forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			817 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			817 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
//==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the generic AliasAnalysis interface which is used as the
 | 
						|
// common interface used by all clients and implementations of alias analysis.
 | 
						|
//
 | 
						|
// This file also implements the default version of the AliasAnalysis interface
 | 
						|
// that is to be used when no other implementation is specified.  This does some
 | 
						|
// simple tests that detect obvious cases: two different global pointers cannot
 | 
						|
// alias, a global cannot alias a malloc, two different mallocs cannot alias,
 | 
						|
// etc.
 | 
						|
//
 | 
						|
// This alias analysis implementation really isn't very good for anything, but
 | 
						|
// it is very fast, and makes a nice clean default implementation.  Because it
 | 
						|
// handles lots of little corner cases, other, more complex, alias analysis
 | 
						|
// implementations may choose to rely on this pass to resolve these simple and
 | 
						|
// easy cases.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/BasicAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CaptureTracking.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/MemoryLocation.h"
 | 
						|
#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/ScopedNoAliasAA.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/Argument.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/AtomicOrdering.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <functional>
 | 
						|
#include <iterator>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// Allow disabling BasicAA from the AA results. This is particularly useful
 | 
						|
/// when testing to isolate a single AA implementation.
 | 
						|
static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
 | 
						|
                                    cl::init(false));
 | 
						|
 | 
						|
AAResults::AAResults(AAResults &&Arg)
 | 
						|
    : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
 | 
						|
  for (auto &AA : AAs)
 | 
						|
    AA->setAAResults(this);
 | 
						|
}
 | 
						|
 | 
						|
AAResults::~AAResults() {
 | 
						|
// FIXME; It would be nice to at least clear out the pointers back to this
 | 
						|
// aggregation here, but we end up with non-nesting lifetimes in the legacy
 | 
						|
// pass manager that prevent this from working. In the legacy pass manager
 | 
						|
// we'll end up with dangling references here in some cases.
 | 
						|
#if 0
 | 
						|
  for (auto &AA : AAs)
 | 
						|
    AA->setAAResults(nullptr);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
 | 
						|
                           FunctionAnalysisManager::Invalidator &Inv) {
 | 
						|
  // Check if the AA manager itself has been invalidated.
 | 
						|
  auto PAC = PA.getChecker<AAManager>();
 | 
						|
  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
 | 
						|
    return true; // The manager needs to be blown away, clear everything.
 | 
						|
 | 
						|
  // Check all of the dependencies registered.
 | 
						|
  for (AnalysisKey *ID : AADeps)
 | 
						|
    if (Inv.invalidate(ID, F, PA))
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Everything we depend on is still fine, so are we. Nothing to invalidate.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Default chaining methods
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
AliasResult AAResults::alias(const MemoryLocation &LocA,
 | 
						|
                             const MemoryLocation &LocB) {
 | 
						|
  for (const auto &AA : AAs) {
 | 
						|
    auto Result = AA->alias(LocA, LocB);
 | 
						|
    if (Result != MayAlias)
 | 
						|
      return Result;
 | 
						|
  }
 | 
						|
  return MayAlias;
 | 
						|
}
 | 
						|
 | 
						|
bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
 | 
						|
                                       bool OrLocal) {
 | 
						|
  for (const auto &AA : AAs)
 | 
						|
    if (AA->pointsToConstantMemory(Loc, OrLocal))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
 | 
						|
  ModRefInfo Result = ModRefInfo::ModRef;
 | 
						|
 | 
						|
  for (const auto &AA : AAs) {
 | 
						|
    Result = intersectModRef(Result, AA->getArgModRefInfo(CS, ArgIdx));
 | 
						|
 | 
						|
    // Early-exit the moment we reach the bottom of the lattice.
 | 
						|
    if (isNoModRef(Result))
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
 | 
						|
  // We may have two calls.
 | 
						|
  if (auto CS = ImmutableCallSite(I)) {
 | 
						|
    // Check if the two calls modify the same memory.
 | 
						|
    return getModRefInfo(CS, Call);
 | 
						|
  } else if (I->isFenceLike()) {
 | 
						|
    // If this is a fence, just return ModRef.
