forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1660 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1660 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file This file implements the LiveInterval analysis pass which is used
 | |
| /// by the Linear Scan Register allocator. This pass linearizes the
 | |
| /// basic blocks of the function in DFS order and computes live intervals for
 | |
| /// each virtual and physical register.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/LiveIntervals.h"
 | |
| #include "LiveRangeCalc.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveInterval.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBundle.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/CodeGen/VirtRegMap.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/MC/LaneBitmask.h"
 | |
| #include "llvm/MC/MCRegisterInfo.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/BlockFrequency.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| 
 | |
| char LiveIntervals::ID = 0;
 | |
| char &llvm::LiveIntervalsID = LiveIntervals::ID;
 | |
| INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
 | |
|                 "Live Interval Analysis", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | |
| INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
 | |
|                 "Live Interval Analysis", false, false)
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<bool> EnablePrecomputePhysRegs(
 | |
|   "precompute-phys-liveness", cl::Hidden,
 | |
|   cl::desc("Eagerly compute live intervals for all physreg units."));
 | |
| #else
 | |
| static bool EnablePrecomputePhysRegs = false;
 | |
| #endif // NDEBUG
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| cl::opt<bool> UseSegmentSetForPhysRegs(
 | |
|     "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
 | |
|     cl::desc(
 | |
|         "Use segment set for the computation of the live ranges of physregs."));
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequired<AAResultsWrapperPass>();
 | |
|   AU.addPreserved<AAResultsWrapperPass>();
 | |
|   AU.addPreserved<LiveVariables>();
 | |
|   AU.addPreservedID(MachineLoopInfoID);
 | |
|   AU.addRequiredTransitiveID(MachineDominatorsID);
 | |
|   AU.addPreservedID(MachineDominatorsID);
 | |
|   AU.addPreserved<SlotIndexes>();
 | |
|   AU.addRequiredTransitive<SlotIndexes>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
 | |
|   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| LiveIntervals::~LiveIntervals() {
 | |
|   delete LRCalc;
 | |
| }
 | |
| 
 | |
| void LiveIntervals::releaseMemory() {
 | |
|   // Free the live intervals themselves.
 | |
|   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
 | |
|     delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
 | |
|   VirtRegIntervals.clear();
 | |
|   RegMaskSlots.clear();
 | |
|   RegMaskBits.clear();
 | |
|   RegMaskBlocks.clear();
 | |
| 
 | |
|   for (LiveRange *LR : RegUnitRanges)
 | |
|     delete LR;
 | |
|   RegUnitRanges.clear();
 | |
| 
 | |
|   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
 | |
|   VNInfoAllocator.Reset();
 | |
| }
 | |
| 
 | |
| bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
 | |
|   MF = &fn;
 | |
|   MRI = &MF->getRegInfo();
 | |
|   TRI = MF->getSubtarget().getRegisterInfo();
 | |
|   TII = MF->getSubtarget().getInstrInfo();
 | |
|   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|   Indexes = &getAnalysis<SlotIndexes>();
 | |
|   DomTree = &getAnalysis<MachineDominatorTree>();
 | |
| 
 | |
|   if (!LRCalc)
 | |
|     LRCalc = new LiveRangeCalc();
 | |
| 
 | |
|   // Allocate space for all virtual registers.
 | |
|   VirtRegIntervals.resize(MRI->getNumVirtRegs());
 | |
| 
 | |
|   computeVirtRegs();
 | |
|   computeRegMasks();
 | |
|   computeLiveInRegUnits();
 | |
| 
 | |
|   if (EnablePrecomputePhysRegs) {
 | |
|     // For stress testing, precompute live ranges of all physical register
 | |
|     // units, including reserved registers.
 | |
|     for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
 | |
|       getRegUnit(i);
 | |
|   }
 | |
|   LLVM_DEBUG(dump());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
 | |
|   OS << "********** INTERVALS **********\n";
 | |
| 
 | |
|   // Dump the regunits.
 | |
|   for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
 | |
|     if (LiveRange *LR = RegUnitRanges[Unit])
 | |
|       OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
 | |
| 
 | |
|   // Dump the virtregs.
 | |
|   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | |
|     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | |
|     if (hasInterval(Reg))
 | |
|       OS << getInterval(Reg) << '\n';
 | |
|   }
 | |
| 
 | |
|   OS << "RegMasks:";
 | |
|   for (SlotIndex Idx : RegMaskSlots)
 | |
|     OS << ' ' << Idx;
 | |
|   OS << '\n';
 | |
| 
 | |
|   printInstrs(OS);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::printInstrs(raw_ostream &OS) const {
 | |
|   OS << "********** MACHINEINSTRS **********\n";
 | |
|   MF->print(OS, Indexes);
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
 | |
|   printInstrs(dbgs());
 | |
| }
 | |
| #endif
 | |
| 
 | |
| LiveInterval* LiveIntervals::createInterval(unsigned reg) {
 | |
|   float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? huge_valf : 0.0F;
 | |
|   return new LiveInterval(reg, Weight);
 | |
| }
 | |
| 
 | |
| /// Compute the live interval of a virtual register, based on defs and uses.
 | |
| void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
 | |
|   assert(LRCalc && "LRCalc not initialized.");
 | |
|   assert(LI.empty() && "Should only compute empty intervals.");
 | |
|   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
 | |
|   LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
 | |
|   computeDeadValues(LI, nullptr);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::computeVirtRegs() {
 | |
|   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | |
|     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | |
|     if (MRI->reg_nodbg_empty(Reg))
 | |
|       continue;
 | |
|     createAndComputeVirtRegInterval(Reg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveIntervals::computeRegMasks() {
 | |
|   RegMaskBlocks.resize(MF->getNumBlockIDs());
 | |
| 
 | |
|   // Find all instructions with regmask operands.
 | |
|   for (const MachineBasicBlock &MBB : *MF) {
 | |
|     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
 | |
|     RMB.first = RegMaskSlots.size();
 | |
| 
 | |
|     // Some block starts, such as EH funclets, create masks.
 | |
|     if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
 | |
|       RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
 | |
|       RegMaskBits.push_back(Mask);
 | |
|     }
 | |
| 
 | |
|     for (const MachineInstr &MI : MBB) {
 | |
|       for (const MachineOperand &MO : MI.operands()) {
 | |
|         if (!MO.isRegMask())
 | |
|           continue;
 | |
|         RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
 | |
|         RegMaskBits.push_back(MO.getRegMask());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Some block ends, such as funclet returns, create masks. Put the mask on
 | |
|     // the last instruction of the block, because MBB slot index intervals are
 | |
|     // half-open.
 | |
|     if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
 | |
|       assert(!MBB.empty() && "empty return block?");
 | |
|       RegMaskSlots.push_back(
 | |
|           Indexes->getInstructionIndex(MBB.back()).getRegSlot());
 | |
|       RegMaskBits.push_back(Mask);
 | |
|     }
 | |
| 
 | |
|     // Compute the number of register mask instructions in this block.
 | |
|     RMB.second = RegMaskSlots.size() - RMB.first;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           Register Unit Liveness
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Fixed interference typically comes from ABI boundaries: Function arguments
 | |
| // and return values are passed in fixed registers, and so are exception
 | |
| // pointers entering landing pads. Certain instructions require values to be
 | |
| // present in specific registers. That is also represented through fixed
 | |
| // interference.
 | |
| //
 | |
| 
 | |
| /// Compute the live range of a register unit, based on the uses and defs of
 | |
| /// aliasing registers.  The range should be empty, or contain only dead
 | |
| /// phi-defs from ABI blocks.
 | |
| void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
 | |
|   assert(LRCalc && "LRCalc not initialized.");
 | |
|   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
 | |
| 
 | |
|   // The physregs aliasing Unit are the roots and their super-registers.
 | |
|   // Create all values as dead defs before extending to uses. Note that roots
 | |
|   // may share super-registers. That's OK because createDeadDefs() is
 | |
|   // idempotent. It is very rare for a register unit to have multiple roots, so
 | |
|   // uniquing super-registers is probably not worthwhile.
