forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			825 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			825 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass tries to expand memcmp() calls into optimally-sized loads and
 | |
| // compares for the target.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetPassConfig.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "expandmemcmp"
 | |
| 
 | |
| STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
 | |
| STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
 | |
| STATISTIC(NumMemCmpGreaterThanMax,
 | |
|           "Number of memcmp calls with size greater than max size");
 | |
| STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
 | |
| 
 | |
| static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
 | |
|     "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
 | |
|     cl::desc("The number of loads per basic block for inline expansion of "
 | |
|              "memcmp that is only being compared against zero."));
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| 
 | |
| // This class provides helper functions to expand a memcmp library call into an
 | |
| // inline expansion.
 | |
| class MemCmpExpansion {
 | |
|   struct ResultBlock {
 | |
|     BasicBlock *BB = nullptr;
 | |
|     PHINode *PhiSrc1 = nullptr;
 | |
|     PHINode *PhiSrc2 = nullptr;
 | |
| 
 | |
|     ResultBlock() = default;
 | |
|   };
 | |
| 
 | |
|   CallInst *const CI;
 | |
|   ResultBlock ResBlock;
 | |
|   const uint64_t Size;
 | |
|   unsigned MaxLoadSize;
 | |
|   uint64_t NumLoadsNonOneByte;
 | |
|   const uint64_t NumLoadsPerBlockForZeroCmp;
 | |
|   std::vector<BasicBlock *> LoadCmpBlocks;
 | |
|   BasicBlock *EndBlock;
 | |
|   PHINode *PhiRes;
 | |
|   const bool IsUsedForZeroCmp;
 | |
|   const DataLayout &DL;
 | |
|   IRBuilder<> Builder;
 | |
|   // Represents the decomposition in blocks of the expansion. For example,
 | |
|   // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
 | |
|   // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}.
 | |
|   // TODO(courbet): Involve the target more in this computation. On X86, 7
 | |
|   // bytes can be done more efficiently with two overlaping 4-byte loads than
 | |
|   // covering the interval with [{4, 0},{2, 4},{1, 6}}.
 | |
|   struct LoadEntry {
 | |
|     LoadEntry(unsigned LoadSize, uint64_t Offset)
 | |
|         : LoadSize(LoadSize), Offset(Offset) {
 | |
|       assert(Offset % LoadSize == 0 && "invalid load entry");
 | |
|     }
 | |
| 
 | |
|     uint64_t getGEPIndex() const { return Offset / LoadSize; }
 | |
| 
 | |
|     // The size of the load for this block, in bytes.
 | |
|     const unsigned LoadSize;
 | |
|     // The offset of this load WRT the base pointer, in bytes.
 | |
|     const uint64_t Offset;
 | |
|   };
 | |
|   SmallVector<LoadEntry, 8> LoadSequence;
 | |
| 
 | |
|   void createLoadCmpBlocks();
 | |
|   void createResultBlock();
 | |
|   void setupResultBlockPHINodes();
 | |
|   void setupEndBlockPHINodes();
 | |
|   Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
 | |
|   void emitLoadCompareBlock(unsigned BlockIndex);
 | |
|   void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
 | |
|                                          unsigned &LoadIndex);
 | |
|   void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned GEPIndex);
 | |
|   void emitMemCmpResultBlock();
 | |
|   Value *getMemCmpExpansionZeroCase();
 | |
|   Value *getMemCmpEqZeroOneBlock();
 | |
|   Value *getMemCmpOneBlock();
 | |
| 
 | |
|  public:
 | |
|   MemCmpExpansion(CallInst *CI, uint64_t Size,
 | |
|                   const TargetTransformInfo::MemCmpExpansionOptions &Options,
 | |
|                   unsigned MaxNumLoads, const bool IsUsedForZeroCmp,
 | |
|                   unsigned MaxLoadsPerBlockForZeroCmp, const DataLayout &TheDataLayout);
 | |
| 
 | |
|   unsigned getNumBlocks();
 | |
|   uint64_t getNumLoads() const { return LoadSequence.size(); }
 | |
| 
 | |
|   Value *getMemCmpExpansion();
 | |
| };
 | |
| 
 | |
| // Initialize the basic block structure required for expansion of memcmp call
 | |
| // with given maximum load size and memcmp size parameter.