 | 
						|
    return ModRefInfo::ModRef;
 | 
						|
  } else {
 | 
						|
    // Otherwise, check if the call modifies or references the
 | 
						|
    // location this memory access defines.  The best we can say
 | 
						|
    // is that if the call references what this instruction
 | 
						|
    // defines, it must be clobbered by this location.
 | 
						|
    const MemoryLocation DefLoc = MemoryLocation::get(I);
 | 
						|
    ModRefInfo MR = getModRefInfo(Call, DefLoc);
 | 
						|
    if (isModOrRefSet(MR))
 | 
						|
      return setModAndRef(MR);
 | 
						|
  }
 | 
						|
  return ModRefInfo::NoModRef;
 | 
						|
}
 | 
						|
 | 
						|
ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS,
 | 
						|
                                    const MemoryLocation &Loc) {
 | 
						|
  ModRefInfo Result = ModRefInfo::ModRef;
 | 
						|
 | 
						|
  for (const auto &AA : AAs) {
 | 
						|
    Result = intersectModRef(Result, AA->getModRefInfo(CS, Loc));
 | 
						|
 | 
						|
    // Early-exit the moment we reach the bottom of the lattice.
 | 
						|
    if (isNoModRef(Result))
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to refine the mod-ref info further using other API entry points to the
 | 
						|
  // aggregate set of AA results.
 | 
						|
  auto MRB = getModRefBehavior(CS);
 | 
						|
  if (MRB == FMRB_DoesNotAccessMemory ||
 | 
						|
      MRB == FMRB_OnlyAccessesInaccessibleMem)
 | 
						|
    return ModRefInfo::NoModRef;
 | 
						|
 | 
						|
  if (onlyReadsMemory(MRB))
 | 
						|
    Result = clearMod(Result);
 | 
						|
  else if (doesNotReadMemory(MRB))
 | 
						|
    Result = clearRef(Result);
 | 
						|
 | 
						|
  if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
 | 
						|
    bool IsMustAlias = true;
 | 
						|
    ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
 | 
						|
    if (doesAccessArgPointees(MRB)) {
 | 
						|
      for (auto AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) {
 | 
						|
        const Value *Arg = *AI;
 | 
						|
        if (!Arg->getType()->isPointerTy())
 | 
						|
          continue;
 | 
						|
        unsigned ArgIdx = std::distance(CS.arg_begin(), AI);
 | 
						|
        MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI);
 | 
						|
        AliasResult ArgAlias = alias(ArgLoc, Loc);
 | 
						|
        if (ArgAlias != NoAlias) {
 | 
						|
          ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx);
 | 
						|
          AllArgsMask = unionModRef(AllArgsMask, ArgMask);
 | 
						|
        }
 | 
						|
        // Conservatively clear IsMustAlias unless only MustAlias is found.
 | 
						|
        IsMustAlias &= (ArgAlias == MustAlias);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Return NoModRef if no alias found with any argument.
 | 
						|
    if (isNoModRef(AllArgsMask))
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
    // Logical & between other AA analyses and argument analysis.
 | 
						|
    Result = intersectModRef(Result, AllArgsMask);
 | 
						|
    // If only MustAlias found above, set Must bit.
 | 
						|
    Result = IsMustAlias ? setMust(Result) : clearMust(Result);
 | 
						|
  }
 | 
						|
 | 
						|
  // If Loc is a constant memory location, the call definitely could not
 | 
						|
  // modify the memory location.
 | 
						|
  if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false))
 | 
						|
    Result = clearMod(Result);
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1,
 | 
						|
                                    ImmutableCallSite CS2) {
 | 
						|
  ModRefInfo Result = ModRefInfo::ModRef;
 | 
						|
 | 
						|
  for (const auto &AA : AAs) {
 | 
						|
    Result = intersectModRef(Result, AA->getModRefInfo(CS1, CS2));
 | 
						|
 | 
						|
    // Early-exit the moment we reach the bottom of the lattice.
 | 
						|
    if (isNoModRef(Result))
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to refine the mod-ref info further using other API entry points to the
 | 
						|
  // aggregate set of AA results.
 | 
						|
 | 
						|
  // If CS1 or CS2 are readnone, they don't interact.
