|         //   appear in namespace scope or in block scope.
 | |
|         DeclContext *Ctx = S->getEntity();
 | |
|         if (Ctx && Ctx->isFileContext()) {
 | |
|           visit(Ctx, Ctx);
 | |
|         } else if (!Ctx || Ctx->isFunctionOrMethod()) {
 | |
|           for (auto *I : S->using_directives())
 | |
|             visit(I, InnermostFileDC);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Visits a context and collect all of its using directives
 | |
|     // recursively.  Treats all using directives as if they were
 | |
|     // declared in the context.
 | |
|     //
 | |
|     // A given context is only every visited once, so it is important
 | |
|     // that contexts be visited from the inside out in order to get
 | |
|     // the effective DCs right.
 | |
|     void visit(DeclContext *DC, DeclContext *EffectiveDC) {
 | |
|       if (!visited.insert(DC).second)
 | |
|         return;
 | |
| 
 | |
|       addUsingDirectives(DC, EffectiveDC);
 | |
|     }
 | |
| 
 | |
|     // Visits a using directive and collects all of its using
 | |
|     // directives recursively.  Treats all using directives as if they
 | |
|     // were declared in the effective DC.
 | |
|     void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
 | |
|       DeclContext *NS = UD->getNominatedNamespace();
 | |
|       if (!visited.insert(NS).second)
 | |
|         return;
 | |
| 
 | |
|       addUsingDirective(UD, EffectiveDC);
 | |
|       addUsingDirectives(NS, EffectiveDC);
 | |
|     }
 | |
| 
 | |
|     // Adds all the using directives in a context (and those nominated
 | |
|     // by its using directives, transitively) as if they appeared in
 | |
|     // the given effective context.
 | |
|     void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
 | |
|       SmallVector<DeclContext*, 4> queue;
 | |
|       while (true) {
 | |
|         for (auto UD : DC->using_directives()) {
 | |
|           DeclContext *NS = UD->getNominatedNamespace();
 | |
|           if (visited.insert(NS).second) {
 | |
|             addUsingDirective(UD, EffectiveDC);
 | |
|             queue.push_back(NS);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (queue.empty())
 | |
|           return;
 | |
| 
 | |
|         DC = queue.pop_back_val();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Add a using directive as if it had been declared in the given
 | |
|     // context.  This helps implement C++ [namespace.udir]p3:
 | |
|     //   The using-directive is transitive: if a scope contains a
 | |
|     //   using-directive that nominates a second namespace that itself
 | |
|     //   contains using-directives, the effect is as if the
 | |
|     //   using-directives from the second namespace also appeared in
 | |
|     //   the first.
 | |
|     void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
 | |
|       // Find the common ancestor between the effective context and
 | |
|       // the nominated namespace.
 | |
|       DeclContext *Common = UD->getNominatedNamespace();
 | |
|       while (!Common->Encloses(EffectiveDC))
 | |
|         Common = Common->getParent();
 | |
|       Common = Common->getPrimaryContext();
 | |
| 
 | |
|       list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
 | |
|     }
 | |
| 
 | |
|     void done() {
 | |
|       std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
 | |
|     }
 | |
| 
 | |
|     typedef ListTy::const_iterator const_iterator;
 | |
| 
 | |
|     const_iterator begin() const { return list.begin(); }
 | |
|     const_iterator end() const { return list.end(); }
 | |
| 
 | |
|     llvm::iterator_range<const_iterator>
 | |
|     getNamespacesFor(DeclContext *DC) const {
 | |
|       return llvm::make_range(std::equal_range(begin(), end(),
 | |
|                                                DC->getPrimaryContext(),
 | |
|                                                UnqualUsingEntry::Comparator()));
 | |
|     }
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| // Retrieve the set of identifier namespaces that correspond to a
 | |
| // specific kind of name lookup.
 | |
| static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
 | |
|                                bool CPlusPlus,
 | |
|                                bool Redeclaration) {
 | |
|   unsigned IDNS = 0;
 | |
|   switch (NameKind) {
 | |
|   case Sema::LookupObjCImplicitSelfParam:
 | |
|   case Sema::LookupOrdinaryName:
 | |
|   case Sema::LookupRedeclarationWithLinkage:
 | |
|   case Sema::LookupLocalFriendName:
 | |
|     IDNS = Decl::IDNS_Ordinary;
 | |
|     if (CPlusPlus) {
 | |
|       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
 | |
|       if (Redeclaration)
 | |
|         IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
 | |
|     }
 | |
|     if (Redeclaration)
 | |
|       IDNS |= Decl::IDNS_LocalExtern;
 | |
|     break;
 | |
| 
 | |
|   case Sema::LookupOperatorName:
 | |
|     // Operator lookup is its own crazy thing;  it is not the same
 | |
|     // as (e.g.) looking up an operator name for redeclaration.
 | |
|     assert(!Redeclaration && "cannot do redeclaration operator lookup");
 | |
|     IDNS = Decl::IDNS_NonMemberOperator;
 | |
|     break;
 | |
| 
 | |
|   case Sema::LookupTagName:
 | |
|     if (CPlusPlus) {
 | |
|       IDNS = Decl::IDNS_Type;
 | |
| 
 | |
|       // When looking for a redeclaration of a tag name, we add:
 | |
|       // 1) TagFriend to find undeclared friend decls
 | |
|       // 2) Namespace because they can't "overload" with tag decls.
 | |
|       // 3) Tag because it includes class templates, which can't
 | |
|       //    "overload" with tag decls.
 | |
|       if (Redeclaration)
 | |
|         IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
 | |
|     } else {
 | |
|       IDNS = Decl::IDNS_Tag;
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Sema::LookupLabel:
 | |
|     IDNS = Decl::IDNS_Label;
 | |
|     break;
 | |
| 
 | |
|   case Sema::LookupMemberName:
 | |
|     IDNS = Decl::IDNS_Member;
 | |
|     if (CPlusPlus)
 | |
|       IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
 | |
|     break;
 | |
| 
 | |
|   case Sema::LookupNestedNameSpecifierName:
 | |
|     IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
 | |
|     break;
 | |
| 
 | |
|   case Sema::LookupNamespaceName:
 | |
|     IDNS = Decl::IDNS_Namespace;
 | |
|     break;
 | |
| 
 | |
|   case Sema::LookupUsingDeclName:
 | |
|     assert(Redeclaration && "should only be used for redecl lookup");
 | |
|     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
 | |
|            Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
 | |
|            Decl::IDNS_LocalExtern;
 | |
|     break;
 | |
| 
 | |
|   case Sema::LookupObjCProtocolName:
 | |
|     IDNS = Decl::IDNS_ObjCProtocol;
 | |
|     break;
 | |
| 
 | |
|   case Sema::LookupAnyName:
 | |
|     IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
 | |
|       | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
 | |
|       | Decl::IDNS_Type;
 | |
|     break;
 | |
|   }
 | |
|   return IDNS;
 | |
| }
 | |
| 
 | |
| void LookupResult::configure() {
 | |
|   IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
 | |
|                  isForRedeclaration());
 | |
| 
 | |
|   // If we're looking for one of the allocation or deallocation
 | |
|   // operators, make sure that the implicitly-declared new and delete
 | |
|   // operators can be found.
 | |
|   switch (NameInfo.getName().getCXXOverloadedOperator()) {
 | |
|   case OO_New:
 | |
|   case OO_Delete:
 | |
|   case OO_Array_New:
 | |
|   case OO_Array_Delete:
 | |
|     getSema().DeclareGlobalNewDelete();
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Compiler builtins are always visible, regardless of where they end
 | |
|   // up being declared.
 | |
|   if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
 | |
|     if (unsigned BuiltinID = Id->getBuiltinID()) {
 | |
|       if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
 | |
|         AllowHidden = true;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LookupResult::sanity() const {
 | |
|   // This function is never called by NDEBUG builds.
 | |
|   assert(ResultKind != NotFound || Decls.size() == 0);
 | |
|   assert(ResultKind != Found || Decls.size() == 1);
 | |
|   assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
 | |
|          (Decls.size() == 1 &&
 | |
|           isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
 | |
|   assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
 | |
|   assert(ResultKind != Ambiguous || Decls.size() > 1 ||
 | |
|          (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
 | |
|                                 Ambiguity == AmbiguousBaseSubobjectTypes)));
 | |
|   assert((Paths != nullptr) == (ResultKind == Ambiguous &&
 | |
|                                 (Ambiguity == AmbiguousBaseSubobjectTypes ||
 | |
|                                  Ambiguity == AmbiguousBaseSubobjects)));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Necessary because CXXBasePaths is not complete in Sema.h
 | |
| void LookupResult::deletePaths(CXXBasePaths *Paths) {
 | |
|   delete Paths;
 | |
| }
 | |
| 
 | |
| /// Get a representative context for a declaration such that two declarations
 | |
| /// will have the same context if they were found within the same scope.
 | |
| static DeclContext *getContextForScopeMatching(Decl *D) {
 | |
|   // For function-local declarations, use that function as the context. This
 | |
|   // doesn't account for scopes within the function; the caller must deal with
 | |
|   // those.
 | |
|   DeclContext *DC = D->getLexicalDeclContext();
 | |
|   if (DC->isFunctionOrMethod())
 | |
|     return DC;
 | |
| 
 | |
|   // Otherwise, look at the semantic context of the declaration. The
 | |
|   // declaration must have been found there.
 | |
|   return D->getDeclContext()->getRedeclContext();
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether \p D is a better lookup result than \p Existing,
 | |
| /// given that they declare the same entity.
 | |
| static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
 | |
|                                     NamedDecl *D, NamedDecl *Existing) {
 | |
|   // When looking up redeclarations of a using declaration, prefer a using
 | |
|   // shadow declaration over any other declaration of the same entity.
 | |
|   if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
 | |
|       !isa<UsingShadowDecl>(Existing))
 | |
|     return true;
 | |
| 
 | |
|   auto *DUnderlying = D->getUnderlyingDecl();
 | |
|   auto *EUnderlying = Existing->getUnderlyingDecl();
 | |
| 
 | |
|   // If they have different underlying declarations, prefer a typedef over the
 | |
|   // original type (this happens when two type declarations denote the same
 | |
|   // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
 | |
|   // might carry additional semantic information, such as an alignment override.
 | |
|   // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
 | |
|   // declaration over a typedef.
 | |
|   if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
 | |
|     assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
 | |
|     bool HaveTag = isa<TagDecl>(EUnderlying);
 | |
|     bool WantTag = Kind == Sema::LookupTagName;
 | |
|     return HaveTag != WantTag;
 | |
|   }
 | |
| 
 | |
|   // Pick the function with more default arguments.
 | |
|   // FIXME: In the presence of ambiguous default arguments, we should keep both,
 | |
|   //        so we can diagnose the ambiguity if the default argument is needed.
 | |
|   //        See C++ [over.match.best]p3.
 | |
|   if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
 | |
|     auto *EFD = cast<FunctionDecl>(EUnderlying);
 | |
|     unsigned DMin = DFD->getMinRequiredArguments();
 | |
|     unsigned EMin = EFD->getMinRequiredArguments();
 | |
|     // If D has more default arguments, it is preferred.
 | |
|     if (DMin != EMin)
 | |
|       return DMin < EMin;
 | |
|     // FIXME: When we track visibility for default function arguments, check
 | |
|     // that we pick the declaration with more visible default arguments.
 | |
|   }
 | |
| 
 | |
|   // Pick the template with more default template arguments.
 | |
|   if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
 | |
|     auto *ETD = cast<TemplateDecl>(EUnderlying);
 | |
|     unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
 | |
|     unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
 | |
|     // If D has more default arguments, it is preferred. Note that default
 | |
|     // arguments (and their visibility) is monotonically increasing across the
 | |
|     // redeclaration chain, so this is a quick proxy for "is more recent".
 | |
|     if (DMin != EMin)
 | |
|       return DMin < EMin;
 | |
|     // If D has more *visible* default arguments, it is preferred. Note, an
 | |
|     // earlier default argument being visible does not imply that a later
 | |
|     // default argument is visible, so we can't just check the first one.
 | |
|     for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
 | |
|         I != N; ++I) {
 | |
|       if (!S.hasVisibleDefaultArgument(
 | |
|               ETD->getTemplateParameters()->getParam(I)) &&
 | |
|           S.hasVisibleDefaultArgument(
 | |
|               DTD->getTemplateParameters()->getParam(I)))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For most kinds of declaration, it doesn't really matter which one we pick.
 | |
|   if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
 | |
|     // If the existing declaration is hidden, prefer the new one. Otherwise,
 | |
|     // keep what we've got.
 | |
|     return !S.isVisible(Existing);
 | |
|   }
 | |
| 
 | |
|   // Pick the newer declaration; it might have a more precise type.
 | |
|   for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
 | |
|        Prev = Prev->getPreviousDecl())
 | |
|     if (Prev == EUnderlying)
 | |
|       return true;
 | |
|   return false;
 | |
| 
 | |
|   // If the existing declaration is hidden, prefer the new one. Otherwise,
 | |
|   // keep what we've got.
 | |
|   return !S.isVisible(Existing);
 | |
| }
 | |
| 
 | |
| /// Determine whether \p D can hide a tag declaration.
 | |
| static bool canHideTag(NamedDecl *D) {
 | |
|   // C++ [basic.scope.declarative]p4:
 | |
|   //   Given a set of declarations in a single declarative region [...]
 | |
|   //   exactly one declaration shall declare a class name or enumeration name
 | |
|   //   that is not a typedef name and the other declarations shall all refer to
 | |
|   //   the same variable or enumerator, or all refer to functions and function
 | |
|   //   templates; in this case the class name or enumeration name is hidden.
 | |
|   // C++ [basic.scope.hiding]p2:
 | |
|   //   A class name or enumeration name can be hidden by the name of a
 | |
|   //   variable, data member, function, or enumerator declared in the same
 | |
|   //   scope.
 | |
|   D = D->getUnderlyingDecl();
 | |
|   return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
 | |
|          isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D);
 | |
| }
 | |
| 
 | |
| /// Resolves the result kind of this lookup.
 | |
| void LookupResult::resolveKind() {
 | |
|   unsigned N = Decls.size();
 | |
| 
 | |
|   // Fast case: no possible ambiguity.
 | |
|   if (N == 0) {
 | |
|     assert(ResultKind == NotFound ||
 | |
|            ResultKind == NotFoundInCurrentInstantiation);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If there's a single decl, we need to examine it to decide what
 | |
|   // kind of lookup this is.
 | |
|   if (N == 1) {
 | |
|     NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
 | |
|     if (isa<FunctionTemplateDecl>(D))
 | |
|       ResultKind = FoundOverloaded;
 | |
|     else if (isa<UnresolvedUsingValueDecl>(D))
 | |
|       ResultKind = FoundUnresolvedValue;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Don't do any extra resolution if we've already resolved as ambiguous.
 | |
|   if (ResultKind == Ambiguous) return;
 | |
| 
 | |
|   llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
 | |
|   llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
 | |
| 
 | |
|   bool Ambiguous = false;
 | |
|   bool HasTag = false, HasFunction = false;
 | |
|   bool HasFunctionTemplate = false, HasUnresolved = false;
 | |
|   NamedDecl *HasNonFunction = nullptr;
 | |
| 
 | |
|   llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
 | |
| 
 | |
|   unsigned UniqueTagIndex = 0;
 | |
| 
 | |
|   unsigned I = 0;
 | |
|   while (I < N) {
 | |
|     NamedDecl *D = Decls[I]->getUnderlyingDecl();
 | |
|     D = cast<NamedDecl>(D->getCanonicalDecl());
 | |
| 
 | |
|     // Ignore an invalid declaration unless it's the only one left.
 | |
|     if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
 | |
|       Decls[I] = Decls[--N];
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     llvm::Optional<unsigned> ExistingI;
 | |
| 
 | |
|     // Redeclarations of types via typedef can occur both within a scope
 | |
|     // and, through using declarations and directives, across scopes. There is
 | |
|     // no ambiguity if they all refer to the same type, so unique based on the
 | |
|     // canonical type.
 | |
|     if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
 | |
|       QualType T = getSema().Context.getTypeDeclType(TD);
 | |
|       auto UniqueResult = UniqueTypes.insert(
 | |
|           std::make_pair(getSema().Context.getCanonicalType(T), I));
 | |
|       if (!UniqueResult.second) {
 | |
|         // The type is not unique.
 | |
|         ExistingI = UniqueResult.first->second;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // For non-type declarations, check for a prior lookup result naming this
 | |
|     // canonical declaration.
 | |
|     if (!ExistingI) {
 | |
|       auto UniqueResult = Unique.insert(std::make_pair(D, I));
 | |
|       if (!UniqueResult.second) {
 | |
|         // We've seen this entity before.
 | |
|         ExistingI = UniqueResult.first->second;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (ExistingI) {
 | |
|       // This is not a unique lookup result. Pick one of the results and
 | |
|       // discard the other.
 | |
|       if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
 | |
|                                   Decls[*ExistingI]))
 | |
|         Decls[*ExistingI] = Decls[I];
 | |
|       Decls[I] = Decls[--N];
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, do some decl type analysis and then continue.
 | |
| 
 | |
|     if (isa<UnresolvedUsingValueDecl>(D)) {
 | |
|       HasUnresolved = true;
 | |
|     } else if (isa<TagDecl>(D)) {
 | |
|       if (HasTag)
 | |
|         Ambiguous = true;
 | |
|       UniqueTagIndex = I;
 | |
|       HasTag = true;
 | |
|     } else if (isa<FunctionTemplateDecl>(D)) {
 | |
|       HasFunction = true;
 | |
|       HasFunctionTemplate = true;
 | |
|     } else if (isa<FunctionDecl>(D)) {
 | |
|       HasFunction = true;
 | |
|     } else {
 | |
|       if (HasNonFunction) {
 | |
|         // If we're about to create an ambiguity between two declarations that
 | |
|         // are equivalent, but one is an internal linkage declaration from one
 | |
|         // module and the other is an internal linkage declaration from another
 | |
|         // module, just skip it.
 | |
|         if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
 | |
|                                                              D)) {
 | |
|           EquivalentNonFunctions.push_back(D);
 | |
|           Decls[I] = Decls[--N];
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         Ambiguous = true;
 | |
|       }
 | |
|       HasNonFunction = D;
 | |
|     }
 | |
|     I++;
 | |
|   }
 | |
| 
 | |
|   // C++ [basic.scope.hiding]p2:
 | |
|   //   A class name or enumeration name can be hidden by the name of
 | |
|   //   an object, function, or enumerator declared in the same
 | |
|   //   scope. If a class or enumeration name and an object, function,
 | |
|   //   or enumerator are declared in the same scope (in any order)
 | |
|   //   with the same name, the class or enumeration name is hidden
 | |
|   //   wherever the object, function, or enumerator name is visible.
 | |
|   // But it's still an error if there are distinct tag types found,
 | |
|   // even if they're not visible. (ref?)
 | |
|   if (N > 1 && HideTags && HasTag && !Ambiguous &&
 | |
|       (HasFunction || HasNonFunction || HasUnresolved)) {
 | |
|     NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
 | |
|     if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
 | |
|         getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
 | |
|             getContextForScopeMatching(OtherDecl)) &&
 | |
|         canHideTag(OtherDecl))
 | |
|       Decls[UniqueTagIndex] = Decls[--N];
 | |
|     else
 | |
|       Ambiguous = true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: This diagnostic should really be delayed until we're done with
 | |
|   // the lookup result, in case the ambiguity is resolved by the caller.
 | |
|   if (!EquivalentNonFunctions.empty() && !Ambiguous)
 | |
|     getSema().diagnoseEquivalentInternalLinkageDeclarations(
 | |
|         getNameLoc(), HasNonFunction, EquivalentNonFunctions);
 | |
| 
 | |
|   Decls.set_size(N);
 | |
| 
 | |
|   if (HasNonFunction && (HasFunction || HasUnresolved))
 | |
|     Ambiguous = true;
 | |
| 
 | |
|   if (Ambiguous)
 | |
|     setAmbiguous(LookupResult::AmbiguousReference);
 | |
|   else if (HasUnresolved)
 | |
|     ResultKind = LookupResult::FoundUnresolvedValue;
 | |
|   else if (N > 1 || HasFunctionTemplate)
 | |
|     ResultKind = LookupResult::FoundOverloaded;
 | |
|   else
 | |
|     ResultKind = LookupResult::Found;
 | |
| }
 | |
| 
 | |
| void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
 | |
|   CXXBasePaths::const_paths_iterator I, E;
 | |
|   for (I = P.begin(), E = P.end(); I != E; ++I)
 | |
|     for (DeclContext::lookup_iterator DI = I->Decls.begin(),
 | |
|          DE = I->Decls.end(); DI != DE; ++DI)
 | |
|       addDecl(*DI);
 | |
| }
 | |
| 
 | |
| void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
 | |
|   Paths = new CXXBasePaths;
 | |
|   Paths->swap(P);
 | |
|   addDeclsFromBasePaths(*Paths);
 | |
|   resolveKind();
 | |
|   setAmbiguous(AmbiguousBaseSubobjects);
 | |
| }
 | |
| 
 | |
| void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
 | |
|   Paths = new CXXBasePaths;
 | |
|   Paths->swap(P);
 | |
|   addDeclsFromBasePaths(*Paths);
 | |
|   resolveKind();
 | |
|   setAmbiguous(AmbiguousBaseSubobjectTypes);
 | |
| }
 | |
| 
 | |
| void LookupResult::print(raw_ostream &Out) {
 | |
|   Out << Decls.size() << " result(s)";
 | |
|   if (isAmbiguous()) Out << ", ambiguous";
 | |
|   if (Paths) Out << ", base paths present";
 | |
| 
 | |
|   for (iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     Out << "\n";
 | |
|     (*I)->print(Out, 2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Lookup a builtin function, when name lookup would otherwise
 | |
| /// fail.
 | |
| static bool LookupBuiltin(Sema &S, LookupResult &R) {
 | |
|   Sema::LookupNameKind NameKind = R.getLookupKind();
 | |
| 
 | |
|   // If we didn't find a use of this identifier, and if the identifier
 | |
|   // corresponds to a compiler builtin, create the decl object for the builtin
 | |
|   // now, injecting it into translation unit scope, and return it.
 | |
|   if (NameKind == Sema::LookupOrdinaryName ||
 | |
|       NameKind == Sema::LookupRedeclarationWithLinkage) {
 | |
|     IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
 | |
|     if (II) {
 | |
|       if (S.getLangOpts().CPlusPlus11 && S.getLangOpts().GNUMode &&
 | |
|           II == S.getFloat128Identifier()) {
 | |
|         // libstdc++4.7's type_traits expects type __float128 to exist, so
 | |
|         // insert a dummy type to make that header build in gnu++11 mode.
 | |
|         R.addDecl(S.getASTContext().getFloat128StubType());
 | |
|         return true;
 | |
|       }
 | |
|       if (S.getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName &&
 | |
|           II == S.getASTContext().getMakeIntegerSeqName()) {
 | |
|         R.addDecl(S.getASTContext().getMakeIntegerSeqDecl());
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // If this is a builtin on this (or all) targets, create the decl.
 | |
|       if (unsigned BuiltinID = II->getBuiltinID()) {
 | |
|         // In C++, we don't have any predefined library functions like
 | |
|         // 'malloc'. Instead, we'll just error.
 | |
|         if (S.getLangOpts().CPlusPlus &&
 | |
|             S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
 | |
|           return false;
 | |
| 
 | |
|         if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
 | |
|                                                  BuiltinID, S.TUScope,
 | |
|                                                  R.isForRedeclaration(),
 | |
|                                                  R.getNameLoc())) {
 | |
|           R.addDecl(D);
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether we can declare a special member function within
 | |
| /// the class at this point.
 | |
| static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
 | |
|   // We need to have a definition for the class.
 | |
|   if (!Class->getDefinition() || Class->isDependentContext())
 | |
|     return false;
 | |
| 
 | |
|   // We can't be in the middle of defining the class.
 | |
|   return !Class->isBeingDefined();
 | |
| }
 | |
| 
 | |
| void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
 | |
|   if (!CanDeclareSpecialMemberFunction(Class))
 | |
|     return;
 | |
| 
 | |
|   // If the default constructor has not yet been declared, do so now.
