forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1078 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1078 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- SelectionDAGBuilder.h - Selection-DAG building -----------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements routines for translating from LLVM IR into SelectionDAG IR.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
 | 
						|
#define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
 | 
						|
 | 
						|
#include "StatepointLowering.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/CodeGen/ISDOpcodes.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGNodes.h"
 | 
						|
#include "llvm/CodeGen/TargetLowering.h"
 | 
						|
#include "llvm/CodeGen/ValueTypes.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Statepoint.h"
 | 
						|
#include "llvm/Support/BranchProbability.h"
 | 
						|
#include "llvm/Support/CodeGen.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MachineValueType.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
class AllocaInst;
 | 
						|
class AtomicCmpXchgInst;
 | 
						|
class AtomicRMWInst;
 | 
						|
class BasicBlock;
 | 
						|
class BranchInst;
 | 
						|
class CallInst;
 | 
						|
class CatchPadInst;
 | 
						|
class CatchReturnInst;
 | 
						|
class CatchSwitchInst;
 | 
						|
class CleanupPadInst;
 | 
						|
class CleanupReturnInst;
 | 
						|
class Constant;
 | 
						|
class ConstantInt;
 | 
						|
class ConstrainedFPIntrinsic;
 | 
						|
class DbgValueInst;
 | 
						|
class DataLayout;
 | 
						|
class DIExpression;
 | 
						|
class DILocalVariable;
 | 
						|
class DILocation;
 | 
						|
class FenceInst;
 | 
						|
class FunctionLoweringInfo;
 | 
						|
class GCFunctionInfo;
 | 
						|
class GCRelocateInst;
 | 
						|
class GCResultInst;
 | 
						|
class IndirectBrInst;
 | 
						|
class InvokeInst;
 | 
						|
class LandingPadInst;
 | 
						|
class LLVMContext;
 | 
						|
class LoadInst;
 | 
						|
class MachineBasicBlock;
 | 
						|
class PHINode;
 | 
						|
class ResumeInst;
 | 
						|
class ReturnInst;
 | 
						|
class SDDbgValue;
 | 
						|
class StoreInst;
 | 
						|
class SwitchInst;
 | 
						|
class TargetLibraryInfo;
 | 
						|
class TargetMachine;
 | 
						|
class Type;
 | 
						|
class VAArgInst;
 | 
						|
class UnreachableInst;
 | 
						|
class Use;
 | 
						|
class User;
 | 
						|
class Value;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// SelectionDAGBuilder - This is the common target-independent lowering
 | 
						|
/// implementation that is parameterized by a TargetLowering object.
 | 
						|
///
 | 
						|
class SelectionDAGBuilder {
 | 
						|
  /// CurInst - The current instruction being visited
 | 
						|
  const Instruction *CurInst = nullptr;
 | 
						|
 | 
						|
  DenseMap<const Value*, SDValue> NodeMap;
 | 
						|
 | 
						|
  /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
 | 
						|
  /// to preserve debug information for incoming arguments.
 | 
						|
  DenseMap<const Value*, SDValue> UnusedArgNodeMap;
 | 
						|
 | 
						|
  /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
 | 
						|
  class DanglingDebugInfo {
 | 
						|
    const DbgValueInst* DI = nullptr;
 | 
						|
    DebugLoc dl;
 | 
						|
    unsigned SDNodeOrder = 0;
 | 
						|
 | 
						|
  public:
 | 
						|
    DanglingDebugInfo() = default;
 | 
						|
    DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO)
 | 
						|
        : DI(di), dl(std::move(DL)), SDNodeOrder(SDNO) {}
 | 
						|
 | 
						|
    const DbgValueInst* getDI() { return DI; }
 | 
						|
    DebugLoc getdl() { return dl; }
 | 
						|
    unsigned getSDNodeOrder() { return SDNodeOrder; }
 | 
						|
  };
 | 
						|
 | 
						|
  /// DanglingDebugInfoVector - Helper type for DanglingDebugInfoMap.
 | 
						|
  typedef std::vector<DanglingDebugInfo> DanglingDebugInfoVector;
 | 
						|
 | 
						|
  /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
 | 
						|
  /// yet seen the referent.  We defer handling these until we do see it.
 | 
						|
  DenseMap<const Value*, DanglingDebugInfoVector> DanglingDebugInfoMap;
 | 
						|
 | 
						|
public:
 | 
						|
  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
 | 
						|
  /// them up and then emit token factor nodes when possible.  This allows us to
 | 
						|
  /// get simple disambiguation between loads without worrying about alias
 | 
						|
  /// analysis.
 | 
						|
  SmallVector<SDValue, 8> PendingLoads;
 | 
						|
 | 
						|
  /// State used while lowering a statepoint sequence (gc_statepoint,
 | 
						|
  /// gc_relocate, and gc_result).  See StatepointLowering.hpp/cpp for details.
 | 
						|
  StatepointLoweringState StatepointLowering;
 | 
						|
 | 
						|
private:
 | 
						|
  /// PendingExports - CopyToReg nodes that copy values to virtual registers
 | 
						|
  /// for export to other blocks need to be emitted before any terminator
 | 
						|
  /// instruction, but they have no other ordering requirements. We bunch them
 | 
						|
  /// up and the emit a single tokenfactor for them just before terminator
 | 
						|
  /// instructions.
 | 
						|
  SmallVector<SDValue, 8> PendingExports;
 | 
						|
 | 
						|
  /// SDNodeOrder - A unique monotonically increasing number used to order the
 | 
						|
  /// SDNodes we create.
 | 
						|
  unsigned SDNodeOrder;
 | 
						|
 | 
						|
  enum CaseClusterKind {
 | 
						|
    /// A cluster of adjacent case labels with the same destination, or just one
 | 
						|
    /// case.
 | 
						|
    CC_Range,
 | 
						|
    /// A cluster of cases suitable for jump table lowering.
 | 
						|
    CC_JumpTable,
 | 
						|
    /// A cluster of cases suitable for bit test lowering.
 | 
						|
    CC_BitTests
 | 
						|
  };
 | 
						|
 | 
						|
  /// A cluster of case labels.