 | |
|   bool IsReserved = false;
 | |
|   for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
 | |
|     bool IsRootReserved = true;
 | |
|     for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
 | |
|          Super.isValid(); ++Super) {
 | |
|       unsigned Reg = *Super;
 | |
|       if (!MRI->reg_empty(Reg))
 | |
|         LRCalc->createDeadDefs(LR, Reg);
 | |
|       // A register unit is considered reserved if all its roots and all their
 | |
|       // super registers are reserved.
 | |
|       if (!MRI->isReserved(Reg))
 | |
|         IsRootReserved = false;
 | |
|     }
 | |
|     IsReserved |= IsRootReserved;
 | |
|   }
 | |
|   assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
 | |
|          "reserved computation mismatch");
 | |
| 
 | |
|   // Now extend LR to reach all uses.
 | |
|   // Ignore uses of reserved registers. We only track defs of those.
 | |
|   if (!IsReserved) {
 | |
|     for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
 | |
|       for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
 | |
|            Super.isValid(); ++Super) {
 | |
|         unsigned Reg = *Super;
 | |
|         if (!MRI->reg_empty(Reg))
 | |
|           LRCalc->extendToUses(LR, Reg);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Flush the segment set to the segment vector.
 | |
|   if (UseSegmentSetForPhysRegs)
 | |
|     LR.flushSegmentSet();
 | |
| }
 | |
| 
 | |
| /// Precompute the live ranges of any register units that are live-in to an ABI
 | |
| /// block somewhere. Register values can appear without a corresponding def when
 | |
| /// entering the entry block or a landing pad.
 | |
| void LiveIntervals::computeLiveInRegUnits() {
 | |
|   RegUnitRanges.resize(TRI->getNumRegUnits());
 | |
|   LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
 | |
| 
 | |
|   // Keep track of the live range sets allocated.
 | |
|   SmallVector<unsigned, 8> NewRanges;
 | |
| 
 | |
|   // Check all basic blocks for live-ins.
 | |
|   for (const MachineBasicBlock &MBB : *MF) {
 | |
|     // We only care about ABI blocks: Entry + landing pads.
 | |
|     if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
 | |
|       continue;
 | |
| 
 | |
|     // Create phi-defs at Begin for all live-in registers.
 | |
|     SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
 | |
|     LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
 | |
|     for (const auto &LI : MBB.liveins()) {
 | |
|       for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
 | |
|         unsigned Unit = *Units;
 | |
|         LiveRange *LR = RegUnitRanges[Unit];
 | |
|         if (!LR) {
 | |
|           // Use segment set to speed-up initial computation of the live range.
 | |
|           LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
 | |
|           NewRanges.push_back(Unit);
 | |
|         }
 | |
|         VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
 | |
|         (void)VNI;
 | |
|         LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
 | |
|       }
 | |
|     }
 | |
|     LLVM_DEBUG(dbgs() << '\n');
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
 | |
| 
 | |
|   // Compute the 'normal' part of the ranges.
 | |
|   for (unsigned Unit : NewRanges)
 | |
|     computeRegUnitRange(*RegUnitRanges[Unit], Unit);
 | |
| }
 | |
| 
 | |
| static void createSegmentsForValues(LiveRange &LR,
 | |
|     iterator_range<LiveInterval::vni_iterator> VNIs) {
 | |
|   for (VNInfo *VNI : VNIs) {
 | |
|     if (VNI->isUnused())
 | |
|       continue;
 | |
|     SlotIndex Def = VNI->def;
 | |
|     LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
 | |
|                                          ShrinkToUsesWorkList &WorkList,
 | |
|                                          unsigned Reg, LaneBitmask LaneMask) {
 | |
|   // Keep track of the PHIs that are in use.
 | |
|   SmallPtrSet<VNInfo*, 8> UsedPHIs;
 | |
|   // Blocks that have already been added to WorkList as live-out.
 | |
|   SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
 | |
| 
 | |
|   auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
 | |
|         -> const LiveRange& {
 | |
|     if (M.none())
 | |
|       return I;
 | |
|     for (const LiveInterval::SubRange &SR : I.subranges()) {
 | |
|       if ((SR.LaneMask & M).any()) {
 | |
|         assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
 | |
|         return SR;
 | |
|       }
 | |
|     }
 | |
|     llvm_unreachable("Subrange for mask not found");
 | |
|   };
 | |
| 
 | |
|   const LiveInterval &LI = getInterval(Reg);
 | |
|   const LiveRange &OldRange = getSubRange(LI, LaneMask);
 | |
| 
 | |
|   // Extend intervals to reach all uses in WorkList.
 | |
|   while (!WorkList.empty()) {
 | |
|     SlotIndex Idx = WorkList.back().first;
 | |
|     VNInfo *VNI = WorkList.back().second;
 | |
|     WorkList.pop_back();
 | |
|     const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
 | |
|     SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
 | |
| 
 | |
|     // Extend the live range for VNI to be live at Idx.
 | |
|     if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
 | |
|       assert(ExtVNI == VNI && "Unexpected existing value number");
 | |
|       (void)ExtVNI;
 | |
|       // Is this a PHIDef we haven't seen before?
 | |
|       if (!VNI->isPHIDef() || VNI->def != BlockStart ||
 | |
|           !UsedPHIs.insert(VNI).second)
 | |
|         continue;
 | |
|       // The PHI is live, make sure the predecessors are live-out.
 | |
|       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
 | |
|         if (!LiveOut.insert(Pred).second)
 | |
|           continue;
 | |
|         SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
 | |
|         // A predecessor is not required to have a live-out value for a PHI.
 | |
|         if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
 | |
|           WorkList.push_back(std::make_pair(Stop, PVNI));
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // VNI is live-in to MBB.
 | |
|     LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
 | |
|     Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
 | |
| 
 | |
|     // Make sure VNI is live-out from the predecessors.
 | |
|     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
 | |
|       if (!LiveOut.insert(Pred).second)
 | |
|         continue;
 | |
|       SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
 | |
|       if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
 | |
|         assert(OldVNI == VNI && "Wrong value out of predecessor");
 | |
|         (void)OldVNI;
 | |
|         WorkList.push_back(std::make_pair(Stop, VNI));
 | |
|       } else {
 | |
| #ifndef NDEBUG
 | |
|         // There was no old VNI. Verify that Stop is jointly dominated
 | |
|         // by <undef>s for this live range.
 | |
|         assert(LaneMask.any() &&
 | |
|                "Missing value out of predecessor for main range");
 | |
|         SmallVector<SlotIndex,8> Undefs;
 | |
|         LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
 | |
|         assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
 | |
|                "Missing value out of predecessor for subrange");
 | |
| #endif
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LiveIntervals::shrinkToUses(LiveInterval *li,
 | |
|                                  SmallVectorImpl<MachineInstr*> *dead) {
 | |
|   LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(li->reg)
 | |
|          && "Can only shrink virtual registers");
 | |
| 
 | |
|   // Shrink subregister live ranges.
 | |
|   bool NeedsCleanup = false;
 | |
|   for (LiveInterval::SubRange &S : li->subranges()) {
 | |
|     shrinkToUses(S, li->reg);
 | |
|     if (S.empty())
 | |
|       NeedsCleanup = true;
 | |
|   }
 | |
|   if (NeedsCleanup)
 | |
|     li->removeEmptySubRanges();
 | |
| 
 | |
|   // Find all the values used, including PHI kills.
 | |
|   ShrinkToUsesWorkList WorkList;
 | |
| 
 | |
|   // Visit all instructions reading li->reg.
 | |
|   unsigned Reg = li->reg;
 | |
|   for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
 | |
|     if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg))
 | |
|       continue;
 | |
|     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
 | |
|     LiveQueryResult LRQ = li->Query(Idx);
 | |
|     VNInfo *VNI = LRQ.valueIn();
 | |
|     if (!VNI) {
 | |
|       // This shouldn't happen: readsVirtualRegister returns true, but there is
 | |
|       // no live value. It is likely caused by a target getting <undef> flags
 | |
|       // wrong.
