forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			705 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			705 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ScheduleDAG.cpp - Implement the ScheduleDAG class ------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file Implements the ScheduleDAG class, which is a base class used by
 | |
| /// scheduling implementation classes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | |
| #include "llvm/CodeGen/SelectionDAGNodes.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "pre-RA-sched"
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<bool> StressSchedOpt(
 | |
|   "stress-sched", cl::Hidden, cl::init(false),
 | |
|   cl::desc("Stress test instruction scheduling"));
 | |
| #endif
 | |
| 
 | |
| void SchedulingPriorityQueue::anchor() {}
 | |
| 
 | |
| ScheduleDAG::ScheduleDAG(MachineFunction &mf)
 | |
|     : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()),
 | |
|       TRI(mf.getSubtarget().getRegisterInfo()), MF(mf),
 | |
|       MRI(mf.getRegInfo()) {
 | |
| #ifndef NDEBUG
 | |
|   StressSched = StressSchedOpt;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| ScheduleDAG::~ScheduleDAG() = default;
 | |
| 
 | |
| void ScheduleDAG::clearDAG() {
 | |
|   SUnits.clear();
 | |
|   EntrySU = SUnit();
 | |
|   ExitSU = SUnit();
 | |
| }
 | |
| 
 | |
| const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
 | |
|   if (!Node || !Node->isMachineOpcode()) return nullptr;
 | |
|   return &TII->get(Node->getMachineOpcode());
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD void SDep::dump(const TargetRegisterInfo *TRI) const {
 | |
|   switch (getKind()) {
 | |
|   case Data:   dbgs() << "Data"; break;
 | |
|   case Anti:   dbgs() << "Anti"; break;
 | |
|   case Output: dbgs() << "Out "; break;
 | |
|   case Order:  dbgs() << "Ord "; break;
 | |
|   }
 | |
| 
 | |
|   switch (getKind()) {
 | |
|   case Data:
 | |
|     dbgs() << " Latency=" << getLatency();
 | |
|     if (TRI && isAssignedRegDep())
 | |
|       dbgs() << " Reg=" << printReg(getReg(), TRI);
 | |
|     break;
 | |
|   case Anti:
 | |
|   case Output:
 | |
|     dbgs() << " Latency=" << getLatency();
 | |
|     break;
 | |
|   case Order:
 | |
|     dbgs() << " Latency=" << getLatency();
 | |
|     switch(Contents.OrdKind) {
 | |
|     case Barrier:      dbgs() << " Barrier"; break;
 | |
|     case MayAliasMem:
 | |
|     case MustAliasMem: dbgs() << " Memory"; break;
 | |
|     case Artificial:   dbgs() << " Artificial"; break;
 | |
|     case Weak:         dbgs() << " Weak"; break;
 | |
|     case Cluster:      dbgs() << " Cluster"; break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool SUnit::addPred(const SDep &D, bool Required) {
 | |
|   // If this node already has this dependence, don't add a redundant one.
 | |
|   for (SDep &PredDep : Preds) {
 | |
|     // Zero-latency weak edges may be added purely for heuristic ordering. Don't
 | |
|     // add them if another kind of edge already exists.
 | |
|     if (!Required && PredDep.getSUnit() == D.getSUnit())
 | |
|       return false;
 | |
|     if (PredDep.overlaps(D)) {
 | |
|       // Extend the latency if needed. Equivalent to
 | |
|       // removePred(PredDep) + addPred(D).
 | |
|       if (PredDep.getLatency() < D.getLatency()) {
 | |
|         SUnit *PredSU = PredDep.getSUnit();
 | |
|         // Find the corresponding successor in N.
 | |
|         SDep ForwardD = PredDep;
 | |
|         ForwardD.setSUnit(this);
 | |
|         for (SDep &SuccDep : PredSU->Succs) {
 | |
|           if (SuccDep == ForwardD) {
 | |
|             SuccDep.setLatency(D.getLatency());
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         PredDep.setLatency(D.getLatency());
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   // Now add a corresponding succ to N.