 | |
|   if (Class->needsImplicitDefaultConstructor())
 | |
|     DeclareImplicitDefaultConstructor(Class);
 | |
| 
 | |
|   // If the copy constructor has not yet been declared, do so now.
 | |
|   if (Class->needsImplicitCopyConstructor())
 | |
|     DeclareImplicitCopyConstructor(Class);
 | |
| 
 | |
|   // If the copy assignment operator has not yet been declared, do so now.
 | |
|   if (Class->needsImplicitCopyAssignment())
 | |
|     DeclareImplicitCopyAssignment(Class);
 | |
| 
 | |
|   if (getLangOpts().CPlusPlus11) {
 | |
|     // If the move constructor has not yet been declared, do so now.
 | |
|     if (Class->needsImplicitMoveConstructor())
 | |
|       DeclareImplicitMoveConstructor(Class); // might not actually do it
 | |
| 
 | |
|     // If the move assignment operator has not yet been declared, do so now.
 | |
|     if (Class->needsImplicitMoveAssignment())
 | |
|       DeclareImplicitMoveAssignment(Class); // might not actually do it
 | |
|   }
 | |
| 
 | |
|   // If the destructor has not yet been declared, do so now.
 | |
|   if (Class->needsImplicitDestructor())
 | |
|     DeclareImplicitDestructor(Class);
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether this is the name of an implicitly-declared
 | |
| /// special member function.
 | |
| static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
 | |
|   switch (Name.getNameKind()) {
 | |
|   case DeclarationName::CXXConstructorName:
 | |
|   case DeclarationName::CXXDestructorName:
 | |
|     return true;
 | |
| 
 | |
|   case DeclarationName::CXXOperatorName:
 | |
|     return Name.getCXXOverloadedOperator() == OO_Equal;
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief If there are any implicit member functions with the given name
 | |
| /// that need to be declared in the given declaration context, do so.
 | |
| static void DeclareImplicitMemberFunctionsWithName(Sema &S,
 | |
|                                                    DeclarationName Name,
 | |
|                                                    const DeclContext *DC) {
 | |
|   if (!DC)
 | |
|     return;
 | |
| 
 | |
|   switch (Name.getNameKind()) {
 | |
|   case DeclarationName::CXXConstructorName:
 | |
|     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
 | |
|       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
 | |
|         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
 | |
|         if (Record->needsImplicitDefaultConstructor())
 | |
|           S.DeclareImplicitDefaultConstructor(Class);
 | |
|         if (Record->needsImplicitCopyConstructor())
 | |
|           S.DeclareImplicitCopyConstructor(Class);
 | |
|         if (S.getLangOpts().CPlusPlus11 &&
 | |
|             Record->needsImplicitMoveConstructor())
 | |
|           S.DeclareImplicitMoveConstructor(Class);
 | |
|       }
 | |
|     break;
 | |
| 
 | |
|   case DeclarationName::CXXDestructorName:
 | |
|     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
 | |
|       if (Record->getDefinition() && Record->needsImplicitDestructor() &&
 | |
|           CanDeclareSpecialMemberFunction(Record))
 | |
|         S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
 | |
|     break;
 | |
| 
 | |
|   case DeclarationName::CXXOperatorName:
 | |
|     if (Name.getCXXOverloadedOperator() != OO_Equal)
 | |
|       break;
 | |
| 
 | |
|     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
 | |
|       if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
 | |
|         CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
 | |
|         if (Record->needsImplicitCopyAssignment())
 | |
|           S.DeclareImplicitCopyAssignment(Class);
 | |
|         if (S.getLangOpts().CPlusPlus11 &&
 | |
|             Record->needsImplicitMoveAssignment())
 | |
|           S.DeclareImplicitMoveAssignment(Class);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Adds all qualifying matches for a name within a decl context to the
 | |
| // given lookup result.  Returns true if any matches were found.
 | |
| static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
 | |
|   bool Found = false;
 | |
| 
 | |
|   // Lazily declare C++ special member functions.
 | |
|   if (S.getLangOpts().CPlusPlus)
 | |
|     DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
 | |
| 
 | |
|   // Perform lookup into this declaration context.
 | |
|   DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
 | |
|   for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E;
 | |
|        ++I) {
 | |
|     NamedDecl *D = *I;
 | |
|     if ((D = R.getAcceptableDecl(D))) {
 | |
|       R.addDecl(D);
 | |
|       Found = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
 | |
|     return true;
 | |
| 
 | |
|   if (R.getLookupName().getNameKind()
 | |
|         != DeclarationName::CXXConversionFunctionName ||
 | |
|       R.getLookupName().getCXXNameType()->isDependentType() ||
 | |
|       !isa<CXXRecordDecl>(DC))
 | |
|     return Found;
 | |
| 
 | |
|   // C++ [temp.mem]p6:
 | |
|   //   A specialization of a conversion function template is not found by
 | |
|   //   name lookup. Instead, any conversion function templates visible in the
 | |
|   //   context of the use are considered. [...]
 | |
|   const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
 | |
|   if (!Record->isCompleteDefinition())
 | |
|     return Found;
 | |
| 
 | |
|   for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
 | |
|          UEnd = Record->conversion_end(); U != UEnd; ++U) {
 | |
|     FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
 | |
|     if (!ConvTemplate)
 | |
|       continue;
 | |
| 
 | |
|     // When we're performing lookup for the purposes of redeclaration, just
 | |
|     // add the conversion function template. When we deduce template
 | |
|     // arguments for specializations, we'll end up unifying the return
 | |
|     // type of the new declaration with the type of the function template.
 | |
|     if (R.isForRedeclaration()) {
 | |
|       R.addDecl(ConvTemplate);
 | |
|       Found = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // C++ [temp.mem]p6:
 | |
|     //   [...] For each such operator, if argument deduction succeeds
 | |
|     //   (14.9.2.3), the resulting specialization is used as if found by
 | |
|     //   name lookup.
 | |
|     //
 | |
|     // When referencing a conversion function for any purpose other than
 | |
|     // a redeclaration (such that we'll be building an expression with the
 | |
|     // result), perform template argument deduction and place the
 | |
|     // specialization into the result set. We do this to avoid forcing all
 | |
|     // callers to perform special deduction for conversion functions.
 | |
|     TemplateDeductionInfo Info(R.getNameLoc());
 | |
|     FunctionDecl *Specialization = nullptr;
 | |
| 
 | |
|     const FunctionProtoType *ConvProto
 | |
|       = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
 | |
|     assert(ConvProto && "Nonsensical conversion function template type");
 | |
| 
 | |
|     // Compute the type of the function that we would expect the conversion
 | |
|     // function to have, if it were to match the name given.
 | |
|     // FIXME: Calling convention!
 | |
|     FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
 | |
|     EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
 | |
|     EPI.ExceptionSpec = EST_None;
 | |
|     QualType ExpectedType
 | |
|       = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
 | |
|                                             None, EPI);
 | |
| 
 | |
|     // Perform template argument deduction against the type that we would
 | |
|     // expect the function to have.
 | |
|     if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
 | |
|                                             Specialization, Info)
 | |
|           == Sema::TDK_Success) {
 | |
|       R.addDecl(Specialization);
 | |
|       Found = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Found;
 | |
| }
 | |
| 
 | |
| // Performs C++ unqualified lookup into the given file context.
 | |
| static bool
 | |
| CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
 | |
|                    DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
 | |
| 
 | |
|   assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
 | |
| 
 | |
|   // Perform direct name lookup into the LookupCtx.
 | |
|   bool Found = LookupDirect(S, R, NS);
 | |
| 
 | |
|   // Perform direct name lookup into the namespaces nominated by the
 | |
|   // using directives whose common ancestor is this namespace.
 | |
|   for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
 | |
|     if (LookupDirect(S, R, UUE.getNominatedNamespace()))
 | |
|       Found = true;
 | |
| 
 | |
|   R.resolveKind();
 | |
| 
 | |
|   return Found;
 | |
| }
 | |
| 
 | |
| static bool isNamespaceOrTranslationUnitScope(Scope *S) {
 | |
|   if (DeclContext *Ctx = S->getEntity())
 | |
|     return Ctx->isFileContext();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Find the next outer declaration context from this scope. This
 | |
| // routine actually returns the semantic outer context, which may
 | |
| // differ from the lexical context (encoded directly in the Scope
 | |
| // stack) when we are parsing a member of a class template. In this
 | |
| // case, the second element of the pair will be true, to indicate that
 | |
| // name lookup should continue searching in this semantic context when
 | |
| // it leaves the current template parameter scope.
 | |
| static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
 | |
|   DeclContext *DC = S->getEntity();
 | |
|   DeclContext *Lexical = nullptr;
 | |
|   for (Scope *OuterS = S->getParent(); OuterS;
 | |
|        OuterS = OuterS->getParent()) {
 | |
|     if (OuterS->getEntity()) {
 | |
|       Lexical = OuterS->getEntity();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // C++ [temp.local]p8:
 | |
|   //   In the definition of a member of a class template that appears
 | |
|   //   outside of the namespace containing the class template
 | |
|   //   definition, the name of a template-parameter hides the name of
 | |
|   //   a member of this namespace.
 | |
|   //
 | |
|   // Example:
 | |
|   //
 | |
|   //   namespace N {
 | |
|   //     class C { };
 | |
|   //
 | |
|   //     template<class T> class B {
 | |
|   //       void f(T);
 | |
|   //     };
 | |
|   //   }
 | |
|   //
 | |
|   //   template<class C> void N::B<C>::f(C) {
 | |
|   //     C b;  // C is the template parameter, not N::C
 | |
|   //   }
 | |
|   //
 | |
|   // In this example, the lexical context we return is the
 | |
|   // TranslationUnit, while the semantic context is the namespace N.
 | |
|   if (!Lexical || !DC || !S->getParent() ||
 | |
|       !S->getParent()->isTemplateParamScope())
 | |
|     return std::make_pair(Lexical, false);
 | |
| 
 | |
|   // Find the outermost template parameter scope.
 | |
|   // For the example, this is the scope for the template parameters of
 | |
|   // template<class C>.
 | |
|   Scope *OutermostTemplateScope = S->getParent();
 | |
|   while (OutermostTemplateScope->getParent() &&
 | |
|          OutermostTemplateScope->getParent()->isTemplateParamScope())
 | |
|     OutermostTemplateScope = OutermostTemplateScope->getParent();
 | |
| 
 | |
|   // Find the namespace context in which the original scope occurs. In
 | |
|   // the example, this is namespace N.
 | |
|   DeclContext *Semantic = DC;
 | |
|   while (!Semantic->isFileContext())
 | |
|     Semantic = Semantic->getParent();
 | |
| 
 | |
|   // Find the declaration context just outside of the template
 | |
|   // parameter scope. This is the context in which the template is
 | |
|   // being lexically declaration (a namespace context). In the
 | |
|   // example, this is the global scope.
 | |
|   if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
 | |
|       Lexical->Encloses(Semantic))
 | |
|     return std::make_pair(Semantic, true);
 | |
| 
 | |
|   return std::make_pair(Lexical, false);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// An RAII object to specify that we want to find block scope extern
 | |
| /// declarations.
 | |
| struct FindLocalExternScope {
 | |
|   FindLocalExternScope(LookupResult &R)
 | |
|       : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
 | |
|                                  Decl::IDNS_LocalExtern) {
 | |
|     R.setFindLocalExtern(R.getIdentifierNamespace() & Decl::IDNS_Ordinary);
 | |
|   }
 | |
|   void restore() {
 | |
|     R.setFindLocalExtern(OldFindLocalExtern);
 | |
|   }
 | |
|   ~FindLocalExternScope() {
 | |
|     restore();
 | |
|   }
 | |
|   LookupResult &R;
 | |
|   bool OldFindLocalExtern;
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| bool Sema::CppLookupName(LookupResult &R, Scope *S) {
 | |
|   assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
 | |
| 
 | |
|   DeclarationName Name = R.getLookupName();
 | |
|   Sema::LookupNameKind NameKind = R.getLookupKind();
 | |
| 
 | |
|   // If this is the name of an implicitly-declared special member function,
 | |
|   // go through the scope stack to implicitly declare
 | |
|   if (isImplicitlyDeclaredMemberFunctionName(Name)) {
 | |
|     for (Scope *PreS = S; PreS; PreS = PreS->getParent())
 | |
|       if (DeclContext *DC = PreS->getEntity())
 | |
|         DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
 | |
|   }
 | |
| 
 | |
|   // Implicitly declare member functions with the name we're looking for, if in
 | |
|   // fact we are in a scope where it matters.
 | |
| 
 | |
|   Scope *Initial = S;
 | |
|   IdentifierResolver::iterator
 | |
|     I = IdResolver.begin(Name),
 | |
|     IEnd = IdResolver.end();
 | |
| 
 | |
|   // First we lookup local scope.
 | |
|   // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
 | |
|   // ...During unqualified name lookup (3.4.1), the names appear as if
 | |
|   // they were declared in the nearest enclosing namespace which contains
 | |
|   // both the using-directive and the nominated namespace.
 | |
|   // [Note: in this context, "contains" means "contains directly or
 | |
|   // indirectly".
 | |
|   //
 | |
|   // For example:
 | |
|   // namespace A { int i; }
 | |
|   // void foo() {
 | |
|   //   int i;
 | |
|   //   {
 | |
|   //     using namespace A;
 | |
|   //     ++i; // finds local 'i', A::i appears at global scope
 | |
|   //   }
 | |
|   // }
 | |
|   //
 | |
|   UnqualUsingDirectiveSet UDirs;
 | |
|   bool VisitedUsingDirectives = false;
 | |
|   bool LeftStartingScope = false;
 | |
|   DeclContext *OutsideOfTemplateParamDC = nullptr;
 | |
| 
 | |
|   // When performing a scope lookup, we want to find local extern decls.
 | |
|   FindLocalExternScope FindLocals(R);
 | |
| 
 | |
|   for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
 | |
|     DeclContext *Ctx = S->getEntity();
 | |
| 
 | |
|     // Check whether the IdResolver has anything in this scope.
 | |
|     bool Found = false;
 | |
|     for (; I != IEnd && S->isDeclScope(*I); ++I) {
 | |
|       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
 | |
|         if (NameKind == LookupRedeclarationWithLinkage) {
 | |
|           // Determine whether this (or a previous) declaration is
 | |
|           // out-of-scope.
 | |
|           if (!LeftStartingScope && !Initial->isDeclScope(*I))
 | |
|             LeftStartingScope = true;
 | |
| 
 | |
|           // If we found something outside of our starting scope that
 | |
|           // does not have linkage, skip it. If it's a template parameter,
 | |
|           // we still find it, so we can diagnose the invalid redeclaration.
 | |
|           if (LeftStartingScope && !((*I)->hasLinkage()) &&
 | |
|               !(*I)->isTemplateParameter()) {
 | |
|             R.setShadowed();
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         Found = true;
 | |
|         R.addDecl(ND);
 | |
|       }
 | |
|     }
 | |
|     if (Found) {
 | |
|       R.resolveKind();
 | |
|       if (S->isClassScope())
 | |
|         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
 | |
|           R.setNamingClass(Record);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
 | |
|       // C++11 [class.friend]p11:
 | |
|       //   If a friend declaration appears in a local class and the name
 | |
|       //   specified is an unqualified name, a prior declaration is
 | |
|       //   looked up without considering scopes that are outside the
 | |
|       //   innermost enclosing non-class scope.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
 | |
|         S->getParent() && !S->getParent()->isTemplateParamScope()) {
 | |
|       // We've just searched the last template parameter scope and
 | |
|       // found nothing, so look into the contexts between the
 | |
|       // lexical and semantic declaration contexts returned by
 | |
|       // findOuterContext(). This implements the name lookup behavior
 | |
|       // of C++ [temp.local]p8.
 | |
|       Ctx = OutsideOfTemplateParamDC;
 | |
|       OutsideOfTemplateParamDC = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (Ctx) {
 | |
|       DeclContext *OuterCtx;
 | |
|       bool SearchAfterTemplateScope;
 | |
|       std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
 | |
|       if (SearchAfterTemplateScope)
 | |
|         OutsideOfTemplateParamDC = OuterCtx;
 | |
| 
 | |
|       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
 | |
|         // We do not directly look into transparent contexts, since
 | |
|         // those entities will be found in the nearest enclosing
 | |
|         // non-transparent context.
 | |
|         if (Ctx->isTransparentContext())
 | |
|           continue;
 | |
| 
 | |
|         // We do not look directly into function or method contexts,
 | |
|         // since all of the local variables and parameters of the
 | |
|         // function/method are present within the Scope.
 | |
|         if (Ctx->isFunctionOrMethod()) {
 | |
|           // If we have an Objective-C instance method, look for ivars
 | |
|           // in the corresponding interface.
 | |
|           if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
 | |
|             if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
 | |
|               if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
 | |
|                 ObjCInterfaceDecl *ClassDeclared;
 | |
|                 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
 | |
|                                                  Name.getAsIdentifierInfo(),
 | |
|                                                              ClassDeclared)) {
 | |
|                   if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
 | |
|                     R.addDecl(ND);
 | |
|                     R.resolveKind();
 | |
|                     return true;
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|           }
 | |
| 
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // If this is a file context, we need to perform unqualified name
 | |
|         // lookup considering using directives.
 | |
|         if (Ctx->isFileContext()) {
 | |
|           // If we haven't handled using directives yet, do so now.
 | |
|           if (!VisitedUsingDirectives) {
 | |
|             // Add using directives from this context up to the top level.
 | |
|             for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
 | |
|               if (UCtx->isTransparentContext())
 | |
|                 continue;
 | |
| 
 | |
|               UDirs.visit(UCtx, UCtx);
 | |
|             }
 | |
| 
 | |
|             // Find the innermost file scope, so we can add using directives
 | |
|             // from local scopes.
 | |
|             Scope *InnermostFileScope = S;
 | |
|             while (InnermostFileScope &&
 | |
|                    !isNamespaceOrTranslationUnitScope(InnermostFileScope))
 | |
|               InnermostFileScope = InnermostFileScope->getParent();
 | |
|             UDirs.visitScopeChain(Initial, InnermostFileScope);
 | |
| 
 | |
|             UDirs.done();
 | |
| 
 | |
|             VisitedUsingDirectives = true;
 | |
|           }
 | |
| 
 | |
|           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
 | |
|             R.resolveKind();
 | |
|             return true;
 | |
|           }
 | |
| 
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Perform qualified name lookup into this context.
 | |
|         // FIXME: In some cases, we know that every name that could be found by
 | |
|         // this qualified name lookup will also be on the identifier chain. For
 | |
|         // example, inside a class without any base classes, we never need to
 | |
|         // perform qualified lookup because all of the members are on top of the
 | |
|         // identifier chain.
 | |
|         if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Stop if we ran out of scopes.
 | |
|   // FIXME:  This really, really shouldn't be happening.
 | |
|   if (!S) return false;
 | |
| 
 | |
|   // If we are looking for members, no need to look into global/namespace scope.
 | |
|   if (NameKind == LookupMemberName)
 | |
|     return false;
 | |
| 
 | |
|   // Collect UsingDirectiveDecls in all scopes, and recursively all
 | |
|   // nominated namespaces by those using-directives.
 | |
|   //
 | |
|   // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
 | |
|   // don't build it for each lookup!
 | |
|   if (!VisitedUsingDirectives) {
 | |
|     UDirs.visitScopeChain(Initial, S);
 | |
|     UDirs.done();
 | |
|   }
 | |
| 
 | |
|   // If we're not performing redeclaration lookup, do not look for local
 | |
|   // extern declarations outside of a function scope.
 | |
|   if (!R.isForRedeclaration())
 | |
|     FindLocals.restore();
 | |
| 
 | |
|   // Lookup namespace scope, and global scope.
 | |
|   // Unqualified name lookup in C++ requires looking into scopes
 | |
|   // that aren't strictly lexical, and therefore we walk through the
 | |
|   // context as well as walking through the scopes.
 | |
|   for (; S; S = S->getParent()) {
 | |
|     // Check whether the IdResolver has anything in this scope.
 | |
|     bool Found = false;
 | |
|     for (; I != IEnd && S->isDeclScope(*I); ++I) {
 | |
|       if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
 | |
|         // We found something.  Look for anything else in our scope
 | |
|         // with this same name and in an acceptable identifier
 | |
|         // namespace, so that we can construct an overload set if we
 | |
|         // need to.
 | |
|         Found = true;
 | |
|         R.addDecl(ND);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Found && S->isTemplateParamScope()) {
 | |
|       R.resolveKind();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     DeclContext *Ctx = S->getEntity();
 | |
|     if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
 | |
|         S->getParent() && !S->getParent()->isTemplateParamScope()) {
 | |
|       // We've just searched the last template parameter scope and
 | |
|       // found nothing, so look into the contexts between the
 | |
|       // lexical and semantic declaration contexts returned by
 | |
|       // findOuterContext(). This implements the name lookup behavior
 | |
|       // of C++ [temp.local]p8.
 | |
|       Ctx = OutsideOfTemplateParamDC;
 | |
|       OutsideOfTemplateParamDC = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (Ctx) {
 | |
|       DeclContext *OuterCtx;
 | |
|       bool SearchAfterTemplateScope;
 | |
|       std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
 | |
|       if (SearchAfterTemplateScope)
 | |
|         OutsideOfTemplateParamDC = OuterCtx;
 | |
| 
 | |
|       for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
 | |
|         // We do not directly look into transparent contexts, since
 | |
|         // those entities will be found in the nearest enclosing
 | |
|         // non-transparent context.
 | |
|         if (Ctx->isTransparentContext())
 | |
|           continue;
 | |
| 
 | |
|         // If we have a context, and it's not a context stashed in the
 | |
|         // template parameter scope for an out-of-line definition, also
 | |
|         // look into that context.
 | |
|         if (!(Found && S && S->isTemplateParamScope())) {
 | |
|           assert(Ctx->isFileContext() &&
 | |
|               "We should have been looking only at file context here already.");
 | |
| 
 | |
|           // Look into context considering using-directives.
 | |
|           if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
 | |
|             Found = true;
 | |
|         }
 | |
| 
 | |
|         if (Found) {
 | |
|           R.resolveKind();
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|         if (R.isForRedeclaration() && !Ctx->isTransparentContext())
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return !R.empty();
 | |
| }
 | |
| 
 | |
| /// \brief Find the declaration that a class temploid member specialization was
 | |
| /// instantiated from, or the member itself if it is an explicit specialization.
 | |
| static Decl *getInstantiatedFrom(Decl *D, MemberSpecializationInfo *MSInfo) {
 | |
|   return MSInfo->isExplicitSpecialization() ? D : MSInfo->getInstantiatedFrom();
 | |
| }
 | |
| 
 | |
| Module *Sema::getOwningModule(Decl *Entity) {
 | |
|   // If it's imported, grab its owning module.
 | |
|   Module *M = Entity->getImportedOwningModule();
 | |
|   if (M || !isa<NamedDecl>(Entity) || !cast<NamedDecl>(Entity)->isHidden())
 | |
|     return M;
 | |
|   assert(!Entity->isFromASTFile() &&
 | |
|          "hidden entity from AST file has no owning module");
 | |
| 
 | |
|   if (!getLangOpts().ModulesLocalVisibility) {
 | |
|     // If we're not tracking visibility locally, the only way a declaration
 | |
|     // can be hidden and local is if it's hidden because it's parent is (for
 | |
|     // instance, maybe this is a lazily-declared special member of an imported
 | |
|     // class).
 | |
|     auto *Parent = cast<NamedDecl>(Entity->getDeclContext());
 | |
|     assert(Parent->isHidden() && "unexpectedly hidden decl");
 | |
|     return getOwningModule(Parent);
 | |
|   }
 | |
| 
 | |
|   // It's local and hidden; grab or compute its owning module.
 | |
|   M = Entity->getLocalOwningModule();
 | |
|   if (M)
 | |
|     return M;
 | |
| 
 | |
|   if (auto *Containing =
 | |
|           PP.getModuleContainingLocation(Entity->getLocation())) {
 | |
|     M = Containing;
 | |
|   } else if (Entity->isInvalidDecl() || Entity->getLocation().isInvalid()) {
 | |
|     // Don't bother tracking visibility for invalid declarations with broken
 | |
|     // locations.
 | |
|     cast<NamedDecl>(Entity)->setHidden(false);
 | |
|   } else {
 | |
|     // We need to assign a module to an entity that exists outside of any
 | |
|     // module, so that we can hide it from modules that we textually enter.