 | 
						|
  struct CaseCluster {
 | 
						|
    CaseClusterKind Kind;
 | 
						|
    const ConstantInt *Low, *High;
 | 
						|
    union {
 | 
						|
      MachineBasicBlock *MBB;
 | 
						|
      unsigned JTCasesIndex;
 | 
						|
      unsigned BTCasesIndex;
 | 
						|
    };
 | 
						|
    BranchProbability Prob;
 | 
						|
 | 
						|
    static CaseCluster range(const ConstantInt *Low, const ConstantInt *High,
 | 
						|
                             MachineBasicBlock *MBB, BranchProbability Prob) {
 | 
						|
      CaseCluster C;
 | 
						|
      C.Kind = CC_Range;
 | 
						|
      C.Low = Low;
 | 
						|
      C.High = High;
 | 
						|
      C.MBB = MBB;
 | 
						|
      C.Prob = Prob;
 | 
						|
      return C;
 | 
						|
    }
 | 
						|
 | 
						|
    static CaseCluster jumpTable(const ConstantInt *Low,
 | 
						|
                                 const ConstantInt *High, unsigned JTCasesIndex,
 | 
						|
                                 BranchProbability Prob) {
 | 
						|
      CaseCluster C;
 | 
						|
      C.Kind = CC_JumpTable;
 | 
						|
      C.Low = Low;
 | 
						|
      C.High = High;
 | 
						|
      C.JTCasesIndex = JTCasesIndex;
 | 
						|
      C.Prob = Prob;
 | 
						|
      return C;
 | 
						|
    }
 | 
						|
 | 
						|
    static CaseCluster bitTests(const ConstantInt *Low, const ConstantInt *High,
 | 
						|
                                unsigned BTCasesIndex, BranchProbability Prob) {
 | 
						|
      CaseCluster C;
 | 
						|
      C.Kind = CC_BitTests;
 | 
						|
      C.Low = Low;
 | 
						|
      C.High = High;
 | 
						|
      C.BTCasesIndex = BTCasesIndex;
 | 
						|
      C.Prob = Prob;
 | 
						|
      return C;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  using CaseClusterVector = std::vector<CaseCluster>;
 | 
						|
  using CaseClusterIt = CaseClusterVector::iterator;
 | 
						|
 | 
						|
  struct CaseBits {
 | 
						|
    uint64_t Mask = 0;
 | 
						|
    MachineBasicBlock* BB = nullptr;
 | 
						|
    unsigned Bits = 0;
 | 
						|
    BranchProbability ExtraProb;
 | 
						|
 | 
						|
    CaseBits() = default;
 | 
						|
    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits,
 | 
						|
             BranchProbability Prob):
 | 
						|
      Mask(mask), BB(bb), Bits(bits), ExtraProb(Prob) {}
 | 
						|
  };
 | 
						|
 | 
						|
  using CaseBitsVector = std::vector<CaseBits>;
 | 
						|
 | 
						|
  /// Sort Clusters and merge adjacent cases.
 | 
						|
  void sortAndRangeify(CaseClusterVector &Clusters);
 | 
						|
 | 
						|
  /// CaseBlock - This structure is used to communicate between
 | 
						|
  /// SelectionDAGBuilder and SDISel for the code generation of additional basic
 | 
						|
  /// blocks needed by multi-case switch statements.
 | 
						|
  struct CaseBlock {
 | 
						|
    // CC - the condition code to use for the case block's setcc node
 | 
						|
    ISD::CondCode CC;
 | 
						|
 | 
						|
    // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
 | 
						|
    // Emit by default LHS op RHS. MHS is used for range comparisons:
 | 
						|
    // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
 | 
						|
    const Value *CmpLHS, *CmpMHS, *CmpRHS;
 | 
						|
 | 
						|
    // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
 | 
						|
    MachineBasicBlock *TrueBB, *FalseBB;
 | 
						|
 | 
						|
    // ThisBB - the block into which to emit the code for the setcc and branches
 | 
						|
    MachineBasicBlock *ThisBB;
 | 
						|
 | 
						|
    /// The debug location of the instruction this CaseBlock was
 | 
						|
    /// produced from.
 | 
						|
    SDLoc DL;
 | 
						|
 | 
						|
    // TrueProb/FalseProb - branch weights.
 | 
						|
    BranchProbability TrueProb, FalseProb;
 | 
						|
 | 
						|
    CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
 | 
						|
              const Value *cmpmiddle, MachineBasicBlock *truebb,
 | 
						|
              MachineBasicBlock *falsebb, MachineBasicBlock *me,
 | 
						|
              SDLoc dl,
 | 
						|
              BranchProbability trueprob = BranchProbability::getUnknown(),
 | 
						|
              BranchProbability falseprob = BranchProbability::getUnknown())
 | 
						|
        : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
 | 
						|
          TrueBB(truebb), FalseBB(falsebb), ThisBB(me), DL(dl),
 | 
						|
          TrueProb(trueprob), FalseProb(falseprob) {}
 | 
						|
  };
 | 
						|
 | 
						|
  struct JumpTable {
 | 
						|
    /// Reg - the virtual register containing the index of the jump table entry
 | 
						|
    //. to jump to.
 | 
						|
    unsigned Reg;
 | 
						|
    /// JTI - the JumpTableIndex for this jump table in the function.
 | 
						|
    unsigned JTI;
 | 
						|
    /// MBB - the MBB into which to emit the code for the indirect jump.
 | 
						|
    MachineBasicBlock *MBB;
 | 
						|
    /// Default - the MBB of the default bb, which is a successor of the range
 | 
						|
    /// check MBB.  This is when updating PHI nodes in successors.
 | 
						|
    MachineBasicBlock *Default;
 | 
						|
 | 
						|
    JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
 | 
						|
              MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
 | 
						|
  };
 | 
						|
  struct JumpTableHeader {
 | 
						|
    APInt First;
 | 
						|
    APInt Last;
 | 
						|
    const Value *SValue;
 | 
						|
    MachineBasicBlock *HeaderBB;
 | 
						|
    bool Emitted;
 | 
						|
 | 
						|
    JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
 | 
						|
                    bool E = false)
 | 
						|
        : First(std::move(F)), Last(std::move(L)), SValue(SV), HeaderBB(H),
 | 
						|
          Emitted(E) {}
 | 
						|
  };
 | 
						|
  using JumpTableBlock = std::pair<JumpTableHeader, JumpTable>;
 | 
						|
 | 
						|
  struct BitTestCase {
 | 
						|
    uint64_t Mask;
 | 
						|
    MachineBasicBlock *ThisBB;
 | 
						|
    MachineBasicBlock *TargetBB;
 | 
						|
    BranchProbability ExtraProb;
 | 
						|
 | 
						|
    BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr,
 | 
						|
                BranchProbability Prob):
 | 
						|
      Mask(M), ThisBB(T), TargetBB(Tr), ExtraProb(Prob) {}
 | 
						|
  };
 | 
						|
 | 
						|
  using BitTestInfo = SmallVector<BitTestCase, 3>;
 | 
						|
 | 
						|
  struct BitTestBlock {
 | 
						|
    APInt First;
 | 
						|
    APInt Range;
 | 
						|
    const Value *SValue;
 | 
						|
    unsigned Reg;
 | 
						|
    MVT RegVT;
 | 
						|
    bool Emitted;
 | 
						|
    bool ContiguousRange;
 | 
						|
    MachineBasicBlock *Parent;
 | 
						|
    MachineBasicBlock *Default;
 | 
						|
    BitTestInfo Cases;
 | 
						|
    BranchProbability Prob;
 | 
						|
    BranchProbability DefaultProb;
 | 
						|
 | 
						|
    BitTestBlock(APInt F, APInt R, const Value *SV, unsigned Rg, MVT RgVT,
 | 
						|
                 bool E, bool CR, MachineBasicBlock *P, MachineBasicBlock *D,
 | 
						|
                 BitTestInfo C, BranchProbability Pr)
 | 
						|
        : First(std::move(F)), Range(std::move(R)), SValue(SV), Reg(Rg),
 | 
						|
          RegVT(RgVT), Emitted(E), ContiguousRange(CR), Parent(P), Default(D),
 | 
						|
          Cases(std::move(C)), Prob(Pr) {}
 | 
						|
  };
 | 
						|
 | 
						|
  /// Return the range of value in [First..Last].