 | |
|   SDep P = D;
 | |
|   P.setSUnit(this);
 | |
|   SUnit *N = D.getSUnit();
 | |
|   // Update the bookkeeping.
 | |
|   if (D.getKind() == SDep::Data) {
 | |
|     assert(NumPreds < std::numeric_limits<unsigned>::max() &&
 | |
|            "NumPreds will overflow!");
 | |
|     assert(N->NumSuccs < std::numeric_limits<unsigned>::max() &&
 | |
|            "NumSuccs will overflow!");
 | |
|     ++NumPreds;
 | |
|     ++N->NumSuccs;
 | |
|   }
 | |
|   if (!N->isScheduled) {
 | |
|     if (D.isWeak()) {
 | |
|       ++WeakPredsLeft;
 | |
|     }
 | |
|     else {
 | |
|       assert(NumPredsLeft < std::numeric_limits<unsigned>::max() &&
 | |
|              "NumPredsLeft will overflow!");
 | |
|       ++NumPredsLeft;
 | |
|     }
 | |
|   }
 | |
|   if (!isScheduled) {
 | |
|     if (D.isWeak()) {
 | |
|       ++N->WeakSuccsLeft;
 | |
|     }
 | |
|     else {
 | |
|       assert(N->NumSuccsLeft < std::numeric_limits<unsigned>::max() &&
 | |
|              "NumSuccsLeft will overflow!");
 | |
|       ++N->NumSuccsLeft;
 | |
|     }
 | |
|   }
 | |
|   Preds.push_back(D);
 | |
|   N->Succs.push_back(P);
 | |
|   if (P.getLatency() != 0) {
 | |
|     this->setDepthDirty();
 | |
|     N->setHeightDirty();
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SUnit::removePred(const SDep &D) {
 | |
|   // Find the matching predecessor.
 | |
|   SmallVectorImpl<SDep>::iterator I = llvm::find(Preds, D);
 | |
|   if (I == Preds.end())
 | |
|     return;
 | |
|   // Find the corresponding successor in N.
 | |
|   SDep P = D;
 | |
|   P.setSUnit(this);
 | |
|   SUnit *N = D.getSUnit();
 | |
|   SmallVectorImpl<SDep>::iterator Succ = llvm::find(N->Succs, P);
 | |
|   assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!");
 | |
|   N->Succs.erase(Succ);
 | |
|   Preds.erase(I);
 | |
|   // Update the bookkeeping.
 | |
|   if (P.getKind() == SDep::Data) {
 | |
|     assert(NumPreds > 0 && "NumPreds will underflow!");
 | |
|     assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
 | |
|     --NumPreds;
 | |
|     --N->NumSuccs;
 | |
|   }
 | |
|   if (!N->isScheduled) {
 | |
|     if (D.isWeak())
 | |
|       --WeakPredsLeft;
 | |
|     else {
 | |
|       assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
 | |
|       --NumPredsLeft;
 | |
|     }
 | |
|   }
 | |
|   if (!isScheduled) {
 | |
|     if (D.isWeak())
 | |
|       --N->WeakSuccsLeft;
 | |
|     else {
 | |
|       assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
 | |
|       --N->NumSuccsLeft;
 | |
|     }
 | |
|   }
 | |
|   if (P.getLatency() != 0) {
 | |
|     this->setDepthDirty();
 | |
|     N->setHeightDirty();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SUnit::setDepthDirty() {
 | |
|   if (!isDepthCurrent) return;
 | |
|   SmallVector<SUnit*, 8> WorkList;
 | |
|   WorkList.push_back(this);
 | |
|   do {
 | |
|     SUnit *SU = WorkList.pop_back_val();
 | |
|     SU->isDepthCurrent = false;
 | |
|     for (SDep &SuccDep : SU->Succs) {
 | |
|       SUnit *SuccSU = SuccDep.getSUnit();
 | |
|       if (SuccSU->isDepthCurrent)
 | |
|         WorkList.push_back(SuccSU);
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| }
 | |
| 
 | |
| void SUnit::setHeightDirty() {
 | |