 | |
|     // Invent a fake module for all such entities.
 | |
|     if (!CachedFakeTopLevelModule) {
 | |
|       CachedFakeTopLevelModule =
 | |
|           PP.getHeaderSearchInfo().getModuleMap().findOrCreateModule(
 | |
|               "<top-level>", nullptr, false, false).first;
 | |
| 
 | |
|       auto &SrcMgr = PP.getSourceManager();
 | |
|       SourceLocation StartLoc =
 | |
|           SrcMgr.getLocForStartOfFile(SrcMgr.getMainFileID());
 | |
|       auto &TopLevel =
 | |
|           VisibleModulesStack.empty() ? VisibleModules : VisibleModulesStack[0];
 | |
|       TopLevel.setVisible(CachedFakeTopLevelModule, StartLoc);
 | |
|     }
 | |
| 
 | |
|     M = CachedFakeTopLevelModule;
 | |
|   }
 | |
| 
 | |
|   if (M)
 | |
|     Entity->setLocalOwningModule(M);
 | |
|   return M;
 | |
| }
 | |
| 
 | |
| void Sema::makeMergedDefinitionVisible(NamedDecl *ND, SourceLocation Loc) {
 | |
|   if (auto *M = PP.getModuleContainingLocation(Loc))
 | |
|     Context.mergeDefinitionIntoModule(ND, M);
 | |
|   else
 | |
|     // We're not building a module; just make the definition visible.
 | |
|     ND->setHidden(false);
 | |
| 
 | |
|   // If ND is a template declaration, make the template parameters
 | |
|   // visible too. They're not (necessarily) within a mergeable DeclContext.
 | |
|   if (auto *TD = dyn_cast<TemplateDecl>(ND))
 | |
|     for (auto *Param : *TD->getTemplateParameters())
 | |
|       makeMergedDefinitionVisible(Param, Loc);
 | |
| }
 | |
| 
 | |
| /// \brief Find the module in which the given declaration was defined.
 | |
| static Module *getDefiningModule(Sema &S, Decl *Entity) {
 | |
|   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
 | |
|     // If this function was instantiated from a template, the defining module is
 | |
|     // the module containing the pattern.
 | |
|     if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
 | |
|       Entity = Pattern;
 | |
|   } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
 | |
|     if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
 | |
|       Entity = Pattern;
 | |
|   } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
 | |
|     if (MemberSpecializationInfo *MSInfo = ED->getMemberSpecializationInfo())
 | |
|       Entity = getInstantiatedFrom(ED, MSInfo);
 | |
|   } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
 | |
|     // FIXME: Map from variable template specializations back to the template.
 | |
|     if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo())
 | |
|       Entity = getInstantiatedFrom(VD, MSInfo);
 | |
|   }
 | |
| 
 | |
|   // Walk up to the containing context. That might also have been instantiated
 | |
|   // from a template.
 | |
|   DeclContext *Context = Entity->getDeclContext();
 | |
|   if (Context->isFileContext())
 | |
|     return S.getOwningModule(Entity);
 | |
|   return getDefiningModule(S, cast<Decl>(Context));
 | |
| }
 | |
| 
 | |
| llvm::DenseSet<Module*> &Sema::getLookupModules() {
 | |
|   unsigned N = ActiveTemplateInstantiations.size();
 | |
|   for (unsigned I = ActiveTemplateInstantiationLookupModules.size();
 | |
|        I != N; ++I) {
 | |
|     Module *M =
 | |
|         getDefiningModule(*this, ActiveTemplateInstantiations[I].Entity);
 | |
|     if (M && !LookupModulesCache.insert(M).second)
 | |
|       M = nullptr;
 | |
|     ActiveTemplateInstantiationLookupModules.push_back(M);
 | |
|   }
 | |
|   return LookupModulesCache;
 | |
| }
 | |
| 
 | |
| bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
 | |
|   for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
 | |
|     if (isModuleVisible(Merged))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| template<typename ParmDecl>
 | |
| static bool
 | |
| hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
 | |
|                           llvm::SmallVectorImpl<Module *> *Modules) {
 | |
|   if (!D->hasDefaultArgument())
 | |
|     return false;
 | |
| 
 | |
|   while (D) {
 | |
|     auto &DefaultArg = D->getDefaultArgStorage();
 | |
|     if (!DefaultArg.isInherited() && S.isVisible(D))
 | |
|       return true;
 | |
| 
 | |
|     if (!DefaultArg.isInherited() && Modules) {
 | |
|       auto *NonConstD = const_cast<ParmDecl*>(D);
 | |
|       Modules->push_back(S.getOwningModule(NonConstD));
 | |
|       const auto &Merged = S.Context.getModulesWithMergedDefinition(NonConstD);
 | |
|       Modules->insert(Modules->end(), Merged.begin(), Merged.end());
 | |
|     }
 | |
| 
 | |
|     // If there was a previous default argument, maybe its parameter is visible.
 | |
|     D = DefaultArg.getInheritedFrom();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
 | |
|                                      llvm::SmallVectorImpl<Module *> *Modules) {
 | |
|   if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
 | |
|     return ::hasVisibleDefaultArgument(*this, P, Modules);
 | |
|   if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
 | |
|     return ::hasVisibleDefaultArgument(*this, P, Modules);
 | |
|   return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
 | |
|                                      Modules);
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether a declaration is visible to name lookup.
 | |
| ///
 | |
| /// This routine determines whether the declaration D is visible in the current
 | |
| /// lookup context, taking into account the current template instantiation
 | |
| /// stack. During template instantiation, a declaration is visible if it is
 | |
| /// visible from a module containing any entity on the template instantiation
 | |
| /// path (by instantiating a template, you allow it to see the declarations that
 | |
| /// your module can see, including those later on in your module).
 | |
| bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
 | |
|   assert(D->isHidden() && "should not call this: not in slow case");
 | |
|   Module *DeclModule = nullptr;
 | |
|   
 | |
|   if (SemaRef.getLangOpts().ModulesLocalVisibility) {
 | |
|     DeclModule = SemaRef.getOwningModule(D);
 | |
|     if (!DeclModule) {
 | |
|       // getOwningModule() may have decided the declaration should not be hidden.
 | |
|       assert(!D->isHidden() && "hidden decl not from a module");
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // If the owning module is visible, and the decl is not module private,
 | |
|     // then the decl is visible too. (Module private is ignored within the same
 | |
|     // top-level module.)
 | |
|     if ((!D->isFromASTFile() || !D->isModulePrivate()) &&
 | |
|         (SemaRef.isModuleVisible(DeclModule) ||
 | |
|          SemaRef.hasVisibleMergedDefinition(D)))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // If this declaration is not at namespace scope nor module-private,
 | |
|   // then it is visible if its lexical parent has a visible definition.
 | |
|   DeclContext *DC = D->getLexicalDeclContext();
 | |
|   if (!D->isModulePrivate() &&
 | |
|       DC && !DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) {
 | |
|     // For a parameter, check whether our current template declaration's
 | |
|     // lexical context is visible, not whether there's some other visible
 | |
|     // definition of it, because parameters aren't "within" the definition.
 | |
|     if ((D->isTemplateParameter() || isa<ParmVarDecl>(D))
 | |
|             ? isVisible(SemaRef, cast<NamedDecl>(DC))
 | |
|             : SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC))) {
 | |
|       if (SemaRef.ActiveTemplateInstantiations.empty() &&
 | |
|           // FIXME: Do something better in this case.
 | |
|           !SemaRef.getLangOpts().ModulesLocalVisibility) {
 | |
|         // Cache the fact that this declaration is implicitly visible because
 | |
|         // its parent has a visible definition.
 | |
|         D->setHidden(false);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Find the extra places where we need to look.
 | |
|   llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
 | |
|   if (LookupModules.empty())
 | |
|     return false;
 | |
| 
 | |
|   if (!DeclModule) {
 | |
|     DeclModule = SemaRef.getOwningModule(D);
 | |
|     assert(DeclModule && "hidden decl not from a module");
 | |
|   }
 | |
| 
 | |
|   // If our lookup set contains the decl's module, it's visible.
 | |
|   if (LookupModules.count(DeclModule))
 | |
|     return true;
 | |
| 
 | |
|   // If the declaration isn't exported, it's not visible in any other module.
 | |
|   if (D->isModulePrivate())
 | |
|     return false;
 | |
| 
 | |
|   // Check whether DeclModule is transitively exported to an import of
 | |
|   // the lookup set.
 | |
|   return std::any_of(LookupModules.begin(), LookupModules.end(),
 | |
|                      [&](Module *M) { return M->isModuleVisible(DeclModule); });
 | |
| }
 | |
| 
 | |
| bool Sema::isVisibleSlow(const NamedDecl *D) {
 | |
|   return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
 | |
| }
 | |
| 
 | |
| bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
 | |
|   for (auto *D : R) {
 | |
|     if (isVisible(D))
 | |
|       return true;
 | |
|   }
 | |
|   return New->isExternallyVisible();
 | |
| }
 | |
| 
 | |
| /// \brief Retrieve the visible declaration corresponding to D, if any.
 | |
| ///
 | |
| /// This routine determines whether the declaration D is visible in the current
 | |
| /// module, with the current imports. If not, it checks whether any
 | |
| /// redeclaration of D is visible, and if so, returns that declaration.
 | |
| ///
 | |
| /// \returns D, or a visible previous declaration of D, whichever is more recent
 | |
| /// and visible. If no declaration of D is visible, returns null.
 | |
| static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
 | |
|   assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
 | |
| 
 | |
|   for (auto RD : D->redecls()) {
 | |
|     if (auto ND = dyn_cast<NamedDecl>(RD)) {
 | |
|       // FIXME: This is wrong in the case where the previous declaration is not
 | |
|       // visible in the same scope as D. This needs to be done much more
 | |
|       // carefully.
 | |
|       if (LookupResult::isVisible(SemaRef, ND))
 | |
|         return ND;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
 | |
|   return findAcceptableDecl(getSema(), D);
 | |
| }
 | |
| 
 | |
| /// @brief Perform unqualified name lookup starting from a given
 | |
| /// scope.
 | |
| ///
 | |
| /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
 | |
| /// used to find names within the current scope. For example, 'x' in
 | |
| /// @code
 | |
| /// int x;
 | |
| /// int f() {
 | |
| ///   return x; // unqualified name look finds 'x' in the global scope
 | |
| /// }
 | |
| /// @endcode
 | |
| ///
 | |
| /// Different lookup criteria can find different names. For example, a
 | |
| /// particular scope can have both a struct and a function of the same
 | |
| /// name, and each can be found by certain lookup criteria. For more
 | |
| /// information about lookup criteria, see the documentation for the
 | |
| /// class LookupCriteria.
 | |
| ///
 | |
| /// @param S        The scope from which unqualified name lookup will
 | |
| /// begin. If the lookup criteria permits, name lookup may also search
 | |
| /// in the parent scopes.
 | |
| ///
 | |
| /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
 | |
| /// look up and the lookup kind), and is updated with the results of lookup
 | |
| /// including zero or more declarations and possibly additional information
 | |
| /// used to diagnose ambiguities.
 | |
| ///
 | |
| /// @returns \c true if lookup succeeded and false otherwise.
 | |
| bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
 | |
|   DeclarationName Name = R.getLookupName();
 | |
|   if (!Name) return false;
 | |
| 
 | |
|   LookupNameKind NameKind = R.getLookupKind();
 | |
| 
 | |
|   if (!getLangOpts().CPlusPlus) {
 | |
|     // Unqualified name lookup in C/Objective-C is purely lexical, so
 | |
|     // search in the declarations attached to the name.
 | |
|     if (NameKind == Sema::LookupRedeclarationWithLinkage) {
 | |
|       // Find the nearest non-transparent declaration scope.
 | |
|       while (!(S->getFlags() & Scope::DeclScope) ||
 | |
|              (S->getEntity() && S->getEntity()->isTransparentContext()))
 | |
|         S = S->getParent();
 | |
|     }
 | |
| 
 | |
|     // When performing a scope lookup, we want to find local extern decls.
 | |
|     FindLocalExternScope FindLocals(R);
 | |
| 
 | |
|     // Scan up the scope chain looking for a decl that matches this
 | |
|     // identifier that is in the appropriate namespace.  This search
 | |
|     // should not take long, as shadowing of names is uncommon, and
 | |
|     // deep shadowing is extremely uncommon.
 | |
|     bool LeftStartingScope = false;
 | |
| 
 | |
|     for (IdentifierResolver::iterator I = IdResolver.begin(Name),
 | |
|                                    IEnd = IdResolver.end();
 | |
|          I != IEnd; ++I)
 | |
|       if (NamedDecl *D = R.getAcceptableDecl(*I)) {
 | |
|         if (NameKind == LookupRedeclarationWithLinkage) {
 | |
|           // Determine whether this (or a previous) declaration is
 | |
|           // out-of-scope.
 | |
|           if (!LeftStartingScope && !S->isDeclScope(*I))
 | |
|             LeftStartingScope = true;
 | |
| 
 | |
|           // If we found something outside of our starting scope that
 | |
|           // does not have linkage, skip it.
 | |
|           if (LeftStartingScope && !((*I)->hasLinkage())) {
 | |
|             R.setShadowed();
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
|         else if (NameKind == LookupObjCImplicitSelfParam &&
 | |
|                  !isa<ImplicitParamDecl>(*I))
 | |
|           continue;
 | |
| 
 | |
|         R.addDecl(D);
 | |
| 
 | |
|         // Check whether there are any other declarations with the same name
 | |
|         // and in the same scope.
 | |
|         if (I != IEnd) {
 | |
|           // Find the scope in which this declaration was declared (if it
 | |
|           // actually exists in a Scope).
 | |
|           while (S && !S->isDeclScope(D))
 | |
|             S = S->getParent();
 | |
|           
 | |
|           // If the scope containing the declaration is the translation unit,
 | |
|           // then we'll need to perform our checks based on the matching
 | |
|           // DeclContexts rather than matching scopes.
 | |
|           if (S && isNamespaceOrTranslationUnitScope(S))
 | |
|             S = nullptr;
 | |
| 
 | |
|           // Compute the DeclContext, if we need it.
 | |
|           DeclContext *DC = nullptr;
 | |
|           if (!S)
 | |
|             DC = (*I)->getDeclContext()->getRedeclContext();
 | |
|             
 | |
|           IdentifierResolver::iterator LastI = I;
 | |
|           for (++LastI; LastI != IEnd; ++LastI) {
 | |
|             if (S) {
 | |
|               // Match based on scope.
 | |
|               if (!S->isDeclScope(*LastI))
 | |
|                 break;
 | |
|             } else {
 | |
|               // Match based on DeclContext.
 | |
|               DeclContext *LastDC 
 | |
|                 = (*LastI)->getDeclContext()->getRedeclContext();
 | |
|               if (!LastDC->Equals(DC))
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             // If the declaration is in the right namespace and visible, add it.
 | |
|             if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
 | |
|               R.addDecl(LastD);
 | |
|           }
 | |
| 
 | |
|           R.resolveKind();
 | |
|         }
 | |
| 
 | |
|         return true;
 | |
|       }
 | |
|   } else {
 | |
|     // Perform C++ unqualified name lookup.
 | |
|     if (CppLookupName(R, S))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // If we didn't find a use of this identifier, and if the identifier
 | |
|   // corresponds to a compiler builtin, create the decl object for the builtin
 | |
|   // now, injecting it into translation unit scope, and return it.
 | |
|   if (AllowBuiltinCreation && LookupBuiltin(*this, R))
 | |
|     return true;
 | |
| 
 | |
|   // If we didn't find a use of this identifier, the ExternalSource 
 | |
|   // may be able to handle the situation. 
 | |
|   // Note: some lookup failures are expected!
 | |
|   // See e.g. R.isForRedeclaration().
 | |
|   return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
 | |
| }
 | |
| 
 | |
| /// @brief Perform qualified name lookup in the namespaces nominated by
 | |
| /// using directives by the given context.
 | |
| ///
 | |
| /// C++98 [namespace.qual]p2:
 | |
| ///   Given X::m (where X is a user-declared namespace), or given \::m
 | |
| ///   (where X is the global namespace), let S be the set of all
 | |
| ///   declarations of m in X and in the transitive closure of all
 | |
| ///   namespaces nominated by using-directives in X and its used
 | |
| ///   namespaces, except that using-directives are ignored in any
 | |
| ///   namespace, including X, directly containing one or more
 | |
| ///   declarations of m. No namespace is searched more than once in
 | |
| ///   the lookup of a name. If S is the empty set, the program is
 | |
| ///   ill-formed. Otherwise, if S has exactly one member, or if the
 | |
| ///   context of the reference is a using-declaration
 | |
| ///   (namespace.udecl), S is the required set of declarations of
 | |
| ///   m. Otherwise if the use of m is not one that allows a unique
 | |
| ///   declaration to be chosen from S, the program is ill-formed.
 | |
| ///
 | |
| /// C++98 [namespace.qual]p5:
 | |
| ///   During the lookup of a qualified namespace member name, if the
 | |
| ///   lookup finds more than one declaration of the member, and if one
 | |
| ///   declaration introduces a class name or enumeration name and the
 | |
| ///   other declarations either introduce the same object, the same
 | |
| ///   enumerator or a set of functions, the non-type name hides the
 | |
| ///   class or enumeration name if and only if the declarations are
 | |
| ///   from the same namespace; otherwise (the declarations are from
 | |
| ///   different namespaces), the program is ill-formed.
 | |
| static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
 | |
|                                                  DeclContext *StartDC) {
 | |
|   assert(StartDC->isFileContext() && "start context is not a file context");
 | |
| 
 | |
|   DeclContext::udir_range UsingDirectives = StartDC->using_directives();
 | |
|   if (UsingDirectives.begin() == UsingDirectives.end()) return false;
 | |
| 
 | |
|   // We have at least added all these contexts to the queue.
 | |
|   llvm::SmallPtrSet<DeclContext*, 8> Visited;
 | |
|   Visited.insert(StartDC);
 | |
| 
 | |
|   // We have not yet looked into these namespaces, much less added
 | |
|   // their "using-children" to the queue.
 | |
|   SmallVector<NamespaceDecl*, 8> Queue;
 | |
| 
 | |
|   // We have already looked into the initial namespace; seed the queue
 | |
|   // with its using-children.
 | |
|   for (auto *I : UsingDirectives) {
 | |
|     NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
 | |
|     if (Visited.insert(ND).second)
 | |
|       Queue.push_back(ND);
 | |
|   }
 | |
| 
 | |
|   // The easiest way to implement the restriction in [namespace.qual]p5
 | |
|   // is to check whether any of the individual results found a tag
 | |
|   // and, if so, to declare an ambiguity if the final result is not
 | |
|   // a tag.
 | |
|   bool FoundTag = false;
 | |
|   bool FoundNonTag = false;
 | |
| 
 | |
|   LookupResult LocalR(LookupResult::Temporary, R);
 | |
| 
 | |
|   bool Found = false;
 | |
|   while (!Queue.empty()) {
 | |
|     NamespaceDecl *ND = Queue.pop_back_val();
 | |
| 
 | |
|     // We go through some convolutions here to avoid copying results
 | |
|     // between LookupResults.
 | |
|     bool UseLocal = !R.empty();
 | |
|     LookupResult &DirectR = UseLocal ? LocalR : R;
 | |
|     bool FoundDirect = LookupDirect(S, DirectR, ND);
 | |
| 
 | |
|     if (FoundDirect) {
 | |
|       // First do any local hiding.
 | |
|       DirectR.resolveKind();
 | |
| 
 | |
|       // If the local result is a tag, remember that.
 | |
|       if (DirectR.isSingleTagDecl())
 | |
|         FoundTag = true;
 | |
|       else
 | |
|         FoundNonTag = true;
 | |
| 
 | |
|       // Append the local results to the total results if necessary.
 | |
|       if (UseLocal) {
 | |
|         R.addAllDecls(LocalR);
 | |
|         LocalR.clear();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we find names in this namespace, ignore its using directives.
 | |
|     if (FoundDirect) {
 | |
|       Found = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     for (auto I : ND->using_directives()) {
 | |
|       NamespaceDecl *Nom = I->getNominatedNamespace();
 | |
|       if (Visited.insert(Nom).second)
 | |
|         Queue.push_back(Nom);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Found) {
 | |
|     if (FoundTag && FoundNonTag)
 | |
|       R.setAmbiguousQualifiedTagHiding();
 | |
|     else
 | |
|       R.resolveKind();
 | |
|   }
 | |
| 
 | |
|   return Found;
 | |
| }
 | |
| 
 | |
| /// \brief Callback that looks for any member of a class with the given name.
 | |
| static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
 | |
|                             CXXBasePath &Path, DeclarationName Name) {
 | |
|   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
 | |
| 
 | |
|   Path.Decls = BaseRecord->lookup(Name);
 | |
|   return !Path.Decls.empty();
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether the given set of member declarations contains only
 | |
| /// static members, nested types, and enumerators.
 | |
| template<typename InputIterator>
 | |
| static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
 | |
|   Decl *D = (*First)->getUnderlyingDecl();
 | |
|   if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
 | |
|     return true;
 | |
| 
 | |
|   if (isa<CXXMethodDecl>(D)) {
 | |
|     // Determine whether all of the methods are static.
 | |
|     bool AllMethodsAreStatic = true;
 | |
|     for(; First != Last; ++First) {
 | |
|       D = (*First)->getUnderlyingDecl();
 | |
| 
 | |
|       if (!isa<CXXMethodDecl>(D)) {
 | |
|         assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (!cast<CXXMethodDecl>(D)->isStatic()) {
 | |
|         AllMethodsAreStatic = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (AllMethodsAreStatic)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Perform qualified name lookup into a given context.
 | |
| ///
 | |
| /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
 | |
| /// names when the context of those names is explicit specified, e.g.,
 | |
| /// "std::vector" or "x->member", or as part of unqualified name lookup.
 | |
| ///
 | |
| /// Different lookup criteria can find different names. For example, a
 | |
| /// particular scope can have both a struct and a function of the same
 | |
| /// name, and each can be found by certain lookup criteria. For more
 | |
| /// information about lookup criteria, see the documentation for the
 | |
| /// class LookupCriteria.
 | |
| ///
 | |
| /// \param R captures both the lookup criteria and any lookup results found.
 | |
| ///
 | |
| /// \param LookupCtx The context in which qualified name lookup will
 | |
| /// search. If the lookup criteria permits, name lookup may also search
 | |
| /// in the parent contexts or (for C++ classes) base classes.
 | |
| ///
 | |
| /// \param InUnqualifiedLookup true if this is qualified name lookup that
 | |
| /// occurs as part of unqualified name lookup.
 | |
| ///
 | |
| /// \returns true if lookup succeeded, false if it failed.
 | |
| bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
 | |
|                                bool InUnqualifiedLookup) {
 | |
|   assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
 | |
| 
 | |
|   if (!R.getLookupName())
 | |
|     return false;
 | |
| 
 | |
|   // Make sure that the declaration context is complete.
 | |
|   assert((!isa<TagDecl>(LookupCtx) ||
 | |
|           LookupCtx->isDependentContext() ||
 | |
|           cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
 | |
|           cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
 | |
|          "Declaration context must already be complete!");
 | |
| 
 | |
|   struct QualifiedLookupInScope {
 | |
|     bool oldVal;
 | |
|     DeclContext *Context;
 | |
|     // Set flag in DeclContext informing debugger that we're looking for qualified name
 | |
|     QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) { 
 | |
|       oldVal = ctx->setUseQualifiedLookup(); 
 | |
|     }
 | |
|     ~QualifiedLookupInScope() { 
 | |
|       Context->setUseQualifiedLookup(oldVal); 
 | |
|     }
 | |
|   } QL(LookupCtx);
 | |
| 
 | |
|   if (LookupDirect(*this, R, LookupCtx)) {
 | |
|     R.resolveKind();
 | |
|     if (isa<CXXRecordDecl>(LookupCtx))
 | |
|       R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Don't descend into implied contexts for redeclarations.
 | |
|   // C++98 [namespace.qual]p6:
 | |
|   //   In a declaration for a namespace member in which the
 | |
|   //   declarator-id is a qualified-id, given that the qualified-id
 | |
|   //   for the namespace member has the form
 | |
|   //     nested-name-specifier unqualified-id
 | |
|   //   the unqualified-id shall name a member of the namespace
 | |
|   //   designated by the nested-name-specifier.