 | 
						|
  auto CS1B = getModRefBehavior(CS1);
 | 
						|
  if (CS1B == FMRB_DoesNotAccessMemory)
 | 
						|
    return ModRefInfo::NoModRef;
 | 
						|
 | 
						|
  auto CS2B = getModRefBehavior(CS2);
 | 
						|
  if (CS2B == FMRB_DoesNotAccessMemory)
 | 
						|
    return ModRefInfo::NoModRef;
 | 
						|
 | 
						|
  // If they both only read from memory, there is no dependence.
 | 
						|
  if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
 | 
						|
    return ModRefInfo::NoModRef;
 | 
						|
 | 
						|
  // If CS1 only reads memory, the only dependence on CS2 can be
 | 
						|
  // from CS1 reading memory written by CS2.
 | 
						|
  if (onlyReadsMemory(CS1B))
 | 
						|
    Result = clearMod(Result);
 | 
						|
  else if (doesNotReadMemory(CS1B))
 | 
						|
    Result = clearRef(Result);
 | 
						|
 | 
						|
  // If CS2 only access memory through arguments, accumulate the mod/ref
 | 
						|
  // information from CS1's references to the memory referenced by
 | 
						|
  // CS2's arguments.
 | 
						|
  if (onlyAccessesArgPointees(CS2B)) {
 | 
						|
    if (!doesAccessArgPointees(CS2B))
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
    ModRefInfo R = ModRefInfo::NoModRef;
 | 
						|
    bool IsMustAlias = true;
 | 
						|
    for (auto I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
 | 
						|
      const Value *Arg = *I;
 | 
						|
      if (!Arg->getType()->isPointerTy())
 | 
						|
        continue;
 | 
						|
      unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I);
 | 
						|
      auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI);
 | 
						|
 | 
						|
      // ArgModRefCS2 indicates what CS2 might do to CS2ArgLoc, and the
 | 
						|
      // dependence of CS1 on that location is the inverse:
 | 
						|
      // - If CS2 modifies location, dependence exists if CS1 reads or writes.
 | 
						|
      // - If CS2 only reads location, dependence exists if CS1 writes.
 | 
						|
      ModRefInfo ArgModRefCS2 = getArgModRefInfo(CS2, CS2ArgIdx);
 | 
						|
      ModRefInfo ArgMask = ModRefInfo::NoModRef;
 | 
						|
      if (isModSet(ArgModRefCS2))
 | 
						|
        ArgMask = ModRefInfo::ModRef;
 | 
						|
      else if (isRefSet(ArgModRefCS2))
 | 
						|
        ArgMask = ModRefInfo::Mod;
 | 
						|
 | 
						|
      // ModRefCS1 indicates what CS1 might do to CS2ArgLoc, and we use
 | 
						|
      // above ArgMask to update dependence info.
 | 
						|
      ModRefInfo ModRefCS1 = getModRefInfo(CS1, CS2ArgLoc);
 | 
						|
      ArgMask = intersectModRef(ArgMask, ModRefCS1);
 | 
						|
 | 
						|
      // Conservatively clear IsMustAlias unless only MustAlias is found.
 | 
						|
      IsMustAlias &= isMustSet(ModRefCS1);
 | 
						|
 | 
						|
      R = intersectModRef(unionModRef(R, ArgMask), Result);
 | 
						|
      if (R == Result) {
 | 
						|
        // On early exit, not all args were checked, cannot set Must.
 | 
						|
        if (I + 1 != E)
 | 
						|
          IsMustAlias = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (isNoModRef(R))
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
 | 
						|
    // If MustAlias found above, set Must bit.
 | 
						|
    return IsMustAlias ? setMust(R) : clearMust(R);
 | 
						|
  }
 | 
						|
 | 
						|
  // If CS1 only accesses memory through arguments, check if CS2 references
 | 
						|
  // any of the memory referenced by CS1's arguments. If not, return NoModRef.