|   if (!isHeightCurrent) return;
 | |
|   SmallVector<SUnit*, 8> WorkList;
 | |
|   WorkList.push_back(this);
 | |
|   do {
 | |
|     SUnit *SU = WorkList.pop_back_val();
 | |
|     SU->isHeightCurrent = false;
 | |
|     for (SDep &PredDep : SU->Preds) {
 | |
|       SUnit *PredSU = PredDep.getSUnit();
 | |
|       if (PredSU->isHeightCurrent)
 | |
|         WorkList.push_back(PredSU);
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| }
 | |
| 
 | |
| void SUnit::setDepthToAtLeast(unsigned NewDepth) {
 | |
|   if (NewDepth <= getDepth())
 | |
|     return;
 | |
|   setDepthDirty();
 | |
|   Depth = NewDepth;
 | |
|   isDepthCurrent = true;
 | |
| }
 | |
| 
 | |
| void SUnit::setHeightToAtLeast(unsigned NewHeight) {
 | |
|   if (NewHeight <= getHeight())
 | |
|     return;
 | |
|   setHeightDirty();
 | |
|   Height = NewHeight;
 | |
|   isHeightCurrent = true;
 | |
| }
 | |
| 
 | |
| /// Calculates the maximal path from the node to the exit.
 | |
| void SUnit::ComputeDepth() {
 | |
|   SmallVector<SUnit*, 8> WorkList;
 | |
|   WorkList.push_back(this);
 | |
|   do {
 | |
|     SUnit *Cur = WorkList.back();
 | |
| 
 | |
|     bool Done = true;
 | |
|     unsigned MaxPredDepth = 0;
 | |
|     for (const SDep &PredDep : Cur->Preds) {
 | |
|       SUnit *PredSU = PredDep.getSUnit();
 | |
|       if (PredSU->isDepthCurrent)
 | |
|         MaxPredDepth = std::max(MaxPredDepth,
 | |
|                                 PredSU->Depth + PredDep.getLatency());
 | |
|       else {
 | |
|         Done = false;
 | |
|         WorkList.push_back(PredSU);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Done) {
 | |
|       WorkList.pop_back();
 | |
|       if (MaxPredDepth != Cur->Depth) {
 | |
|         Cur->setDepthDirty();
 | |
|         Cur->Depth = MaxPredDepth;
 | |
|       }
 | |
|       Cur->isDepthCurrent = true;
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| }
 | |
| 
 | |
| /// Calculates the maximal path from the node to the entry.
 | |
| void SUnit::ComputeHeight() {
 | |
|   SmallVector<SUnit*, 8> WorkList;
 | |
|   WorkList.push_back(this);
 | |
|   do {
 | |
|     SUnit *Cur = WorkList.back();
 | |
| 
 | |
|     bool Done = true;
 | |
|     unsigned MaxSuccHeight = 0;
 | |
|     for (const SDep &SuccDep : Cur->Succs) {
 | |
|       SUnit *SuccSU = SuccDep.getSUnit();
 | |
|       if (SuccSU->isHeightCurrent)
 | |
|         MaxSuccHeight = std::max(MaxSuccHeight,
 | |
|                                  SuccSU->Height + SuccDep.getLatency());
 | |
|       else {
 | |
|         Done = false;
 | |
|         WorkList.push_back(SuccSU);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Done) {
 | |
|       WorkList.pop_back();
 | |
|       if (MaxSuccHeight != Cur->Height) {
 | |
|         Cur->setHeightDirty();
 | |
|         Cur->Height = MaxSuccHeight;
 | |
|       }
 | |
|       Cur->isHeightCurrent = true;
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| }
 | |
| 
 | |
| void SUnit::biasCriticalPath() {
 | |
|   if (NumPreds < 2)
 | |
|     return;
 | |
| 
 | |
|   SUnit::pred_iterator BestI = Preds.begin();
 | |
|   unsigned MaxDepth = BestI->getSUnit()->getDepth();
 | |
|   for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E;
 | |