 | |
|       LLVM_DEBUG(
 | |
|           dbgs() << Idx << '\t' << UseMI
 | |
|                  << "Warning: Instr claims to read non-existent value in "
 | |
|                  << *li << '\n');
 | |
|       continue;
 | |
|     }
 | |
|     // Special case: An early-clobber tied operand reads and writes the
 | |
|     // register one slot early.
 | |
|     if (VNInfo *DefVNI = LRQ.valueDefined())
 | |
|       Idx = DefVNI->def;
 | |
| 
 | |
|     WorkList.push_back(std::make_pair(Idx, VNI));
 | |
|   }
 | |
| 
 | |
|   // Create new live ranges with only minimal live segments per def.
 | |
|   LiveRange NewLR;
 | |
|   createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
 | |
|   extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
 | |
| 
 | |
|   // Move the trimmed segments back.
 | |
|   li->segments.swap(NewLR.segments);
 | |
| 
 | |
|   // Handle dead values.
 | |
|   bool CanSeparate = computeDeadValues(*li, dead);
 | |
|   LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
 | |
|   return CanSeparate;
 | |
| }
 | |
| 
 | |
| bool LiveIntervals::computeDeadValues(LiveInterval &LI,
 | |
|                                       SmallVectorImpl<MachineInstr*> *dead) {
 | |
|   bool MayHaveSplitComponents = false;
 | |
|   for (VNInfo *VNI : LI.valnos) {
 | |
|     if (VNI->isUnused())
 | |
|       continue;
 | |
|     SlotIndex Def = VNI->def;
 | |
|     LiveRange::iterator I = LI.FindSegmentContaining(Def);
 | |
|     assert(I != LI.end() && "Missing segment for VNI");
 | |
| 
 | |
|     // Is the register live before? Otherwise we may have to add a read-undef
 | |
|     // flag for subregister defs.
 | |
|     unsigned VReg = LI.reg;
 | |
|     if (MRI->shouldTrackSubRegLiveness(VReg)) {
 | |
|       if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
 | |
|         MachineInstr *MI = getInstructionFromIndex(Def);
 | |
|         MI->setRegisterDefReadUndef(VReg);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (I->end != Def.getDeadSlot())
 | |
|       continue;
 | |
|     if (VNI->isPHIDef()) {
 | |
|       // This is a dead PHI. Remove it.
 | |
|       VNI->markUnused();
 | |
|       LI.removeSegment(I);
 | |
|       LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
 | |
|       MayHaveSplitComponents = true;
 | |
|     } else {
 | |
|       // This is a dead def. Make sure the instruction knows.
 | |
|       MachineInstr *MI = getInstructionFromIndex(Def);
 | |
|       assert(MI && "No instruction defining live value");
 | |
|       MI->addRegisterDead(LI.reg, TRI);
 | |
|       if (dead && MI->allDefsAreDead()) {
 | |
|         LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
 | |
|         dead->push_back(MI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return MayHaveSplitComponents;
 | |
| }
 | |
| 
 | |
| void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) {
 | |
|   LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(Reg)
 | |
|          && "Can only shrink virtual registers");
 | |
|   // Find all the values used, including PHI kills.
 | |
|   ShrinkToUsesWorkList WorkList;
 | |
| 
 | |
|   // Visit all instructions reading Reg.
 | |
|   SlotIndex LastIdx;
 | |
|   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
 | |
|     // Skip "undef" uses.
 | |
|     if (!MO.readsReg())
 | |
|       continue;
 | |
|     // Maybe the operand is for a subregister we don't care about.
 | |
|     unsigned SubReg = MO.getSubReg();
 | |
|     if (SubReg != 0) {
 | |
|       LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
 | |
|       if ((LaneMask & SR.LaneMask).none())
 | |
|         continue;
 | |
|     }
 | |
|     // We only need to visit each instruction once.
 | |
|     MachineInstr *UseMI = MO.getParent();
 | |
|     SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
 | |
|     if (Idx == LastIdx)
 | |
|       continue;
 | |
|     LastIdx = Idx;
 | |
| 
 | |
|     LiveQueryResult LRQ = SR.Query(Idx);
 | |
|     VNInfo *VNI = LRQ.valueIn();
 | |
|     // For Subranges it is possible that only undef values are left in that
 | |
|     // part of the subregister, so there is no real liverange at the use
 | |
|     if (!VNI)
 | |
|       continue;
 | |
| 
 | |
|     // Special case: An early-clobber tied operand reads and writes the
 | |
|     // register one slot early.
 | |
|     if (VNInfo *DefVNI = LRQ.valueDefined())
 | |
|       Idx = DefVNI->def;
 | |
| 
 | |
|     WorkList.push_back(std::make_pair(Idx, VNI));
 | |
|   }
 | |
| 
 | |
|   // Create a new live ranges with only minimal live segments per def.
 | |
|   LiveRange NewLR;
 | |
|   createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
 | |
|   extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
 | |
| 
 | |
|   // Move the trimmed ranges back.
 | |
|   SR.segments.swap(NewLR.segments);
 | |
| 
 | |
|   // Remove dead PHI value numbers
 | |
|   for (VNInfo *VNI : SR.valnos) {
 | |
|     if (VNI->isUnused())
 | |
|       continue;
 | |
|     const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
 | |
|     assert(Segment != nullptr && "Missing segment for VNI");
 | |
|     if (Segment->end != VNI->def.getDeadSlot())
 | |
|       continue;
 | |
|     if (VNI->isPHIDef()) {
 | |
|       // This is a dead PHI. Remove it.
 | |
|       LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
 | |
|                         << " may separate interval\n");
 | |
|       VNI->markUnused();
 | |
|       SR.removeSegment(*Segment);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
 | |
| }
 | |
| 
 | |
| void LiveIntervals::extendToIndices(LiveRange &LR,
 | |
|                                     ArrayRef<SlotIndex> Indices,
 | |
|                                     ArrayRef<SlotIndex> Undefs) {
 | |
|   assert(LRCalc && "LRCalc not initialized.");
 | |
|   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
 | |
|   for (SlotIndex Idx : Indices)
 | |
|     LRCalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
 | |
|                                SmallVectorImpl<SlotIndex> *EndPoints) {
 | |
|   LiveQueryResult LRQ = LR.Query(Kill);
 | |
|   VNInfo *VNI = LRQ.valueOutOrDead();
 | |
|   if (!VNI)
 | |
|     return;
 | |
| 
 | |
|   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
 | |
|   SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
 | |
| 
 | |
|   // If VNI isn't live out from KillMBB, the value is trivially pruned.
 | |
|   if (LRQ.endPoint() < MBBEnd) {
 | |
|     LR.removeSegment(Kill, LRQ.endPoint());
 | |
|     if (EndPoints) EndPoints->push_back(LRQ.endPoint());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // VNI is live out of KillMBB.
 | |
|   LR.removeSegment(Kill, MBBEnd);
 | |
|   if (EndPoints) EndPoints->push_back(MBBEnd);
 | |
| 
 | |
|   // Find all blocks that are reachable from KillMBB without leaving VNI's live
 | |
|   // range. It is possible that KillMBB itself is reachable, so start a DFS
 | |
|   // from each successor.
 | |
|   using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
 | |
|   VisitedTy Visited;
 | |
|   for (MachineBasicBlock *Succ : KillMBB->successors()) {
 | |
|     for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
 | |
|          I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
 | |
|          I != E;) {
 | |
|       MachineBasicBlock *MBB = *I;
 | |
| 
 | |
|       // Check if VNI is live in to MBB.
 | |
|       SlotIndex MBBStart, MBBEnd;
 | |
|       std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
 | |
|       LiveQueryResult LRQ = LR.Query(MBBStart);
 | |
|       if (LRQ.valueIn() != VNI) {
 | |
|         // This block isn't part of the VNI segment. Prune the search.
 | |
|         I.skipChildren();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Prune the search if VNI is killed in MBB.
 | |
|       if (LRQ.endPoint() < MBBEnd) {
 | |
|         LR.removeSegment(MBBStart, LRQ.endPoint());
 | |
|         if (EndPoints) EndPoints->push_back(LRQ.endPoint());
 | |
|         I.skipChildren();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // VNI is live through MBB.