 | 
						|
  uint64_t getJumpTableRange(const CaseClusterVector &Clusters, unsigned First,
 | 
						|
                             unsigned Last) const;
 | 
						|
 | 
						|
  /// Return the number of cases in [First..Last].
 | 
						|
  uint64_t getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases,
 | 
						|
                                unsigned First, unsigned Last) const;
 | 
						|
 | 
						|
  /// Build a jump table cluster from Clusters[First..Last]. Returns false if it
 | 
						|
  /// decides it's not a good idea.
 | 
						|
  bool buildJumpTable(const CaseClusterVector &Clusters, unsigned First,
 | 
						|
                      unsigned Last, const SwitchInst *SI,
 | 
						|
                      MachineBasicBlock *DefaultMBB, CaseCluster &JTCluster);
 | 
						|
 | 
						|
  /// Find clusters of cases suitable for jump table lowering.
 | 
						|
  void findJumpTables(CaseClusterVector &Clusters, const SwitchInst *SI,
 | 
						|
                      MachineBasicBlock *DefaultMBB);
 | 
						|
 | 
						|
  /// Build a bit test cluster from Clusters[First..Last]. Returns false if it
 | 
						|
  /// decides it's not a good idea.
 | 
						|
  bool buildBitTests(CaseClusterVector &Clusters, unsigned First, unsigned Last,
 | 
						|
                     const SwitchInst *SI, CaseCluster &BTCluster);
 | 
						|
 | 
						|
  /// Find clusters of cases suitable for bit test lowering.
 | 
						|
  void findBitTestClusters(CaseClusterVector &Clusters, const SwitchInst *SI);
 | 
						|
 | 
						|
  struct SwitchWorkListItem {
 | 
						|
    MachineBasicBlock *MBB;
 | 
						|
    CaseClusterIt FirstCluster;
 | 
						|
    CaseClusterIt LastCluster;
 | 
						|
    const ConstantInt *GE;
 | 
						|
    const ConstantInt *LT;
 | 
						|
    BranchProbability DefaultProb;
 | 
						|
  };
 | 
						|
  using SwitchWorkList = SmallVector<SwitchWorkListItem, 4>;
 | 
						|
 | 
						|
  /// Determine the rank by weight of CC in [First,Last]. If CC has more weight
 | 
						|
  /// than each cluster in the range, its rank is 0.
 | 
						|
  static unsigned caseClusterRank(const CaseCluster &CC, CaseClusterIt First,
 | 
						|
                                  CaseClusterIt Last);
 | 
						|
 | 
						|
  /// Emit comparison and split W into two subtrees.
 | 
						|
  void splitWorkItem(SwitchWorkList &WorkList, const SwitchWorkListItem &W,
 | 
						|
                     Value *Cond, MachineBasicBlock *SwitchMBB);
 | 
						|
 | 
						|
  /// Lower W.
 | 
						|
  void lowerWorkItem(SwitchWorkListItem W, Value *Cond,
 | 
						|
                     MachineBasicBlock *SwitchMBB,
 | 
						|
                     MachineBasicBlock *DefaultMBB);
 | 
						|
 | 
						|
  /// Peel the top probability case if it exceeds the threshold
 | 
						|
  MachineBasicBlock *peelDominantCaseCluster(const SwitchInst &SI,
 | 
						|
                                             CaseClusterVector &Clusters,
 | 
						|
                                             BranchProbability &PeeledCaseProb);
 | 
						|
 | 
						|
  /// A class which encapsulates all of the information needed to generate a
 | 
						|
  /// stack protector check and signals to isel via its state being initialized
 | 
						|
  /// that a stack protector needs to be generated.
 | 
						|
  ///
 | 
						|
  /// *NOTE* The following is a high level documentation of SelectionDAG Stack
 | 
						|
  /// Protector Generation. The reason that it is placed here is for a lack of
 | 
						|
  /// other good places to stick it.
 | 
						|
  ///
 | 
						|
  /// High Level Overview of SelectionDAG Stack Protector Generation:
 | 
						|
  ///
 | 
						|
  /// Previously, generation of stack protectors was done exclusively in the
 | 
						|
  /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
 | 
						|
  /// splitting basic blocks at the IR level to create the success/failure basic
 | 
						|
  /// blocks in the tail of the basic block in question. As a result of this,
 | 
						|
  /// calls that would have qualified for the sibling call optimization were no
 | 
						|
  /// longer eligible for optimization since said calls were no longer right in
 | 
						|
  /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
 | 
						|
  /// instruction).
 | 
						|
  ///
 | 
						|
  /// Then it was noticed that since the sibling call optimization causes the
 | 
						|
  /// callee to reuse the caller's stack, if we could delay the generation of
 | 
						|
  /// the stack protector check until later in CodeGen after the sibling call
 | 
						|
  /// decision was made, we get both the tail call optimization and the stack
 | 
						|
  /// protector check!
 | 
						|
  ///
 | 
						|
  /// A few goals in solving this problem were:
 | 
						|
  ///
 | 
						|
  ///   1. Preserve the architecture independence of stack protector generation.
 | 
						|
  ///
 | 
						|
  ///   2. Preserve the normal IR level stack protector check for platforms like
 | 
						|
  ///      OpenBSD for which we support platform-specific stack protector
 | 
						|
  ///      generation.
 | 
						|
  ///
 | 
						|
  /// The main problem that guided the present solution is that one can not
 | 
						|
  /// solve this problem in an architecture independent manner at the IR level
 | 
						|
  /// only. This is because:
 | 
						|
  ///
 | 
						|
  ///   1. The decision on whether or not to perform a sibling call on certain
 | 
						|
  ///      platforms (for instance i386) requires lower level information
 | 
						|
  ///      related to available registers that can not be known at the IR level.
 | 
						|
  ///
 | 
						|
  ///   2. Even if the previous point were not true, the decision on whether to
 | 
						|
  ///      perform a tail call is done in LowerCallTo in SelectionDAG which
 | 
						|
  ///      occurs after the Stack Protector Pass. As a result, one would need to
 | 
						|
  ///      put the relevant callinst into the stack protector check success
 | 
						|
  ///      basic block (where the return inst is placed) and then move it back
 | 
						|
  ///      later at SelectionDAG/MI time before the stack protector check if the
 | 
						|
  ///      tail call optimization failed. The MI level option was nixed
 | 
						|
  ///      immediately since it would require platform-specific pattern
 | 
						|
  ///      matching. The SelectionDAG level option was nixed because
 | 
						|
  ///      SelectionDAG only processes one IR level basic block at a time
 | 
						|
  ///      implying one could not create a DAG Combine to move the callinst.