 | |
| // This structure includes:
 | |
| // 1. A list of load compare blocks - LoadCmpBlocks.
 | |
| // 2. An EndBlock, split from original instruction point, which is the block to
 | |
| // return from.
 | |
| // 3. ResultBlock, block to branch to for early exit when a
 | |
| // LoadCmpBlock finds a difference.
 | |
| MemCmpExpansion::MemCmpExpansion(
 | |
|     CallInst *const CI, uint64_t Size,
 | |
|     const TargetTransformInfo::MemCmpExpansionOptions &Options,
 | |
|     const unsigned MaxNumLoads, const bool IsUsedForZeroCmp,
 | |
|     const unsigned MaxLoadsPerBlockForZeroCmp, const DataLayout &TheDataLayout)
 | |
|     : CI(CI),
 | |
|       Size(Size),
 | |
|       MaxLoadSize(0),
 | |
|       NumLoadsNonOneByte(0),
 | |
|       NumLoadsPerBlockForZeroCmp(MaxLoadsPerBlockForZeroCmp),
 | |
|       IsUsedForZeroCmp(IsUsedForZeroCmp),
 | |
|       DL(TheDataLayout),
 | |
|       Builder(CI) {
 | |
|   assert(Size > 0 && "zero blocks");
 | |
|   // Scale the max size down if the target can load more bytes than we need.
 | |
|   size_t LoadSizeIndex = 0;
 | |
|   while (LoadSizeIndex < Options.LoadSizes.size() &&
 | |
|          Options.LoadSizes[LoadSizeIndex] > Size) {
 | |
|     ++LoadSizeIndex;
 | |
|   }
 | |
|   this->MaxLoadSize = Options.LoadSizes[LoadSizeIndex];
 | |
|   // Compute the decomposition.
 | |
|   uint64_t CurSize = Size;
 | |
|   uint64_t Offset = 0;
 | |
|   while (CurSize && LoadSizeIndex < Options.LoadSizes.size()) {
 | |
|     const unsigned LoadSize = Options.LoadSizes[LoadSizeIndex];
 | |
|     assert(LoadSize > 0 && "zero load size");
 | |
|     const uint64_t NumLoadsForThisSize = CurSize / LoadSize;
 | |
|     if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
 | |
|       // Do not expand if the total number of loads is larger than what the
 | |
|       // target allows. Note that it's important that we exit before completing
 | |
|       // the expansion to avoid using a ton of memory to store the expansion for
 | |
|       // large sizes.
 | |
|       LoadSequence.clear();
 | |
|       return;
 | |
|     }
 | |
|     if (NumLoadsForThisSize > 0) {
 | |
|       for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
 | |
|         LoadSequence.push_back({LoadSize, Offset});
 | |
|         Offset += LoadSize;
 | |
|       }
 | |
|       if (LoadSize > 1) {
 | |
|         ++NumLoadsNonOneByte;
 | |
|       }
 | |
|       CurSize = CurSize % LoadSize;
 | |
|     }
 | |
|     ++LoadSizeIndex;
 | |
|   }
 | |
|   assert(LoadSequence.size() <= MaxNumLoads && "broken invariant");
 | |
| }
 | |
| 
 | |
| unsigned MemCmpExpansion::getNumBlocks() {
 | |
|   if (IsUsedForZeroCmp)
 | |
|     return getNumLoads() / NumLoadsPerBlockForZeroCmp +
 | |
|            (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
 | |
|   return getNumLoads();
 | |
| }
 | |
| 
 | |
| void MemCmpExpansion::createLoadCmpBlocks() {
 | |
|   for (unsigned i = 0; i < getNumBlocks(); i++) {
 | |
|     BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
 | |
|                                         EndBlock->getParent(), EndBlock);
 | |
|     LoadCmpBlocks.push_back(BB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MemCmpExpansion::createResultBlock() {
 | |
|   ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
 | |
|                                    EndBlock->getParent(), EndBlock);
 | |
| }
 | |
| 
 | |
| // This function creates the IR instructions for loading and comparing 1 byte.
 | |
| // It loads 1 byte from each source of the memcmp parameters with the given
 | |
| // GEPIndex. It then subtracts the two loaded values and adds this result to the
 | |
| // final phi node for selecting the memcmp result.