 | |
|       LR.removeSegment(MBBStart, MBBEnd);
 | |
|       if (EndPoints) EndPoints->push_back(MBBEnd);
 | |
|       ++I;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Register allocator hooks.
 | |
| //
 | |
| 
 | |
| void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
 | |
|   // Keep track of regunit ranges.
 | |
|   SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
 | |
|   // Keep track of subregister ranges.
 | |
|   SmallVector<std::pair<const LiveInterval::SubRange*,
 | |
|                         LiveRange::const_iterator>, 4> SRs;
 | |
| 
 | |
|   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | |
|     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | |
|     if (MRI->reg_nodbg_empty(Reg))
 | |
|       continue;
 | |
|     const LiveInterval &LI = getInterval(Reg);
 | |
|     if (LI.empty())
 | |
|       continue;
 | |
| 
 | |
|     // Find the regunit intervals for the assigned register. They may overlap
 | |
|     // the virtual register live range, cancelling any kills.
 | |
|     RU.clear();
 | |
|     for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid();
 | |
|          ++Unit) {
 | |
|       const LiveRange &RURange = getRegUnit(*Unit);
 | |
|       if (RURange.empty())
 | |
|         continue;
 | |
|       RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
 | |
|     }
 | |
| 
 | |
|     if (MRI->subRegLivenessEnabled()) {
 | |
|       SRs.clear();
 | |
|       for (const LiveInterval::SubRange &SR : LI.subranges()) {
 | |
|         SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Every instruction that kills Reg corresponds to a segment range end
 | |
|     // point.
 | |
|     for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
 | |
|          ++RI) {
 | |
|       // A block index indicates an MBB edge.
 | |
|       if (RI->end.isBlock())
 | |
|         continue;
 | |
|       MachineInstr *MI = getInstructionFromIndex(RI->end);
 | |
|       if (!MI)
 | |
|         continue;
 | |
| 
 | |
|       // Check if any of the regunits are live beyond the end of RI. That could
 | |
|       // happen when a physreg is defined as a copy of a virtreg:
 | |
|       //
 | |
|       //   %eax = COPY %5
 | |
|       //   FOO %5             <--- MI, cancel kill because %eax is live.
 | |
|       //   BAR killed %eax
 | |
|       //
 | |
|       // There should be no kill flag on FOO when %5 is rewritten as %eax.
 | |
|       for (auto &RUP : RU) {
 | |
|         const LiveRange &RURange = *RUP.first;
 | |
|         LiveRange::const_iterator &I = RUP.second;
 | |
|         if (I == RURange.end())
 | |
|           continue;
 | |
|         I = RURange.advanceTo(I, RI->end);
 | |
|         if (I == RURange.end() || I->start >= RI->end)
 | |
|           continue;
 | |
|         // I is overlapping RI.
 | |
|         goto CancelKill;
 | |
|       }
 | |
| 
 | |
|       if (MRI->subRegLivenessEnabled()) {
 | |
|         // When reading a partial undefined value we must not add a kill flag.
 | |
|         // The regalloc might have used the undef lane for something else.
 | |
|         // Example:
 | |
|         //     %1 = ...                  ; R32: %1
 | |
|         //     %2:high16 = ...           ; R64: %2
 | |
|         //        = read killed %2        ; R64: %2
 | |
|         //        = read %1              ; R32: %1
 | |
|         // The <kill> flag is correct for %2, but the register allocator may
 | |
|         // assign R0L to %1, and R0 to %2 because the low 32bits of R0
 | |
|         // are actually never written by %2. After assignment the <kill>
 | |
|         // flag at the read instruction is invalid.
 | |
|         LaneBitmask DefinedLanesMask;
 | |
|         if (!SRs.empty()) {
 | |
|           // Compute a mask of lanes that are defined.
 | |
|           DefinedLanesMask = LaneBitmask::getNone();
 | |
|           for (auto &SRP : SRs) {
 | |
|             const LiveInterval::SubRange &SR = *SRP.first;
 | |
|             LiveRange::const_iterator &I = SRP.second;
 | |
|             if (I == SR.end())
 | |
|               continue;
 | |
|             I = SR.advanceTo(I, RI->end);
 | |
|             if (I == SR.end() || I->start >= RI->end)
 | |
|               continue;
 | |
|             // I is overlapping RI
 | |
|             DefinedLanesMask |= SR.LaneMask;
 | |
|           }
 | |
|         } else
 | |
|           DefinedLanesMask = LaneBitmask::getAll();
 | |
| 
 | |
|         bool IsFullWrite = false;
 | |
|         for (const MachineOperand &MO : MI->operands()) {
 | |
|           if (!MO.isReg() || MO.getReg() != Reg)
 | |
|             continue;
 | |
|           if (MO.isUse()) {
 | |
|             // Reading any undefined lanes?
 | |
|             LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
 | |
|             if ((UseMask & ~DefinedLanesMask).any())
 | |
|               goto CancelKill;
 | |
|           } else if (MO.getSubReg() == 0) {
 | |
|             // Writing to the full register?
 | |
|             assert(MO.isDef());
 | |
|             IsFullWrite = true;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // If an instruction writes to a subregister, a new segment starts in
 | |
|         // the LiveInterval. But as this is only overriding part of the register
 | |
|         // adding kill-flags is not correct here after registers have been
 | |
|         // assigned.
 | |
|         if (!IsFullWrite) {
 | |
|           // Next segment has to be adjacent in the subregister write case.
 | |
|           LiveRange::const_iterator N = std::next(RI);
 | |
|           if (N != LI.end() && N->start == RI->end)
 | |
|             goto CancelKill;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       MI->addRegisterKilled(Reg, nullptr);
 | |
|       continue;
 | |
| CancelKill:
 | |
|       MI->clearRegisterKills(Reg, nullptr);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| MachineBasicBlock*
 | |
| LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
 | |
|   // A local live range must be fully contained inside the block, meaning it is
 | |
|   // defined and killed at instructions, not at block boundaries. It is not
 | |
|   // live in or out of any block.
 | |
|   //
 | |
|   // It is technically possible to have a PHI-defined live range identical to a
 | |
|   // single block, but we are going to return false in that case.
 | |
| 
 | |
|   SlotIndex Start = LI.beginIndex();
 | |
|   if (Start.isBlock())
 | |
|     return nullptr;
 | |
| 
 | |
|   SlotIndex Stop = LI.endIndex();
 | |
|   if (Stop.isBlock())
 | |
|     return nullptr;
 | |
| 
 | |
|   // getMBBFromIndex doesn't need to search the MBB table when both indexes
 | |
|   // belong to proper instructions.
 | |
|   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
 | |
|   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
 | |
|   return MBB1 == MBB2 ? MBB1 : nullptr;
 | |
| }
 | |
| 
 | |
| bool
 | |
| LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
 | |
|   for (const VNInfo *PHI : LI.valnos) {
 | |
|     if (PHI->isUnused() || !PHI->isPHIDef())
 | |
|       continue;
 | |
|     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
 | |
|     // Conservatively return true instead of scanning huge predecessor lists.
 | |
|     if (PHIMBB->pred_size() > 100)
 | |
|       return true;
 | |
|     for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
 | |
|       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
 | |
|         return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
 | |
|                                     const MachineBlockFrequencyInfo *MBFI,
 | |
|                                     const MachineInstr &MI) {
 | |
|   return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
 | |
| }
 | |
| 
 | |
| float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
 | |
|                                     const MachineBlockFrequencyInfo *MBFI,
 | |
|                                     const MachineBasicBlock *MBB) {
 | |
|   BlockFrequency Freq = MBFI->getBlockFreq(MBB);
 | |
|   const float Scale = 1.0f / MBFI->getEntryFreq();
 | |
|   return (isDef + isUse) * (Freq.getFrequency() * Scale);
 | |
| }
 | |
| 
 | |
| LiveRange::Segment
 | |
| LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr &startInst) {
 | |
|   LiveInterval& Interval = createEmptyInterval(reg);
 | |
|   VNInfo *VN = Interval.getNextValue(
 | |
|       SlotIndex(getInstructionIndex(startInst).getRegSlot()),
 | |
|       getVNInfoAllocator());
 | |
|   LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
 | |
|                        getMBBEndIdx(startInst.getParent()), VN);
 | |
|   Interval.addSegment(S);
 | |
| 
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          Register mask functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
 | |
|                                              BitVector &UsableRegs) {
 | |
|   if (LI.empty())
 | |
|     return false;
 | |
|   LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
 | |
| 
 | |
|   // Use a smaller arrays for local live ranges.