 | 
						|
  ///
 | 
						|
  /// To get around this problem a few things were realized:
 | 
						|
  ///
 | 
						|
  ///   1. While one can not handle multiple IR level basic blocks at the
 | 
						|
  ///      SelectionDAG Level, one can generate multiple machine basic blocks
 | 
						|
  ///      for one IR level basic block. This is how we handle bit tests and
 | 
						|
  ///      switches.
 | 
						|
  ///
 | 
						|
  ///   2. At the MI level, tail calls are represented via a special return
 | 
						|
  ///      MIInst called "tcreturn". Thus if we know the basic block in which we
 | 
						|
  ///      wish to insert the stack protector check, we get the correct behavior
 | 
						|
  ///      by always inserting the stack protector check right before the return
 | 
						|
  ///      statement. This is a "magical transformation" since no matter where
 | 
						|
  ///      the stack protector check intrinsic is, we always insert the stack
 | 
						|
  ///      protector check code at the end of the BB.
 | 
						|
  ///
 | 
						|
  /// Given the aforementioned constraints, the following solution was devised:
 | 
						|
  ///
 | 
						|
  ///   1. On platforms that do not support SelectionDAG stack protector check
 | 
						|
  ///      generation, allow for the normal IR level stack protector check
 | 
						|
  ///      generation to continue.
 | 
						|
  ///
 | 
						|
  ///   2. On platforms that do support SelectionDAG stack protector check
 | 
						|
  ///      generation:
 | 
						|
  ///
 | 
						|
  ///     a. Use the IR level stack protector pass to decide if a stack
 | 
						|
  ///        protector is required/which BB we insert the stack protector check
 | 
						|
  ///        in by reusing the logic already therein. If we wish to generate a
 | 
						|
  ///        stack protector check in a basic block, we place a special IR
 | 
						|
  ///        intrinsic called llvm.stackprotectorcheck right before the BB's
 | 
						|
  ///        returninst or if there is a callinst that could potentially be
 | 
						|
  ///        sibling call optimized, before the call inst.
 | 
						|
  ///
 | 
						|
  ///     b. Then when a BB with said intrinsic is processed, we codegen the BB
 | 
						|
  ///        normally via SelectBasicBlock. In said process, when we visit the
 | 
						|
  ///        stack protector check, we do not actually emit anything into the
 | 
						|
  ///        BB. Instead, we just initialize the stack protector descriptor
 | 
						|
  ///        class (which involves stashing information/creating the success
 | 
						|
  ///        mbbb and the failure mbb if we have not created one for this
 | 
						|
  ///        function yet) and export the guard variable that we are going to
 | 
						|
  ///        compare.
 | 
						|
  ///
 | 
						|
  ///     c. After we finish selecting the basic block, in FinishBasicBlock if
 | 
						|
  ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is
 | 
						|
  ///        initialized, we produce the validation code with one of these
 | 
						|
  ///        techniques:
 | 
						|
  ///          1) with a call to a guard check function
 | 
						|
  ///          2) with inlined instrumentation
 | 
						|
  ///
 | 
						|
  ///        1) We insert a call to the check function before the terminator.
 | 
						|
  ///
 | 
						|
  ///        2) We first find a splice point in the parent basic block
 | 
						|
  ///        before the terminator and then splice the terminator of said basic
 | 
						|
  ///        block into the success basic block. Then we code-gen a new tail for
 | 
						|
  ///        the parent basic block consisting of the two loads, the comparison,
 | 
						|
  ///        and finally two branches to the success/failure basic blocks. We
 | 
						|
  ///        conclude by code-gening the failure basic block if we have not
 | 
						|
  ///        code-gened it already (all stack protector checks we generate in
 | 
						|
  ///        the same function, use the same failure basic block).
 | 
						|
  class StackProtectorDescriptor {
 | 
						|
  public:
 | 
						|
    StackProtectorDescriptor() = default;
 | 
						|
 | 
						|
    /// Returns true if all fields of the stack protector descriptor are
 | 
						|
    /// initialized implying that we should/are ready to emit a stack protector.
 | 
						|
    bool shouldEmitStackProtector() const {
 | 
						|
      return ParentMBB && SuccessMBB && FailureMBB;
 | 
						|
    }
 | 
						|
 | 
						|
    bool shouldEmitFunctionBasedCheckStackProtector() const {
 | 
						|
      return ParentMBB && !SuccessMBB && !FailureMBB;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Initialize the stack protector descriptor structure for a new basic
 | 
						|
    /// block.
 | 
						|
    void initialize(const BasicBlock *BB, MachineBasicBlock *MBB,
 | 
						|
                    bool FunctionBasedInstrumentation) {
 | 
						|
      // Make sure we are not initialized yet.
 | 
						|
      assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
 | 
						|
             "already initialized!");
 | 
						|
      ParentMBB = MBB;
 | 
						|
      if (!FunctionBasedInstrumentation) {
 | 
						|
        SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true);
 | 
						|
        FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /// Reset state that changes when we handle different basic blocks.
 | 
						|
    ///
 | 
						|
    /// This currently includes:
 | 
						|
    ///
 | 
						|
    /// 1. The specific basic block we are generating a
 | 
						|
    /// stack protector for (ParentMBB).
 | 
						|
    ///
 | 
						|
    /// 2. The successor machine basic block that will contain the tail of
 | 
						|
    /// parent mbb after we create the stack protector check (SuccessMBB). This
 | 
						|
    /// BB is visited only on stack protector check success.
 | 
						|
    void resetPerBBState() {
 | 
						|
      ParentMBB = nullptr;
 | 
						|
      SuccessMBB = nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Reset state that only changes when we switch functions.
 | 
						|
    ///
 | 
						|
    /// This currently includes:
 | 
						|
    ///
 | 
						|
    /// 1. FailureMBB since we reuse the failure code path for all stack
 | 
						|
    /// protector checks created in an individual function.
 | 
						|
    ///
 | 
						|
    /// 2.The guard variable since the guard variable we are checking against is
 | 
						|
    /// always the same.
 | 
						|
    void resetPerFunctionState() {
 | 
						|
      FailureMBB = nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    MachineBasicBlock *getParentMBB() { return ParentMBB; }
 | 
						|
    MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
 | 
						|
    MachineBasicBlock *getFailureMBB() { return FailureMBB; }
 | 
						|
 | 
						|
  private:
 | 
						|
    /// The basic block for which we are generating the stack protector.
 | 
						|
    ///
 | 
						|
    /// As a result of stack protector generation, we will splice the
 | 
						|
    /// terminators of this basic block into the successor mbb SuccessMBB and
 | 
						|
    /// replace it with a compare/branch to the successor mbbs
 | 
						|
    /// SuccessMBB/FailureMBB depending on whether or not the stack protector
 | 
						|
    /// was violated.