 | 
						|
  if (onlyAccessesArgPointees(CS1B)) {
 | 
						|
    if (!doesAccessArgPointees(CS1B))
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
    ModRefInfo R = ModRefInfo::NoModRef;
 | 
						|
    bool IsMustAlias = true;
 | 
						|
    for (auto I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
 | 
						|
      const Value *Arg = *I;
 | 
						|
      if (!Arg->getType()->isPointerTy())
 | 
						|
        continue;
 | 
						|
      unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I);
 | 
						|
      auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI);
 | 
						|
 | 
						|
      // ArgModRefCS1 indicates what CS1 might do to CS1ArgLoc; if CS1 might
 | 
						|
      // Mod CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If
 | 
						|
      // CS1 might Ref, then we care only about a Mod by CS2.
 | 
						|
      ModRefInfo ArgModRefCS1 = getArgModRefInfo(CS1, CS1ArgIdx);
 | 
						|
      ModRefInfo ModRefCS2 = getModRefInfo(CS2, CS1ArgLoc);
 | 
						|
      if ((isModSet(ArgModRefCS1) && isModOrRefSet(ModRefCS2)) ||
 | 
						|
          (isRefSet(ArgModRefCS1) && isModSet(ModRefCS2)))
 | 
						|
        R = intersectModRef(unionModRef(R, ArgModRefCS1), Result);
 | 
						|
 | 
						|
      // Conservatively clear IsMustAlias unless only MustAlias is found.
 | 
						|
      IsMustAlias &= isMustSet(ModRefCS2);
 | 
						|
 | 
						|
      if (R == Result) {
 | 
						|
        // On early exit, not all args were checked, cannot set Must.
 | 
						|
        if (I + 1 != E)
 | 
						|
          IsMustAlias = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (isNoModRef(R))
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
 | 
						|
    // If MustAlias found above, set Must bit.
 | 
						|
    return IsMustAlias ? setMust(R) : clearMust(R);
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) {
 | 
						|
  FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
 | 
						|
 | 
						|
  for (const auto &AA : AAs) {
 | 
						|
    Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS));
 | 
						|
 | 
						|
    // Early-exit the moment we reach the bottom of the lattice.
 | 
						|
    if (Result == FMRB_DoesNotAccessMemory)
 | 
						|
      return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
 | 
						|
  FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
 | 
						|
 | 
						|
  for (const auto &AA : AAs) {
 | 
						|
    Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
 | 
						|
 | 
						|
    // Early-exit the moment we reach the bottom of the lattice.
 | 
						|
    if (Result == FMRB_DoesNotAccessMemory)
 | 
						|
      return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
 | 
						|
  switch (AR) {
 | 
						|
  case NoAlias:
 | 
						|
    OS << "NoAlias";
 | 
						|
    break;
 | 
						|
  case MustAlias:
 | 
						|
    OS << "MustAlias";
 | 
						|
    break;
 | 
						|
  case MayAlias:
 | 
						|
    OS << "MayAlias";
 | 
						|
    break;
 | 
						|
  case PartialAlias:
 | 
						|
    OS << "PartialAlias";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Helper method implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
 | 
						|
                                    const MemoryLocation &Loc) {
 | 
						|
  // Be conservative in the face of atomic.
 | 
						|
  if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
 | 
						|
    return ModRefInfo::ModRef;
 | 
						|
 | 
						|
  // If the load address doesn't alias the given address, it doesn't read
 | 
						|
  // or write the specified memory.
 | 
						|
  if (Loc.Ptr) {
 | 
						|
    AliasResult AR = alias(MemoryLocation::get(L), Loc);
 | 
						|
    if (AR == NoAlias)
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
    if (AR == MustAlias)
 | 
						|
      return ModRefInfo::MustRef;
 | 
						|
  }
 | 
						|
  // Otherwise, a load just reads.
 | 
						|
  return ModRefInfo::Ref;
 | 
						|
}
 | 
						|
 | 
						|
ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
 | 
						|
                                    const MemoryLocation &Loc) {
 | 
						|
  // Be conservative in the face of atomic.
 | 
						|
  if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
 | 
						|
    return ModRefInfo::ModRef;
 | 
						|
 | 
						|
  if (Loc.Ptr) {
 | 
						|
    AliasResult AR = alias(MemoryLocation::get(S), Loc);
 | 
						|
    // If the store address cannot alias the pointer in question, then the
 | 
						|
    // specified memory cannot be modified by the store.