 | |
|   // See also [class.mfct]p5 and [class.static.data]p2.
 | |
|   if (R.isForRedeclaration())
 | |
|     return false;
 | |
| 
 | |
|   // If this is a namespace, look it up in the implied namespaces.
 | |
|   if (LookupCtx->isFileContext())
 | |
|     return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
 | |
| 
 | |
|   // If this isn't a C++ class, we aren't allowed to look into base
 | |
|   // classes, we're done.
 | |
|   CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
 | |
|   if (!LookupRec || !LookupRec->getDefinition())
 | |
|     return false;
 | |
| 
 | |
|   // If we're performing qualified name lookup into a dependent class,
 | |
|   // then we are actually looking into a current instantiation. If we have any
 | |
|   // dependent base classes, then we either have to delay lookup until
 | |
|   // template instantiation time (at which point all bases will be available)
 | |
|   // or we have to fail.
 | |
|   if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
 | |
|       LookupRec->hasAnyDependentBases()) {
 | |
|     R.setNotFoundInCurrentInstantiation();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Perform lookup into our base classes.
 | |
|   CXXBasePaths Paths;
 | |
|   Paths.setOrigin(LookupRec);
 | |
| 
 | |
|   // Look for this member in our base classes
 | |
|   bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
 | |
|                        DeclarationName Name) = nullptr;
 | |
|   switch (R.getLookupKind()) {
 | |
|     case LookupObjCImplicitSelfParam:
 | |
|     case LookupOrdinaryName:
 | |
|     case LookupMemberName:
 | |
|     case LookupRedeclarationWithLinkage:
 | |
|     case LookupLocalFriendName:
 | |
|       BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
 | |
|       break;
 | |
| 
 | |
|     case LookupTagName:
 | |
|       BaseCallback = &CXXRecordDecl::FindTagMember;
 | |
|       break;
 | |
| 
 | |
|     case LookupAnyName:
 | |
|       BaseCallback = &LookupAnyMember;
 | |
|       break;
 | |
| 
 | |
|     case LookupUsingDeclName:
 | |
|       // This lookup is for redeclarations only.
 | |
| 
 | |
|     case LookupOperatorName:
 | |
|     case LookupNamespaceName:
 | |
|     case LookupObjCProtocolName:
 | |
|     case LookupLabel:
 | |
|       // These lookups will never find a member in a C++ class (or base class).
 | |
|       return false;
 | |
| 
 | |
|     case LookupNestedNameSpecifierName:
 | |
|       BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   DeclarationName Name = R.getLookupName();
 | |
|   if (!LookupRec->lookupInBases(
 | |
|           [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
 | |
|             return BaseCallback(Specifier, Path, Name);
 | |
|           },
 | |
|           Paths))
 | |
|     return false;
 | |
| 
 | |
|   R.setNamingClass(LookupRec);
 | |
| 
 | |
|   // C++ [class.member.lookup]p2:
 | |
|   //   [...] If the resulting set of declarations are not all from
 | |
|   //   sub-objects of the same type, or the set has a nonstatic member
 | |
|   //   and includes members from distinct sub-objects, there is an
 | |
|   //   ambiguity and the program is ill-formed. Otherwise that set is
 | |
|   //   the result of the lookup.
 | |
|   QualType SubobjectType;
 | |
|   int SubobjectNumber = 0;
 | |
|   AccessSpecifier SubobjectAccess = AS_none;
 | |
| 
 | |
|   for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
 | |
|        Path != PathEnd; ++Path) {
 | |
|     const CXXBasePathElement &PathElement = Path->back();
 | |
| 
 | |
|     // Pick the best (i.e. most permissive i.e. numerically lowest) access
 | |
|     // across all paths.
 | |
|     SubobjectAccess = std::min(SubobjectAccess, Path->Access);
 | |
| 
 | |
|     // Determine whether we're looking at a distinct sub-object or not.
 | |
|     if (SubobjectType.isNull()) {
 | |
|       // This is the first subobject we've looked at. Record its type.
 | |
|       SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
 | |
|       SubobjectNumber = PathElement.SubobjectNumber;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (SubobjectType
 | |
|                  != Context.getCanonicalType(PathElement.Base->getType())) {
 | |
|       // We found members of the given name in two subobjects of
 | |
|       // different types. If the declaration sets aren't the same, this
 | |
|       // lookup is ambiguous.
 | |
|       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
 | |
|         CXXBasePaths::paths_iterator FirstPath = Paths.begin();
 | |
|         DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
 | |
|         DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
 | |
| 
 | |
|         while (FirstD != FirstPath->Decls.end() &&
 | |
|                CurrentD != Path->Decls.end()) {
 | |
|          if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
 | |
|              (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
 | |
|            break;
 | |
| 
 | |
|           ++FirstD;
 | |
|           ++CurrentD;
 | |
|         }
 | |
| 
 | |
|         if (FirstD == FirstPath->Decls.end() &&
 | |
|             CurrentD == Path->Decls.end())
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       R.setAmbiguousBaseSubobjectTypes(Paths);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (SubobjectNumber != PathElement.SubobjectNumber) {
 | |
|       // We have a different subobject of the same type.
 | |
| 
 | |
|       // C++ [class.member.lookup]p5:
 | |
|       //   A static member, a nested type or an enumerator defined in
 | |
|       //   a base class T can unambiguously be found even if an object
 | |
|       //   has more than one base class subobject of type T.
 | |
|       if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
 | |
|         continue;
 | |
| 
 | |
|       // We have found a nonstatic member name in multiple, distinct
 | |
|       // subobjects. Name lookup is ambiguous.
 | |
|       R.setAmbiguousBaseSubobjects(Paths);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Lookup in a base class succeeded; return these results.
 | |
| 
 | |
|   for (auto *D : Paths.front().Decls) {
 | |
|     AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
 | |
|                                                     D->getAccess());
 | |
|     R.addDecl(D, AS);
 | |
|   }
 | |
|   R.resolveKind();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Performs qualified name lookup or special type of lookup for
 | |
| /// "__super::" scope specifier.
 | |
| ///
 | |
| /// This routine is a convenience overload meant to be called from contexts
 | |
| /// that need to perform a qualified name lookup with an optional C++ scope
 | |
| /// specifier that might require special kind of lookup.
 | |
| ///
 | |
| /// \param R captures both the lookup criteria and any lookup results found.
 | |
| ///
 | |
| /// \param LookupCtx The context in which qualified name lookup will
 | |
| /// search.
 | |
| ///
 | |
| /// \param SS An optional C++ scope-specifier.
 | |
| ///
 | |
| /// \returns true if lookup succeeded, false if it failed.
 | |
| bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
 | |
|                                CXXScopeSpec &SS) {
 | |
|   auto *NNS = SS.getScopeRep();
 | |
|   if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
 | |
|     return LookupInSuper(R, NNS->getAsRecordDecl());
 | |
|   else
 | |
| 
 | |
|     return LookupQualifiedName(R, LookupCtx);
 | |
| }
 | |
| 
 | |
| /// @brief Performs name lookup for a name that was parsed in the
 | |
| /// source code, and may contain a C++ scope specifier.
 | |
| ///
 | |
| /// This routine is a convenience routine meant to be called from
 | |
| /// contexts that receive a name and an optional C++ scope specifier
 | |
| /// (e.g., "N::M::x"). It will then perform either qualified or
 | |
| /// unqualified name lookup (with LookupQualifiedName or LookupName,
 | |
| /// respectively) on the given name and return those results. It will
 | |
| /// perform a special type of lookup for "__super::" scope specifier.
 | |
| ///
 | |
| /// @param S        The scope from which unqualified name lookup will
 | |
| /// begin.
 | |
| ///
 | |
| /// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
 | |
| ///
 | |
| /// @param EnteringContext Indicates whether we are going to enter the
 | |
| /// context of the scope-specifier SS (if present).
 | |
| ///
 | |
| /// @returns True if any decls were found (but possibly ambiguous)
 | |
| bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
 | |
|                             bool AllowBuiltinCreation, bool EnteringContext) {
 | |
|   if (SS && SS->isInvalid()) {
 | |
|     // When the scope specifier is invalid, don't even look for
 | |
|     // anything.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (SS && SS->isSet()) {
 | |
|     NestedNameSpecifier *NNS = SS->getScopeRep();
 | |
|     if (NNS->getKind() == NestedNameSpecifier::Super)
 | |
|       return LookupInSuper(R, NNS->getAsRecordDecl());
 | |
| 
 | |
|     if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
 | |
|       // We have resolved the scope specifier to a particular declaration
 | |
|       // contex, and will perform name lookup in that context.
 | |
|       if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
 | |
|         return false;
 | |
| 
 | |
|       R.setContextRange(SS->getRange());
 | |
|       return LookupQualifiedName(R, DC);
 | |
|     }
 | |
| 
 | |
|     // We could not resolve the scope specified to a specific declaration
 | |
|     // context, which means that SS refers to an unknown specialization.
 | |
|     // Name lookup can't find anything in this case.
 | |
|     R.setNotFoundInCurrentInstantiation();
 | |
|     R.setContextRange(SS->getRange());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Perform unqualified name lookup starting in the given scope.
 | |
|   return LookupName(R, S, AllowBuiltinCreation);
 | |
| }
 | |
| 
 | |
| /// \brief Perform qualified name lookup into all base classes of the given
 | |
| /// class.
 | |
| ///
 | |
| /// \param R captures both the lookup criteria and any lookup results found.
 | |
| ///
 | |
| /// \param Class The context in which qualified name lookup will
 | |
| /// search. Name lookup will search in all base classes merging the results.
 | |
| ///
 | |
| /// @returns True if any decls were found (but possibly ambiguous)
 | |
| bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
 | |
|   // The access-control rules we use here are essentially the rules for
 | |
|   // doing a lookup in Class that just magically skipped the direct
 | |
|   // members of Class itself.  That is, the naming class is Class, and the
 | |
|   // access includes the access of the base.
 | |
|   for (const auto &BaseSpec : Class->bases()) {
 | |
|     CXXRecordDecl *RD = cast<CXXRecordDecl>(
 | |
|         BaseSpec.getType()->castAs<RecordType>()->getDecl());
 | |
|     LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
 | |
| 	Result.setBaseObjectType(Context.getRecordType(Class));
 | |
|     LookupQualifiedName(Result, RD);
 | |
| 
 | |
|     // Copy the lookup results into the target, merging the base's access into
 | |
|     // the path access.
 | |
|     for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
 | |
|       R.addDecl(I.getDecl(),
 | |
|                 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
 | |
|                                            I.getAccess()));
 | |
|     }
 | |
| 
 | |
|     Result.suppressDiagnostics();
 | |
|   }
 | |
| 
 | |
|   R.resolveKind();
 | |
|   R.setNamingClass(Class);
 | |
| 
 | |
|   return !R.empty();
 | |
| }
 | |
| 
 | |
| /// \brief Produce a diagnostic describing the ambiguity that resulted
 | |
| /// from name lookup.
 | |
| ///
 | |
| /// \param Result The result of the ambiguous lookup to be diagnosed.
 | |
| void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
 | |
|   assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
 | |
| 
 | |
|   DeclarationName Name = Result.getLookupName();
 | |
|   SourceLocation NameLoc = Result.getNameLoc();
 | |
|   SourceRange LookupRange = Result.getContextRange();
 | |
| 
 | |
|   switch (Result.getAmbiguityKind()) {
 | |
|   case LookupResult::AmbiguousBaseSubobjects: {
 | |
|     CXXBasePaths *Paths = Result.getBasePaths();
 | |
|     QualType SubobjectType = Paths->front().back().Base->getType();
 | |
|     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
 | |
|       << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
 | |
|       << LookupRange;
 | |
| 
 | |
|     DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
 | |
|     while (isa<CXXMethodDecl>(*Found) &&
 | |
|            cast<CXXMethodDecl>(*Found)->isStatic())
 | |
|       ++Found;
 | |
| 
 | |
|     Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case LookupResult::AmbiguousBaseSubobjectTypes: {
 | |
|     Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
 | |
|       << Name << LookupRange;
 | |
| 
 | |
|     CXXBasePaths *Paths = Result.getBasePaths();
 | |
|     std::set<Decl *> DeclsPrinted;
 | |
|     for (CXXBasePaths::paths_iterator Path = Paths->begin(),
 | |
|                                       PathEnd = Paths->end();
 | |
|          Path != PathEnd; ++Path) {
 | |
|       Decl *D = Path->Decls.front();
 | |
|       if (DeclsPrinted.insert(D).second)
 | |
|         Diag(D->getLocation(), diag::note_ambiguous_member_found);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case LookupResult::AmbiguousTagHiding: {
 | |
|     Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
 | |
| 
 | |
|     llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
 | |
| 
 | |
|     for (auto *D : Result)
 | |
|       if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
 | |
|         TagDecls.insert(TD);
 | |
|         Diag(TD->getLocation(), diag::note_hidden_tag);
 | |
|       }
 | |
| 
 | |
|     for (auto *D : Result)
 | |
|       if (!isa<TagDecl>(D))
 | |
|         Diag(D->getLocation(), diag::note_hiding_object);
 | |
| 
 | |
|     // For recovery purposes, go ahead and implement the hiding.
 | |
|     LookupResult::Filter F = Result.makeFilter();
 | |
|     while (F.hasNext()) {
 | |
|       if (TagDecls.count(F.next()))
 | |
|         F.erase();
 | |
|     }
 | |
|     F.done();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case LookupResult::AmbiguousReference: {
 | |
|     Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
 | |
| 
 | |
|     for (auto *D : Result)
 | |
|       Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct AssociatedLookup {
 | |
|     AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
 | |
|                      Sema::AssociatedNamespaceSet &Namespaces,
 | |
|                      Sema::AssociatedClassSet &Classes)
 | |
|       : S(S), Namespaces(Namespaces), Classes(Classes),
 | |
|         InstantiationLoc(InstantiationLoc) {
 | |
|     }
 | |
| 
 | |
|     Sema &S;
 | |
|     Sema::AssociatedNamespaceSet &Namespaces;
 | |
|     Sema::AssociatedClassSet &Classes;
 | |
|     SourceLocation InstantiationLoc;
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static void
 | |
| addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
 | |
| 
 | |
| static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
 | |
|                                       DeclContext *Ctx) {
 | |
|   // Add the associated namespace for this class.
 | |
| 
 | |
|   // We don't use DeclContext::getEnclosingNamespaceContext() as this may
 | |
|   // be a locally scoped record.
 | |
| 
 | |
|   // We skip out of inline namespaces. The innermost non-inline namespace
 | |
|   // contains all names of all its nested inline namespaces anyway, so we can
 | |
|   // replace the entire inline namespace tree with its root.
 | |
|   while (Ctx->isRecord() || Ctx->isTransparentContext() ||
 | |
|          Ctx->isInlineNamespace())
 | |
|     Ctx = Ctx->getParent();
 | |
| 
 | |
|   if (Ctx->isFileContext())
 | |
|     Namespaces.insert(Ctx->getPrimaryContext());
 | |
| }
 | |
| 
 | |
| // \brief Add the associated classes and namespaces for argument-dependent
 | |
| // lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
 | |
| static void
 | |
| addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
 | |
|                                   const TemplateArgument &Arg) {
 | |
|   // C++ [basic.lookup.koenig]p2, last bullet:
 | |
|   //   -- [...] ;
 | |
|   switch (Arg.getKind()) {
 | |
|     case TemplateArgument::Null:
 | |
|       break;
 | |
| 
 | |
|     case TemplateArgument::Type:
 | |
|       // [...] the namespaces and classes associated with the types of the
 | |
|       // template arguments provided for template type parameters (excluding
 | |
|       // template template parameters)
 | |
|       addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
 | |
|       break;
 | |
| 
 | |
|     case TemplateArgument::Template:
 | |
|     case TemplateArgument::TemplateExpansion: {
 | |
|       // [...] the namespaces in which any template template arguments are
 | |
|       // defined; and the classes in which any member templates used as
 | |
|       // template template arguments are defined.
 | |
|       TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
 | |
|       if (ClassTemplateDecl *ClassTemplate
 | |
|                  = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
 | |
|         DeclContext *Ctx = ClassTemplate->getDeclContext();
 | |
|         if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
 | |
|           Result.Classes.insert(EnclosingClass);
 | |
|         // Add the associated namespace for this class.
 | |
|         CollectEnclosingNamespace(Result.Namespaces, Ctx);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case TemplateArgument::Declaration:
 | |
|     case TemplateArgument::Integral:
 | |
|     case TemplateArgument::Expression:
 | |
|     case TemplateArgument::NullPtr:
 | |
|       // [Note: non-type template arguments do not contribute to the set of
 | |
|       //  associated namespaces. ]
 | |
|       break;
 | |
| 
 | |
|     case TemplateArgument::Pack:
 | |
|       for (const auto &P : Arg.pack_elements())
 | |
|         addAssociatedClassesAndNamespaces(Result, P);
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // \brief Add the associated classes and namespaces for
 | |
| // argument-dependent lookup with an argument of class type
 | |
| // (C++ [basic.lookup.koenig]p2).
 | |
| static void
 | |
| addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
 | |
|                                   CXXRecordDecl *Class) {
 | |
| 
 | |
|   // Just silently ignore anything whose name is __va_list_tag.
 | |
|   if (Class->getDeclName() == Result.S.VAListTagName)
 | |
|     return;
 | |
| 
 | |
|   // C++ [basic.lookup.koenig]p2:
 | |
|   //   [...]
 | |
|   //     -- If T is a class type (including unions), its associated
 | |
|   //        classes are: the class itself; the class of which it is a
 | |
|   //        member, if any; and its direct and indirect base
 | |
|   //        classes. Its associated namespaces are the namespaces in
 | |
|   //        which its associated classes are defined.
 | |
| 
 | |
|   // Add the class of which it is a member, if any.
 | |
|   DeclContext *Ctx = Class->getDeclContext();
 | |
|   if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
 | |
|     Result.Classes.insert(EnclosingClass);
 | |
|   // Add the associated namespace for this class.
 | |
|   CollectEnclosingNamespace(Result.Namespaces, Ctx);
 | |
| 
 | |
|   // Add the class itself. If we've already seen this class, we don't
 | |
|   // need to visit base classes.
 | |
|   //
 | |
|   // FIXME: That's not correct, we may have added this class only because it
 | |
|   // was the enclosing class of another class, and in that case we won't have
 | |
|   // added its base classes yet.
 | |
|   if (!Result.Classes.insert(Class).second)
 | |
|     return;
 | |
| 
 | |
|   // -- If T is a template-id, its associated namespaces and classes are
 | |
|   //    the namespace in which the template is defined; for member
 | |
|   //    templates, the member template's class; the namespaces and classes
 | |
|   //    associated with the types of the template arguments provided for
 | |
|   //    template type parameters (excluding template template parameters); the
 | |
|   //    namespaces in which any template template arguments are defined; and
 | |
|   //    the classes in which any member templates used as template template
 | |
|   //    arguments are defined. [Note: non-type template arguments do not
 | |
|   //    contribute to the set of associated namespaces. ]
 | |
|   if (ClassTemplateSpecializationDecl *Spec
 | |
|         = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
 | |
|     DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
 | |
|     if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
 | |
|       Result.Classes.insert(EnclosingClass);
 | |
|     // Add the associated namespace for this class.
 | |
|     CollectEnclosingNamespace(Result.Namespaces, Ctx);
 | |
| 
 | |
|     const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
 | |
|     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | |
|       addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
 | |
|   }
 | |
| 
 | |
|   // Only recurse into base classes for complete types.
 | |
|   if (!Class->hasDefinition())
 | |
|     return;
 | |
| 
 | |
|   // Add direct and indirect base classes along with their associated
 | |
|   // namespaces.
 | |
|   SmallVector<CXXRecordDecl *, 32> Bases;
 | |
|   Bases.push_back(Class);
 | |
|   while (!Bases.empty()) {
 | |
|     // Pop this class off the stack.
 | |
|     Class = Bases.pop_back_val();
 | |
| 
 | |
|     // Visit the base classes.
 | |
|     for (const auto &Base : Class->bases()) {
 | |
|       const RecordType *BaseType = Base.getType()->getAs<RecordType>();
 | |
|       // In dependent contexts, we do ADL twice, and the first time around,
 | |
|       // the base type might be a dependent TemplateSpecializationType, or a
 | |
|       // TemplateTypeParmType. If that happens, simply ignore it.
 | |
|       // FIXME: If we want to support export, we probably need to add the
 | |
|       // namespace of the template in a TemplateSpecializationType, or even
 | |
|       // the classes and namespaces of known non-dependent arguments.
 | |
|       if (!BaseType)
 | |
|         continue;
 | |
|       CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
 | |
|       if (Result.Classes.insert(BaseDecl).second) {
 | |
|         // Find the associated namespace for this base class.
 | |
|         DeclContext *BaseCtx = BaseDecl->getDeclContext();
 | |
|         CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
 | |
| 
 | |
|         // Make sure we visit the bases of this base class.
 | |
|         if (BaseDecl->bases_begin() != BaseDecl->bases_end())
 | |
|           Bases.push_back(BaseDecl);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // \brief Add the associated classes and namespaces for
 | |
| // argument-dependent lookup with an argument of type T
 | |
| // (C++ [basic.lookup.koenig]p2).
 | |
| static void
 | |
| addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
 | |
|   // C++ [basic.lookup.koenig]p2:
 | |
|   //
 | |
|   //   For each argument type T in the function call, there is a set
 | |
|   //   of zero or more associated namespaces and a set of zero or more
 | |
|   //   associated classes to be considered. The sets of namespaces and
 | |
|   //   classes is determined entirely by the types of the function
 | |
|   //   arguments (and the namespace of any template template
 | |
|   //   argument). Typedef names and using-declarations used to specify
 | |
|   //   the types do not contribute to this set. The sets of namespaces
 | |
|   //   and classes are determined in the following way:
 | |
| 
 | |
|   SmallVector<const Type *, 16> Queue;
 | |
|   const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
 | |
| 
 | |
|   while (true) {
 | |
|     switch (T->getTypeClass()) {
 | |
| 
 | |
| #define TYPE(Class, Base)
 | |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class:
 | |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
 | |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
 | |
| #define ABSTRACT_TYPE(Class, Base)
 | |
| #include "clang/AST/TypeNodes.def"
 | |
|       // T is canonical.  We can also ignore dependent types because
 | |
|       // we don't need to do ADL at the definition point, but if we
 | |
|       // wanted to implement template export (or if we find some other
 | |
|       // use for associated classes and namespaces...) this would be
 | |
|       // wrong.
 | |
|       break;
 | |
| 
 | |
|     //    -- If T is a pointer to U or an array of U, its associated
 | |
|     //       namespaces and classes are those associated with U.
 | |
|     case Type::Pointer:
 | |
|       T = cast<PointerType>(T)->getPointeeType().getTypePtr();
 | |
|       continue;
 | |
|     case Type::ConstantArray:
 | |
|     case Type::IncompleteArray:
 | |
|     case Type::VariableArray:
 | |
|       T = cast<ArrayType>(T)->getElementType().getTypePtr();
 | |
|       continue;
 | |
| 
 | |
|     //     -- If T is a fundamental type, its associated sets of
 | |
|     //        namespaces and classes are both empty.
 | |
|     case Type::Builtin:
 | |
|       break;
 | |
| 
 | |
|     //     -- If T is a class type (including unions), its associated
 | |
|     //        classes are: the class itself; the class of which it is a
 | |
|     //        member, if any; and its direct and indirect base
 | |
|     //        classes. Its associated namespaces are the namespaces in
 | |
|     //        which its associated classes are defined.
 | |
|     case Type::Record: {
 | |
|       Result.S.RequireCompleteType(Result.InstantiationLoc, QualType(T, 0),
 | |
|                                    /*no diagnostic*/ 0);
 | |
|       CXXRecordDecl *Class
 | |
|         = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
 | |
|       addAssociatedClassesAndNamespaces(Result, Class);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     //     -- If T is an enumeration type, its associated namespace is
 | |
|     //        the namespace in which it is defined. If it is class
 | |
|     //        member, its associated class is the member's class; else
 | |
|     //        it has no associated class.