 | |
|   ArrayRef<SlotIndex> Slots;
 | |
|   ArrayRef<const uint32_t*> Bits;
 | |
|   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
 | |
|     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
 | |
|     Bits = getRegMaskBitsInBlock(MBB->getNumber());
 | |
|   } else {
 | |
|     Slots = getRegMaskSlots();
 | |
|     Bits = getRegMaskBits();
 | |
|   }
 | |
| 
 | |
|   // We are going to enumerate all the register mask slots contained in LI.
 | |
|   // Start with a binary search of RegMaskSlots to find a starting point.
 | |
|   ArrayRef<SlotIndex>::iterator SlotI =
 | |
|     std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
 | |
|   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
 | |
| 
 | |
|   // No slots in range, LI begins after the last call.
 | |
|   if (SlotI == SlotE)
 | |
|     return false;
 | |
| 
 | |
|   bool Found = false;
 | |
|   while (true) {
 | |
|     assert(*SlotI >= LiveI->start);
 | |
|     // Loop over all slots overlapping this segment.
 | |
|     while (*SlotI < LiveI->end) {
 | |
|       // *SlotI overlaps LI. Collect mask bits.
 | |
|       if (!Found) {
 | |
|         // This is the first overlap. Initialize UsableRegs to all ones.
 | |
|         UsableRegs.clear();
 | |
|         UsableRegs.resize(TRI->getNumRegs(), true);
 | |
|         Found = true;
 | |
|       }
 | |
|       // Remove usable registers clobbered by this mask.
 | |
|       UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
 | |
|       if (++SlotI == SlotE)
 | |
|         return Found;
 | |
|     }
 | |
|     // *SlotI is beyond the current LI segment.
 | |
|     LiveI = LI.advanceTo(LiveI, *SlotI);
 | |
|     if (LiveI == LiveE)
 | |
|       return Found;
 | |
|     // Advance SlotI until it overlaps.
 | |
|     while (*SlotI < LiveI->start)
 | |
|       if (++SlotI == SlotE)
 | |
|         return Found;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         IntervalUpdate class.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Toolkit used by handleMove to trim or extend live intervals.
 | |
| class LiveIntervals::HMEditor {
 | |
| private:
 | |
|   LiveIntervals& LIS;
 | |
|   const MachineRegisterInfo& MRI;
 | |
|   const TargetRegisterInfo& TRI;
 | |
|   SlotIndex OldIdx;
 | |
|   SlotIndex NewIdx;
 | |
|   SmallPtrSet<LiveRange*, 8> Updated;
 | |
|   bool UpdateFlags;
 | |
| 
 | |
| public:
 | |
|   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
 | |
|            const TargetRegisterInfo& TRI,
 | |
|            SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
 | |
|     : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
 | |
|       UpdateFlags(UpdateFlags) {}
 | |
| 
 | |
|   // FIXME: UpdateFlags is a workaround that creates live intervals for all
 | |
|   // physregs, even those that aren't needed for regalloc, in order to update
 | |
|   // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
 | |
|   // flags, and postRA passes will use a live register utility instead.
 | |
|   LiveRange *getRegUnitLI(unsigned Unit) {
 | |
|     if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
 | |
|       return &LIS.getRegUnit(Unit);
 | |
|     return LIS.getCachedRegUnit(Unit);
 | |
|   }
 | |
| 
 | |
|   /// Update all live ranges touched by MI, assuming a move from OldIdx to
 | |
|   /// NewIdx.
 | |
|   void updateAllRanges(MachineInstr *MI) {
 | |
|     LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
 | |
|                       << *MI);
 | |
|     bool hasRegMask = false;
 | |
|     for (MachineOperand &MO : MI->operands()) {
 | |
|       if (MO.isRegMask())
 | |
|         hasRegMask = true;
 | |
|       if (!MO.isReg())
 | |
|         continue;
 | |
|       if (MO.isUse()) {
 | |
|         if (!MO.readsReg())
 | |
|           continue;
 | |
|         // Aggressively clear all kill flags.
 | |
|         // They are reinserted by VirtRegRewriter.
 | |
|         MO.setIsKill(false);
 | |
|       }
 | |
| 
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (!Reg)
 | |
|         continue;
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|         LiveInterval &LI = LIS.getInterval(Reg);
 | |
|         if (LI.hasSubRanges()) {
 | |
|           unsigned SubReg = MO.getSubReg();
 | |
|           LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
 | |
|                                         : MRI.getMaxLaneMaskForVReg(Reg);
 | |
|           for (LiveInterval::SubRange &S : LI.subranges()) {
 | |
|             if ((S.LaneMask & LaneMask).none())
 | |
|               continue;
 | |
|             updateRange(S, Reg, S.LaneMask);
 | |
|           }
 | |
|         }
 | |
|         updateRange(LI, Reg, LaneBitmask::getNone());
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // For physregs, only update the regunits that actually have a
 | |
|       // precomputed live range.
 | |
|       for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
 | |
|         if (LiveRange *LR = getRegUnitLI(*Units))
 | |
|           updateRange(*LR, *Units, LaneBitmask::getNone());
 | |
|     }
 | |
|     if (hasRegMask)
 | |
|       updateRegMaskSlots();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// Update a single live range, assuming an instruction has been moved from
 | |
|   /// OldIdx to NewIdx.
 | |
|   void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
 | |
|     if (!Updated.insert(&LR).second)
 | |
|       return;
 | |
|     LLVM_DEBUG({
 | |
|       dbgs() << "     ";
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|         dbgs() << printReg(Reg);
 | |
|         if (LaneMask.any())
 | |
|           dbgs() << " L" << PrintLaneMask(LaneMask);
 | |
|       } else {
 | |
|         dbgs() << printRegUnit(Reg, &TRI);
 | |
|       }
 | |
|       dbgs() << ":\t" << LR << '\n';
 | |
|     });
 | |
|     if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
 | |
|       handleMoveDown(LR);
 | |
|     else
 | |
|       handleMoveUp(LR, Reg, LaneMask);
 | |
|     LLVM_DEBUG(dbgs() << "        -->\t" << LR << '\n');
 | |
|     LR.verify();
 | |
|   }
 | |
| 
 | |
|   /// Update LR to reflect an instruction has been moved downwards from OldIdx
 | |
|   /// to NewIdx (OldIdx < NewIdx).
 | |
|   void handleMoveDown(LiveRange &LR) {
 | |
|     LiveRange::iterator E = LR.end();
 | |
|     // Segment going into OldIdx.
 | |
|     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
 | |
| 
 | |
|     // No value live before or after OldIdx? Nothing to do.
 | |
|     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
 | |
|       return;
 | |
| 
 | |
|     LiveRange::iterator OldIdxOut;
 | |
|     // Do we have a value live-in to OldIdx?
 | |
|     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
 | |
|       // If the live-in value already extends to NewIdx, there is nothing to do.
 | |
|       if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
 | |
|         return;
 | |
|       // Aggressively remove all kill flags from the old kill point.
 | |
|       // Kill flags shouldn't be used while live intervals exist, they will be
 | |
|       // reinserted by VirtRegRewriter.
 | |
|       if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
 | |
|         for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
 | |
|           if (MO->isReg() && MO->isUse())
 | |
|             MO->setIsKill(false);
 | |
| 
 | |
|       // Is there a def before NewIdx which is not OldIdx?
 | |
|       LiveRange::iterator Next = std::next(OldIdxIn);
 | |
|       if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
 | |
|           SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
 | |
|         // If we are here then OldIdx was just a use but not a def. We only have
 | |
|         // to ensure liveness extends to NewIdx.
 | |
|         LiveRange::iterator NewIdxIn =
 | |
|           LR.advanceTo(Next, NewIdx.getBaseIndex());
 | |
|         // Extend the segment before NewIdx if necessary.