 | 
						|
    if (AR == NoAlias)
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
 | 
						|
    // If the pointer is a pointer to constant memory, then it could not have
 | 
						|
    // been modified by this store.
 | 
						|
    if (pointsToConstantMemory(Loc))
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
 | 
						|
    // If the store address aliases the pointer as must alias, set Must.
 | 
						|
    if (AR == MustAlias)
 | 
						|
      return ModRefInfo::MustMod;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, a store just writes.
 | 
						|
  return ModRefInfo::Mod;
 | 
						|
}
 | 
						|
 | 
						|
ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
 | 
						|
  // If we know that the location is a constant memory location, the fence
 | 
						|
  // cannot modify this location.
 | 
						|
  if (Loc.Ptr && pointsToConstantMemory(Loc))
 | 
						|
    return ModRefInfo::Ref;
 | 
						|
  return ModRefInfo::ModRef;
 | 
						|
}
 | 
						|
 | 
						|
ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
 | 
						|
                                    const MemoryLocation &Loc) {
 | 
						|
  if (Loc.Ptr) {
 | 
						|
    AliasResult AR = alias(MemoryLocation::get(V), Loc);
 | 
						|
    // If the va_arg address cannot alias the pointer in question, then the
 | 
						|
    // specified memory cannot be accessed by the va_arg.
 | 
						|
    if (AR == NoAlias)
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
 | 
						|
    // If the pointer is a pointer to constant memory, then it could not have
 | 
						|
    // been modified by this va_arg.
 | 
						|
    if (pointsToConstantMemory(Loc))
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
 | 
						|
    // If the va_arg aliases the pointer as must alias, set Must.
 | 
						|
    if (AR == MustAlias)
 | 
						|
      return ModRefInfo::MustModRef;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, a va_arg reads and writes.
 | 
						|
  return ModRefInfo::ModRef;
 | 
						|
}
 | 
						|
 | 
						|
ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
 | 
						|
                                    const MemoryLocation &Loc) {
 | 
						|
  if (Loc.Ptr) {
 | 
						|
    // If the pointer is a pointer to constant memory,
 | 
						|
    // then it could not have been modified by this catchpad.
 | 
						|
    if (pointsToConstantMemory(Loc))
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, a catchpad reads and writes.
 | 
						|
  return ModRefInfo::ModRef;
 | 
						|
}
 | 
						|
 | 
						|
ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
 | 
						|
                                    const MemoryLocation &Loc) {
 | 
						|
  if (Loc.Ptr) {
 | 
						|
    // If the pointer is a pointer to constant memory,
 | 
						|
    // then it could not have been modified by this catchpad.
 | 
						|
    if (pointsToConstantMemory(Loc))
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, a catchret reads and writes.
 | 
						|
  return ModRefInfo::ModRef;
 | 
						|
}
 | 
						|
 | 
						|
ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
 | 
						|
                                    const MemoryLocation &Loc) {
 | 
						|
  // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
 | 
						|
  if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
 | 
						|
    return ModRefInfo::ModRef;
 | 
						|
 | 
						|
  if (Loc.Ptr) {
 | 
						|
    AliasResult AR = alias(MemoryLocation::get(CX), Loc);
 | 
						|
    // If the cmpxchg address does not alias the location, it does not access
 | 
						|
    // it.
 | 
						|
    if (AR == NoAlias)
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
 | 
						|
    // If the cmpxchg address aliases the pointer as must alias, set Must.
 | 
						|
    if (AR == MustAlias)
 | 
						|
      return ModRefInfo::MustModRef;
 | 
						|
  }
 | 
						|
 | 
						|
  return ModRefInfo::ModRef;
 | 
						|
}
 | 
						|
 | 
						|
ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
 | 
						|
                                    const MemoryLocation &Loc) {
 | 
						|
  // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
 | 
						|
  if (isStrongerThanMonotonic(RMW->getOrdering()))
 | 
						|
    return ModRefInfo::ModRef;
 | 
						|
 | 
						|
  if (Loc.Ptr) {
 | 
						|
    AliasResult AR = alias(MemoryLocation::get(RMW), Loc);
 | 
						|
    // If the atomicrmw address does not alias the location, it does not access
 | 
						|
    // it.