 | |
| void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
 | |
|                                                unsigned GEPIndex) {
 | |
|   Value *Source1 = CI->getArgOperand(0);
 | |
|   Value *Source2 = CI->getArgOperand(1);
 | |
| 
 | |
|   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
 | |
|   Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
 | |
|   // Cast source to LoadSizeType*.
 | |
|   if (Source1->getType() != LoadSizeType)
 | |
|     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
 | |
|   if (Source2->getType() != LoadSizeType)
 | |
|     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
 | |
| 
 | |
|   // Get the base address using the GEPIndex.
 | |
|   if (GEPIndex != 0) {
 | |
|     Source1 = Builder.CreateGEP(LoadSizeType, Source1,
 | |
|                                 ConstantInt::get(LoadSizeType, GEPIndex));
 | |
|     Source2 = Builder.CreateGEP(LoadSizeType, Source2,
 | |
|                                 ConstantInt::get(LoadSizeType, GEPIndex));
 | |
|   }
 | |
| 
 | |
|   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
 | |
|   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
 | |
| 
 | |
|   LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
 | |
|   LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
 | |
|   Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
 | |
| 
 | |
|   PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);
 | |
| 
 | |
|   if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
 | |
|     // Early exit branch if difference found to EndBlock. Otherwise, continue to
 | |
|     // next LoadCmpBlock,
 | |
|     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
 | |
|                                     ConstantInt::get(Diff->getType(), 0));
 | |
|     BranchInst *CmpBr =
 | |
|         BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
 | |
|     Builder.Insert(CmpBr);
 | |
|   } else {
 | |
|     // The last block has an unconditional branch to EndBlock.
 | |
|     BranchInst *CmpBr = BranchInst::Create(EndBlock);
 | |
|     Builder.Insert(CmpBr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Generate an equality comparison for one or more pairs of loaded values.
 | |
| /// This is used in the case where the memcmp() call is compared equal or not
 | |
| /// equal to zero.
 | |
| Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
 | |
|                                             unsigned &LoadIndex) {
 | |
|   assert(LoadIndex < getNumLoads() &&
 | |
|          "getCompareLoadPairs() called with no remaining loads");
 | |
|   std::vector<Value *> XorList, OrList;
 | |
|   Value *Diff;
 | |
| 
 | |
|   const unsigned NumLoads =
 | |
|       std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
 | |
| 
 | |
|   // For a single-block expansion, start inserting before the memcmp call.
 | |
|   if (LoadCmpBlocks.empty())
 | |
|     Builder.SetInsertPoint(CI);
 | |
|   else
 | |
|     Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
 | |
| 
 | |
|   Value *Cmp = nullptr;
 | |
|   // If we have multiple loads per block, we need to generate a composite
 | |
|   // comparison using xor+or. The type for the combinations is the largest load
 | |
|   // type.
 | |
|   IntegerType *const MaxLoadType =
 | |
|       NumLoads == 1 ? nullptr
 | |
|                     : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
 | |
|   for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
 | |
|     const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
 | |
| 
 | |
|     IntegerType *LoadSizeType =
 | |
|         IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
 | |
| 
 | |
|     Value *Source1 = CI->getArgOperand(0);
 | |
|     Value *Source2 = CI->getArgOperand(1);
 | |
| 
 | |
|     // Cast source to LoadSizeType*.
 | |
|     if (Source1->getType() != LoadSizeType)
 | |
|       Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
 | |
|     if (Source2->getType() != LoadSizeType)
 | |
|       Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
 | |
| 
 | |
|     // Get the base address using a GEP.
 | |
|     if (CurLoadEntry.Offset != 0) {
 | |
|       Source1 = Builder.CreateGEP(
 | |
|           LoadSizeType, Source1,
 | |
|           ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
 | |
|       Source2 = Builder.CreateGEP(
 | |
|           LoadSizeType, Source2,
 | |
|           ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
 | |
|     }
 | |
| 
 | |
|     // Get a constant or load a value for each source address.
 | |
|     Value *LoadSrc1 = nullptr;
 | |
|     if (auto *Source1C = dyn_cast<Constant>(Source1))
 | |
|       LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
 | |
|     if (!LoadSrc1)
 | |
|       LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
 | |
| 
 | |
|     Value *LoadSrc2 = nullptr;
 | |
|     if (auto *Source2C = dyn_cast<Constant>(Source2))
 | |
|       LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
 | |
|     if (!LoadSrc2)
 | |
|       LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
 | |
| 
 | |
|     if (NumLoads != 1) {
 | |
|       if (LoadSizeType != MaxLoadType) {
 | |
|         LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
 | |
|         LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
 | |
|       }
 | |
|       // If we have multiple loads per block, we need to generate a composite
 | |
|       // comparison using xor+or.