 | |
|         if (NewIdxIn == E ||
 | |
|             !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
 | |
|           LiveRange::iterator Prev = std::prev(NewIdxIn);
 | |
|           Prev->end = NewIdx.getRegSlot();
 | |
|         }
 | |
|         // Extend OldIdxIn.
 | |
|         OldIdxIn->end = Next->start;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
 | |
|       // invalid by overlapping ranges.
 | |
|       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
 | |
|       OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
 | |
|       // If this was not a kill, then there was no def and we're done.
 | |
|       if (!isKill)
 | |
|         return;
 | |
| 
 | |
|       // Did we have a Def at OldIdx?
 | |
|       OldIdxOut = Next;
 | |
|       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
 | |
|         return;
 | |
|     } else {
 | |
|       OldIdxOut = OldIdxIn;
 | |
|     }
 | |
| 
 | |
|     // If we are here then there is a Definition at OldIdx. OldIdxOut points
 | |
|     // to the segment starting there.
 | |
|     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
 | |
|            "No def?");
 | |
|     VNInfo *OldIdxVNI = OldIdxOut->valno;
 | |
|     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
 | |
| 
 | |
|     // If the defined value extends beyond NewIdx, just move the beginning
 | |
|     // of the segment to NewIdx.
 | |
|     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
 | |
|     if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
 | |
|       OldIdxVNI->def = NewIdxDef;
 | |
|       OldIdxOut->start = OldIdxVNI->def;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If we are here then we have a Definition at OldIdx which ends before
 | |
|     // NewIdx.
 | |
| 
 | |
|     // Is there an existing Def at NewIdx?
 | |
|     LiveRange::iterator AfterNewIdx
 | |
|       = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
 | |
|     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
 | |
|     if (!OldIdxDefIsDead &&
 | |
|         SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
 | |
|       // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
 | |
|       VNInfo *DefVNI;
 | |
|       if (OldIdxOut != LR.begin() &&
 | |
|           !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
 | |
|                                      OldIdxOut->start)) {
 | |
|         // There is no gap between OldIdxOut and its predecessor anymore,
 | |
|         // merge them.
 | |
|         LiveRange::iterator IPrev = std::prev(OldIdxOut);
 | |
|         DefVNI = OldIdxVNI;
 | |
|         IPrev->end = OldIdxOut->end;
 | |
|       } else {
 | |
|         // The value is live in to OldIdx
 | |
|         LiveRange::iterator INext = std::next(OldIdxOut);
 | |
|         assert(INext != E && "Must have following segment");
 | |
|         // We merge OldIdxOut and its successor. As we're dealing with subreg
 | |
|         // reordering, there is always a successor to OldIdxOut in the same BB
 | |
|         // We don't need INext->valno anymore and will reuse for the new segment
 | |
|         // we create later.
 | |
|         DefVNI = OldIdxVNI;
 | |
|         INext->start = OldIdxOut->end;
 | |
|         INext->valno->def = INext->start;
 | |
|       }
 | |
|       // If NewIdx is behind the last segment, extend that and append a new one.
 | |
|       if (AfterNewIdx == E) {
 | |
|         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
 | |
|         // one position.
 | |
|         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
 | |
|         // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
 | |
|         std::copy(std::next(OldIdxOut), E, OldIdxOut);
 | |
|         // The last segment is undefined now, reuse it for a dead def.
 | |
|         LiveRange::iterator NewSegment = std::prev(E);
 | |
|         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
 | |
|                                          DefVNI);
 | |
|         DefVNI->def = NewIdxDef;
 | |
| 
 | |
|         LiveRange::iterator Prev = std::prev(NewSegment);
 | |
|         Prev->end = NewIdxDef;
 | |
|       } else {
 | |
|         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
 | |
|         // one position.
 | |
|         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
 | |
|         // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
 | |
|         std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
 | |
|         LiveRange::iterator Prev = std::prev(AfterNewIdx);
 | |
|         // We have two cases:
 | |
|         if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
 | |
|           // Case 1: NewIdx is inside a liverange. Split this liverange at
 | |
|           // NewIdxDef into the segment "Prev" followed by "NewSegment".
 | |
|           LiveRange::iterator NewSegment = AfterNewIdx;
 | |
|           *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
 | |
|           Prev->valno->def = NewIdxDef;
 | |
| 
 | |
|           *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
 | |
|           DefVNI->def = Prev->start;
 | |
|         } else {
 | |
|           // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
 | |
|           // turn Prev into a segment from NewIdx to AfterNewIdx->start.
 | |
|           *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
 | |
|           DefVNI->def = NewIdxDef;
 | |
|           assert(DefVNI != AfterNewIdx->valno);
 | |
|         }
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (AfterNewIdx != E &&
 | |
|         SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
 | |
|       // There is an existing def at NewIdx. The def at OldIdx is coalesced into
 | |
|       // that value.
 | |
|       assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
 | |
|       LR.removeValNo(OldIdxVNI);
 | |
|     } else {
 | |
|       // There was no existing def at NewIdx. We need to create a dead def
 | |
|       // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
 | |
|       // a new segment at the place where we want to construct the dead def.
 | |
|       //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
 | |
|       // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
 | |
|       assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
 | |
|       std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
 | |
|       // We can reuse OldIdxVNI now.
 | |
|       LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
 | |
|       VNInfo *NewSegmentVNI = OldIdxVNI;
 | |
|       NewSegmentVNI->def = NewIdxDef;
 | |
|       *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
 | |
|                                        NewSegmentVNI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// Update LR to reflect an instruction has been moved upwards from OldIdx
 | |
|   /// to NewIdx (NewIdx < OldIdx).
 | |
|   void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
 | |
|     LiveRange::iterator E = LR.end();
 | |
|     // Segment going into OldIdx.
 | |
|     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
 | |
| 
 | |
|     // No value live before or after OldIdx? Nothing to do.
 | |
|     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
 | |
|       return;
 | |
| 
 | |
|     LiveRange::iterator OldIdxOut;
 | |
|     // Do we have a value live-in to OldIdx?
 | |
|     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
 | |
|       // If the live-in value isn't killed here, then we have no Def at
 | |
|       // OldIdx, moreover the value must be live at NewIdx so there is nothing
 | |
|       // to do.
 | |
|       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
 | |
|       if (!isKill)
 | |
|         return;
 | |
| 
 | |
|       // At this point we have to move OldIdxIn->end back to the nearest
 | |
|       // previous use or (dead-)def but no further than NewIdx.
 | |
|       SlotIndex DefBeforeOldIdx
 | |
|         = std::max(OldIdxIn->start.getDeadSlot(),
 | |
|                    NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
 | |
|       OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
 | |
| 
 | |
|       // Did we have a Def at OldIdx? If not we are done now.
 | |
|       OldIdxOut = std::next(OldIdxIn);
 | |
|       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
 | |
|         return;
 | |
|     } else {
 | |
|       OldIdxOut = OldIdxIn;
 | |
|       OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
 | |
|     }
 | |
| 
 | |
|     // If we are here then there is a Definition at OldIdx. OldIdxOut points
 | |
|     // to the segment starting there.
 | |
|     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
 | |
|            "No def?");
 | |
|     VNInfo *OldIdxVNI = OldIdxOut->valno;
 | |
|     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
 | |
|     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
 | |
| 
 | |
|     // Is there an existing def at NewIdx?
 | |
|     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
 | |
|     LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
 | |
|     if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
 | |
|       assert(NewIdxOut->valno != OldIdxVNI &&
 | |
|              "Same value defined more than once?");
 | |
|       // If OldIdx was a dead def remove it.
 | |
|       if (!OldIdxDefIsDead) {
 | |
|         // Remove segment starting at NewIdx and move begin of OldIdxOut to
 | |
|         // NewIdx so it can take its place.
 | |
|         OldIdxVNI->def = NewIdxDef;
 | |
|         OldIdxOut->start = NewIdxDef;
 | |
|         LR.removeValNo(NewIdxOut->valno);
 | |
|       } else {
 | |
|         // Simply remove the dead def at OldIdx.