 | |
|     case Type::Enum: {
 | |
|       EnumDecl *Enum = cast<EnumType>(T)->getDecl();
 | |
| 
 | |
|       DeclContext *Ctx = Enum->getDeclContext();
 | |
|       if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
 | |
|         Result.Classes.insert(EnclosingClass);
 | |
| 
 | |
|       // Add the associated namespace for this class.
 | |
|       CollectEnclosingNamespace(Result.Namespaces, Ctx);
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     //     -- If T is a function type, its associated namespaces and
 | |
|     //        classes are those associated with the function parameter
 | |
|     //        types and those associated with the return type.
 | |
|     case Type::FunctionProto: {
 | |
|       const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
 | |
|       for (const auto &Arg : Proto->param_types())
 | |
|         Queue.push_back(Arg.getTypePtr());
 | |
|       // fallthrough
 | |
|     }
 | |
|     case Type::FunctionNoProto: {
 | |
|       const FunctionType *FnType = cast<FunctionType>(T);
 | |
|       T = FnType->getReturnType().getTypePtr();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     //     -- If T is a pointer to a member function of a class X, its
 | |
|     //        associated namespaces and classes are those associated
 | |
|     //        with the function parameter types and return type,
 | |
|     //        together with those associated with X.
 | |
|     //
 | |
|     //     -- If T is a pointer to a data member of class X, its
 | |
|     //        associated namespaces and classes are those associated
 | |
|     //        with the member type together with those associated with
 | |
|     //        X.
 | |
|     case Type::MemberPointer: {
 | |
|       const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
 | |
| 
 | |
|       // Queue up the class type into which this points.
 | |
|       Queue.push_back(MemberPtr->getClass());
 | |
| 
 | |
|       // And directly continue with the pointee type.
 | |
|       T = MemberPtr->getPointeeType().getTypePtr();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // As an extension, treat this like a normal pointer.
 | |
|     case Type::BlockPointer:
 | |
|       T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
 | |
|       continue;
 | |
| 
 | |
|     // References aren't covered by the standard, but that's such an
 | |
|     // obvious defect that we cover them anyway.
 | |
|     case Type::LValueReference:
 | |
|     case Type::RValueReference:
 | |
|       T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
 | |
|       continue;
 | |
| 
 | |
|     // These are fundamental types.
 | |
|     case Type::Vector:
 | |
|     case Type::ExtVector:
 | |
|     case Type::Complex:
 | |
|       break;
 | |
| 
 | |
|     // Non-deduced auto types only get here for error cases.
 | |
|     case Type::Auto:
 | |
|       break;
 | |
| 
 | |
|     // If T is an Objective-C object or interface type, or a pointer to an 
 | |
|     // object or interface type, the associated namespace is the global
 | |
|     // namespace.
 | |
|     case Type::ObjCObject:
 | |
|     case Type::ObjCInterface:
 | |
|     case Type::ObjCObjectPointer:
 | |
|       Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
 | |
|       break;
 | |
| 
 | |
|     // Atomic types are just wrappers; use the associations of the
 | |
|     // contained type.
 | |
|     case Type::Atomic:
 | |
|       T = cast<AtomicType>(T)->getValueType().getTypePtr();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (Queue.empty())
 | |
|       break;
 | |
|     T = Queue.pop_back_val();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Find the associated classes and namespaces for
 | |
| /// argument-dependent lookup for a call with the given set of
 | |
| /// arguments.
 | |
| ///
 | |
| /// This routine computes the sets of associated classes and associated
 | |
| /// namespaces searched by argument-dependent lookup
 | |
| /// (C++ [basic.lookup.argdep]) for a given set of arguments.
 | |
| void Sema::FindAssociatedClassesAndNamespaces(
 | |
|     SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
 | |
|     AssociatedNamespaceSet &AssociatedNamespaces,
 | |
|     AssociatedClassSet &AssociatedClasses) {
 | |
|   AssociatedNamespaces.clear();
 | |
|   AssociatedClasses.clear();
 | |
| 
 | |
|   AssociatedLookup Result(*this, InstantiationLoc,
 | |
|                           AssociatedNamespaces, AssociatedClasses);
 | |
| 
 | |
|   // C++ [basic.lookup.koenig]p2:
 | |
|   //   For each argument type T in the function call, there is a set
 | |
|   //   of zero or more associated namespaces and a set of zero or more
 | |
|   //   associated classes to be considered. The sets of namespaces and
 | |
|   //   classes is determined entirely by the types of the function
 | |
|   //   arguments (and the namespace of any template template
 | |
|   //   argument).
 | |
|   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
 | |
|     Expr *Arg = Args[ArgIdx];
 | |
| 
 | |
|     if (Arg->getType() != Context.OverloadTy) {
 | |
|       addAssociatedClassesAndNamespaces(Result, Arg->getType());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // [...] In addition, if the argument is the name or address of a
 | |
|     // set of overloaded functions and/or function templates, its
 | |
|     // associated classes and namespaces are the union of those
 | |
|     // associated with each of the members of the set: the namespace
 | |
|     // in which the function or function template is defined and the
 | |
|     // classes and namespaces associated with its (non-dependent)
 | |
|     // parameter types and return type.
 | |
|     Arg = Arg->IgnoreParens();
 | |
|     if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
 | |
|       if (unaryOp->getOpcode() == UO_AddrOf)
 | |
|         Arg = unaryOp->getSubExpr();
 | |
| 
 | |
|     UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
 | |
|     if (!ULE) continue;
 | |
| 
 | |
|     for (const auto *D : ULE->decls()) {
 | |
|       // Look through any using declarations to find the underlying function.
 | |
|       const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
 | |
| 
 | |
|       // Add the classes and namespaces associated with the parameter
 | |
|       // types and return type of this function.
 | |
|       addAssociatedClassesAndNamespaces(Result, FDecl->getType());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
 | |
|                                   SourceLocation Loc,
 | |
|                                   LookupNameKind NameKind,
 | |
|                                   RedeclarationKind Redecl) {
 | |
|   LookupResult R(*this, Name, Loc, NameKind, Redecl);
 | |
|   LookupName(R, S);
 | |
|   return R.getAsSingle<NamedDecl>();
 | |
| }
 | |
| 
 | |
| /// \brief Find the protocol with the given name, if any.
 | |
| ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
 | |
|                                        SourceLocation IdLoc,
 | |
|                                        RedeclarationKind Redecl) {
 | |
|   Decl *D = LookupSingleName(TUScope, II, IdLoc,
 | |
|                              LookupObjCProtocolName, Redecl);
 | |
|   return cast_or_null<ObjCProtocolDecl>(D);
 | |
| }
 | |
| 
 | |
| void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
 | |
|                                         QualType T1, QualType T2,
 | |
|                                         UnresolvedSetImpl &Functions) {
 | |
|   // C++ [over.match.oper]p3:
 | |
|   //     -- The set of non-member candidates is the result of the
 | |
|   //        unqualified lookup of operator@ in the context of the
 | |
|   //        expression according to the usual rules for name lookup in
 | |
|   //        unqualified function calls (3.4.2) except that all member
 | |
|   //        functions are ignored.
 | |
|   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
 | |
|   LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
 | |
|   LookupName(Operators, S);
 | |
| 
 | |
|   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
 | |
|   Functions.append(Operators.begin(), Operators.end());
 | |
| }
 | |
| 
 | |
| Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
 | |
|                                                             CXXSpecialMember SM,
 | |
|                                                             bool ConstArg,
 | |
|                                                             bool VolatileArg,
 | |
|                                                             bool RValueThis,
 | |
|                                                             bool ConstThis,
 | |
|                                                             bool VolatileThis) {
 | |
|   assert(CanDeclareSpecialMemberFunction(RD) &&
 | |
|          "doing special member lookup into record that isn't fully complete");
 | |
|   RD = RD->getDefinition();
 | |
|   if (RValueThis || ConstThis || VolatileThis)
 | |
|     assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
 | |
|            "constructors and destructors always have unqualified lvalue this");
 | |
|   if (ConstArg || VolatileArg)
 | |
|     assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
 | |
|            "parameter-less special members can't have qualified arguments");
 | |
| 
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ID.AddPointer(RD);
 | |
|   ID.AddInteger(SM);
 | |
|   ID.AddInteger(ConstArg);
 | |
|   ID.AddInteger(VolatileArg);
 | |
|   ID.AddInteger(RValueThis);
 | |
|   ID.AddInteger(ConstThis);
 | |
|   ID.AddInteger(VolatileThis);
 | |
| 
 | |
|   void *InsertPoint;
 | |
|   SpecialMemberOverloadResult *Result =
 | |
|     SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
 | |
| 
 | |
|   // This was already cached
 | |
|   if (Result)
 | |
|     return Result;
 | |
| 
 | |
|   Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
 | |
|   Result = new (Result) SpecialMemberOverloadResult(ID);
 | |
|   SpecialMemberCache.InsertNode(Result, InsertPoint);
 | |
| 
 | |
|   if (SM == CXXDestructor) {
 | |
|     if (RD->needsImplicitDestructor())
 | |
|       DeclareImplicitDestructor(RD);
 | |
|     CXXDestructorDecl *DD = RD->getDestructor();
 | |
|     assert(DD && "record without a destructor");
 | |
|     Result->setMethod(DD);
 | |
|     Result->setKind(DD->isDeleted() ?
 | |
|                     SpecialMemberOverloadResult::NoMemberOrDeleted :
 | |
|                     SpecialMemberOverloadResult::Success);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   // Prepare for overload resolution. Here we construct a synthetic argument
 | |
|   // if necessary and make sure that implicit functions are declared.
 | |
|   CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
 | |
|   DeclarationName Name;
 | |
|   Expr *Arg = nullptr;
 | |
|   unsigned NumArgs;
 | |
| 
 | |
|   QualType ArgType = CanTy;
 | |
|   ExprValueKind VK = VK_LValue;
 | |
| 
 | |
|   if (SM == CXXDefaultConstructor) {
 | |
|     Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
 | |
|     NumArgs = 0;
 | |
|     if (RD->needsImplicitDefaultConstructor())
 | |
|       DeclareImplicitDefaultConstructor(RD);
 | |
|   } else {
 | |
|     if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
 | |
|       Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
 | |
|       if (RD->needsImplicitCopyConstructor())
 | |
|         DeclareImplicitCopyConstructor(RD);
 | |
|       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
 | |
|         DeclareImplicitMoveConstructor(RD);
 | |
|     } else {
 | |
|       Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
 | |
|       if (RD->needsImplicitCopyAssignment())
 | |
|         DeclareImplicitCopyAssignment(RD);
 | |
|       if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
 | |
|         DeclareImplicitMoveAssignment(RD);
 | |
|     }
 | |
| 
 | |
|     if (ConstArg)
 | |
|       ArgType.addConst();
 | |
|     if (VolatileArg)
 | |
|       ArgType.addVolatile();
 | |
| 
 | |
|     // This isn't /really/ specified by the standard, but it's implied
 | |
|     // we should be working from an RValue in the case of move to ensure
 | |
|     // that we prefer to bind to rvalue references, and an LValue in the
 | |
|     // case of copy to ensure we don't bind to rvalue references.
 | |
|     // Possibly an XValue is actually correct in the case of move, but
 | |
|     // there is no semantic difference for class types in this restricted
 | |
|     // case.
 | |
|     if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
 | |
|       VK = VK_LValue;
 | |
|     else
 | |
|       VK = VK_RValue;
 | |
|   }
 | |
| 
 | |
|   OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
 | |
| 
 | |
|   if (SM != CXXDefaultConstructor) {
 | |
|     NumArgs = 1;
 | |
|     Arg = &FakeArg;
 | |
|   }
 | |
| 
 | |
|   // Create the object argument
 | |
|   QualType ThisTy = CanTy;
 | |
|   if (ConstThis)
 | |
|     ThisTy.addConst();
 | |
|   if (VolatileThis)
 | |
|     ThisTy.addVolatile();
 | |
|   Expr::Classification Classification =
 | |
|     OpaqueValueExpr(SourceLocation(), ThisTy,
 | |
|                     RValueThis ? VK_RValue : VK_LValue).Classify(Context);
 | |
| 
 | |
|   // Now we perform lookup on the name we computed earlier and do overload
 | |
|   // resolution. Lookup is only performed directly into the class since there
 | |
|   // will always be a (possibly implicit) declaration to shadow any others.
 | |
|   OverloadCandidateSet OCS(RD->getLocation(), OverloadCandidateSet::CSK_Normal);
 | |
|   DeclContext::lookup_result R = RD->lookup(Name);
 | |
| 
 | |
|   if (R.empty()) {
 | |
|     // We might have no default constructor because we have a lambda's closure
 | |
|     // type, rather than because there's some other declared constructor.
 | |
|     // Every class has a copy/move constructor, copy/move assignment, and
 | |
|     // destructor.
 | |
|     assert(SM == CXXDefaultConstructor &&
 | |
|            "lookup for a constructor or assignment operator was empty");
 | |
|     Result->setMethod(nullptr);
 | |
|     Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   // Copy the candidates as our processing of them may load new declarations
 | |
|   // from an external source and invalidate lookup_result.
 | |
|   SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
 | |
| 
 | |
|   for (auto *Cand : Candidates) {
 | |
|     if (Cand->isInvalidDecl())
 | |
|       continue;
 | |
| 
 | |
|     if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
 | |
|       // FIXME: [namespace.udecl]p15 says that we should only consider a
 | |
|       // using declaration here if it does not match a declaration in the
 | |
|       // derived class. We do not implement this correctly in other cases
 | |
|       // either.
 | |
|       Cand = U->getTargetDecl();
 | |
| 
 | |
|       if (Cand->isInvalidDecl())
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
 | |
|       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
 | |
|         AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
 | |
|                            Classification, llvm::makeArrayRef(&Arg, NumArgs),
 | |
|                            OCS, true);
 | |
|       else
 | |
|         AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
 | |
|                              llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
 | |
|     } else if (FunctionTemplateDecl *Tmpl =
 | |
|                  dyn_cast<FunctionTemplateDecl>(Cand)) {
 | |
|       if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
 | |
|         AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
 | |
|                                    RD, nullptr, ThisTy, Classification,
 | |
|                                    llvm::makeArrayRef(&Arg, NumArgs),
 | |
|                                    OCS, true);
 | |
|       else
 | |
|         AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
 | |
|                                      nullptr, llvm::makeArrayRef(&Arg, NumArgs),
 | |
|                                      OCS, true);
 | |
|     } else {
 | |
|       assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   OverloadCandidateSet::iterator Best;
 | |
|   switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
 | |
|     case OR_Success:
 | |
|       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
 | |
|       Result->setKind(SpecialMemberOverloadResult::Success);
 | |
|       break;
 | |
| 
 | |
|     case OR_Deleted:
 | |
|       Result->setMethod(cast<CXXMethodDecl>(Best->Function));
 | |
|       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
 | |
|       break;
 | |
| 
 | |
|     case OR_Ambiguous:
 | |
|       Result->setMethod(nullptr);
 | |
|       Result->setKind(SpecialMemberOverloadResult::Ambiguous);
 | |
|       break;
 | |
| 
 | |
|     case OR_No_Viable_Function:
 | |
|       Result->setMethod(nullptr);
 | |
|       Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// \brief Look up the default constructor for the given class.
 | |
| CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
 | |
|   SpecialMemberOverloadResult *Result =
 | |
|     LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
 | |
|                         false, false);
 | |
| 
 | |
|   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
 | |
| }
 | |
| 
 | |
| /// \brief Look up the copying constructor for the given class.
 | |
| CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
 | |
|                                                    unsigned Quals) {
 | |
|   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
 | |
|          "non-const, non-volatile qualifiers for copy ctor arg");
 | |
|   SpecialMemberOverloadResult *Result =
 | |
|     LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
 | |
|                         Quals & Qualifiers::Volatile, false, false, false);
 | |
| 
 | |
|   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
 | |
| }
 | |
| 
 | |
| /// \brief Look up the moving constructor for the given class.
 | |
| CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
 | |
|                                                   unsigned Quals) {
 | |
|   SpecialMemberOverloadResult *Result =
 | |
|     LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
 | |
|                         Quals & Qualifiers::Volatile, false, false, false);
 | |
| 
 | |
|   return cast_or_null<CXXConstructorDecl>(Result->getMethod());
 | |
| }
 | |
| 
 | |
| /// \brief Look up the constructors for the given class.
 | |
| DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
 | |
|   // If the implicit constructors have not yet been declared, do so now.
 | |
|   if (CanDeclareSpecialMemberFunction(Class)) {
 | |
|     if (Class->needsImplicitDefaultConstructor())
 | |
|       DeclareImplicitDefaultConstructor(Class);
 | |
|     if (Class->needsImplicitCopyConstructor())
 | |
|       DeclareImplicitCopyConstructor(Class);
 | |
|     if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
 | |
|       DeclareImplicitMoveConstructor(Class);
 | |
|   }
 | |
| 
 | |
|   CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
 | |
|   DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
 | |
|   return Class->lookup(Name);
 | |
| }
 | |
| 
 | |
| /// \brief Look up the copying assignment operator for the given class.
 | |
| CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
 | |
|                                              unsigned Quals, bool RValueThis,
 | |
|                                              unsigned ThisQuals) {
 | |
|   assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
 | |
|          "non-const, non-volatile qualifiers for copy assignment arg");
 | |
|   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
 | |
|          "non-const, non-volatile qualifiers for copy assignment this");
 | |
|   SpecialMemberOverloadResult *Result =
 | |
|     LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
 | |
|                         Quals & Qualifiers::Volatile, RValueThis,
 | |
|                         ThisQuals & Qualifiers::Const,
 | |
|                         ThisQuals & Qualifiers::Volatile);
 | |
| 
 | |
|   return Result->getMethod();
 | |
| }
 | |
| 
 | |
| /// \brief Look up the moving assignment operator for the given class.
 | |
| CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
 | |
|                                             unsigned Quals,
 | |
|                                             bool RValueThis,
 | |
|                                             unsigned ThisQuals) {
 | |
|   assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
 | |
|          "non-const, non-volatile qualifiers for copy assignment this");
 | |
|   SpecialMemberOverloadResult *Result =
 | |
|     LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
 | |
|                         Quals & Qualifiers::Volatile, RValueThis,
 | |
|                         ThisQuals & Qualifiers::Const,
 | |
|                         ThisQuals & Qualifiers::Volatile);
 | |
| 
 | |
|   return Result->getMethod();
 | |
| }
 | |
| 
 | |
| /// \brief Look for the destructor of the given class.
 | |
| ///
 | |
| /// During semantic analysis, this routine should be used in lieu of
 | |
| /// CXXRecordDecl::getDestructor().
 | |
| ///
 | |
| /// \returns The destructor for this class.
 | |
| CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
 | |
|   return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
 | |
|                                                      false, false, false,
 | |
|                                                      false, false)->getMethod());
 | |
| }
 | |
| 
 | |
| /// LookupLiteralOperator - Determine which literal operator should be used for
 | |
| /// a user-defined literal, per C++11 [lex.ext].
 | |
| ///
 | |
| /// Normal overload resolution is not used to select which literal operator to
 | |
| /// call for a user-defined literal. Look up the provided literal operator name,
 | |
| /// and filter the results to the appropriate set for the given argument types.
 | |
| Sema::LiteralOperatorLookupResult
 | |
| Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
 | |
|                             ArrayRef<QualType> ArgTys,
 | |
|                             bool AllowRaw, bool AllowTemplate,
 | |
|                             bool AllowStringTemplate) {
 | |
|   LookupName(R, S);
 | |
|   assert(R.getResultKind() != LookupResult::Ambiguous &&
 | |
|          "literal operator lookup can't be ambiguous");
 | |
| 
 | |
|   // Filter the lookup results appropriately.
 | |
|   LookupResult::Filter F = R.makeFilter();
 | |
| 
 | |
|   bool FoundRaw = false;
 | |
|   bool FoundTemplate = false;
 | |
|   bool FoundStringTemplate = false;
 | |
|   bool FoundExactMatch = false;
 | |
| 
 | |
|   while (F.hasNext()) {
 | |
|     Decl *D = F.next();
 | |
|     if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
 | |
|       D = USD->getTargetDecl();
 | |
| 
 | |
|     // If the declaration we found is invalid, skip it.
 | |
|     if (D->isInvalidDecl()) {
 | |
|       F.erase();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     bool IsRaw = false;
 | |
|     bool IsTemplate = false;
 | |
|     bool IsStringTemplate = false;
 | |
|     bool IsExactMatch = false;
 | |
| 
 | |
|     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | |
|       if (FD->getNumParams() == 1 &&
 | |
|           FD->getParamDecl(0)->getType()->getAs<PointerType>())
 | |
|         IsRaw = true;
 | |
|       else if (FD->getNumParams() == ArgTys.size()) {
 | |
|         IsExactMatch = true;
 | |
|         for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
 | |
|           QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
 | |
|           if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
 | |
|             IsExactMatch = false;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
 | |
|       TemplateParameterList *Params = FD->getTemplateParameters();
 | |
|       if (Params->size() == 1)
 | |
|         IsTemplate = true;
 | |
|       else
 | |
|         IsStringTemplate = true;
 | |
|     }
 | |
| 
 | |
|     if (IsExactMatch) {
 | |
|       FoundExactMatch = true;
 | |
|       AllowRaw = false;
 | |
|       AllowTemplate = false;
 | |
|       AllowStringTemplate = false;
 | |
|       if (FoundRaw || FoundTemplate || FoundStringTemplate) {
 | |
|         // Go through again and remove the raw and template decls we've
 | |
|         // already found.
 | |
|         F.restart();
 | |
|         FoundRaw = FoundTemplate = FoundStringTemplate = false;
 | |
|       }
 | |
|     } else if (AllowRaw && IsRaw) {
 | |
|       FoundRaw = true;
 | |
|     } else if (AllowTemplate && IsTemplate) {
 | |
|       FoundTemplate = true;
 | |
|     } else if (AllowStringTemplate && IsStringTemplate) {
 | |
|       FoundStringTemplate = true;
 | |
|     } else {
 | |
|       F.erase();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   F.done();
 | |
| 
 | |
|   // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
 | |
|   // parameter type, that is used in preference to a raw literal operator
 | |
|   // or literal operator template.
 | |
|   if (FoundExactMatch)
 | |
|     return LOLR_Cooked;
 | |
| 
 | |
|   // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
 | |
|   // operator template, but not both.
 | |
|   if (FoundRaw && FoundTemplate) {
 | |
|     Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
 | |
|     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
 | |
|       NoteOverloadCandidate((*I)->getUnderlyingDecl()->getAsFunction());
 | |
|     return LOLR_Error;
 | |
|   }
 | |
| 
 | |
|   if (FoundRaw)
 | |
|     return LOLR_Raw;
 | |
| 
 | |
|   if (FoundTemplate)
 | |
|     return LOLR_Template;
 | |
| 
 | |
|   if (FoundStringTemplate)
 | |
|     return LOLR_StringTemplate;
 | |
| 
 | |
|   // Didn't find anything we could use.
 | |
|   Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
 | |
|     << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
 | |
|     << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
 | |
|     << (AllowTemplate || AllowStringTemplate);
 | |
|   return LOLR_Error;
 | |
| }
 | |
| 
 | |
| void ADLResult::insert(NamedDecl *New) {
 | |
|   NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
 | |
| 
 | |
|   // If we haven't yet seen a decl for this key, or the last decl
 | |
|   // was exactly this one, we're done.
 | |
|   if (Old == nullptr || Old == New) {
 | |
|     Old = New;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, decide which is a more recent redeclaration.
 | |
|   FunctionDecl *OldFD = Old->getAsFunction();
 | |
|   FunctionDecl *NewFD = New->getAsFunction();
 | |
| 
 | |
|   FunctionDecl *Cursor = NewFD;
 | |
|   while (true) {
 | |
|     Cursor = Cursor->getPreviousDecl();
 | |
| 
 | |
|     // If we got to the end without finding OldFD, OldFD is the newer
 | |
|     // declaration;  leave things as they are.
 | |
|     if (!Cursor) return;
 | |
| 
 | |
|     // If we do find OldFD, then NewFD is newer.
 | |
|     if (Cursor == OldFD) break;
 | |
| 
 | |
|     // Otherwise, keep looking.
 | |
|   }
 | |
| 
 | |
|   Old = New;
 | |
| }
 | |
| 
 | |
| void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
 | |
|                                    ArrayRef<Expr *> Args, ADLResult &Result) {
 | |
|   // Find all of the associated namespaces and classes based on the
 | |
|   // arguments we have.