 | 
						|
    MachineBasicBlock *ParentMBB = nullptr;
 | 
						|
 | 
						|
    /// A basic block visited on stack protector check success that contains the
 | 
						|
    /// terminators of ParentMBB.
 | 
						|
    MachineBasicBlock *SuccessMBB = nullptr;
 | 
						|
 | 
						|
    /// This basic block visited on stack protector check failure that will
 | 
						|
    /// contain a call to __stack_chk_fail().
 | 
						|
    MachineBasicBlock *FailureMBB = nullptr;
 | 
						|
 | 
						|
    /// Add a successor machine basic block to ParentMBB. If the successor mbb
 | 
						|
    /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
 | 
						|
    /// block will be created. Assign a large weight if IsLikely is true.
 | 
						|
    MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
 | 
						|
                                       MachineBasicBlock *ParentMBB,
 | 
						|
                                       bool IsLikely,
 | 
						|
                                       MachineBasicBlock *SuccMBB = nullptr);
 | 
						|
  };
 | 
						|
 | 
						|
private:
 | 
						|
  const TargetMachine &TM;
 | 
						|
 | 
						|
public:
 | 
						|
  /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
 | 
						|
  /// nodes without a corresponding SDNode.
 | 
						|
  static const unsigned LowestSDNodeOrder = 1;
 | 
						|
 | 
						|
  SelectionDAG &DAG;
 | 
						|
  const DataLayout *DL = nullptr;
 | 
						|
  AliasAnalysis *AA = nullptr;
 | 
						|
  const TargetLibraryInfo *LibInfo;
 | 
						|
 | 
						|
  /// SwitchCases - Vector of CaseBlock structures used to communicate
 | 
						|
  /// SwitchInst code generation information.
 | 
						|
  std::vector<CaseBlock> SwitchCases;
 | 
						|
 | 
						|
  /// JTCases - Vector of JumpTable structures used to communicate
 | 
						|
  /// SwitchInst code generation information.
 | 
						|
  std::vector<JumpTableBlock> JTCases;
 | 
						|
 | 
						|
  /// BitTestCases - Vector of BitTestBlock structures used to communicate
 | 
						|
  /// SwitchInst code generation information.
 | 
						|
  std::vector<BitTestBlock> BitTestCases;
 | 
						|
 | 
						|
  /// A StackProtectorDescriptor structure used to communicate stack protector
 | 
						|
  /// information in between SelectBasicBlock and FinishBasicBlock.
 | 
						|
  StackProtectorDescriptor SPDescriptor;
 | 
						|
 | 
						|
  // Emit PHI-node-operand constants only once even if used by multiple
 | 
						|
  // PHI nodes.
 | 
						|
  DenseMap<const Constant *, unsigned> ConstantsOut;
 | 
						|
 | 
						|
  /// FuncInfo - Information about the function as a whole.
 | 
						|
  ///
 | 
						|
  FunctionLoweringInfo &FuncInfo;
 | 
						|
 | 
						|
  /// GFI - Garbage collection metadata for the function.
 | 
						|
  GCFunctionInfo *GFI;
 | 
						|
 | 
						|
  /// LPadToCallSiteMap - Map a landing pad to the call site indexes.
 | 
						|
  DenseMap<MachineBasicBlock *, SmallVector<unsigned, 4>> LPadToCallSiteMap;
 | 
						|
 | 
						|
  /// HasTailCall - This is set to true if a call in the current
 | 
						|
  /// block has been translated as a tail call. In this case,
 | 
						|
  /// no subsequent DAG nodes should be created.
 | 
						|
  bool HasTailCall = false;
 | 
						|
 | 
						|
  LLVMContext *Context;
 | 
						|
 | 
						|
  SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
 | 
						|
                      CodeGenOpt::Level ol)
 | 
						|
    : SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()), DAG(dag),
 | 
						|
      FuncInfo(funcinfo) {}
 | 
						|
 | 
						|
  void init(GCFunctionInfo *gfi, AliasAnalysis *AA,
 | 
						|
            const TargetLibraryInfo *li);
 | 
						|
 | 
						|
  /// Clear out the current SelectionDAG and the associated state and prepare
 | 
						|
  /// this SelectionDAGBuilder object to be used for a new block. This doesn't
 | 
						|
  /// clear out information about additional blocks that are needed to complete
 | 
						|
  /// switch lowering or PHI node updating; that information is cleared out as
 | 
						|
  /// it is consumed.
 | 
						|
  void clear();
 | 
						|
 | 
						|
  /// Clear the dangling debug information map. This function is separated from
 | 
						|
  /// the clear so that debug information that is dangling in a basic block can
 | 
						|
  /// be properly resolved in a different basic block. This allows the
 | 
						|
  /// SelectionDAG to resolve dangling debug information attached to PHI nodes.
 | 
						|
  void clearDanglingDebugInfo();
 | 
						|
 | 
						|
  /// Return the current virtual root of the Selection DAG, flushing any
 | 
						|
  /// PendingLoad items. This must be done before emitting a store or any other
 | 
						|
  /// node that may need to be ordered after any prior load instructions.
 | 
						|
  SDValue getRoot();
 | 
						|
 | 
						|
  /// Similar to getRoot, but instead of flushing all the PendingLoad items,
 | 
						|
  /// flush all the PendingExports items. It is necessary to do this before
 | 
						|
  /// emitting a terminator instruction.
 | 
						|
  SDValue getControlRoot();
 | 
						|
 | 
						|
  SDLoc getCurSDLoc() const {
 | 
						|
    return SDLoc(CurInst, SDNodeOrder);
 | 
						|
  }
 | 
						|
 | 
						|
  DebugLoc getCurDebugLoc() const {
 | 
						|
    return CurInst ? CurInst->getDebugLoc() : DebugLoc();
 | 
						|
  }
 | 
						|
 | 
						|
  void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
 | 
						|
 | 
						|
  void visit(const Instruction &I);
 | 
						|
 | 
						|
  void visit(unsigned Opcode, const User &I);
 | 
						|
 | 
						|
  /// getCopyFromRegs - If there was virtual register allocated for the value V
 | 
						|
  /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
 | 
						|
  SDValue getCopyFromRegs(const Value *V, Type *Ty);
 | 
						|
 | 
						|
  /// If we have dangling debug info that describes \p Variable, or an
 | 
						|
  /// overlapping part of variable considering the \p Expr, then this method
 | 
						|
  /// weill drop that debug info as it isn't valid any longer.
 | 
						|
  void dropDanglingDebugInfo(const DILocalVariable *Variable,
 | 
						|
                             const DIExpression *Expr);
 | 
						|
 | 
						|
  // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
 | 
						|
  // generate the debug data structures now that we've seen its definition.