|        ++I) {
 | |
|     if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth)
 | |
|       BestI = I;
 | |
|   }
 | |
|   if (BestI != Preds.begin())
 | |
|     std::swap(*Preds.begin(), *BestI);
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void SUnit::dumpAttributes() const {
 | |
|   dbgs() << "  # preds left       : " << NumPredsLeft << "\n";
 | |
|   dbgs() << "  # succs left       : " << NumSuccsLeft << "\n";
 | |
|   if (WeakPredsLeft)
 | |
|     dbgs() << "  # weak preds left  : " << WeakPredsLeft << "\n";
 | |
|   if (WeakSuccsLeft)
 | |
|     dbgs() << "  # weak succs left  : " << WeakSuccsLeft << "\n";
 | |
|   dbgs() << "  # rdefs left       : " << NumRegDefsLeft << "\n";
 | |
|   dbgs() << "  Latency            : " << Latency << "\n";
 | |
|   dbgs() << "  Depth              : " << getDepth() << "\n";
 | |
|   dbgs() << "  Height             : " << getHeight() << "\n";
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeName(const SUnit &SU) const {
 | |
|   if (&SU == &EntrySU)
 | |
|     dbgs() << "EntrySU";
 | |
|   else if (&SU == &ExitSU)
 | |
|     dbgs() << "ExitSU";
 | |
|   else
 | |
|     dbgs() << "SU(" << SU.NodeNum << ")";
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD void ScheduleDAG::dumpNodeAll(const SUnit &SU) const {
 | |
|   dumpNode(SU);
 | |
|   SU.dumpAttributes();
 | |
|   if (SU.Preds.size() > 0) {
 | |
|     dbgs() << "  Predecessors:\n";
 | |
|     for (const SDep &Dep : SU.Preds) {
 | |
|       dbgs() << "    ";
 | |
|       dumpNodeName(*Dep.getSUnit());
 | |
|       dbgs() << ": ";
 | |
|       Dep.dump(TRI);
 | |
|       dbgs() << '\n';
 | |
|     }
 | |
|   }
 | |
|   if (SU.Succs.size() > 0) {
 | |
|     dbgs() << "  Successors:\n";
 | |
|     for (const SDep &Dep : SU.Succs) {
 | |
|       dbgs() << "    ";
 | |
|       dumpNodeName(*Dep.getSUnit());
 | |
|       dbgs() << ": ";
 | |
|       Dep.dump(TRI);
 | |
|       dbgs() << '\n';
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) {
 | |
|   bool AnyNotSched = false;
 | |
|   unsigned DeadNodes = 0;
 | |
|   for (const SUnit &SUnit : SUnits) {
 | |
|     if (!SUnit.isScheduled) {
 | |
|       if (SUnit.NumPreds == 0 && SUnit.NumSuccs == 0) {
 | |
|         ++DeadNodes;
 | |
|         continue;
 | |
|       }
 | |
|       if (!AnyNotSched)
 | |
|         dbgs() << "*** Scheduling failed! ***\n";
 | |
|       dumpNode(SUnit);
 | |
|       dbgs() << "has not been scheduled!\n";
 | |
|       AnyNotSched = true;
 | |
|     }
 | |
|     if (SUnit.isScheduled &&
 | |
|         (isBottomUp ? SUnit.getHeight() : SUnit.getDepth()) >
 | |
|           unsigned(std::numeric_limits<int>::max())) {
 | |
|       if (!AnyNotSched)
 | |
|         dbgs() << "*** Scheduling failed! ***\n";
 | |
|       dumpNode(SUnit);
 | |
|       dbgs() << "has an unexpected "
 | |
|            << (isBottomUp ? "Height" : "Depth") << " value!\n";
 | |
|       AnyNotSched = true;
 | |
|     }
 | |
|     if (isBottomUp) {
 | |
|       if (SUnit.NumSuccsLeft != 0) {
 | |
|         if (!AnyNotSched)
 | |
|           dbgs() << "*** Scheduling failed! ***\n";
 | |
|         dumpNode(SUnit);
 | |
|         dbgs() << "has successors left!\n";
 | |
|         AnyNotSched = true;
 | |