 | |
|       Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
 | |
|       Diff = Builder.CreateZExt(Diff, MaxLoadType);
 | |
|       XorList.push_back(Diff);
 | |
|     } else {
 | |
|       // If there's only one load per block, we just compare the loaded values.
 | |
|       Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
 | |
|     std::vector<Value *> OutList;
 | |
|     for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
 | |
|       Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
 | |
|       OutList.push_back(Or);
 | |
|     }
 | |
|     if (InList.size() % 2 != 0)
 | |
|       OutList.push_back(InList.back());
 | |
|     return OutList;
 | |
|   };
 | |
| 
 | |
|   if (!Cmp) {
 | |
|     // Pairwise OR the XOR results.
 | |
|     OrList = pairWiseOr(XorList);
 | |
| 
 | |
|     // Pairwise OR the OR results until one result left.
 | |
|     while (OrList.size() != 1) {
 | |
|       OrList = pairWiseOr(OrList);
 | |
|     }
 | |
|     Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
 | |
|   }
 | |
| 
 | |
|   return Cmp;
 | |
| }
 | |
| 
 | |
| void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
 | |
|                                                         unsigned &LoadIndex) {
 | |
|   Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
 | |
| 
 | |
|   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
 | |
|                            ? EndBlock
 | |
|                            : LoadCmpBlocks[BlockIndex + 1];
 | |
|   // Early exit branch if difference found to ResultBlock. Otherwise,
 | |
|   // continue to next LoadCmpBlock or EndBlock.
 | |
|   BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
 | |
|   Builder.Insert(CmpBr);
 | |
| 
 | |
|   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
 | |
|   // since early exit to ResultBlock was not taken (no difference was found in
 | |
|   // any of the bytes).
 | |
|   if (BlockIndex == LoadCmpBlocks.size() - 1) {
 | |
|     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
 | |
|     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This function creates the IR intructions for loading and comparing using the
 | |
| // given LoadSize. It loads the number of bytes specified by LoadSize from each
 | |
| // source of the memcmp parameters. It then does a subtract to see if there was
 | |
| // a difference in the loaded values. If a difference is found, it branches
 | |
| // with an early exit to the ResultBlock for calculating which source was
 | |
| // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
 | |
| // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
 | |
| // a special case through emitLoadCompareByteBlock. The special handling can
 | |
| // simply subtract the loaded values and add it to the result phi node.
 | |
| void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
 | |
|   // There is one load per block in this case, BlockIndex == LoadIndex.
 | |
|   const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
 | |
| 
 | |
|   if (CurLoadEntry.LoadSize == 1) {
 | |
|     MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex,
 | |
|                                               CurLoadEntry.getGEPIndex());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Type *LoadSizeType =
 | |
|       IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
 | |
|   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
 | |
|   assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
 | |
| 
 | |
|   Value *Source1 = CI->getArgOperand(0);
 | |
|   Value *Source2 = CI->getArgOperand(1);
 | |
| 
 | |
|   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
 | |
|   // Cast source to LoadSizeType*.
 | |
|   if (Source1->getType() != LoadSizeType)
 | |
|     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
 | |
|   if (Source2->getType() != LoadSizeType)
 | |
|     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
 | |
| 
 | |
|   // Get the base address using a GEP.
 | |
|   if (CurLoadEntry.Offset != 0) {
 | |
|     Source1 = Builder.CreateGEP(
 | |
|         LoadSizeType, Source1,
 | |
|         ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
 | |
|     Source2 = Builder.CreateGEP(
 | |
|         LoadSizeType, Source2,
 | |
|         ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
 | |
|   }
 | |
| 
 | |
|   // Load LoadSizeType from the base address.
 | |
|   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
 | |
|   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
 | |
| 
 | |
|   if (DL.isLittleEndian()) {
 | |
|     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
 | |
|                                                 Intrinsic::bswap, LoadSizeType);
 | |
|     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
 | |
|     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
 | |
|   }
 | |
| 
 | |
|   if (LoadSizeType != MaxLoadType) {
 | |
|     LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
 | |
|     LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
 | |
|   }
 | |
| 
 | |
|   // Add the loaded values to the phi nodes for calculating memcmp result only
 | |
|   // if result is not used in a zero equality.