 | 
						|
  void resolveDanglingDebugInfo(const Value *V, SDValue Val);
 | 
						|
 | 
						|
  SDValue getValue(const Value *V);
 | 
						|
  bool findValue(const Value *V) const;
 | 
						|
 | 
						|
  /// Return the SDNode for the specified IR value if it exists.
 | 
						|
  SDNode *getNodeForIRValue(const Value *V) {
 | 
						|
    if (NodeMap.find(V) == NodeMap.end())
 | 
						|
      return nullptr;
 | 
						|
    return NodeMap[V].getNode();
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue getNonRegisterValue(const Value *V);
 | 
						|
  SDValue getValueImpl(const Value *V);
 | 
						|
 | 
						|
  void setValue(const Value *V, SDValue NewN) {
 | 
						|
    SDValue &N = NodeMap[V];
 | 
						|
    assert(!N.getNode() && "Already set a value for this node!");
 | 
						|
    N = NewN;
 | 
						|
  }
 | 
						|
 | 
						|
  void setUnusedArgValue(const Value *V, SDValue NewN) {
 | 
						|
    SDValue &N = UnusedArgNodeMap[V];
 | 
						|
    assert(!N.getNode() && "Already set a value for this node!");
 | 
						|
    N = NewN;
 | 
						|
  }
 | 
						|
 | 
						|
  void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
 | 
						|
                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
 | 
						|
                            MachineBasicBlock *SwitchBB,
 | 
						|
                            Instruction::BinaryOps Opc, BranchProbability TProb,
 | 
						|
                            BranchProbability FProb, bool InvertCond);
 | 
						|
  void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
 | 
						|
                                    MachineBasicBlock *FBB,
 | 
						|
                                    MachineBasicBlock *CurBB,
 | 
						|
                                    MachineBasicBlock *SwitchBB,
 | 
						|
                                    BranchProbability TProb, BranchProbability FProb,
 | 
						|
                                    bool InvertCond);
 | 
						|
  bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
 | 
						|
  bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
 | 
						|
  void CopyToExportRegsIfNeeded(const Value *V);
 | 
						|
  void ExportFromCurrentBlock(const Value *V);
 | 
						|
  void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
 | 
						|
                   const BasicBlock *EHPadBB = nullptr);
 | 
						|
 | 
						|
  // Lower range metadata from 0 to N to assert zext to an integer of nearest
 | 
						|
  // floor power of two.
 | 
						|
  SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I,
 | 
						|
                                 SDValue Op);
 | 
						|
 | 
						|
  void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI,
 | 
						|
                                ImmutableCallSite CS, unsigned ArgIdx,
 | 
						|
                                unsigned NumArgs, SDValue Callee,
 | 
						|
                                Type *ReturnTy, bool IsPatchPoint);
 | 
						|
 | 
						|
  std::pair<SDValue, SDValue>
 | 
						|
  lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
 | 
						|
                 const BasicBlock *EHPadBB = nullptr);
 | 
						|
 | 
						|
  /// UpdateSplitBlock - When an MBB was split during scheduling, update the
 | 
						|
  /// references that need to refer to the last resulting block.
 | 
						|
  void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
 | 
						|
 | 
						|
  /// Describes a gc.statepoint or a gc.statepoint like thing for the purposes
 | 
						|
  /// of lowering into a STATEPOINT node.
 | 
						|
  struct StatepointLoweringInfo {
 | 
						|
    /// Bases[i] is the base pointer for Ptrs[i].  Together they denote the set
 | 
						|
    /// of gc pointers this STATEPOINT has to relocate.
 | 
						|
    SmallVector<const Value *, 16> Bases;
 | 
						|
    SmallVector<const Value *, 16> Ptrs;
 | 
						|
 | 
						|
    /// The set of gc.relocate calls associated with this gc.statepoint.
 | 
						|
    SmallVector<const GCRelocateInst *, 16> GCRelocates;
 | 
						|
 | 
						|
    /// The full list of gc arguments to the gc.statepoint being lowered.
 | 
						|
    ArrayRef<const Use> GCArgs;
 | 
						|
 | 
						|
    /// The gc.statepoint instruction.
 | 
						|
    const Instruction *StatepointInstr = nullptr;
 | 
						|
 | 
						|
    /// The list of gc transition arguments present in the gc.statepoint being
 | 
						|
    /// lowered.
 | 
						|
    ArrayRef<const Use> GCTransitionArgs;
 | 
						|
 | 
						|
    /// The ID that the resulting STATEPOINT instruction has to report.
 | 
						|
    unsigned ID = -1;
 | 
						|
 | 
						|
    /// Information regarding the underlying call instruction.
 | 
						|
    TargetLowering::CallLoweringInfo CLI;
 | 
						|
 | 
						|
    /// The deoptimization state associated with this gc.statepoint call, if
 | 
						|
    /// any.
 | 
						|
    ArrayRef<const Use> DeoptState;
 | 
						|
 | 
						|
    /// Flags associated with the meta arguments being lowered.
 | 
						|
    uint64_t StatepointFlags = -1;
 | 
						|
 | 
						|
    /// The number of patchable bytes the call needs to get lowered into.
 | 
						|
    unsigned NumPatchBytes = -1;
 | 
						|
 | 
						|
    /// The exception handling unwind destination, in case this represents an
 | 
						|
    /// invoke of gc.statepoint.
 | 
						|
    const BasicBlock *EHPadBB = nullptr;
 | 
						|
 | 
						|
    explicit StatepointLoweringInfo(SelectionDAG &DAG) : CLI(DAG) {}
 | 
						|
  };
 | 
						|
 | 
						|
  /// Lower \p SLI into a STATEPOINT instruction.
 | 
						|
  SDValue LowerAsSTATEPOINT(StatepointLoweringInfo &SI);
 | 
						|
 | 
						|
  // This function is responsible for the whole statepoint lowering process.
 | 
						|
  // It uniformly handles invoke and call statepoints.
 | 
						|
  void LowerStatepoint(ImmutableStatepoint ISP,
 | 
						|
                       const BasicBlock *EHPadBB = nullptr);
 | 
						|
 | 
						|
  void LowerCallSiteWithDeoptBundle(ImmutableCallSite CS, SDValue Callee,
 | 
						|
                                    const BasicBlock *EHPadBB);
 | 
						|
 | 
						|
  void LowerDeoptimizeCall(const CallInst *CI);
 | 
						|
  void LowerDeoptimizingReturn();
 | 
						|
 | 
						|
  void LowerCallSiteWithDeoptBundleImpl(ImmutableCallSite CS, SDValue Callee,
 | 
						|
                                        const BasicBlock *EHPadBB,
 | 
						|
                                        bool VarArgDisallowed,
 | 
						|
                                        bool ForceVoidReturnTy);
 | 
						|
 | 
						|
  /// Returns the type of FrameIndex and TargetFrameIndex nodes.
 | 
						|
  MVT getFrameIndexTy() {
 | 
						|
    return DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout());
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  // Terminator instructions.