 | |
|         LR.removeValNo(OldIdxVNI);
 | |
|       }
 | |
|     } else {
 | |
|       // Previously nothing was live after NewIdx, so all we have to do now is
 | |
|       // move the begin of OldIdxOut to NewIdx.
 | |
|       if (!OldIdxDefIsDead) {
 | |
|         // Do we have any intermediate Defs between OldIdx and NewIdx?
 | |
|         if (OldIdxIn != E &&
 | |
|             SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
 | |
|           // OldIdx is not a dead def and NewIdx is before predecessor start.
 | |
|           LiveRange::iterator NewIdxIn = NewIdxOut;
 | |
|           assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
 | |
|           const SlotIndex SplitPos = NewIdxDef;
 | |
|           OldIdxVNI = OldIdxIn->valno;
 | |
| 
 | |
|           // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
 | |
|           OldIdxOut->valno->def = OldIdxIn->start;
 | |
|           *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
 | |
|                                           OldIdxOut->valno);
 | |
|           // OldIdxIn and OldIdxVNI are now undef and can be overridden.
 | |
|           // We Slide [NewIdxIn, OldIdxIn) down one position.
 | |
|           //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
 | |
|           // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
 | |
|           std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
 | |
|           // NewIdxIn is now considered undef so we can reuse it for the moved
 | |
|           // value.
 | |
|           LiveRange::iterator NewSegment = NewIdxIn;
 | |
|           LiveRange::iterator Next = std::next(NewSegment);
 | |
|           if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
 | |
|             // There is no gap between NewSegment and its predecessor.
 | |
|             *NewSegment = LiveRange::Segment(Next->start, SplitPos,
 | |
|                                              Next->valno);
 | |
|             *Next = LiveRange::Segment(SplitPos, Next->end, OldIdxVNI);
 | |
|             Next->valno->def = SplitPos;
 | |
|           } else {
 | |
|             // There is a gap between NewSegment and its predecessor
 | |
|             // Value becomes live in.
 | |
|             *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
 | |
|             NewSegment->valno->def = SplitPos;
 | |
|           }
 | |
|         } else {
 | |
|           // Leave the end point of a live def.
 | |
|           OldIdxOut->start = NewIdxDef;
 | |
|           OldIdxVNI->def = NewIdxDef;
 | |
|           if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
 | |
|             OldIdxIn->end = NewIdx.getRegSlot();
 | |
|         }
 | |
|       } else if (OldIdxIn != E
 | |
|           && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
 | |
|           && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
 | |
|         // OldIdxVNI is a dead def that has been moved into the middle of
 | |
|         // another value in LR. That can happen when LR is a whole register,
 | |
|         // but the dead def is a write to a subreg that is dead at NewIdx.
 | |
|         // The dead def may have been moved across other values
 | |
|         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
 | |
|         // down one position.
 | |
|         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
 | |
|         // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
 | |
|         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
 | |
|         // Modify the segment at NewIdxOut and the following segment to meet at
 | |
|         // the point of the dead def, with the following segment getting
 | |
|         // OldIdxVNI as its value number.
 | |
|         *NewIdxOut = LiveRange::Segment(
 | |
|             NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
 | |
|         *(NewIdxOut + 1) = LiveRange::Segment(
 | |
|             NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
 | |
|         OldIdxVNI->def = NewIdxDef;
 | |
|         // Modify subsequent segments to be defined by the moved def OldIdxVNI.
 | |
|         for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
 | |
|           Idx->valno = OldIdxVNI;
 | |
|         // Aggressively remove all dead flags from the former dead definition.
 | |
|         // Kill/dead flags shouldn't be used while live intervals exist; they
 | |
|         // will be reinserted by VirtRegRewriter.
 | |
|         if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
 | |
|           for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
 | |
|             if (MO->isReg() && !MO->isUse())
 | |
|               MO->setIsDead(false);
 | |
|       } else {
 | |
|         // OldIdxVNI is a dead def. It may have been moved across other values
 | |
|         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
 | |
|         // down one position.
 | |
|         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
 | |
|         // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
 | |
|         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
 | |
|         // OldIdxVNI can be reused now to build a new dead def segment.
 | |
|         LiveRange::iterator NewSegment = NewIdxOut;
 | |
|         VNInfo *NewSegmentVNI = OldIdxVNI;
 | |
|         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
 | |
|                                          NewSegmentVNI);
 | |
|         NewSegmentVNI->def = NewIdxDef;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void updateRegMaskSlots() {
 | |
|     SmallVectorImpl<SlotIndex>::iterator RI =
 | |
|       std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
 | |
|                        OldIdx);
 | |
|     assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
 | |
|            "No RegMask at OldIdx.");
 | |
|     *RI = NewIdx.getRegSlot();
 | |
|     assert((RI == LIS.RegMaskSlots.begin() ||
 | |
|             SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
 | |
|            "Cannot move regmask instruction above another call");
 | |
|     assert((std::next(RI) == LIS.RegMaskSlots.end() ||
 | |
|             SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
 | |
|            "Cannot move regmask instruction below another call");
 | |
|   }
 | |
| 
 | |
|   // Return the last use of reg between NewIdx and OldIdx.
 | |
|   SlotIndex findLastUseBefore(SlotIndex Before, unsigned Reg,
 | |
|                               LaneBitmask LaneMask) {
 | |
|     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|       SlotIndex LastUse = Before;
 | |
|       for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
 | |
|         if (MO.isUndef())
 | |
|           continue;
 | |
|         unsigned SubReg = MO.getSubReg();
 | |
|         if (SubReg != 0 && LaneMask.any()
 | |
|             && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
 | |
|           continue;
 | |
| 
 | |
|         const MachineInstr &MI = *MO.getParent();
 | |
|         SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
 | |
|         if (InstSlot > LastUse && InstSlot < OldIdx)
 | |
|           LastUse = InstSlot.getRegSlot();
 | |
|       }
 | |
|       return LastUse;
 | |
|     }
 | |
| 
 | |
|     // This is a regunit interval, so scanning the use list could be very
 | |
|     // expensive. Scan upwards from OldIdx instead.
 | |
|     assert(Before < OldIdx && "Expected upwards move");
 | |
|     SlotIndexes *Indexes = LIS.getSlotIndexes();
 | |
|     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
 | |
| 
 | |
|     // OldIdx may not correspond to an instruction any longer, so set MII to
 | |
|     // point to the next instruction after OldIdx, or MBB->end().
 | |
|     MachineBasicBlock::iterator MII = MBB->end();
 | |
|     if (MachineInstr *MI = Indexes->getInstructionFromIndex(
 | |
|                            Indexes->getNextNonNullIndex(OldIdx)))
 | |
|       if (MI->getParent() == MBB)
 | |
|         MII = MI;
 | |
| 
 | |
|     MachineBasicBlock::iterator Begin = MBB->begin();
 | |
|     while (MII != Begin) {
 | |
|       if ((--MII)->isDebugInstr())
 | |
|         continue;
 | |
|       SlotIndex Idx = Indexes->getInstructionIndex(*MII);
 | |
| 
 | |
|       // Stop searching when Before is reached.
 | |
|       if (!SlotIndex::isEarlierInstr(Before, Idx))
 | |
|         return Before;
 | |
| 
 | |
|       // Check if MII uses Reg.
 | |
|       for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
 | |
|         if (MO->isReg() && !MO->isUndef() &&
 | |
|             TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
 | |
|             TRI.hasRegUnit(MO->getReg(), Reg))
 | |
|           return Idx.getRegSlot();
 | |
|     }
 | |
|     // Didn't reach Before. It must be the first instruction in the block.