|       }
 | |
|     } else {
 | |
|       if (SUnit.NumPredsLeft != 0) {
 | |
|         if (!AnyNotSched)
 | |
|           dbgs() << "*** Scheduling failed! ***\n";
 | |
|         dumpNode(SUnit);
 | |
|         dbgs() << "has predecessors left!\n";
 | |
|         AnyNotSched = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   assert(!AnyNotSched);
 | |
|   return SUnits.size() - DeadNodes;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
 | |
|   // The idea of the algorithm is taken from
 | |
|   // "Online algorithms for managing the topological order of
 | |
|   // a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
 | |
|   // This is the MNR algorithm, which was first introduced by
 | |
|   // A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
 | |
|   // "Maintaining a topological order under edge insertions".
 | |
|   //
 | |
|   // Short description of the algorithm:
 | |
|   //
 | |
|   // Topological ordering, ord, of a DAG maps each node to a topological
 | |
|   // index so that for all edges X->Y it is the case that ord(X) < ord(Y).
 | |
|   //
 | |
|   // This means that if there is a path from the node X to the node Z,
 | |
|   // then ord(X) < ord(Z).
 | |
|   //
 | |
|   // This property can be used to check for reachability of nodes:
 | |
|   // if Z is reachable from X, then an insertion of the edge Z->X would
 | |
|   // create a cycle.
 | |
|   //
 | |
|   // The algorithm first computes a topological ordering for the DAG by
 | |
|   // initializing the Index2Node and Node2Index arrays and then tries to keep
 | |
|   // the ordering up-to-date after edge insertions by reordering the DAG.
 | |
|   //
 | |
|   // On insertion of the edge X->Y, the algorithm first marks by calling DFS
 | |
|   // the nodes reachable from Y, and then shifts them using Shift to lie
 | |
|   // immediately after X in Index2Node.
 | |
|   unsigned DAGSize = SUnits.size();
 | |
|   std::vector<SUnit*> WorkList;
 | |
|   WorkList.reserve(DAGSize);
 | |
| 
 | |
|   Index2Node.resize(DAGSize);
 | |
|   Node2Index.resize(DAGSize);
 | |
| 
 | |
|   // Initialize the data structures.
 | |
|   if (ExitSU)
 | |
|     WorkList.push_back(ExitSU);
 | |
|   for (SUnit &SU : SUnits) {
 | |
|     int NodeNum = SU.NodeNum;
 | |
|     unsigned Degree = SU.Succs.size();
 | |
|     // Temporarily use the Node2Index array as scratch space for degree counts.
 | |
|     Node2Index[NodeNum] = Degree;
 | |
| 
 | |
|     // Is it a node without dependencies?
 | |
|     if (Degree == 0) {
 | |
|       assert(SU.Succs.empty() && "SUnit should have no successors");
 | |
|       // Collect leaf nodes.
 | |
|       WorkList.push_back(&SU);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int Id = DAGSize;
 | |
|   while (!WorkList.empty()) {
 | |
|     SUnit *SU = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     if (SU->NodeNum < DAGSize)
 | |
|       Allocate(SU->NodeNum, --Id);
 | |
|     for (const SDep &PredDep : SU->Preds) {
 | |
|       SUnit *SU = PredDep.getSUnit();
 | |
|       if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum])
 | |
|         // If all dependencies of the node are processed already,
 | |
|         // then the node can be computed now.