 | 
						|
  void visitRet(const ReturnInst &I);
 | 
						|
  void visitBr(const BranchInst &I);
 | 
						|
  void visitSwitch(const SwitchInst &I);
 | 
						|
  void visitIndirectBr(const IndirectBrInst &I);
 | 
						|
  void visitUnreachable(const UnreachableInst &I);
 | 
						|
  void visitCleanupRet(const CleanupReturnInst &I);
 | 
						|
  void visitCatchSwitch(const CatchSwitchInst &I);
 | 
						|
  void visitCatchRet(const CatchReturnInst &I);
 | 
						|
  void visitCatchPad(const CatchPadInst &I);
 | 
						|
  void visitCleanupPad(const CleanupPadInst &CPI);
 | 
						|
 | 
						|
  BranchProbability getEdgeProbability(const MachineBasicBlock *Src,
 | 
						|
                                       const MachineBasicBlock *Dst) const;
 | 
						|
  void addSuccessorWithProb(
 | 
						|
      MachineBasicBlock *Src, MachineBasicBlock *Dst,
 | 
						|
      BranchProbability Prob = BranchProbability::getUnknown());
 | 
						|
 | 
						|
public:
 | 
						|
  void visitSwitchCase(CaseBlock &CB,
 | 
						|
                       MachineBasicBlock *SwitchBB);
 | 
						|
  void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
 | 
						|
                               MachineBasicBlock *ParentBB);
 | 
						|
  void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
 | 
						|
  void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
 | 
						|
  void visitBitTestCase(BitTestBlock &BB,
 | 
						|
                        MachineBasicBlock* NextMBB,
 | 
						|
                        BranchProbability BranchProbToNext,
 | 
						|
                        unsigned Reg,
 | 
						|
                        BitTestCase &B,
 | 
						|
                        MachineBasicBlock *SwitchBB);
 | 
						|
  void visitJumpTable(JumpTable &JT);
 | 
						|
  void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
 | 
						|
                            MachineBasicBlock *SwitchBB);
 | 
						|
 | 
						|
private:
 | 
						|
  // These all get lowered before this pass.
 | 
						|
  void visitInvoke(const InvokeInst &I);
 | 
						|
  void visitResume(const ResumeInst &I);
 | 
						|
 | 
						|
  void visitUnary(const User &I, unsigned Opcode);
 | 
						|
  void visitFNeg(const User &I) { visitUnary(I, ISD::FNEG); }
 | 
						|
 | 
						|
  void visitBinary(const User &I, unsigned Opcode);
 | 
						|
  void visitShift(const User &I, unsigned Opcode);
 | 
						|
  void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
 | 
						|
  void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
 | 
						|
  void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
 | 
						|
  void visitFSub(const User &I);
 | 
						|
  void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
 | 
						|
  void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
 | 
						|
  void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
 | 
						|
  void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
 | 
						|
  void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
 | 
						|
  void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
 | 
						|
  void visitSDiv(const User &I);
 | 
						|
  void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
 | 
						|
  void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
 | 
						|
  void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
 | 
						|
  void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
 | 
						|
  void visitShl (const User &I) { visitShift(I, ISD::SHL); }
 | 
						|
  void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
 | 
						|
  void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
 | 
						|
  void visitICmp(const User &I);
 | 
						|
  void visitFCmp(const User &I);
 | 
						|
  // Visit the conversion instructions
 | 
						|
  void visitTrunc(const User &I);
 | 
						|
  void visitZExt(const User &I);
 | 
						|
  void visitSExt(const User &I);
 | 
						|
  void visitFPTrunc(const User &I);
 | 
						|
  void visitFPExt(const User &I);
 | 
						|
  void visitFPToUI(const User &I);
 | 
						|
  void visitFPToSI(const User &I);
 | 
						|
  void visitUIToFP(const User &I);
 | 
						|
  void visitSIToFP(const User &I);
 | 
						|
  void visitPtrToInt(const User &I);
 | 
						|
  void visitIntToPtr(const User &I);
 | 
						|
  void visitBitCast(const User &I);
 | 
						|
  void visitAddrSpaceCast(const User &I);
 | 
						|
 | 
						|
  void visitExtractElement(const User &I);
 | 
						|
  void visitInsertElement(const User &I);
 | 
						|
  void visitShuffleVector(const User &I);
 | 
						|
 | 
						|
  void visitExtractValue(const User &I);
 | 
						|
  void visitInsertValue(const User &I);
 | 
						|
  void visitLandingPad(const LandingPadInst &LP);
 | 
						|
 | 
						|
  void visitGetElementPtr(const User &I);
 | 
						|
  void visitSelect(const User &I);
 | 
						|
 | 
						|
  void visitAlloca(const AllocaInst &I);
 | 
						|
  void visitLoad(const LoadInst &I);
 | 
						|
  void visitStore(const StoreInst &I);
 | 
						|
  void visitMaskedLoad(const CallInst &I, bool IsExpanding = false);
 | 
						|
  void visitMaskedStore(const CallInst &I, bool IsCompressing = false);
 | 
						|
  void visitMaskedGather(const CallInst &I);
 | 
						|
  void visitMaskedScatter(const CallInst &I);
 | 
						|
  void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
 | 
						|
  void visitAtomicRMW(const AtomicRMWInst &I);
 | 
						|
  void visitFence(const FenceInst &I);
 | 
						|
  void visitPHI(const PHINode &I);
 | 
						|
  void visitCall(const CallInst &I);
 | 
						|
  bool visitMemCmpCall(const CallInst &I);
 | 
						|
  bool visitMemPCpyCall(const CallInst &I);
 | 
						|
  bool visitMemChrCall(const CallInst &I);
 | 
						|
  bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
 | 
						|
  bool visitStrCmpCall(const CallInst &I);
 | 
						|
  bool visitStrLenCall(const CallInst &I);
 | 
						|
  bool visitStrNLenCall(const CallInst &I);
 | 
						|
  bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
 | 
						|
  bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode);
 | 
						|
  void visitAtomicLoad(const LoadInst &I);
 | 
						|
  void visitAtomicStore(const StoreInst &I);
 | 
						|
  void visitLoadFromSwiftError(const LoadInst &I);
 | 
						|
  void visitStoreToSwiftError(const StoreInst &I);
 | 
						|
 | 
						|
  void visitInlineAsm(ImmutableCallSite CS);
 | 
						|
  const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
 | 
						|
  void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
 | 
						|
  void visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic &FPI);
 | 
						|
 | 
						|
  void visitVAStart(const CallInst &I);
 | 
						|
  void visitVAArg(const VAArgInst &I);
 | 
						|
  void visitVAEnd(const CallInst &I);
 | 
						|
  void visitVACopy(const CallInst &I);
 | 
						|
  void visitStackmap(const CallInst &I);
 | 
						|
  void visitPatchpoint(ImmutableCallSite CS,
 | 
						|
                       const BasicBlock *EHPadBB = nullptr);
 | 
						|
 | 
						|
  // These two are implemented in StatepointLowering.cpp
 | 
						|
  void visitGCRelocate(const GCRelocateInst &Relocate);
 | 
						|
  void visitGCResult(const GCResultInst &I);
 | 
						|
 | 
						|
  void visitVectorReduce(const CallInst &I, unsigned Intrinsic);
 | 
						|
 | 
						|
  void visitUserOp1(const Instruction &I) {
 | 
						|
    llvm_unreachable("UserOp1 should not exist at instruction selection time!");
 | 
						|
  }
 | 
						|
  void visitUserOp2(const Instruction &I) {
 | 
						|
    llvm_unreachable("UserOp2 should not exist at instruction selection time!");
 | 
						|
  }
 | 
						|
 | 
						|
  void processIntegerCallValue(const Instruction &I,
 | 
						|
                               SDValue Value, bool IsSigned);
 | 
						|
 | 
						|
  void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
 | 
						|
 | 
						|
  void emitInlineAsmError(ImmutableCallSite CS, const Twine &Message);
 | 
						|
 | 
						|
  /// If V is an function argument then create corresponding DBG_VALUE machine
 | 
						|
  /// instruction for it now. At the end of instruction selection, they will be
 | 
						|
  /// inserted to the entry BB.