 | |
|   if (!IsUsedForZeroCmp) {
 | |
|     ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]);
 | |
|     ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]);
 | |
|   }
 | |
| 
 | |
|   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
 | |
|   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
 | |
|                            ? EndBlock
 | |
|                            : LoadCmpBlocks[BlockIndex + 1];
 | |
|   // Early exit branch if difference found to ResultBlock. Otherwise, continue
 | |
|   // to next LoadCmpBlock or EndBlock.
 | |
|   BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
 | |
|   Builder.Insert(CmpBr);
 | |
| 
 | |
|   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
 | |
|   // since early exit to ResultBlock was not taken (no difference was found in
 | |
|   // any of the bytes).
 | |
|   if (BlockIndex == LoadCmpBlocks.size() - 1) {
 | |
|     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
 | |
|     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This function populates the ResultBlock with a sequence to calculate the
 | |
| // memcmp result. It compares the two loaded source values and returns -1 if
 | |
| // src1 < src2 and 1 if src1 > src2.
 | |
| void MemCmpExpansion::emitMemCmpResultBlock() {
 | |
|   // Special case: if memcmp result is used in a zero equality, result does not
 | |
|   // need to be calculated and can simply return 1.
 | |
|   if (IsUsedForZeroCmp) {
 | |
|     BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
 | |
|     Builder.SetInsertPoint(ResBlock.BB, InsertPt);
 | |
|     Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
 | |
|     PhiRes->addIncoming(Res, ResBlock.BB);
 | |
|     BranchInst *NewBr = BranchInst::Create(EndBlock);
 | |
|     Builder.Insert(NewBr);
 | |
|     return;
 | |
|   }
 | |
|   BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
 | |
|   Builder.SetInsertPoint(ResBlock.BB, InsertPt);
 | |
| 
 | |
|   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
 | |
|                                   ResBlock.PhiSrc2);
 | |
| 
 | |
|   Value *Res =
 | |
|       Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
 | |
|                            ConstantInt::get(Builder.getInt32Ty(), 1));
 | |
| 
 | |
|   BranchInst *NewBr = BranchInst::Create(EndBlock);
 | |
|   Builder.Insert(NewBr);
 | |
|   PhiRes->addIncoming(Res, ResBlock.BB);
 | |
| }
 | |
| 
 | |
| void MemCmpExpansion::setupResultBlockPHINodes() {
 | |
|   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
 | |
|   Builder.SetInsertPoint(ResBlock.BB);
 | |
|   // Note: this assumes one load per block.
 | |
|   ResBlock.PhiSrc1 =
 | |
|       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
 | |
|   ResBlock.PhiSrc2 =
 | |
|       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
 | |
| }
 | |
| 
 | |
| void MemCmpExpansion::setupEndBlockPHINodes() {
 | |
|   Builder.SetInsertPoint(&EndBlock->front());
 | |
|   PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
 | |
| }
 | |
| 
 | |
| Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
 | |
|   unsigned LoadIndex = 0;
 | |
|   // This loop populates each of the LoadCmpBlocks with the IR sequence to
 | |
|   // handle multiple loads per block.
 | |
|   for (unsigned I = 0; I < getNumBlocks(); ++I) {
 | |
|     emitLoadCompareBlockMultipleLoads(I, LoadIndex);
 | |
|   }
 | |
| 
 | |
|   emitMemCmpResultBlock();
 | |
|   return PhiRes;
 | |
| }
 | |
| 
 | |
| /// A memcmp expansion that compares equality with 0 and only has one block of
 | |
| /// load and compare can bypass the compare, branch, and phi IR that is required
 | |
| /// in the general case.
 | |
| Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
 | |
|   unsigned LoadIndex = 0;
 | |
|   Value *Cmp = getCompareLoadPairs(0, LoadIndex);
 | |
|   assert(LoadIndex == getNumLoads() && "some entries were not consumed");
 | |
|   return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
 | |
| }
 | |
| 
 | |
| /// A memcmp expansion that only has one block of load and compare can bypass
 | |
| /// the compare, branch, and phi IR that is required in the general case.