 | 
						|
    if (AR == NoAlias)
 | 
						|
      return ModRefInfo::NoModRef;
 | 
						|
 | 
						|
    // If the atomicrmw address aliases the pointer as must alias, set Must.
 | 
						|
    if (AR == MustAlias)
 | 
						|
      return ModRefInfo::MustModRef;
 | 
						|
  }
 | 
						|
 | 
						|
  return ModRefInfo::ModRef;
 | 
						|
}
 | 
						|
 | 
						|
/// Return information about whether a particular call site modifies
 | 
						|
/// or reads the specified memory location \p MemLoc before instruction \p I
 | 
						|
/// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
 | 
						|
/// instruction-ordering queries inside the BasicBlock containing \p I.
 | 
						|
/// FIXME: this is really just shoring-up a deficiency in alias analysis.
 | 
						|
/// BasicAA isn't willing to spend linear time determining whether an alloca
 | 
						|
/// was captured before or after this particular call, while we are. However,
 | 
						|
/// with a smarter AA in place, this test is just wasting compile time.
 | 
						|
ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
 | 
						|
                                         const MemoryLocation &MemLoc,
 | 
						|
                                         DominatorTree *DT,
 | 
						|
                                         OrderedBasicBlock *OBB) {
 | 
						|
  if (!DT)
 | 
						|
    return ModRefInfo::ModRef;
 | 
						|
 | 
						|
  const Value *Object =
 | 
						|
      GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
 | 
						|
  if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
 | 
						|
      isa<Constant>(Object))
 | 
						|
    return ModRefInfo::ModRef;
 | 
						|
 | 
						|
  ImmutableCallSite CS(I);
 | 
						|
  if (!CS.getInstruction() || CS.getInstruction() == Object)
 | 
						|
    return ModRefInfo::ModRef;
 | 
						|
 | 
						|
  if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
 | 
						|
                                 /* StoreCaptures */ true, I, DT,
 | 
						|
                                 /* include Object */ true,
 | 
						|
                                 /* OrderedBasicBlock */ OBB))
 | 
						|
    return ModRefInfo::ModRef;
 | 
						|
 | 
						|
  unsigned ArgNo = 0;
 | 
						|
  ModRefInfo R = ModRefInfo::NoModRef;
 | 
						|
  bool IsMustAlias = true;
 | 
						|
  // Set flag only if no May found and all operands processed.
 | 
						|
  for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
 | 
						|
       CI != CE; ++CI, ++ArgNo) {
 | 
						|
    // Only look at the no-capture or byval pointer arguments.  If this
 | 
						|
    // pointer were passed to arguments that were neither of these, then it
 | 
						|
    // couldn't be no-capture.
 | 
						|
    if (!(*CI)->getType()->isPointerTy() ||
 | 
						|
        (!CS.doesNotCapture(ArgNo) &&
 | 
						|
         ArgNo < CS.getNumArgOperands() && !CS.isByValArgument(ArgNo)))
 | 
						|
      continue;
 | 
						|
 | 
						|
    AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object));
 | 
						|
    // If this is a no-capture pointer argument, see if we can tell that it
 | 
						|
    // is impossible to alias the pointer we're checking.  If not, we have to
 | 
						|
    // assume that the call could touch the pointer, even though it doesn't
 | 
						|
    // escape.
 | 
						|
    if (AR != MustAlias)
 | 
						|
      IsMustAlias = false;
 | 
						|
    if (AR == NoAlias)
 | 
						|
      continue;
 | 
						|
    if (CS.doesNotAccessMemory(ArgNo))
 | 
						|
      continue;
 | 
						|
    if (CS.onlyReadsMemory(ArgNo)) {
 | 
						|
      R = ModRefInfo::Ref;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Not returning MustModRef since we have not seen all the arguments.
 | 
						|
    return ModRefInfo::ModRef;
 | 
						|
  }
 | 
						|
  return IsMustAlias ? setMust(R) : clearMust(R);
 | 
						|
}
 | 
						|
 | 
						|
/// canBasicBlockModify - Return true if it is possible for execution of the
 | 
						|
/// specified basic block to modify the location Loc.