 | |
|     return Before;
 | |
|   }
 | |
| };
 | |
| 
 | |
| void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
 | |
|   assert(!MI.isBundled() && "Can't handle bundled instructions yet.");
 | |
|   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
 | |
|   Indexes->removeMachineInstrFromMaps(MI);
 | |
|   SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
 | |
|   assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
 | |
|          OldIndex < getMBBEndIdx(MI.getParent()) &&
 | |
|          "Cannot handle moves across basic block boundaries.");
 | |
| 
 | |
|   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
 | |
|   HME.updateAllRanges(&MI);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handleMoveIntoBundle(MachineInstr &MI,
 | |
|                                          MachineInstr &BundleStart,
 | |
|                                          bool UpdateFlags) {
 | |
|   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
 | |
|   SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
 | |
|   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
 | |
|   HME.updateAllRanges(&MI);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
 | |
|                                         const MachineBasicBlock::iterator End,
 | |
|                                         const SlotIndex endIdx,
 | |
|                                         LiveRange &LR, const unsigned Reg,
 | |
|                                         LaneBitmask LaneMask) {
 | |
|   LiveInterval::iterator LII = LR.find(endIdx);
 | |
|   SlotIndex lastUseIdx;
 | |
|   if (LII == LR.begin()) {
 | |
|     // This happens when the function is called for a subregister that only
 | |
|     // occurs _after_ the range that is to be repaired.
 | |
|     return;
 | |
|   }
 | |
|   if (LII != LR.end() && LII->start < endIdx)
 | |
|     lastUseIdx = LII->end;
 | |
|   else
 | |
|     --LII;
 | |
| 
 | |
|   for (MachineBasicBlock::iterator I = End; I != Begin;) {
 | |
|     --I;
 | |
|     MachineInstr &MI = *I;
 | |
|     if (MI.isDebugInstr())
 | |
|       continue;
 | |
| 
 | |
|     SlotIndex instrIdx = getInstructionIndex(MI);
 | |
|     bool isStartValid = getInstructionFromIndex(LII->start);
 | |
|     bool isEndValid = getInstructionFromIndex(LII->end);
 | |
| 
 | |
|     // FIXME: This doesn't currently handle early-clobber or multiple removed
 | |
|     // defs inside of the region to repair.
 | |
|     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
 | |
|                                     OE = MI.operands_end();
 | |
|          OI != OE; ++OI) {
 | |
|       const MachineOperand &MO = *OI;
 | |
|       if (!MO.isReg() || MO.getReg() != Reg)
 | |
|         continue;
 | |
| 
 | |
|       unsigned SubReg = MO.getSubReg();
 | |
|       LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
 | |
|       if ((Mask & LaneMask).none())
 | |
|         continue;
 | |
| 
 | |
|       if (MO.isDef()) {
 | |
|         if (!isStartValid) {
 | |
|           if (LII->end.isDead()) {
 | |
|             SlotIndex prevStart;
 | |
|             if (LII != LR.begin())
 | |
|               prevStart = std::prev(LII)->start;
 | |
| 
 | |
|             // FIXME: This could be more efficient if there was a
 | |
|             // removeSegment method that returned an iterator.
 | |
|             LR.removeSegment(*LII, true);
 | |
|             if (prevStart.isValid())
 | |
|               LII = LR.find(prevStart);
 | |
|             else
 | |
|               LII = LR.begin();
 | |
|           } else {
 | |
|             LII->start = instrIdx.getRegSlot();
 | |
|             LII->valno->def = instrIdx.getRegSlot();
 | |
|             if (MO.getSubReg() && !MO.isUndef())
 | |
|               lastUseIdx = instrIdx.getRegSlot();
 | |
|             else
 | |
|               lastUseIdx = SlotIndex();
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (!lastUseIdx.isValid()) {
 | |
|           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
 | |
|           LiveRange::Segment S(instrIdx.getRegSlot(),
 | |
|                                instrIdx.getDeadSlot(), VNI);
 | |
|           LII = LR.addSegment(S);
 | |
|         } else if (LII->start != instrIdx.getRegSlot()) {
 | |
|           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
 | |
|           LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
 | |
|           LII = LR.addSegment(S);
 | |
|         }
 | |
| 
 | |
|         if (MO.getSubReg() && !MO.isUndef())
 | |
|           lastUseIdx = instrIdx.getRegSlot();
 | |
|         else
 | |
|           lastUseIdx = SlotIndex();
 | |
|       } else if (MO.isUse()) {
 | |
|         // FIXME: This should probably be handled outside of this branch,
 | |
|         // either as part of the def case (for defs inside of the region) or
 | |
|         // after the loop over the region.
 | |
|         if (!isEndValid && !LII->end.isBlock())
 | |
|           LII->end = instrIdx.getRegSlot();
 | |
|         if (!lastUseIdx.isValid())
 | |
|           lastUseIdx = instrIdx.getRegSlot();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
 | |
|                                       MachineBasicBlock::iterator Begin,
 | |
|                                       MachineBasicBlock::iterator End,
 | |
|                                       ArrayRef<unsigned> OrigRegs) {
 | |
|   // Find anchor points, which are at the beginning/end of blocks or at
 | |
|   // instructions that already have indexes.
 | |
|   while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin))
 | |
|     --Begin;
 | |
|   while (End != MBB->end() && !Indexes->hasIndex(*End))
 | |
|     ++End;
 | |
| 
 | |
|   SlotIndex endIdx;
 | |
|   if (End == MBB->end())
 | |
|     endIdx = getMBBEndIdx(MBB).getPrevSlot();
 | |
|   else
 | |
|     endIdx = getInstructionIndex(*End);
 | |
| 
 | |
|   Indexes->repairIndexesInRange(MBB, Begin, End);
 | |
| 
 | |
|   for (MachineBasicBlock::iterator I = End; I != Begin;) {
 | |
|     --I;
 | |
|     MachineInstr &MI = *I;
 | |
|     if (MI.isDebugInstr())
 | |
|       continue;
 | |
|     for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
 | |
|                                           MOE = MI.operands_end();
 | |
|          MOI != MOE; ++MOI) {
 | |
|       if (MOI->isReg() &&
 | |
|           TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
 | |
|           !hasInterval(MOI->getReg())) {
 | |
|         createAndComputeVirtRegInterval(MOI->getReg());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned Reg : OrigRegs) {
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
| 
 | |
|     LiveInterval &LI = getInterval(Reg);
 | |
|     // FIXME: Should we support undefs that gain defs?
 | |
|     if (!LI.hasAtLeastOneValue())
 | |
|       continue;
 | |
| 
 | |
|     for (LiveInterval::SubRange &S : LI.subranges())
 | |
|       repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
 | |
| 
 | |
|     repairOldRegInRange(Begin, End, endIdx, LI, Reg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
 | |
|   for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
 | |
|     if (LiveRange *LR = getCachedRegUnit(*Unit))
 | |
|       if (VNInfo *VNI = LR->getVNInfoAt(Pos))
 | |
|         LR->removeValNo(VNI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
 | |
|   // LI may not have the main range computed yet, but its subranges may
 | |
|   // be present.
 | |
|   VNInfo *VNI = LI.getVNInfoAt(Pos);
 | |
|   if (VNI != nullptr) {
 | |
|     assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
 | |
|     LI.removeValNo(VNI);
 | |
|   }
 | |
| 
 | |
|   // Also remove the value defined in subranges.
 | |
|   for (LiveInterval::SubRange &S : LI.subranges()) {
 | |
|     if (VNInfo *SVNI = S.getVNInfoAt(Pos))
 | |
|       if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
 | |
|         S.removeValNo(SVNI);
 | |
|   }
 | |
|   LI.removeEmptySubRanges();
 | |
| }
 | |
| 
 | |
| void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
 | |
|     SmallVectorImpl<LiveInterval*> &SplitLIs) {
 | |
|   ConnectedVNInfoEqClasses ConEQ(*this);
 | |
|   unsigned NumComp = ConEQ.Classify(LI);
 | |
|   if (NumComp <= 1)
 | |
|     return;
 | |
|   LLVM_DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
 | |
|   unsigned Reg = LI.reg;
 | |
|   const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
 | |
|   for (unsigned I = 1; I < NumComp; ++I) {
 | |
|     unsigned NewVReg = MRI->createVirtualRegister(RegClass);
 | |
|     LiveInterval &NewLI = createEmptyInterval(NewVReg);
 | |
|     SplitLIs.push_back(&NewLI);
 | |
|   }
 | |
|   ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
 | |
|   assert(LRCalc && "LRCalc not initialized.");
 | |
|   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
 | |
|   LRCalc->constructMainRangeFromSubranges(LI);
 | |
| }
 |