 | |
| Value *MemCmpExpansion::getMemCmpOneBlock() {
 | |
|   Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
 | |
|   Value *Source1 = CI->getArgOperand(0);
 | |
|   Value *Source2 = CI->getArgOperand(1);
 | |
| 
 | |
|   // Cast source to LoadSizeType*.
 | |
|   if (Source1->getType() != LoadSizeType)
 | |
|     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
 | |
|   if (Source2->getType() != LoadSizeType)
 | |
|     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
 | |
| 
 | |
|   // Load LoadSizeType from the base address.
 | |
|   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
 | |
|   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
 | |
| 
 | |
|   if (DL.isLittleEndian() && Size != 1) {
 | |
|     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
 | |
|                                                 Intrinsic::bswap, LoadSizeType);
 | |
|     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
 | |
|     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
 | |
|   }
 | |
| 
 | |
|   if (Size < 4) {
 | |
|     // The i8 and i16 cases don't need compares. We zext the loaded values and
 | |
|     // subtract them to get the suitable negative, zero, or positive i32 result.
 | |
|     LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
 | |
|     LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
 | |
|     return Builder.CreateSub(LoadSrc1, LoadSrc2);
 | |
|   }
 | |
| 
 | |
|   // The result of memcmp is negative, zero, or positive, so produce that by
 | |
|   // subtracting 2 extended compare bits: sub (ugt, ult).
 | |
|   // If a target prefers to use selects to get -1/0/1, they should be able
 | |
|   // to transform this later. The inverse transform (going from selects to math)
 | |
|   // may not be possible in the DAG because the selects got converted into
 | |
|   // branches before we got there.
 | |
|   Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
 | |
|   Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
 | |
|   Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
 | |
|   Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
 | |
|   return Builder.CreateSub(ZextUGT, ZextULT);
 | |
| }
 | |
| 
 | |
| // This function expands the memcmp call into an inline expansion and returns
 | |
| // the memcmp result.
 | |
| Value *MemCmpExpansion::getMemCmpExpansion() {
 | |
|   // Create the basic block framework for a multi-block expansion.
 | |
|   if (getNumBlocks() != 1) {
 | |
|     BasicBlock *StartBlock = CI->getParent();
 | |
|     EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
 | |
|     setupEndBlockPHINodes();
 | |
|     createResultBlock();
 | |
| 
 | |
|     // If return value of memcmp is not used in a zero equality, we need to
 | |
|     // calculate which source was larger. The calculation requires the
 | |
|     // two loaded source values of each load compare block.
 | |
|     // These will be saved in the phi nodes created by setupResultBlockPHINodes.
 | |
|     if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
 | |
| 
 | |
|     // Create the number of required load compare basic blocks.
 | |
|     createLoadCmpBlocks();
 | |
| 
 | |
|     // Update the terminator added by splitBasicBlock to branch to the first
 | |
|     // LoadCmpBlock.
 | |
|     StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
 | |
|   }
 | |
| 
 | |
|   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
 | |
| 
 | |
|   if (IsUsedForZeroCmp)
 | |
|     return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
 | |
|                                : getMemCmpExpansionZeroCase();
 | |
| 
 | |
|   if (getNumBlocks() == 1)
 | |
|     return getMemCmpOneBlock();
 | |
| 
 | |
|   for (unsigned I = 0; I < getNumBlocks(); ++I) {
 | |
|     emitLoadCompareBlock(I);
 | |
|   }
 | |
| 
 | |
|   emitMemCmpResultBlock();
 | |
|   return PhiRes;
 | |
| }
 | |
| 
 | |
| // This function checks to see if an expansion of memcmp can be generated.
 | |
| // It checks for constant compare size that is less than the max inline size.
 | |
| // If an expansion cannot occur, returns false to leave as a library call.
 | |
| // Otherwise, the library call is replaced with a new IR instruction sequence.