 | |
|   AssociatedNamespaceSet AssociatedNamespaces;
 | |
|   AssociatedClassSet AssociatedClasses;
 | |
|   FindAssociatedClassesAndNamespaces(Loc, Args,
 | |
|                                      AssociatedNamespaces,
 | |
|                                      AssociatedClasses);
 | |
| 
 | |
|   // C++ [basic.lookup.argdep]p3:
 | |
|   //   Let X be the lookup set produced by unqualified lookup (3.4.1)
 | |
|   //   and let Y be the lookup set produced by argument dependent
 | |
|   //   lookup (defined as follows). If X contains [...] then Y is
 | |
|   //   empty. Otherwise Y is the set of declarations found in the
 | |
|   //   namespaces associated with the argument types as described
 | |
|   //   below. The set of declarations found by the lookup of the name
 | |
|   //   is the union of X and Y.
 | |
|   //
 | |
|   // Here, we compute Y and add its members to the overloaded
 | |
|   // candidate set.
 | |
|   for (auto *NS : AssociatedNamespaces) {
 | |
|     //   When considering an associated namespace, the lookup is the
 | |
|     //   same as the lookup performed when the associated namespace is
 | |
|     //   used as a qualifier (3.4.3.2) except that:
 | |
|     //
 | |
|     //     -- Any using-directives in the associated namespace are
 | |
|     //        ignored.
 | |
|     //
 | |
|     //     -- Any namespace-scope friend functions declared in
 | |
|     //        associated classes are visible within their respective
 | |
|     //        namespaces even if they are not visible during an ordinary
 | |
|     //        lookup (11.4).
 | |
|     DeclContext::lookup_result R = NS->lookup(Name);
 | |
|     for (auto *D : R) {
 | |
|       // If the only declaration here is an ordinary friend, consider
 | |
|       // it only if it was declared in an associated classes.
 | |
|       if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
 | |
|         // If it's neither ordinarily visible nor a friend, we can't find it.
 | |
|         if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
 | |
|           continue;
 | |
| 
 | |
|         bool DeclaredInAssociatedClass = false;
 | |
|         for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
 | |
|           DeclContext *LexDC = DI->getLexicalDeclContext();
 | |
|           if (isa<CXXRecordDecl>(LexDC) &&
 | |
|               AssociatedClasses.count(cast<CXXRecordDecl>(LexDC))) {
 | |
|             DeclaredInAssociatedClass = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if (!DeclaredInAssociatedClass)
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       if (isa<UsingShadowDecl>(D))
 | |
|         D = cast<UsingShadowDecl>(D)->getTargetDecl();
 | |
| 
 | |
|       if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D))
 | |
|         continue;
 | |
| 
 | |
|       if (!isVisible(D) && !(D = findAcceptableDecl(*this, D)))
 | |
|         continue;
 | |
| 
 | |
|       Result.insert(D);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //----------------------------------------------------------------------------
 | |
| // Search for all visible declarations.
 | |
| //----------------------------------------------------------------------------
 | |
| VisibleDeclConsumer::~VisibleDeclConsumer() { }
 | |
| 
 | |
| bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class ShadowContextRAII;
 | |
| 
 | |
| class VisibleDeclsRecord {
 | |
| public:
 | |
|   /// \brief An entry in the shadow map, which is optimized to store a
 | |
|   /// single declaration (the common case) but can also store a list
 | |
|   /// of declarations.
 | |
|   typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
 | |
| 
 | |
| private:
 | |
|   /// \brief A mapping from declaration names to the declarations that have
 | |
|   /// this name within a particular scope.
 | |
|   typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
 | |
| 
 | |
|   /// \brief A list of shadow maps, which is used to model name hiding.
 | |
|   std::list<ShadowMap> ShadowMaps;
 | |
| 
 | |
|   /// \brief The declaration contexts we have already visited.
 | |
|   llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
 | |
| 
 | |
|   friend class ShadowContextRAII;
 | |
| 
 | |
| public:
 | |
|   /// \brief Determine whether we have already visited this context
 | |
|   /// (and, if not, note that we are going to visit that context now).
 | |
|   bool visitedContext(DeclContext *Ctx) {
 | |
|     return !VisitedContexts.insert(Ctx).second;
 | |
|   }
 | |
| 
 | |
|   bool alreadyVisitedContext(DeclContext *Ctx) {
 | |
|     return VisitedContexts.count(Ctx);
 | |
|   }
 | |
| 
 | |
|   /// \brief Determine whether the given declaration is hidden in the
 | |
|   /// current scope.
 | |
|   ///
 | |
|   /// \returns the declaration that hides the given declaration, or
 | |
|   /// NULL if no such declaration exists.
 | |
|   NamedDecl *checkHidden(NamedDecl *ND);
 | |
| 
 | |
|   /// \brief Add a declaration to the current shadow map.
 | |
|   void add(NamedDecl *ND) {
 | |
|     ShadowMaps.back()[ND->getDeclName()].push_back(ND);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// \brief RAII object that records when we've entered a shadow context.
 | |
| class ShadowContextRAII {
 | |
|   VisibleDeclsRecord &Visible;
 | |
| 
 | |
|   typedef VisibleDeclsRecord::ShadowMap ShadowMap;
 | |
| 
 | |
| public:
 | |
|   ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
 | |
|     Visible.ShadowMaps.emplace_back();
 | |
|   }
 | |
| 
 | |
|   ~ShadowContextRAII() {
 | |
|     Visible.ShadowMaps.pop_back();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
 | |
|   // Look through using declarations.
 | |
|   ND = ND->getUnderlyingDecl();
 | |
| 
 | |
|   unsigned IDNS = ND->getIdentifierNamespace();
 | |
|   std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
 | |
|   for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
 | |
|        SM != SMEnd; ++SM) {
 | |
|     ShadowMap::iterator Pos = SM->find(ND->getDeclName());
 | |
|     if (Pos == SM->end())
 | |
|       continue;
 | |
| 
 | |
|     for (auto *D : Pos->second) {
 | |
|       // A tag declaration does not hide a non-tag declaration.
 | |
|       if (D->hasTagIdentifierNamespace() &&
 | |
|           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
 | |
|                    Decl::IDNS_ObjCProtocol)))
 | |
|         continue;
 | |
| 
 | |
|       // Protocols are in distinct namespaces from everything else.
 | |
|       if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
 | |
|            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
 | |
|           D->getIdentifierNamespace() != IDNS)
 | |
|         continue;
 | |
| 
 | |
|       // Functions and function templates in the same scope overload
 | |
|       // rather than hide.  FIXME: Look for hiding based on function
 | |
|       // signatures!
 | |
|       if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
 | |
|           ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
 | |
|           SM == ShadowMaps.rbegin())
 | |
|         continue;
 | |
| 
 | |
|       // We've found a declaration that hides this one.
 | |
|       return D;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
 | |
|                                bool QualifiedNameLookup,
 | |
|                                bool InBaseClass,
 | |
|                                VisibleDeclConsumer &Consumer,
 | |
|                                VisibleDeclsRecord &Visited) {
 | |
|   if (!Ctx)
 | |
|     return;
 | |
| 
 | |
|   // Make sure we don't visit the same context twice.
 | |
|   if (Visited.visitedContext(Ctx->getPrimaryContext()))
 | |
|     return;
 | |
| 
 | |
|   // Outside C++, lookup results for the TU live on identifiers.
 | |
|   if (isa<TranslationUnitDecl>(Ctx) &&
 | |
|       !Result.getSema().getLangOpts().CPlusPlus) {
 | |
|     auto &S = Result.getSema();
 | |
|     auto &Idents = S.Context.Idents;
 | |
| 
 | |
|     // Ensure all external identifiers are in the identifier table.
 | |
|     if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
 | |
|       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
 | |
|       for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
 | |
|         Idents.get(Name);
 | |
|     }
 | |
| 
 | |
|     // Walk all lookup results in the TU for each identifier.
 | |
|     for (const auto &Ident : Idents) {
 | |
|       for (auto I = S.IdResolver.begin(Ident.getValue()),
 | |
|                 E = S.IdResolver.end();
 | |
|            I != E; ++I) {
 | |
|         if (S.IdResolver.isDeclInScope(*I, Ctx)) {
 | |
|           if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
 | |
|             Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
 | |
|             Visited.add(ND);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
 | |
|     Result.getSema().ForceDeclarationOfImplicitMembers(Class);
 | |
| 
 | |
|   // Enumerate all of the results in this context.
 | |
|   for (DeclContextLookupResult R : Ctx->lookups()) {
 | |
|     for (auto *D : R) {
 | |
|       if (auto *ND = Result.getAcceptableDecl(D)) {
 | |
|         Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
 | |
|         Visited.add(ND);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Traverse using directives for qualified name lookup.
 | |
|   if (QualifiedNameLookup) {
 | |
|     ShadowContextRAII Shadow(Visited);
 | |
|     for (auto I : Ctx->using_directives()) {
 | |
|       LookupVisibleDecls(I->getNominatedNamespace(), Result,
 | |
|                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Traverse the contexts of inherited C++ classes.
 | |
|   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
 | |
|     if (!Record->hasDefinition())
 | |
|       return;
 | |
| 
 | |
|     for (const auto &B : Record->bases()) {
 | |
|       QualType BaseType = B.getType();
 | |
| 
 | |
|       // Don't look into dependent bases, because name lookup can't look
 | |
|       // there anyway.
 | |
|       if (BaseType->isDependentType())
 | |
|         continue;
 | |
| 
 | |
|       const RecordType *Record = BaseType->getAs<RecordType>();
 | |
|       if (!Record)
 | |
|         continue;
 | |
| 
 | |
|       // FIXME: It would be nice to be able to determine whether referencing
 | |
|       // a particular member would be ambiguous. For example, given
 | |
|       //
 | |
|       //   struct A { int member; };
 | |
|       //   struct B { int member; };
 | |
|       //   struct C : A, B { };
 | |
|       //
 | |
|       //   void f(C *c) { c->### }
 | |
|       //
 | |
|       // accessing 'member' would result in an ambiguity. However, we
 | |
|       // could be smart enough to qualify the member with the base
 | |
|       // class, e.g.,
 | |
|       //
 | |
|       //   c->B::member
 | |
|       //
 | |
|       // or
 | |
|       //
 | |
|       //   c->A::member
 | |
| 
 | |
|       // Find results in this base class (and its bases).
 | |
|       ShadowContextRAII Shadow(Visited);
 | |
|       LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
 | |
|                          true, Consumer, Visited);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Traverse the contexts of Objective-C classes.
 | |
|   if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
 | |
|     // Traverse categories.
 | |
|     for (auto *Cat : IFace->visible_categories()) {
 | |
|       ShadowContextRAII Shadow(Visited);
 | |
|       LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
 | |
|                          Consumer, Visited);
 | |
|     }
 | |
| 
 | |
|     // Traverse protocols.
 | |
|     for (auto *I : IFace->all_referenced_protocols()) {
 | |
|       ShadowContextRAII Shadow(Visited);
 | |
|       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
 | |
|                          Visited);
 | |
|     }
 | |
| 
 | |
|     // Traverse the superclass.
 | |
|     if (IFace->getSuperClass()) {
 | |
|       ShadowContextRAII Shadow(Visited);
 | |
|       LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
 | |
|                          true, Consumer, Visited);
 | |
|     }
 | |
| 
 | |
|     // If there is an implementation, traverse it. We do this to find
 | |
|     // synthesized ivars.
 | |
|     if (IFace->getImplementation()) {
 | |
|       ShadowContextRAII Shadow(Visited);
 | |
|       LookupVisibleDecls(IFace->getImplementation(), Result,
 | |
|                          QualifiedNameLookup, InBaseClass, Consumer, Visited);
 | |
|     }
 | |
|   } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
 | |
|     for (auto *I : Protocol->protocols()) {
 | |
|       ShadowContextRAII Shadow(Visited);
 | |
|       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
 | |
|                          Visited);
 | |
|     }
 | |
|   } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
 | |
|     for (auto *I : Category->protocols()) {
 | |
|       ShadowContextRAII Shadow(Visited);
 | |
|       LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
 | |
|                          Visited);
 | |
|     }
 | |
| 
 | |
|     // If there is an implementation, traverse it.
 | |
|     if (Category->getImplementation()) {
 | |
|       ShadowContextRAII Shadow(Visited);
 | |
|       LookupVisibleDecls(Category->getImplementation(), Result,
 | |
|                          QualifiedNameLookup, true, Consumer, Visited);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void LookupVisibleDecls(Scope *S, LookupResult &Result,
 | |
|                                UnqualUsingDirectiveSet &UDirs,
 | |
|                                VisibleDeclConsumer &Consumer,
 | |
|                                VisibleDeclsRecord &Visited) {
 | |
|   if (!S)
 | |
|     return;
 | |
| 
 | |
|   if (!S->getEntity() ||
 | |
|       (!S->getParent() &&
 | |
|        !Visited.alreadyVisitedContext(S->getEntity())) ||
 | |
|       (S->getEntity())->isFunctionOrMethod()) {
 | |
|     FindLocalExternScope FindLocals(Result);
 | |
|     // Walk through the declarations in this Scope.
 | |
|     for (auto *D : S->decls()) {
 | |
|       if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
 | |
|         if ((ND = Result.getAcceptableDecl(ND))) {
 | |
|           Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
 | |
|           Visited.add(ND);
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: C++ [temp.local]p8
 | |
|   DeclContext *Entity = nullptr;
 | |
|   if (S->getEntity()) {
 | |
|     // Look into this scope's declaration context, along with any of its
 | |
|     // parent lookup contexts (e.g., enclosing classes), up to the point
 | |
|     // where we hit the context stored in the next outer scope.
 | |
|     Entity = S->getEntity();
 | |
|     DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
 | |
| 
 | |
|     for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
 | |
|          Ctx = Ctx->getLookupParent()) {
 | |
|       if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
 | |
|         if (Method->isInstanceMethod()) {
 | |
|           // For instance methods, look for ivars in the method's interface.
 | |
|           LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
 | |
|                                   Result.getNameLoc(), Sema::LookupMemberName);
 | |
|           if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
 | |
|             LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
 | |
|                                /*InBaseClass=*/false, Consumer, Visited);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // We've already performed all of the name lookup that we need
 | |
|         // to for Objective-C methods; the next context will be the
 | |
|         // outer scope.
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (Ctx->isFunctionOrMethod())
 | |
|         continue;
 | |
| 
 | |
|       LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
 | |
|                          /*InBaseClass=*/false, Consumer, Visited);
 | |
|     }
 | |
|   } else if (!S->getParent()) {
 | |
|     // Look into the translation unit scope. We walk through the translation
 | |
|     // unit's declaration context, because the Scope itself won't have all of
 | |
|     // the declarations if we loaded a precompiled header.
 | |
|     // FIXME: We would like the translation unit's Scope object to point to the
 | |
|     // translation unit, so we don't need this special "if" branch. However,
 | |
|     // doing so would force the normal C++ name-lookup code to look into the
 | |
|     // translation unit decl when the IdentifierInfo chains would suffice.
 | |
|     // Once we fix that problem (which is part of a more general "don't look
 | |
|     // in DeclContexts unless we have to" optimization), we can eliminate this.
 | |
|     Entity = Result.getSema().Context.getTranslationUnitDecl();
 | |
|     LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
 | |
|                        /*InBaseClass=*/false, Consumer, Visited);
 | |
|   }
 | |
| 
 | |
|   if (Entity) {
 | |
|     // Lookup visible declarations in any namespaces found by using
 | |
|     // directives.
 | |
|     for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
 | |
|       LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
 | |
|                          Result, /*QualifiedNameLookup=*/false,
 | |
|                          /*InBaseClass=*/false, Consumer, Visited);
 | |
|   }
 | |
| 
 | |
|   // Lookup names in the parent scope.
 | |
|   ShadowContextRAII Shadow(Visited);
 | |
|   LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
 | |
| }
 | |
| 
 | |
| void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
 | |
|                               VisibleDeclConsumer &Consumer,
 | |
|                               bool IncludeGlobalScope) {
 | |
|   // Determine the set of using directives available during
 | |
|   // unqualified name lookup.
 | |
|   Scope *Initial = S;
 | |
|   UnqualUsingDirectiveSet UDirs;
 | |
|   if (getLangOpts().CPlusPlus) {
 | |
|     // Find the first namespace or translation-unit scope.
 | |
|     while (S && !isNamespaceOrTranslationUnitScope(S))
 | |
|       S = S->getParent();
 | |
| 
 | |
|     UDirs.visitScopeChain(Initial, S);
 | |
|   }
 | |
|   UDirs.done();
 | |
| 
 | |
|   // Look for visible declarations.
 | |
|   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
 | |
|   Result.setAllowHidden(Consumer.includeHiddenDecls());
 | |
|   VisibleDeclsRecord Visited;
 | |
|   if (!IncludeGlobalScope)
 | |
|     Visited.visitedContext(Context.getTranslationUnitDecl());
 | |
|   ShadowContextRAII Shadow(Visited);
 | |
|   ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
 | |
| }
 | |
| 
 | |
| void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
 | |
|                               VisibleDeclConsumer &Consumer,
 | |
|                               bool IncludeGlobalScope) {
 | |
|   LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
 | |
|   Result.setAllowHidden(Consumer.includeHiddenDecls());
 | |
|   VisibleDeclsRecord Visited;
 | |
|   if (!IncludeGlobalScope)
 | |
|     Visited.visitedContext(Context.getTranslationUnitDecl());
 | |
|   ShadowContextRAII Shadow(Visited);
 | |
|   ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
 | |
|                        /*InBaseClass=*/false, Consumer, Visited);
 | |
| }
 | |
| 
 | |
| /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
 | |
| /// If GnuLabelLoc is a valid source location, then this is a definition
 | |
| /// of an __label__ label name, otherwise it is a normal label definition
 | |
| /// or use.
 | |
| LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
 | |
|                                      SourceLocation GnuLabelLoc) {
 | |
|   // Do a lookup to see if we have a label with this name already.
 | |
|   NamedDecl *Res = nullptr;
 | |
| 
 | |
|   if (GnuLabelLoc.isValid()) {
 | |
|     // Local label definitions always shadow existing labels.
 | |
|     Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
 | |
|     Scope *S = CurScope;
 | |
|     PushOnScopeChains(Res, S, true);
 | |
|     return cast<LabelDecl>(Res);
 | |
|   }
 | |
| 
 | |
|   // Not a GNU local label.
 | |
|   Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
 | |
|   // If we found a label, check to see if it is in the same context as us.
 | |
|   // When in a Block, we don't want to reuse a label in an enclosing function.
 | |
|   if (Res && Res->getDeclContext() != CurContext)
 | |
|     Res = nullptr;
 | |
|   if (!Res) {
 | |
|     // If not forward referenced or defined already, create the backing decl.
 | |
|     Res = LabelDecl::Create(Context, CurContext, Loc, II);
 | |
|     Scope *S = CurScope->getFnParent();
 | |
|     assert(S && "Not in a function?");
 | |
|     PushOnScopeChains(Res, S, true);
 | |
|   }
 | |
|   return cast<LabelDecl>(Res);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Typo correction
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static bool isCandidateViable(CorrectionCandidateCallback &CCC,
 | |
|                               TypoCorrection &Candidate) {
 | |
|   Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
 | |
|   return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
 | |
| }
 | |
| 
 | |
| static void LookupPotentialTypoResult(Sema &SemaRef,
 | |
|                                       LookupResult &Res,
 | |
|                                       IdentifierInfo *Name,
 | |
|                                       Scope *S, CXXScopeSpec *SS,
 | |
|                                       DeclContext *MemberContext,
 | |
|                                       bool EnteringContext,
 | |
|                                       bool isObjCIvarLookup,
 | |
|                                       bool FindHidden);
 | |
| 
 | |
| /// \brief Check whether the declarations found for a typo correction are
 | |
| /// visible, and if none of them are, convert the correction to an 'import
 | |
| /// a module' correction.
 | |
| static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
 | |
|   if (TC.begin() == TC.end())
 | |
|     return;
 | |
| 
 | |
|   TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
 | |
| 
 | |
|   for (/**/; DI != DE; ++DI)
 | |
|     if (!LookupResult::isVisible(SemaRef, *DI))
 | |
|       break;
 | |
|   // Nothing to do if all decls are visible.
 | |
|   if (DI == DE)
 | |
|     return;
 | |
| 
 | |
|   llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
 | |
|   bool AnyVisibleDecls = !NewDecls.empty();
 | |
| 
 | |
|   for (/**/; DI != DE; ++DI) {
 | |
|     NamedDecl *VisibleDecl = *DI;
 | |
|     if (!LookupResult::isVisible(SemaRef, *DI))
 | |
|       VisibleDecl = findAcceptableDecl(SemaRef, *DI);
 | |
| 
 | |
|     if (VisibleDecl) {
 | |
|       if (!AnyVisibleDecls) {
 | |
|         // Found a visible decl, discard all hidden ones.
 | |
|         AnyVisibleDecls = true;
 | |
|         NewDecls.clear();
 | |
|       }
 | |
|       NewDecls.push_back(VisibleDecl);
 | |
|     } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
 | |
|       NewDecls.push_back(*DI);
 | |
|   }
 | |
| 
 | |
|   if (NewDecls.empty())
 | |
|     TC = TypoCorrection();
 | |
|   else {
 | |
|     TC.setCorrectionDecls(NewDecls);
 | |
|     TC.setRequiresImport(!AnyVisibleDecls);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Fill the supplied vector with the IdentifierInfo pointers for each piece of
 | |
| // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
 | |
| // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
 | |
| static void getNestedNameSpecifierIdentifiers(
 | |
|     NestedNameSpecifier *NNS,
 | |
|     SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
 | |
|   if (NestedNameSpecifier *Prefix = NNS->getPrefix())
 | |
|     getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
 | |
|   else
 | |
|     Identifiers.clear();
 | |
| 
 | |
|   const IdentifierInfo *II = nullptr;
 | |
| 
 | |
|   switch (NNS->getKind()) {
 | |
|   case NestedNameSpecifier::Identifier:
 | |
|     II = NNS->getAsIdentifier();
 | |
|     break;
 | |
| 
 | |
|   case NestedNameSpecifier::Namespace:
 | |
|     if (NNS->getAsNamespace()->isAnonymousNamespace())
 | |
|       return;
 | |
|     II = NNS->getAsNamespace()->getIdentifier();
 | |
|     break;
 | |
| 
 | |
|   case NestedNameSpecifier::NamespaceAlias:
 | |
|     II = NNS->getAsNamespaceAlias()->getIdentifier();
 | |
|     break;
 | |
| 
 | |
|   case NestedNameSpecifier::TypeSpecWithTemplate:
 | |
|   case NestedNameSpecifier::TypeSpec:
 | |
|     II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
 | |
|     break;
 | |
| 
 | |
|   case NestedNameSpecifier::Global:
 | |
|   case NestedNameSpecifier::Super:
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (II)
 | |
|     Identifiers.push_back(II);
 | |
| }
 | |
| 
 | |
| void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
 | |
|                                        DeclContext *Ctx, bool InBaseClass) {
 | |
|   // Don't consider hidden names for typo correction.
 | |
|   if (Hiding)
 | |
|     return;
 | |
| 
 | |
|   // Only consider entities with identifiers for names, ignoring
 | |
|   // special names (constructors, overloaded operators, selectors,
 | |
|   // etc.).
 | |
|   IdentifierInfo *Name = ND->getIdentifier();
 | |
|   if (!Name)
 | |
|     return;
 | |
| 
 | |
|   // Only consider visible declarations and declarations from modules with
 | |
|   // names that exactly match.
 | |
|   if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
 | |
|       !findAcceptableDecl(SemaRef, ND))
 | |
|     return;
 | |
| 
 | |
|   FoundName(Name->getName());
 | |
| }
 | |
| 
 | |
| void TypoCorrectionConsumer::FoundName(StringRef Name) {
 | |
|   // Compute the edit distance between the typo and the name of this
 | |
|   // entity, and add the identifier to the list of results.
 | |
|   addName(Name, nullptr);
 | |
| }
 | |
| 
 | |
| void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
 | |
|   // Compute the edit distance between the typo and this keyword,
 | |
|   // and add the keyword to the list of results.