 | 
						|
///
 | 
						|
bool AAResults::canBasicBlockModify(const BasicBlock &BB,
 | 
						|
                                    const MemoryLocation &Loc) {
 | 
						|
  return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
 | 
						|
}
 | 
						|
 | 
						|
/// canInstructionRangeModRef - Return true if it is possible for the
 | 
						|
/// execution of the specified instructions to mod\ref (according to the
 | 
						|
/// mode) the location Loc. The instructions to consider are all
 | 
						|
/// of the instructions in the range of [I1,I2] INCLUSIVE.
 | 
						|
/// I1 and I2 must be in the same basic block.
 | 
						|
bool AAResults::canInstructionRangeModRef(const Instruction &I1,
 | 
						|
                                          const Instruction &I2,
 | 
						|
                                          const MemoryLocation &Loc,
 | 
						|
                                          const ModRefInfo Mode) {
 | 
						|
  assert(I1.getParent() == I2.getParent() &&
 | 
						|
         "Instructions not in same basic block!");
 | 
						|
  BasicBlock::const_iterator I = I1.getIterator();
 | 
						|
  BasicBlock::const_iterator E = I2.getIterator();
 | 
						|
  ++E;  // Convert from inclusive to exclusive range.
 | 
						|
 | 
						|
  for (; I != E; ++I) // Check every instruction in range
 | 
						|
    if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Provide a definition for the root virtual destructor.
 | 
						|
AAResults::Concept::~Concept() = default;
 | 
						|
 | 
						|
// Provide a definition for the static object used to identify passes.
 | 
						|
AnalysisKey AAManager::Key;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char ExternalAAWrapperPass::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
 | 
						|
                false, true)
 | 
						|
 | 
						|
ImmutablePass *
 | 
						|
llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
 | 
						|
  return new ExternalAAWrapperPass(std::move(Callback));
 | 
						|
}
 | 
						|
 | 
						|
AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
 | 
						|
  initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
char AAResultsWrapperPass::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
 | 
						|
                      "Function Alias Analysis Results", false, true)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
 | 
						|
INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
 | 
						|
                    "Function Alias Analysis Results", false, true)
 | 
						|
 | 
						|
FunctionPass *llvm::createAAResultsWrapperPass() {
 | 
						|
  return new AAResultsWrapperPass();
 | 
						|
}
 | 
						|
 | 
						|
/// Run the wrapper pass to rebuild an aggregation over known AA passes.
 | 
						|
///
 | 
						|
/// This is the legacy pass manager's interface to the new-style AA results
 | 
						|
/// aggregation object. Because this is somewhat shoe-horned into the legacy
 | 
						|
/// pass manager, we hard code all the specific alias analyses available into
 | 
						|
/// it. While the particular set enabled is configured via commandline flags,
 | 
						|
/// adding a new alias analysis to LLVM will require adding support for it to
 | 
						|
/// this list.
 | 
						|
bool AAResultsWrapperPass::runOnFunction(Function &F) {
 | 
						|
  // NB! This *must* be reset before adding new AA results to the new
 | 
						|
  // AAResults object because in the legacy pass manager, each instance
 | 
						|
  // of these will refer to the *same* immutable analyses, registering and
 | 
						|
  // unregistering themselves with them. We need to carefully tear down the
 | 
						|
  // previous object first, in this case replacing it with an empty one, before
 | 
						|
  // registering new results.
 | 
						|
  AAR.reset(
 | 
						|
      new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
 | 
						|
 | 
						|
  // BasicAA is always available for function analyses. Also, we add it first
 | 
						|
  // so that it can trump TBAA results when it proves MustAlias.
 | 
						|
  // FIXME: TBAA should have an explicit mode to support this and then we
 | 
						|
  // should reconsider the ordering here.
 | 
						|
  if (!DisableBasicAA)
 | 
						|
    AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
 | 
						|
 | 
						|
  // Populate the results with the currently available AAs.