 | |
| /// We want to transform:
 | |
| /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
 | |
| /// To:
 | |
| /// loadbb:
 | |
| ///  %0 = bitcast i32* %buffer2 to i8*
 | |
| ///  %1 = bitcast i32* %buffer1 to i8*
 | |
| ///  %2 = bitcast i8* %1 to i64*
 | |
| ///  %3 = bitcast i8* %0 to i64*
 | |
| ///  %4 = load i64, i64* %2
 | |
| ///  %5 = load i64, i64* %3
 | |
| ///  %6 = call i64 @llvm.bswap.i64(i64 %4)
 | |
| ///  %7 = call i64 @llvm.bswap.i64(i64 %5)
 | |
| ///  %8 = sub i64 %6, %7
 | |
| ///  %9 = icmp ne i64 %8, 0
 | |
| ///  br i1 %9, label %res_block, label %loadbb1
 | |
| /// res_block:                                        ; preds = %loadbb2,
 | |
| /// %loadbb1, %loadbb
 | |
| ///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
 | |
| ///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
 | |
| ///  %10 = icmp ult i64 %phi.src1, %phi.src2
 | |
| ///  %11 = select i1 %10, i32 -1, i32 1
 | |
| ///  br label %endblock
 | |
| /// loadbb1:                                          ; preds = %loadbb
 | |
| ///  %12 = bitcast i32* %buffer2 to i8*
 | |
| ///  %13 = bitcast i32* %buffer1 to i8*
 | |
| ///  %14 = bitcast i8* %13 to i32*
 | |
| ///  %15 = bitcast i8* %12 to i32*
 | |
| ///  %16 = getelementptr i32, i32* %14, i32 2
 | |
| ///  %17 = getelementptr i32, i32* %15, i32 2
 | |
| ///  %18 = load i32, i32* %16
 | |
| ///  %19 = load i32, i32* %17
 | |
| ///  %20 = call i32 @llvm.bswap.i32(i32 %18)
 | |
| ///  %21 = call i32 @llvm.bswap.i32(i32 %19)
 | |
| ///  %22 = zext i32 %20 to i64
 | |
| ///  %23 = zext i32 %21 to i64
 | |
| ///  %24 = sub i64 %22, %23
 | |
| ///  %25 = icmp ne i64 %24, 0
 | |
| ///  br i1 %25, label %res_block, label %loadbb2
 | |
| /// loadbb2:                                          ; preds = %loadbb1
 | |
| ///  %26 = bitcast i32* %buffer2 to i8*
 | |
| ///  %27 = bitcast i32* %buffer1 to i8*
 | |
| ///  %28 = bitcast i8* %27 to i16*
 | |
| ///  %29 = bitcast i8* %26 to i16*
 | |
| ///  %30 = getelementptr i16, i16* %28, i16 6
 | |
| ///  %31 = getelementptr i16, i16* %29, i16 6
 | |
| ///  %32 = load i16, i16* %30
 | |
| ///  %33 = load i16, i16* %31
 | |
| ///  %34 = call i16 @llvm.bswap.i16(i16 %32)
 | |
| ///  %35 = call i16 @llvm.bswap.i16(i16 %33)
 | |
| ///  %36 = zext i16 %34 to i64
 | |
| ///  %37 = zext i16 %35 to i64
 | |
| ///  %38 = sub i64 %36, %37
 | |
| ///  %39 = icmp ne i64 %38, 0
 | |
| ///  br i1 %39, label %res_block, label %loadbb3
 | |
| /// loadbb3:                                          ; preds = %loadbb2
 | |
| ///  %40 = bitcast i32* %buffer2 to i8*
 | |
| ///  %41 = bitcast i32* %buffer1 to i8*
 | |
| ///  %42 = getelementptr i8, i8* %41, i8 14
 | |
| ///  %43 = getelementptr i8, i8* %40, i8 14
 | |
| ///  %44 = load i8, i8* %42
 | |
| ///  %45 = load i8, i8* %43
 | |
| ///  %46 = zext i8 %44 to i32
 | |
| ///  %47 = zext i8 %45 to i32
 | |
| ///  %48 = sub i32 %46, %47
 | |
| ///  br label %endblock
 | |
| /// endblock:                                         ; preds = %res_block,
 | |
| /// %loadbb3
 | |
| ///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
 | |
| ///  ret i32 %phi.res
 | |
| static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
 | |
|                          const TargetLowering *TLI, const DataLayout *DL) {
 | |
|   NumMemCmpCalls++;
 | |
| 
 | |
|   // Early exit from expansion if -Oz.
 | |
|   if (CI->getFunction()->optForMinSize())
 | |
|     return false;
 | |
| 
 | |
|   // Early exit from expansion if size is not a constant.