 | |
|   addName(Keyword, nullptr, nullptr, true);
 | |
| }
 | |
| 
 | |
| void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
 | |
|                                      NestedNameSpecifier *NNS, bool isKeyword) {
 | |
|   // Use a simple length-based heuristic to determine the minimum possible
 | |
|   // edit distance. If the minimum isn't good enough, bail out early.
 | |
|   StringRef TypoStr = Typo->getName();
 | |
|   unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
 | |
|   if (MinED && TypoStr.size() / MinED < 3)
 | |
|     return;
 | |
| 
 | |
|   // Compute an upper bound on the allowable edit distance, so that the
 | |
|   // edit-distance algorithm can short-circuit.
 | |
|   unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
 | |
|   unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
 | |
|   if (ED >= UpperBound) return;
 | |
| 
 | |
|   TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
 | |
|   if (isKeyword) TC.makeKeyword();
 | |
|   TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
 | |
|   addCorrection(TC);
 | |
| }
 | |
| 
 | |
| static const unsigned MaxTypoDistanceResultSets = 5;
 | |
| 
 | |
| void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
 | |
|   StringRef TypoStr = Typo->getName();
 | |
|   StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
 | |
| 
 | |
|   // For very short typos, ignore potential corrections that have a different
 | |
|   // base identifier from the typo or which have a normalized edit distance
 | |
|   // longer than the typo itself.
 | |
|   if (TypoStr.size() < 3 &&
 | |
|       (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
 | |
|     return;
 | |
| 
 | |
|   // If the correction is resolved but is not viable, ignore it.
 | |
|   if (Correction.isResolved()) {
 | |
|     checkCorrectionVisibility(SemaRef, Correction);
 | |
|     if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   TypoResultList &CList =
 | |
|       CorrectionResults[Correction.getEditDistance(false)][Name];
 | |
| 
 | |
|   if (!CList.empty() && !CList.back().isResolved())
 | |
|     CList.pop_back();
 | |
|   if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
 | |
|     std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
 | |
|     for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
 | |
|          RI != RIEnd; ++RI) {
 | |
|       // If the Correction refers to a decl already in the result list,
 | |
|       // replace the existing result if the string representation of Correction
 | |
|       // comes before the current result alphabetically, then stop as there is
 | |
|       // nothing more to be done to add Correction to the candidate set.
 | |
|       if (RI->getCorrectionDecl() == NewND) {
 | |
|         if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
 | |
|           *RI = Correction;
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (CList.empty() || Correction.isResolved())
 | |
|     CList.push_back(Correction);
 | |
| 
 | |
|   while (CorrectionResults.size() > MaxTypoDistanceResultSets)
 | |
|     CorrectionResults.erase(std::prev(CorrectionResults.end()));
 | |
| }
 | |
| 
 | |
| void TypoCorrectionConsumer::addNamespaces(
 | |
|     const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
 | |
|   SearchNamespaces = true;
 | |
| 
 | |
|   for (auto KNPair : KnownNamespaces)
 | |
|     Namespaces.addNameSpecifier(KNPair.first);
 | |
| 
 | |
|   bool SSIsTemplate = false;
 | |
|   if (NestedNameSpecifier *NNS =
 | |
|           (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
 | |
|     if (const Type *T = NNS->getAsType())
 | |
|       SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
 | |
|   }
 | |
|   // Do not transform this into an iterator-based loop. The loop body can
 | |
|   // trigger the creation of further types (through lazy deserialization) and
 | |
|   // invalide iterators into this list.
 | |
|   auto &Types = SemaRef.getASTContext().getTypes();
 | |
|   for (unsigned I = 0; I != Types.size(); ++I) {
 | |
|     const auto *TI = Types[I];
 | |
|     if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
 | |
|       CD = CD->getCanonicalDecl();
 | |
|       if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
 | |
|           !CD->isUnion() && CD->getIdentifier() &&
 | |
|           (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
 | |
|           (CD->isBeingDefined() || CD->isCompleteDefinition()))
 | |
|         Namespaces.addNameSpecifier(CD);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
 | |
|   if (++CurrentTCIndex < ValidatedCorrections.size())
 | |
|     return ValidatedCorrections[CurrentTCIndex];
 | |
| 
 | |
|   CurrentTCIndex = ValidatedCorrections.size();
 | |
|   while (!CorrectionResults.empty()) {
 | |
|     auto DI = CorrectionResults.begin();
 | |
|     if (DI->second.empty()) {
 | |
|       CorrectionResults.erase(DI);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto RI = DI->second.begin();
 | |
|     if (RI->second.empty()) {
 | |
|       DI->second.erase(RI);
 | |
|       performQualifiedLookups();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     TypoCorrection TC = RI->second.pop_back_val();
 | |
|     if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
 | |
|       ValidatedCorrections.push_back(TC);
 | |
|       return ValidatedCorrections[CurrentTCIndex];
 | |
|     }
 | |
|   }
 | |
|   return ValidatedCorrections[0];  // The empty correction.
 | |
| }
 | |
| 
 | |
| bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
 | |
|   IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
 | |
|   DeclContext *TempMemberContext = MemberContext;
 | |
|   CXXScopeSpec *TempSS = SS.get();
 | |
| retry_lookup:
 | |
|   LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
 | |
|                             EnteringContext,
 | |
|                             CorrectionValidator->IsObjCIvarLookup,
 | |
|                             Name == Typo && !Candidate.WillReplaceSpecifier());
 | |
|   switch (Result.getResultKind()) {
 | |
|   case LookupResult::NotFound:
 | |
|   case LookupResult::NotFoundInCurrentInstantiation:
 | |
|   case LookupResult::FoundUnresolvedValue:
 | |
|     if (TempSS) {
 | |
|       // Immediately retry the lookup without the given CXXScopeSpec
 | |
|       TempSS = nullptr;
 | |
|       Candidate.WillReplaceSpecifier(true);
 | |
|       goto retry_lookup;
 | |
|     }
 | |
|     if (TempMemberContext) {
 | |
|       if (SS && !TempSS)
 | |
|         TempSS = SS.get();
 | |
|       TempMemberContext = nullptr;
 | |
|       goto retry_lookup;
 | |
|     }
 | |
|     if (SearchNamespaces)
 | |
|       QualifiedResults.push_back(Candidate);
 | |
|     break;
 | |
| 
 | |
|   case LookupResult::Ambiguous:
 | |
|     // We don't deal with ambiguities.
 | |
|     break;
 | |
| 
 | |
|   case LookupResult::Found:
 | |
|   case LookupResult::FoundOverloaded:
 | |
|     // Store all of the Decls for overloaded symbols
 | |
|     for (auto *TRD : Result)
 | |
|       Candidate.addCorrectionDecl(TRD);
 | |
|     checkCorrectionVisibility(SemaRef, Candidate);
 | |
|     if (!isCandidateViable(*CorrectionValidator, Candidate)) {
 | |
|       if (SearchNamespaces)
 | |
|         QualifiedResults.push_back(Candidate);
 | |
|       break;
 | |
|     }
 | |
|     Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void TypoCorrectionConsumer::performQualifiedLookups() {
 | |
|   unsigned TypoLen = Typo->getName().size();
 | |
|   for (auto QR : QualifiedResults) {
 | |
|     for (auto NSI : Namespaces) {
 | |
|       DeclContext *Ctx = NSI.DeclCtx;
 | |
|       const Type *NSType = NSI.NameSpecifier->getAsType();
 | |
| 
 | |
|       // If the current NestedNameSpecifier refers to a class and the
 | |
|       // current correction candidate is the name of that class, then skip
 | |
|       // it as it is unlikely a qualified version of the class' constructor
 | |
|       // is an appropriate correction.
 | |
|       if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
 | |
|                                            nullptr) {
 | |
|         if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       TypoCorrection TC(QR);
 | |
|       TC.ClearCorrectionDecls();
 | |
|       TC.setCorrectionSpecifier(NSI.NameSpecifier);
 | |
|       TC.setQualifierDistance(NSI.EditDistance);
 | |
|       TC.setCallbackDistance(0); // Reset the callback distance
 | |
| 
 | |
|       // If the current correction candidate and namespace combination are
 | |
|       // too far away from the original typo based on the normalized edit
 | |
|       // distance, then skip performing a qualified name lookup.
 | |
|       unsigned TmpED = TC.getEditDistance(true);
 | |
|       if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
 | |
|           TypoLen / TmpED < 3)
 | |
|         continue;
 | |
| 
 | |
|       Result.clear();
 | |
|       Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
 | |
|       if (!SemaRef.LookupQualifiedName(Result, Ctx))
 | |
|         continue;
 | |
| 
 | |
|       // Any corrections added below will be validated in subsequent
 | |
|       // iterations of the main while() loop over the Consumer's contents.
 | |
|       switch (Result.getResultKind()) {
 | |
|       case LookupResult::Found:
 | |
|       case LookupResult::FoundOverloaded: {
 | |
|         if (SS && SS->isValid()) {
 | |
|           std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
 | |
|           std::string OldQualified;
 | |
|           llvm::raw_string_ostream OldOStream(OldQualified);
 | |
|           SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
 | |
|           OldOStream << Typo->getName();
 | |
|           // If correction candidate would be an identical written qualified
 | |
|           // identifer, then the existing CXXScopeSpec probably included a
 | |
|           // typedef that didn't get accounted for properly.
 | |
|           if (OldOStream.str() == NewQualified)
 | |
|             break;
 | |
|         }
 | |
|         for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
 | |
|              TRD != TRDEnd; ++TRD) {
 | |
|           if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
 | |
|                                         NSType ? NSType->getAsCXXRecordDecl()
 | |
|                                                : nullptr,
 | |
|                                         TRD.getPair()) == Sema::AR_accessible)
 | |
|             TC.addCorrectionDecl(*TRD);
 | |
|         }
 | |
|         if (TC.isResolved()) {
 | |
|           TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
 | |
|           addCorrection(TC);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case LookupResult::NotFound:
 | |
|       case LookupResult::NotFoundInCurrentInstantiation:
 | |
|       case LookupResult::Ambiguous:
 | |
|       case LookupResult::FoundUnresolvedValue:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   QualifiedResults.clear();
 | |
| }
 | |
| 
 | |
| TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
 | |
|     ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
 | |
|     : Context(Context), CurContextChain(buildContextChain(CurContext)) {
 | |
|   if (NestedNameSpecifier *NNS =
 | |
|           CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
 | |
|     llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
 | |
|     NNS->print(SpecifierOStream, Context.getPrintingPolicy());
 | |
| 
 | |
|     getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
 | |
|   }
 | |
|   // Build the list of identifiers that would be used for an absolute
 | |
|   // (from the global context) NestedNameSpecifier referring to the current
 | |
|   // context.
 | |
|   for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
 | |
|                                          CEnd = CurContextChain.rend();
 | |
|        C != CEnd; ++C) {
 | |
|     if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
 | |
|       CurContextIdentifiers.push_back(ND->getIdentifier());
 | |
|   }
 | |
| 
 | |
|   // Add the global context as a NestedNameSpecifier
 | |
|   SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
 | |
|                       NestedNameSpecifier::GlobalSpecifier(Context), 1};
 | |
|   DistanceMap[1].push_back(SI);
 | |
| }
 | |
| 
 | |
| auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
 | |
|     DeclContext *Start) -> DeclContextList {
 | |
|   assert(Start && "Building a context chain from a null context");
 | |
|   DeclContextList Chain;
 | |
|   for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
 | |
|        DC = DC->getLookupParent()) {
 | |
|     NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
 | |
|     if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
 | |
|         !(ND && ND->isAnonymousNamespace()))
 | |
|       Chain.push_back(DC->getPrimaryContext());
 | |
|   }
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
 | |
|     DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
 | |
|   unsigned NumSpecifiers = 0;
 | |
|   for (DeclContextList::reverse_iterator C = DeclChain.rbegin(),
 | |
|                                       CEnd = DeclChain.rend();
 | |
|        C != CEnd; ++C) {
 | |
|     if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C)) {
 | |
|       NNS = NestedNameSpecifier::Create(Context, NNS, ND);
 | |
|       ++NumSpecifiers;
 | |
|     } else if (RecordDecl *RD = dyn_cast_or_null<RecordDecl>(*C)) {
 | |
|       NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
 | |
|                                         RD->getTypeForDecl());
 | |
|       ++NumSpecifiers;
 | |
|     }
 | |
|   }
 | |
|   return NumSpecifiers;
 | |
| }
 | |
| 
 | |
| void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
 | |
|     DeclContext *Ctx) {
 | |
|   NestedNameSpecifier *NNS = nullptr;
 | |
|   unsigned NumSpecifiers = 0;
 | |
|   DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
 | |
|   DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
 | |
| 
 | |
|   // Eliminate common elements from the two DeclContext chains.
 | |
|   for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
 | |
|                                       CEnd = CurContextChain.rend();
 | |
|        C != CEnd && !NamespaceDeclChain.empty() &&
 | |
|        NamespaceDeclChain.back() == *C; ++C) {
 | |
|     NamespaceDeclChain.pop_back();
 | |
|   }
 | |
| 
 | |
|   // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
 | |
|   NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
 | |
| 
 | |
|   // Add an explicit leading '::' specifier if needed.
 | |
|   if (NamespaceDeclChain.empty()) {
 | |
|     // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
 | |
|     NNS = NestedNameSpecifier::GlobalSpecifier(Context);
 | |
|     NumSpecifiers =
 | |
|         buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
 | |
|   } else if (NamedDecl *ND =
 | |
|                  dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
 | |
|     IdentifierInfo *Name = ND->getIdentifier();
 | |
|     bool SameNameSpecifier = false;
 | |
|     if (std::find(CurNameSpecifierIdentifiers.begin(),
 | |
|                   CurNameSpecifierIdentifiers.end(),
 | |
|                   Name) != CurNameSpecifierIdentifiers.end()) {
 | |
|       std::string NewNameSpecifier;
 | |
|       llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
 | |
|       SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
 | |
|       getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
 | |
|       NNS->print(SpecifierOStream, Context.getPrintingPolicy());
 | |
|       SpecifierOStream.flush();
 | |
|       SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
 | |
|     }
 | |
|     if (SameNameSpecifier ||
 | |
|         std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
 | |
|                   Name) != CurContextIdentifiers.end()) {
 | |
|       // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
 | |
|       NNS = NestedNameSpecifier::GlobalSpecifier(Context);
 | |
|       NumSpecifiers =
 | |
|           buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the built NestedNameSpecifier would be replacing an existing
 | |
|   // NestedNameSpecifier, use the number of component identifiers that
 | |
|   // would need to be changed as the edit distance instead of the number
 | |
|   // of components in the built NestedNameSpecifier.
 | |
|   if (NNS && !CurNameSpecifierIdentifiers.empty()) {
 | |
|     SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
 | |
|     getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
 | |
|     NumSpecifiers = llvm::ComputeEditDistance(
 | |
|         llvm::makeArrayRef(CurNameSpecifierIdentifiers),
 | |
|         llvm::makeArrayRef(NewNameSpecifierIdentifiers));
 | |
|   }
 | |
| 
 | |
|   SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
 | |
|   DistanceMap[NumSpecifiers].push_back(SI);
 | |
| }
 | |
| 
 | |
| /// \brief Perform name lookup for a possible result for typo correction.
 | |
| static void LookupPotentialTypoResult(Sema &SemaRef,
 | |
|                                       LookupResult &Res,
 | |
|                                       IdentifierInfo *Name,
 | |
|                                       Scope *S, CXXScopeSpec *SS,
 | |
|                                       DeclContext *MemberContext,
 | |
|                                       bool EnteringContext,
 | |
|                                       bool isObjCIvarLookup,
 | |
|                                       bool FindHidden) {
 | |
|   Res.suppressDiagnostics();
 | |
|   Res.clear();
 | |
|   Res.setLookupName(Name);
 | |
|   Res.setAllowHidden(FindHidden);
 | |
|   if (MemberContext) {
 | |
|     if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
 | |
|       if (isObjCIvarLookup) {
 | |
|         if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
 | |
|           Res.addDecl(Ivar);
 | |
|           Res.resolveKind();
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
 | |
|         Res.addDecl(Prop);
 | |
|         Res.resolveKind();
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SemaRef.LookupQualifiedName(Res, MemberContext);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
 | |
|                            EnteringContext);
 | |
| 
 | |
|   // Fake ivar lookup; this should really be part of
 | |
|   // LookupParsedName.
 | |
|   if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
 | |
|     if (Method->isInstanceMethod() && Method->getClassInterface() &&
 | |
|         (Res.empty() ||
 | |
|          (Res.isSingleResult() &&
 | |
|           Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
 | |
|        if (ObjCIvarDecl *IV
 | |
|              = Method->getClassInterface()->lookupInstanceVariable(Name)) {
 | |
|          Res.addDecl(IV);
 | |
|          Res.resolveKind();
 | |
|        }
 | |
|      }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Add keywords to the consumer as possible typo corrections.
 | |
| static void AddKeywordsToConsumer(Sema &SemaRef,
 | |
|                                   TypoCorrectionConsumer &Consumer,
 | |
|                                   Scope *S, CorrectionCandidateCallback &CCC,
 | |
|                                   bool AfterNestedNameSpecifier) {
 | |
|   if (AfterNestedNameSpecifier) {
 | |
|     // For 'X::', we know exactly which keywords can appear next.
 | |
|     Consumer.addKeywordResult("template");
 | |
|     if (CCC.WantExpressionKeywords)
 | |
|       Consumer.addKeywordResult("operator");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (CCC.WantObjCSuper)
 | |
|     Consumer.addKeywordResult("super");
 | |
| 
 | |
|   if (CCC.WantTypeSpecifiers) {
 | |
|     // Add type-specifier keywords to the set of results.
 | |
|     static const char *const CTypeSpecs[] = {
 | |
|       "char", "const", "double", "enum", "float", "int", "long", "short",
 | |
|       "signed", "struct", "union", "unsigned", "void", "volatile", 
 | |
|       "_Complex", "_Imaginary",
 | |
|       // storage-specifiers as well
 | |
|       "extern", "inline", "static", "typedef"
 | |
|     };
 | |
| 
 | |
|     const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
 | |
|     for (unsigned I = 0; I != NumCTypeSpecs; ++I)
 | |
|       Consumer.addKeywordResult(CTypeSpecs[I]);
 | |
| 
 | |
|     if (SemaRef.getLangOpts().C99)
 | |
|       Consumer.addKeywordResult("restrict");
 | |
|     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
 | |
|       Consumer.addKeywordResult("bool");
 | |
|     else if (SemaRef.getLangOpts().C99)
 | |
|       Consumer.addKeywordResult("_Bool");
 | |
|     
 | |
|     if (SemaRef.getLangOpts().CPlusPlus) {
 | |
|       Consumer.addKeywordResult("class");
 | |
|       Consumer.addKeywordResult("typename");
 | |
|       Consumer.addKeywordResult("wchar_t");
 | |
| 
 | |
|       if (SemaRef.getLangOpts().CPlusPlus11) {
 | |
|         Consumer.addKeywordResult("char16_t");
 | |
|         Consumer.addKeywordResult("char32_t");
 | |
|         Consumer.addKeywordResult("constexpr");
 | |
|         Consumer.addKeywordResult("decltype");
 | |
|         Consumer.addKeywordResult("thread_local");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SemaRef.getLangOpts().GNUMode)
 | |
|       Consumer.addKeywordResult("typeof");
 | |
|   } else if (CCC.WantFunctionLikeCasts) {
 | |
|     static const char *const CastableTypeSpecs[] = {
 | |
|       "char", "double", "float", "int", "long", "short",
 | |
|       "signed", "unsigned", "void"
 | |
|     };
 | |
|     for (auto *kw : CastableTypeSpecs)
 | |
|       Consumer.addKeywordResult(kw);
 | |
|   }
 | |
| 
 | |
|   if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
 | |
|     Consumer.addKeywordResult("const_cast");
 | |
|     Consumer.addKeywordResult("dynamic_cast");
 | |
|     Consumer.addKeywordResult("reinterpret_cast");
 | |
|     Consumer.addKeywordResult("static_cast");
 | |
|   }
 | |
| 
 | |
|   if (CCC.WantExpressionKeywords) {
 | |
|     Consumer.addKeywordResult("sizeof");
 | |
|     if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
 | |
|       Consumer.addKeywordResult("false");
 | |
|       Consumer.addKeywordResult("true");
 | |
|     }
 | |
| 
 | |
|     if (SemaRef.getLangOpts().CPlusPlus) {
 | |
|       static const char *const CXXExprs[] = {
 | |
|         "delete", "new", "operator", "throw", "typeid"
 | |
|       };
 | |
|       const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
 | |
|       for (unsigned I = 0; I != NumCXXExprs; ++I)
 | |
|         Consumer.addKeywordResult(CXXExprs[I]);
 | |
| 
 | |
|       if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
 | |
|           cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
 | |
|         Consumer.addKeywordResult("this");
 | |
| 
 | |
|       if (SemaRef.getLangOpts().CPlusPlus11) {
 | |
|         Consumer.addKeywordResult("alignof");
 | |
|         Consumer.addKeywordResult("nullptr");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SemaRef.getLangOpts().C11) {
 | |
|       // FIXME: We should not suggest _Alignof if the alignof macro
 | |
|       // is present.
 | |
|       Consumer.addKeywordResult("_Alignof");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (CCC.WantRemainingKeywords) {
 | |
|     if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
 | |
|       // Statements.
 | |
|       static const char *const CStmts[] = {
 | |
|         "do", "else", "for", "goto", "if", "return", "switch", "while" };
 | |
|       const unsigned NumCStmts = llvm::array_lengthof(CStmts);
 | |
|       for (unsigned I = 0; I != NumCStmts; ++I)
 | |
|         Consumer.addKeywordResult(CStmts[I]);
 | |
| 
 | |
|       if (SemaRef.getLangOpts().CPlusPlus) {
 | |
|         Consumer.addKeywordResult("catch");
 | |
|         Consumer.addKeywordResult("try");
 | |
|       }
 | |
| 
 | |
|       if (S && S->getBreakParent())
 | |
|         Consumer.addKeywordResult("break");
 | |
| 
 | |
|       if (S && S->getContinueParent())
 | |
|         Consumer.addKeywordResult("continue");
 | |
| 
 | |
|       if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
 | |
|         Consumer.addKeywordResult("case");
 | |
|         Consumer.addKeywordResult("default");
 | |
|       }
 | |
|     } else {
 | |
|       if (SemaRef.getLangOpts().CPlusPlus) {
 | |
|         Consumer.addKeywordResult("namespace");
 | |
|         Consumer.addKeywordResult("template");
 | |
|       }
 | |
| 
 | |
|       if (S && S->isClassScope()) {
 | |
|         Consumer.addKeywordResult("explicit");
 | |
|         Consumer.addKeywordResult("friend");
 | |
|         Consumer.addKeywordResult("mutable");
 | |
|         Consumer.addKeywordResult("private");
 | |
|         Consumer.addKeywordResult("protected");
 | |
|         Consumer.addKeywordResult("public");
 | |
|         Consumer.addKeywordResult("virtual");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SemaRef.getLangOpts().CPlusPlus) {
 | |
|       Consumer.addKeywordResult("using");
 | |
| 
 | |
|       if (SemaRef.getLangOpts().CPlusPlus11)
 | |
|         Consumer.addKeywordResult("static_assert");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
 | |
|     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
 | |
|     Scope *S, CXXScopeSpec *SS,
 | |
|     std::unique_ptr<CorrectionCandidateCallback> CCC,
 | |
|     DeclContext *MemberContext, bool EnteringContext,
 | |
|     const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
 | |
| 
 | |
|   if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
 | |
|       DisableTypoCorrection)
 | |
|     return nullptr;
 | |
| 
 | |
|   // In Microsoft mode, don't perform typo correction in a template member
 | |
|   // function dependent context because it interferes with the "lookup into
 | |
|   // dependent bases of class templates" feature.
 | |
|   if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
 | |
|       isa<CXXMethodDecl>(CurContext))
 | |
|     return nullptr;
 | |
| 
 | |
|   // We only attempt to correct typos for identifiers.
 | |
|   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
 | |
|   if (!Typo)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If the scope specifier itself was invalid, don't try to correct
 | |
|   // typos.
 | |
|   if (SS && SS->isInvalid())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Never try to correct typos during template deduction or
 | |
|   // instantiation.
 | |
|   if (!ActiveTemplateInstantiations.empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Don't try to correct 'super'.
 | |
|   if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Abort if typo correction already failed for this specific typo.