 | |
|         WorkList.push_back(SU);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Visited.resize(DAGSize);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Check correctness of the ordering
 | |
|   for (SUnit &SU : SUnits)  {
 | |
|     for (const SDep &PD : SU.Preds) {
 | |
|       assert(Node2Index[SU.NodeNum] > Node2Index[PD.getSUnit()->NodeNum] &&
 | |
|       "Wrong topological sorting");
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
 | |
|   int UpperBound, LowerBound;
 | |
|   LowerBound = Node2Index[Y->NodeNum];
 | |
|   UpperBound = Node2Index[X->NodeNum];
 | |
|   bool HasLoop = false;
 | |
|   // Is Ord(X) < Ord(Y) ?
 | |
|   if (LowerBound < UpperBound) {
 | |
|     // Update the topological order.
 | |
|     Visited.reset();
 | |
|     DFS(Y, UpperBound, HasLoop);
 | |
|     assert(!HasLoop && "Inserted edge creates a loop!");
 | |
|     // Recompute topological indexes.
 | |
|     Shift(Visited, LowerBound, UpperBound);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
 | |
|   // InitDAGTopologicalSorting();
 | |
| }
 | |
| 
 | |
| void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
 | |
|                                      bool &HasLoop) {
 | |
|   std::vector<const SUnit*> WorkList;
 | |
|   WorkList.reserve(SUnits.size());
 | |
| 
 | |
|   WorkList.push_back(SU);
 | |
|   do {
 | |
|     SU = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     Visited.set(SU->NodeNum);
 | |
|     for (const SDep &SuccDep
 | |
|          : make_range(SU->Succs.rbegin(), SU->Succs.rend())) {
 | |
|       unsigned s = SuccDep.getSUnit()->NodeNum;
 | |
|       // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
 | |
|       if (s >= Node2Index.size())
 | |
|         continue;
 | |
|       if (Node2Index[s] == UpperBound) {
 | |
|         HasLoop = true;
 | |
|         return;
 | |
|       }
 | |
|       // Visit successors if not already and in affected region.
 | |
|       if (!Visited.test(s) && Node2Index[s] < UpperBound) {
 | |
|         WorkList.push_back(SuccDep.getSUnit());
 | |
|       }
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| }
 | |
| 
 | |
| std::vector<int> ScheduleDAGTopologicalSort::GetSubGraph(const SUnit &StartSU,
 | |
|                                                          const SUnit &TargetSU,
 | |
|                                                          bool &Success) {
 | |
|   std::vector<const SUnit*> WorkList;
 | |
|   int LowerBound = Node2Index[StartSU.NodeNum];
 | |
|   int UpperBound = Node2Index[TargetSU.NodeNum];
 | |
|   bool Found = false;
 | |
|   BitVector VisitedBack;
 | |
|   std::vector<int> Nodes;
 | |
| 
 | |
|   if (LowerBound > UpperBound) {
 | |
|     Success = false;
 | |
|     return Nodes;
 | |
|   }
 | |
| 
 | |
|   WorkList.reserve(SUnits.size());
 | |
|   Visited.reset();
 | |
| 
 | |
|   // Starting from StartSU, visit all successors up
 | |
|   // to UpperBound.
 | |
|   WorkList.push_back(&StartSU);
 | |
|   do {
 | |
|     const SUnit *SU = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     for (int I = SU->Succs.size()-1; I >= 0; --I) {
 | |
|       const SUnit *Succ = SU->Succs[I].getSUnit();
 | |
|       unsigned s = Succ->NodeNum;
 | |
|       // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
 | |
|       if (Succ->isBoundaryNode())
 | |
|         continue;
 | |
|       if (Node2Index[s] == UpperBound) {
 | |
|         Found = true;
 | |
|         continue;
 | |
|       }
 | |
|       // Visit successors if not already and in affected region.