 | |
|   ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
 | |
|   if (!SizeCast) {
 | |
|     NumMemCmpNotConstant++;
 | |
|     return false;
 | |
|   }
 | |
|   const uint64_t SizeVal = SizeCast->getZExtValue();
 | |
| 
 | |
|   if (SizeVal == 0) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // TTI call to check if target would like to expand memcmp. Also, get the
 | |
|   // available load sizes.
 | |
|   const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
 | |
|   const auto *const Options = TTI->enableMemCmpExpansion(IsUsedForZeroCmp);
 | |
|   if (!Options) return false;
 | |
| 
 | |
|   const unsigned MaxNumLoads =
 | |
|       TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize());
 | |
| 
 | |
|   unsigned NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences()
 | |
|                                   ? MemCmpEqZeroNumLoadsPerBlock
 | |
|                                   : TLI->getMemcmpEqZeroLoadsPerBlock();
 | |
| 
 | |
|   MemCmpExpansion Expansion(CI, SizeVal, *Options, MaxNumLoads,
 | |
|                             IsUsedForZeroCmp, NumLoadsPerBlock, *DL);
 | |
| 
 | |
|   // Don't expand if this will require more loads than desired by the target.
 | |
|   if (Expansion.getNumLoads() == 0) {
 | |
|     NumMemCmpGreaterThanMax++;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   NumMemCmpInlined++;
 | |
| 
 | |
|   Value *Res = Expansion.getMemCmpExpansion();
 | |
| 
 | |
|   // Replace call with result of expansion and erase call.
 | |
|   CI->replaceAllUsesWith(Res);
 | |
|   CI->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| class ExpandMemCmpPass : public FunctionPass {
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   ExpandMemCmpPass() : FunctionPass(ID) {
 | |
|     initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     if (skipFunction(F)) return false;
 | |
| 
 | |
|     auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
 | |
|     if (!TPC) {
 | |
|       return false;
 | |
|     }
 | |
|     const TargetLowering* TL =
 | |
|         TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
 | |
| 
 | |
|     const TargetLibraryInfo *TLI =
 | |
|         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
|     const TargetTransformInfo *TTI =
 | |
|         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
|     auto PA = runImpl(F, TLI, TTI, TL);
 | |
|     return !PA.areAllPreserved();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|     AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|     FunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
 | |
|                             const TargetTransformInfo *TTI,
 | |
|                             const TargetLowering* TL);
 | |
|   // Returns true if a change was made.
 | |
|   bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
 | |
|                   const TargetTransformInfo *TTI, const TargetLowering* TL,
 | |
|                   const DataLayout& DL);
 | |
| };
 | |
| 
 | |
| bool ExpandMemCmpPass::runOnBlock(
 | |
|     BasicBlock &BB, const TargetLibraryInfo *TLI,
 | |
|     const TargetTransformInfo *TTI, const TargetLowering* TL,
 | |
|     const DataLayout& DL) {
 | |
|   for (Instruction& I : BB) {
 | |
|     CallInst *CI = dyn_cast<CallInst>(&I);
 | |
|     if (!CI) {
 | |
|       continue;
 | |
|     }
 | |
|     LibFunc Func;
 | |
|     if (TLI->getLibFunc(ImmutableCallSite(CI), Func) &&
 | |
|         Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TL, &DL)) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| PreservedAnalyses ExpandMemCmpPass::runImpl(
 | |
|     Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI,
 | |
|     const TargetLowering* TL) {
 | |
|   const DataLayout& DL = F.getParent()->getDataLayout();
 | |
|   bool MadeChanges = false;
 | |
|   for (auto BBIt = F.begin(); BBIt != F.end();) {
 | |
|     if (runOnBlock(*BBIt, TLI, TTI, TL, DL)) {
 | |
|       MadeChanges = true;
 | |
|       // If changes were made, restart the function from the beginning, since
 | |
|       // the structure of the function was changed.
 | |
|       BBIt = F.begin();
 | |
|     } else {
 | |
|       ++BBIt;
 | |
|     }
 | |
|   }
 | |
|   return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| char ExpandMemCmpPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
 | |
|                       "Expand memcmp() to load/stores", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
 | |
|                     "Expand memcmp() to load/stores", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createExpandMemCmpPass() {
 | |
|   return new ExpandMemCmpPass();
 | |
| }
 |