 | |
|   IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
 | |
|   if (locs != TypoCorrectionFailures.end() &&
 | |
|       locs->second.count(TypoName.getLoc()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Don't try to correct the identifier "vector" when in AltiVec mode.
 | |
|   // TODO: Figure out why typo correction misbehaves in this case, fix it, and
 | |
|   // remove this workaround.
 | |
|   if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Provide a stop gap for files that are just seriously broken.  Trying
 | |
|   // to correct all typos can turn into a HUGE performance penalty, causing
 | |
|   // some files to take minutes to get rejected by the parser.
 | |
|   unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
 | |
|   if (Limit && TyposCorrected >= Limit)
 | |
|     return nullptr;
 | |
|   ++TyposCorrected;
 | |
| 
 | |
|   // If we're handling a missing symbol error, using modules, and the
 | |
|   // special search all modules option is used, look for a missing import.
 | |
|   if (ErrorRecovery && getLangOpts().Modules &&
 | |
|       getLangOpts().ModulesSearchAll) {
 | |
|     // The following has the side effect of loading the missing module.
 | |
|     getModuleLoader().lookupMissingImports(Typo->getName(),
 | |
|                                            TypoName.getLocStart());
 | |
|   }
 | |
| 
 | |
|   CorrectionCandidateCallback &CCCRef = *CCC;
 | |
|   auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
 | |
|       *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
 | |
|       EnteringContext);
 | |
| 
 | |
|   // Perform name lookup to find visible, similarly-named entities.
 | |
|   bool IsUnqualifiedLookup = false;
 | |
|   DeclContext *QualifiedDC = MemberContext;
 | |
|   if (MemberContext) {
 | |
|     LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
 | |
| 
 | |
|     // Look in qualified interfaces.
 | |
|     if (OPT) {
 | |
|       for (auto *I : OPT->quals())
 | |
|         LookupVisibleDecls(I, LookupKind, *Consumer);
 | |
|     }
 | |
|   } else if (SS && SS->isSet()) {
 | |
|     QualifiedDC = computeDeclContext(*SS, EnteringContext);
 | |
|     if (!QualifiedDC)
 | |
|       return nullptr;
 | |
| 
 | |
|     LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
 | |
|   } else {
 | |
|     IsUnqualifiedLookup = true;
 | |
|   }
 | |
| 
 | |
|   // Determine whether we are going to search in the various namespaces for
 | |
|   // corrections.
 | |
|   bool SearchNamespaces
 | |
|     = getLangOpts().CPlusPlus &&
 | |
|       (IsUnqualifiedLookup || (SS && SS->isSet()));
 | |
| 
 | |
|   if (IsUnqualifiedLookup || SearchNamespaces) {
 | |
|     // For unqualified lookup, look through all of the names that we have
 | |
|     // seen in this translation unit.
 | |
|     // FIXME: Re-add the ability to skip very unlikely potential corrections.
 | |
|     for (const auto &I : Context.Idents)
 | |
|       Consumer->FoundName(I.getKey());
 | |
| 
 | |
|     // Walk through identifiers in external identifier sources.
 | |
|     // FIXME: Re-add the ability to skip very unlikely potential corrections.
 | |
|     if (IdentifierInfoLookup *External
 | |
|                             = Context.Idents.getExternalIdentifierLookup()) {
 | |
|       std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
 | |
|       do {
 | |
|         StringRef Name = Iter->Next();
 | |
|         if (Name.empty())
 | |
|           break;
 | |
| 
 | |
|         Consumer->FoundName(Name);
 | |
|       } while (true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
 | |
| 
 | |
|   // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
 | |
|   // to search those namespaces.
 | |
|   if (SearchNamespaces) {
 | |
|     // Load any externally-known namespaces.
 | |
|     if (ExternalSource && !LoadedExternalKnownNamespaces) {
 | |
|       SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
 | |
|       LoadedExternalKnownNamespaces = true;
 | |
|       ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
 | |
|       for (auto *N : ExternalKnownNamespaces)
 | |
|         KnownNamespaces[N] = true;
 | |
|     }
 | |
| 
 | |
|     Consumer->addNamespaces(KnownNamespaces);
 | |
|   }
 | |
| 
 | |
|   return Consumer;
 | |
| }
 | |
| 
 | |
| /// \brief Try to "correct" a typo in the source code by finding
 | |
| /// visible declarations whose names are similar to the name that was
 | |
| /// present in the source code.
 | |
| ///
 | |
| /// \param TypoName the \c DeclarationNameInfo structure that contains
 | |
| /// the name that was present in the source code along with its location.
 | |
| ///
 | |
| /// \param LookupKind the name-lookup criteria used to search for the name.
 | |
| ///
 | |
| /// \param S the scope in which name lookup occurs.
 | |
| ///
 | |
| /// \param SS the nested-name-specifier that precedes the name we're
 | |
| /// looking for, if present.
 | |
| ///
 | |
| /// \param CCC A CorrectionCandidateCallback object that provides further
 | |
| /// validation of typo correction candidates. It also provides flags for
 | |
| /// determining the set of keywords permitted.
 | |
| ///
 | |
| /// \param MemberContext if non-NULL, the context in which to look for
 | |
| /// a member access expression.
 | |
| ///
 | |
| /// \param EnteringContext whether we're entering the context described by
 | |
| /// the nested-name-specifier SS.
 | |
| ///
 | |
| /// \param OPT when non-NULL, the search for visible declarations will
 | |
| /// also walk the protocols in the qualified interfaces of \p OPT.
 | |
| ///
 | |
| /// \returns a \c TypoCorrection containing the corrected name if the typo
 | |
| /// along with information such as the \c NamedDecl where the corrected name
 | |
| /// was declared, and any additional \c NestedNameSpecifier needed to access
 | |
| /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
 | |
| TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
 | |
|                                  Sema::LookupNameKind LookupKind,
 | |
|                                  Scope *S, CXXScopeSpec *SS,
 | |
|                                  std::unique_ptr<CorrectionCandidateCallback> CCC,
 | |
|                                  CorrectTypoKind Mode,
 | |
|                                  DeclContext *MemberContext,
 | |
|                                  bool EnteringContext,
 | |
|                                  const ObjCObjectPointerType *OPT,
 | |
|                                  bool RecordFailure) {
 | |
|   assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback");
 | |
| 
 | |
|   // Always let the ExternalSource have the first chance at correction, even
 | |
|   // if we would otherwise have given up.
 | |
|   if (ExternalSource) {
 | |
|     if (TypoCorrection Correction = ExternalSource->CorrectTypo(
 | |
|         TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
 | |
|       return Correction;
 | |
|   }
 | |
| 
 | |
|   // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
 | |
|   // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
 | |
|   // some instances of CTC_Unknown, while WantRemainingKeywords is true
 | |
|   // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
 | |
|   bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
 | |
| 
 | |
|   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
 | |
|   auto Consumer = makeTypoCorrectionConsumer(
 | |
|       TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
 | |
|       EnteringContext, OPT, Mode == CTK_ErrorRecovery);
 | |
| 
 | |
|   if (!Consumer)
 | |
|     return TypoCorrection();
 | |
| 
 | |
|   // If we haven't found anything, we're done.
 | |
|   if (Consumer->empty())
 | |
|     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
 | |
| 
 | |
|   // Make sure the best edit distance (prior to adding any namespace qualifiers)
 | |
|   // is not more that about a third of the length of the typo's identifier.
 | |
|   unsigned ED = Consumer->getBestEditDistance(true);
 | |
|   unsigned TypoLen = Typo->getName().size();
 | |
|   if (ED > 0 && TypoLen / ED < 3)
 | |
|     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
 | |
| 
 | |
|   TypoCorrection BestTC = Consumer->getNextCorrection();
 | |
|   TypoCorrection SecondBestTC = Consumer->getNextCorrection();
 | |
|   if (!BestTC)
 | |
|     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
 | |
| 
 | |
|   ED = BestTC.getEditDistance();
 | |
| 
 | |
|   if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
 | |
|     // If this was an unqualified lookup and we believe the callback
 | |
|     // object wouldn't have filtered out possible corrections, note
 | |
|     // that no correction was found.
 | |
|     return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
 | |
|   }
 | |
| 
 | |
|   // If only a single name remains, return that result.
 | |
|   if (!SecondBestTC ||
 | |
|       SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
 | |
|     const TypoCorrection &Result = BestTC;
 | |
| 
 | |
|     // Don't correct to a keyword that's the same as the typo; the keyword
 | |
|     // wasn't actually in scope.
 | |
|     if (ED == 0 && Result.isKeyword())
 | |
|       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
 | |
| 
 | |
|     TypoCorrection TC = Result;
 | |
|     TC.setCorrectionRange(SS, TypoName);
 | |
|     checkCorrectionVisibility(*this, TC);
 | |
|     return TC;
 | |
|   } else if (SecondBestTC && ObjCMessageReceiver) {
 | |
|     // Prefer 'super' when we're completing in a message-receiver
 | |
|     // context.
 | |
| 
 | |
|     if (BestTC.getCorrection().getAsString() != "super") {
 | |
|       if (SecondBestTC.getCorrection().getAsString() == "super")
 | |
|         BestTC = SecondBestTC;
 | |
|       else if ((*Consumer)["super"].front().isKeyword())
 | |
|         BestTC = (*Consumer)["super"].front();
 | |
|     }
 | |
|     // Don't correct to a keyword that's the same as the typo; the keyword
 | |
|     // wasn't actually in scope.
 | |
|     if (BestTC.getEditDistance() == 0 ||
 | |
|         BestTC.getCorrection().getAsString() != "super")
 | |
|       return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
 | |
| 
 | |
|     BestTC.setCorrectionRange(SS, TypoName);
 | |
|     return BestTC;
 | |
|   }
 | |
| 
 | |
|   // Record the failure's location if needed and return an empty correction. If
 | |
|   // this was an unqualified lookup and we believe the callback object did not
 | |
|   // filter out possible corrections, also cache the failure for the typo.
 | |
|   return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
 | |
| }
 | |
| 
 | |
| /// \brief Try to "correct" a typo in the source code by finding
 | |
| /// visible declarations whose names are similar to the name that was
 | |
| /// present in the source code.
 | |
| ///
 | |
| /// \param TypoName the \c DeclarationNameInfo structure that contains
 | |
| /// the name that was present in the source code along with its location.
 | |
| ///
 | |
| /// \param LookupKind the name-lookup criteria used to search for the name.
 | |
| ///
 | |
| /// \param S the scope in which name lookup occurs.
 | |
| ///
 | |
| /// \param SS the nested-name-specifier that precedes the name we're
 | |
| /// looking for, if present.
 | |
| ///
 | |
| /// \param CCC A CorrectionCandidateCallback object that provides further
 | |
| /// validation of typo correction candidates. It also provides flags for
 | |
| /// determining the set of keywords permitted.
 | |
| ///
 | |
| /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
 | |
| /// diagnostics when the actual typo correction is attempted.
 | |
| ///
 | |
| /// \param TRC A TypoRecoveryCallback functor that will be used to build an
 | |
| /// Expr from a typo correction candidate.
 | |
| ///
 | |
| /// \param MemberContext if non-NULL, the context in which to look for
 | |
| /// a member access expression.
 | |
| ///
 | |
| /// \param EnteringContext whether we're entering the context described by
 | |
| /// the nested-name-specifier SS.
 | |
| ///
 | |
| /// \param OPT when non-NULL, the search for visible declarations will
 | |
| /// also walk the protocols in the qualified interfaces of \p OPT.
 | |
| ///
 | |
| /// \returns a new \c TypoExpr that will later be replaced in the AST with an
 | |
| /// Expr representing the result of performing typo correction, or nullptr if
 | |
| /// typo correction is not possible. If nullptr is returned, no diagnostics will
 | |
| /// be emitted and it is the responsibility of the caller to emit any that are
 | |
| /// needed.
 | |
| TypoExpr *Sema::CorrectTypoDelayed(
 | |
|     const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
 | |
|     Scope *S, CXXScopeSpec *SS,
 | |
|     std::unique_ptr<CorrectionCandidateCallback> CCC,
 | |
|     TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
 | |
|     DeclContext *MemberContext, bool EnteringContext,
 | |
|     const ObjCObjectPointerType *OPT) {
 | |
|   assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback");
 | |
| 
 | |
|   TypoCorrection Empty;
 | |
|   auto Consumer = makeTypoCorrectionConsumer(
 | |
|       TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
 | |
|       EnteringContext, OPT, Mode == CTK_ErrorRecovery);
 | |
| 
 | |
|   if (!Consumer || Consumer->empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Make sure the best edit distance (prior to adding any namespace qualifiers)
 | |
|   // is not more that about a third of the length of the typo's identifier.
 | |
|   unsigned ED = Consumer->getBestEditDistance(true);
 | |
|   IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
 | |
|   if (ED > 0 && Typo->getName().size() / ED < 3)
 | |
|     return nullptr;
 | |
| 
 | |
|   ExprEvalContexts.back().NumTypos++;
 | |
|   return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
 | |
| }
 | |
| 
 | |
| void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
 | |
|   if (!CDecl) return;
 | |
| 
 | |
|   if (isKeyword())
 | |
|     CorrectionDecls.clear();
 | |
| 
 | |
|   CorrectionDecls.push_back(CDecl->getUnderlyingDecl());
 | |
| 
 | |
|   if (!CorrectionName)
 | |
|     CorrectionName = CDecl->getDeclName();
 | |
| }
 | |
| 
 | |
| std::string TypoCorrection::getAsString(const LangOptions &LO) const {
 | |
|   if (CorrectionNameSpec) {
 | |
|     std::string tmpBuffer;
 | |
|     llvm::raw_string_ostream PrefixOStream(tmpBuffer);
 | |
|     CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
 | |
|     PrefixOStream << CorrectionName;
 | |
|     return PrefixOStream.str();
 | |
|   }
 | |
| 
 | |
|   return CorrectionName.getAsString();
 | |
| }
 | |
| 
 | |
| bool CorrectionCandidateCallback::ValidateCandidate(
 | |
|     const TypoCorrection &candidate) {
 | |
|   if (!candidate.isResolved())
 | |
|     return true;
 | |
| 
 | |
|   if (candidate.isKeyword())
 | |
|     return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
 | |
|            WantRemainingKeywords || WantObjCSuper;
 | |
| 
 | |
|   bool HasNonType = false;
 | |
|   bool HasStaticMethod = false;
 | |
|   bool HasNonStaticMethod = false;
 | |
|   for (Decl *D : candidate) {
 | |
|     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
 | |
|       D = FTD->getTemplatedDecl();
 | |
|     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
 | |
|       if (Method->isStatic())
 | |
|         HasStaticMethod = true;
 | |
|       else
 | |
|         HasNonStaticMethod = true;
 | |
|     }
 | |
|     if (!isa<TypeDecl>(D))
 | |
|       HasNonType = true;
 | |
|   }
 | |
| 
 | |
|   if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
 | |
|       !candidate.getCorrectionSpecifier())
 | |
|     return false;
 | |
| 
 | |
|   return WantTypeSpecifiers || HasNonType;
 | |
| }
 | |
| 
 | |
| FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
 | |
|                                              bool HasExplicitTemplateArgs,
 | |
|                                              MemberExpr *ME)
 | |
|     : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
 | |
|       CurContext(SemaRef.CurContext), MemberFn(ME) {
 | |
|   WantTypeSpecifiers = false;
 | |
|   WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
 | |
|   WantRemainingKeywords = false;
 | |
| }
 | |
| 
 | |
| bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
 | |
|   if (!candidate.getCorrectionDecl())
 | |
|     return candidate.isKeyword();
 | |
| 
 | |
|   for (auto *C : candidate) {
 | |
|     FunctionDecl *FD = nullptr;
 | |
|     NamedDecl *ND = C->getUnderlyingDecl();
 | |
|     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
 | |
|       FD = FTD->getTemplatedDecl();
 | |
|     if (!HasExplicitTemplateArgs && !FD) {
 | |
|       if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
 | |
|         // If the Decl is neither a function nor a template function,
 | |
|         // determine if it is a pointer or reference to a function. If so,
 | |
|         // check against the number of arguments expected for the pointee.
 | |
|         QualType ValType = cast<ValueDecl>(ND)->getType();
 | |
|         if (ValType->isAnyPointerType() || ValType->isReferenceType())
 | |
|           ValType = ValType->getPointeeType();
 | |
|         if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
 | |
|           if (FPT->getNumParams() == NumArgs)
 | |
|             return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Skip the current candidate if it is not a FunctionDecl or does not accept
 | |
|     // the current number of arguments.
 | |
|     if (!FD || !(FD->getNumParams() >= NumArgs &&
 | |
|                  FD->getMinRequiredArguments() <= NumArgs))
 | |
|       continue;
 | |
| 
 | |
|     // If the current candidate is a non-static C++ method, skip the candidate
 | |
|     // unless the method being corrected--or the current DeclContext, if the
 | |
|     // function being corrected is not a method--is a method in the same class
 | |
|     // or a descendent class of the candidate's parent class.
 | |
|     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
 | |
|       if (MemberFn || !MD->isStatic()) {
 | |
|         CXXMethodDecl *CurMD =
 | |
|             MemberFn
 | |
|                 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
 | |
|                 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
 | |
|         CXXRecordDecl *CurRD =
 | |
|             CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
 | |
|         CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
 | |
|         if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
 | |
|           continue;
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Sema::diagnoseTypo(const TypoCorrection &Correction,
 | |
|                         const PartialDiagnostic &TypoDiag,
 | |
|                         bool ErrorRecovery) {
 | |
|   diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
 | |
|                ErrorRecovery);
 | |
| }
 | |
| 
 | |
| /// Find which declaration we should import to provide the definition of
 | |
| /// the given declaration.
 | |
| static NamedDecl *getDefinitionToImport(NamedDecl *D) {
 | |
|   if (VarDecl *VD = dyn_cast<VarDecl>(D))
 | |
|     return VD->getDefinition();
 | |
|   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
 | |
|     return FD->isDefined(FD) ? const_cast<FunctionDecl*>(FD) : nullptr;
 | |
|   if (TagDecl *TD = dyn_cast<TagDecl>(D))
 | |
|     return TD->getDefinition();
 | |
|   if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
 | |
|     return ID->getDefinition();
 | |
|   if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
 | |
|     return PD->getDefinition();
 | |
|   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
 | |
|     return getDefinitionToImport(TD->getTemplatedDecl());
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
 | |
|                                  bool NeedDefinition, bool Recover) {
 | |
|   assert(!isVisible(Decl) && "missing import for non-hidden decl?");
 | |
| 
 | |
|   // Suggest importing a module providing the definition of this entity, if
 | |
|   // possible.
 | |
|   NamedDecl *Def = getDefinitionToImport(Decl);
 | |
|   if (!Def)
 | |
|     Def = Decl;
 | |
| 
 | |
|   // FIXME: Add a Fix-It that imports the corresponding module or includes
 | |
|   // the header.
 | |
|   Module *Owner = getOwningModule(Decl);
 | |
|   assert(Owner && "definition of hidden declaration is not in a module");
 | |
| 
 | |
|   llvm::SmallVector<Module*, 8> OwningModules;
 | |
|   OwningModules.push_back(Owner);
 | |
|   auto Merged = Context.getModulesWithMergedDefinition(Decl);
 | |
|   OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
 | |
| 
 | |
|   diagnoseMissingImport(Loc, Decl, Decl->getLocation(), OwningModules,
 | |
|                         NeedDefinition ? MissingImportKind::Definition
 | |
|                                        : MissingImportKind::Declaration,
 | |
|                         Recover);
 | |
| }
 | |
| 
 | |
| void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
 | |
|                                  SourceLocation DeclLoc,
 | |
|                                  ArrayRef<Module *> Modules,
 | |
|                                  MissingImportKind MIK, bool Recover) {
 | |
|   assert(!Modules.empty());
 | |
| 
 | |
|   if (Modules.size() > 1) {
 | |
|     std::string ModuleList;
 | |
|     unsigned N = 0;
 | |
|     for (Module *M : Modules) {
 | |
|       ModuleList += "\n        ";
 | |
|       if (++N == 5 && N != Modules.size()) {
 | |
|         ModuleList += "[...]";
 | |
|         break;
 | |
|       }
 | |
|       ModuleList += M->getFullModuleName();
 | |
|     }
 | |
| 
 | |
|     Diag(UseLoc, diag::err_module_unimported_use_multiple)
 | |
|       << (int)MIK << Decl << ModuleList;
 | |
|   } else {
 | |
|     Diag(UseLoc, diag::err_module_unimported_use)
 | |
|       << (int)MIK << Decl << Modules[0]->getFullModuleName();
 | |
|   }
 | |
| 
 | |
|   unsigned DiagID;
 | |
|   switch (MIK) {
 | |
|   case MissingImportKind::Declaration:
 | |
|     DiagID = diag::note_previous_declaration;
 | |
|     break;
 | |
|   case MissingImportKind::Definition:
 | |
|     DiagID = diag::note_previous_definition;
 | |
|     break;
 | |
|   case MissingImportKind::DefaultArgument:
 | |
|     DiagID = diag::note_default_argument_declared_here;
 | |
|     break;
 | |
|   }
 | |
|   Diag(DeclLoc, DiagID);
 | |
| 
 | |
|   // Try to recover by implicitly importing this module.
 | |
|   if (Recover)
 | |
|     createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
 | |
| }
 | |
| 
 | |
| /// \brief Diagnose a successfully-corrected typo. Separated from the correction
 | |
| /// itself to allow external validation of the result, etc.
 | |
| ///
 | |
| /// \param Correction The result of performing typo correction.
 | |
| /// \param TypoDiag The diagnostic to produce. This will have the corrected
 | |
| ///        string added to it (and usually also a fixit).
 | |
| /// \param PrevNote A note to use when indicating the location of the entity to
 | |
| ///        which we are correcting. Will have the correction string added to it.
 | |
| /// \param ErrorRecovery If \c true (the default), the caller is going to
 | |
| ///        recover from the typo as if the corrected string had been typed.
 | |
| ///        In this case, \c PDiag must be an error, and we will attach a fixit
 | |
| ///        to it.
 | |
| void Sema::diagnoseTypo(const TypoCorrection &Correction,
 | |
|                         const PartialDiagnostic &TypoDiag,
 | |
|                         const PartialDiagnostic &PrevNote,
 | |
|                         bool ErrorRecovery) {
 | |
|   std::string CorrectedStr = Correction.getAsString(getLangOpts());
 | |
|   std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
 | |
|   FixItHint FixTypo = FixItHint::CreateReplacement(
 | |
|       Correction.getCorrectionRange(), CorrectedStr);
 | |
| 
 | |
|   // Maybe we're just missing a module import.
 | |
|   if (Correction.requiresImport()) {
 | |
|     NamedDecl *Decl = Correction.getCorrectionDecl();
 | |
|     assert(Decl && "import required but no declaration to import");
 | |
| 
 | |
|     diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
 | |
|                           /*NeedDefinition*/ false, ErrorRecovery);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
 | |
|     << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
 | |
| 
 | |
|   NamedDecl *ChosenDecl =
 | |
|       Correction.isKeyword() ? nullptr : Correction.getCorrectionDecl();
 | |
|   if (PrevNote.getDiagID() && ChosenDecl)
 | |
|     Diag(ChosenDecl->getLocation(), PrevNote)
 | |
|       << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
 | |
| }
 | |
| 
 | |
| TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
 | |
|                                   TypoDiagnosticGenerator TDG,
 | |
|                                   TypoRecoveryCallback TRC) {
 | |
|   assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
 | |
|   auto TE = new (Context) TypoExpr(Context.DependentTy);
 | |
|   auto &State = DelayedTypos[TE];
 | |
|   State.Consumer = std::move(TCC);
 | |
|   State.DiagHandler = std::move(TDG);
 | |
|   State.RecoveryHandler = std::move(TRC);
 | |
|   return TE;
 | |
| }
 | |
| 
 | |
| const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
 | |
|   auto Entry = DelayedTypos.find(TE);
 | |
|   assert(Entry != DelayedTypos.end() &&
 | |
|          "Failed to get the state for a TypoExpr!");
 | |
|   return Entry->second;
 | |
| }
 | |
| 
 | |
| void Sema::clearDelayedTypo(TypoExpr *TE) {
 | |
|   DelayedTypos.erase(TE);
 | |
| }
 |