 | |
|       if (!Visited.test(s) && Node2Index[s] < UpperBound) {
 | |
|         Visited.set(s);
 | |
|         WorkList.push_back(Succ);
 | |
|       }
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| 
 | |
|   if (!Found) {
 | |
|     Success = false;
 | |
|     return Nodes;
 | |
|   }
 | |
| 
 | |
|   WorkList.clear();
 | |
|   VisitedBack.resize(SUnits.size());
 | |
|   Found = false;
 | |
| 
 | |
|   // Starting from TargetSU, visit all predecessors up
 | |
|   // to LowerBound. SUs that are visited by the two
 | |
|   // passes are added to Nodes.
 | |
|   WorkList.push_back(&TargetSU);
 | |
|   do {
 | |
|     const SUnit *SU = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     for (int I = SU->Preds.size()-1; I >= 0; --I) {
 | |
|       const SUnit *Pred = SU->Preds[I].getSUnit();
 | |
|       unsigned s = Pred->NodeNum;
 | |
|       // Edges to non-SUnits are allowed but ignored (e.g. EntrySU).
 | |
|       if (Pred->isBoundaryNode())
 | |
|         continue;
 | |
|       if (Node2Index[s] == LowerBound) {
 | |
|         Found = true;
 | |
|         continue;
 | |
|       }
 | |
|       if (!VisitedBack.test(s) && Visited.test(s)) {
 | |
|         VisitedBack.set(s);
 | |
|         WorkList.push_back(Pred);
 | |
|         Nodes.push_back(s);
 | |
|       }
 | |
|     }
 | |
|   } while (!WorkList.empty());
 | |
| 
 | |
|   assert(Found && "Error in SUnit Graph!");
 | |
|   Success = true;
 | |
|   return Nodes;
 | |
| }
 | |
| 
 | |
| void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
 | |
|                                        int UpperBound) {
 | |
|   std::vector<int> L;
 | |
|   int shift = 0;
 | |
|   int i;
 | |
| 
 | |
|   for (i = LowerBound; i <= UpperBound; ++i) {
 | |
|     // w is node at topological index i.
 | |
|     int w = Index2Node[i];
 | |
|     if (Visited.test(w)) {
 | |
|       // Unmark.
 | |
|       Visited.reset(w);
 | |
|       L.push_back(w);
 | |
|       shift = shift + 1;
 | |
|     } else {
 | |
|       Allocate(w, i - shift);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned LI : L) {
 | |
|     Allocate(LI, i - shift);
 | |
|     i = i + 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) {
 | |
|   // Is SU reachable from TargetSU via successor edges?
 | |
|   if (IsReachable(SU, TargetSU))
 | |
|     return true;
 | |
|   for (const SDep &PredDep : TargetSU->Preds)
 | |
|     if (PredDep.isAssignedRegDep() &&
 | |
|         IsReachable(SU, PredDep.getSUnit()))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
 | |
|                                              const SUnit *TargetSU) {
 | |
|   // If insertion of the edge SU->TargetSU would create a cycle
 | |
|   // then there is a path from TargetSU to SU.
 | |
|   int UpperBound, LowerBound;
 | |
|   LowerBound = Node2Index[TargetSU->NodeNum];
 | |
|   UpperBound = Node2Index[SU->NodeNum];
 | |
|   bool HasLoop = false;
 | |
|   // Is Ord(TargetSU) < Ord(SU) ?
 | |
|   if (LowerBound < UpperBound) {
 | |
|     Visited.reset();
 | |
|     // There may be a path from TargetSU to SU. Check for it.
 | |
|     DFS(TargetSU, UpperBound, HasLoop);
 | |
|   }
 | |
|   return HasLoop;
 | |
| }
 | |
| 
 | |
| void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
 | |
|   Node2Index[n] = index;
 | |
|   Index2Node[index] = n;
 | |
| }
 | |
| 
 | |
| ScheduleDAGTopologicalSort::
 | |
| ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu)
 | |
|   : SUnits(sunits), ExitSU(exitsu) {}
 | |
| 
 | |
| ScheduleHazardRecognizer::~ScheduleHazardRecognizer() = default;
 |