 | 
						|
  if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
 | 
						|
    AAR->addAAResult(WrapperPass->getResult());
 | 
						|
  if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
 | 
						|
    AAR->addAAResult(WrapperPass->getResult());
 | 
						|
  if (auto *WrapperPass =
 | 
						|
          getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
 | 
						|
    AAR->addAAResult(WrapperPass->getResult());
 | 
						|
  if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
 | 
						|
    AAR->addAAResult(WrapperPass->getResult());
 | 
						|
  if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
 | 
						|
    AAR->addAAResult(WrapperPass->getResult());
 | 
						|
  if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
 | 
						|
    AAR->addAAResult(WrapperPass->getResult());
 | 
						|
  if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
 | 
						|
    AAR->addAAResult(WrapperPass->getResult());
 | 
						|
 | 
						|
  // If available, run an external AA providing callback over the results as
 | 
						|
  // well.
 | 
						|
  if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
 | 
						|
    if (WrapperPass->CB)
 | 
						|
      WrapperPass->CB(*this, F, *AAR);
 | 
						|
 | 
						|
  // Analyses don't mutate the IR, so return false.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesAll();
 | 
						|
  AU.addRequired<BasicAAWrapperPass>();
 | 
						|
  AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
 | 
						|
  // We also need to mark all the alias analysis passes we will potentially
 | 
						|
  // probe in runOnFunction as used here to ensure the legacy pass manager
 | 
						|
  // preserves them. This hard coding of lists of alias analyses is specific to
 | 
						|
  // the legacy pass manager.
 | 
						|
  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
 | 
						|
  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
 | 
						|
  AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
 | 
						|
  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
 | 
						|
  AU.addUsedIfAvailable<SCEVAAWrapperPass>();
 | 
						|
  AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
 | 
						|
  AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
 | 
						|
}
 | 
						|
 | 
						|
AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
 | 
						|
                                        BasicAAResult &BAR) {
 | 
						|
  AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
 | 
						|
 | 
						|
  // Add in our explicitly constructed BasicAA results.
 | 
						|
  if (!DisableBasicAA)
 | 
						|
    AAR.addAAResult(BAR);
 | 
						|
 | 
						|
  // Populate the results with the other currently available AAs.
 | 
						|
  if (auto *WrapperPass =
 | 
						|
          P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
 | 
						|
    AAR.addAAResult(WrapperPass->getResult());
 | 
						|
  if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
 | 
						|
    AAR.addAAResult(WrapperPass->getResult());
 | 
						|
  if (auto *WrapperPass =
 | 
						|
          P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
 | 
						|
    AAR.addAAResult(WrapperPass->getResult());
 | 
						|
  if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
 | 
						|
    AAR.addAAResult(WrapperPass->getResult());
 | 
						|
  if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
 | 
						|
    AAR.addAAResult(WrapperPass->getResult());
 | 
						|
  if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
 | 
						|
    AAR.addAAResult(WrapperPass->getResult());
 | 
						|
 | 
						|
  return AAR;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isNoAliasCall(const Value *V) {
 | 
						|
  if (auto CS = ImmutableCallSite(V))
 | 
						|
    return CS.hasRetAttr(Attribute::NoAlias);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isNoAliasArgument(const Value *V) {
 | 
						|
  if (const Argument *A = dyn_cast<Argument>(V))
 | 
						|
    return A->hasNoAliasAttr();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isIdentifiedObject(const Value *V) {
 | 
						|
  if (isa<AllocaInst>(V))
 | 
						|
    return true;
 | 
						|
  if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
 | 
						|
    return true;
 | 
						|
  if (isNoAliasCall(V))
 | 
						|
    return true;
 | 
						|
  if (const Argument *A = dyn_cast<Argument>(V))
 | 
						|
    return A->hasNoAliasAttr() || A->hasByValAttr();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isIdentifiedFunctionLocal(const Value *V) {
 | 
						|
  return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
 | 
						|
}
 | 
						|
 | 
						|
void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
 | 
						|
  // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
 | 
						|
  // more alias analyses are added to llvm::createLegacyPMAAResults, they need
 | 
						|
  // to be added here also.
 | 
						|
  AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
  AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
 | 
						|
  AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
 | 
						|
  AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
 | 
						|
  AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
 | 
						|
  AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
 | 
						|
  AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
 | 
						|
}
 |