 | 
						|
  bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable,
 | 
						|
                                DIExpression *Expr, DILocation *DL,
 | 
						|
                                bool IsDbgDeclare, const SDValue &N);
 | 
						|
 | 
						|
  /// Return the next block after MBB, or nullptr if there is none.
 | 
						|
  MachineBasicBlock *NextBlock(MachineBasicBlock *MBB);
 | 
						|
 | 
						|
  /// Update the DAG and DAG builder with the relevant information after
 | 
						|
  /// a new root node has been created which could be a tail call.
 | 
						|
  void updateDAGForMaybeTailCall(SDValue MaybeTC);
 | 
						|
 | 
						|
  /// Return the appropriate SDDbgValue based on N.
 | 
						|
  SDDbgValue *getDbgValue(SDValue N, DILocalVariable *Variable,
 | 
						|
                          DIExpression *Expr, const DebugLoc &dl,
 | 
						|
                          unsigned DbgSDNodeOrder);
 | 
						|
};
 | 
						|
 | 
						|
/// RegsForValue - This struct represents the registers (physical or virtual)
 | 
						|
/// that a particular set of values is assigned, and the type information about
 | 
						|
/// the value. The most common situation is to represent one value at a time,
 | 
						|
/// but struct or array values are handled element-wise as multiple values.  The
 | 
						|
/// splitting of aggregates is performed recursively, so that we never have
 | 
						|
/// aggregate-typed registers. The values at this point do not necessarily have
 | 
						|
/// legal types, so each value may require one or more registers of some legal
 | 
						|
/// type.
 | 
						|
///
 | 
						|
struct RegsForValue {
 | 
						|
  /// The value types of the values, which may not be legal, and
 | 
						|
  /// may need be promoted or synthesized from one or more registers.
 | 
						|
  SmallVector<EVT, 4> ValueVTs;
 | 
						|
 | 
						|
  /// The value types of the registers. This is the same size as ValueVTs and it
 | 
						|
  /// records, for each value, what the type of the assigned register or
 | 
						|
  /// registers are. (Individual values are never synthesized from more than one
 | 
						|
  /// type of register.)
 | 
						|
  ///
 | 
						|
  /// With virtual registers, the contents of RegVTs is redundant with TLI's
 | 
						|
  /// getRegisterType member function, however when with physical registers
 | 
						|
  /// it is necessary to have a separate record of the types.
 | 
						|
  SmallVector<MVT, 4> RegVTs;
 | 
						|
 | 
						|
  /// This list holds the registers assigned to the values.
 | 
						|
  /// Each legal or promoted value requires one register, and each
 | 
						|
  /// expanded value requires multiple registers.
 | 
						|
  SmallVector<unsigned, 4> Regs;
 | 
						|
 | 
						|
  /// This list holds the number of registers for each value.
 | 
						|
  SmallVector<unsigned, 4> RegCount;
 | 
						|
 | 
						|
  /// Records if this value needs to be treated in an ABI dependant manner,
 | 
						|
  /// different to normal type legalization.
 | 
						|
  Optional<CallingConv::ID> CallConv;
 | 
						|
 | 
						|
  RegsForValue() = default;
 | 
						|
  RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, EVT valuevt,
 | 
						|
               Optional<CallingConv::ID> CC = None);
 | 
						|
  RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
 | 
						|
               const DataLayout &DL, unsigned Reg, Type *Ty,
 | 
						|
               Optional<CallingConv::ID> CC);
 | 
						|
 | 
						|
  bool isABIMangled() const {
 | 
						|
    return CallConv.hasValue();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Add the specified values to this one.
 | 
						|
  void append(const RegsForValue &RHS) {
 | 
						|
    ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
 | 
						|
    RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
 | 
						|
    Regs.append(RHS.Regs.begin(), RHS.Regs.end());
 | 
						|
    RegCount.push_back(RHS.Regs.size());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Emit a series of CopyFromReg nodes that copies from this value and returns
 | 
						|
  /// the result as a ValueVTs value. This uses Chain/Flag as the input and
 | 
						|
  /// updates them for the output Chain/Flag. If the Flag pointer is NULL, no
 | 
						|
  /// flag is used.
 | 
						|
  SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
 | 
						|
                          const SDLoc &dl, SDValue &Chain, SDValue *Flag,
 | 
						|
                          const Value *V = nullptr) const;
 | 
						|
 | 
						|
  /// Emit a series of CopyToReg nodes that copies the specified value into the
 | 
						|
  /// registers specified by this object. This uses Chain/Flag as the input and
 | 
						|
  /// updates them for the output Chain/Flag. If the Flag pointer is nullptr, no
 | 
						|
  /// flag is used. If V is not nullptr, then it is used in printing better
 | 
						|
  /// diagnostic messages on error.
 | 
						|
  void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl,
 | 
						|
                     SDValue &Chain, SDValue *Flag, const Value *V = nullptr,
 | 
						|
                     ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
 | 
						|
 | 
						|
  /// Add this value to the specified inlineasm node operand list. This adds the
 | 
						|
  /// code marker, matching input operand index (if applicable), and includes
 | 
						|
  /// the number of values added into it.
 | 
						|
  void AddInlineAsmOperands(unsigned Code, bool HasMatching,
 | 
						|
                            unsigned MatchingIdx, const SDLoc &dl,
 | 
						|
                            SelectionDAG &DAG, std::vector<SDValue> &Ops) const;
 | 
						|
 | 
						|
  /// Check if the total RegCount is greater than one.
 | 
						|
  bool occupiesMultipleRegs() const {
 | 
						|
    return std::accumulate(RegCount.begin(), RegCount.end(), 0) > 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Return a list of registers and their sizes.
 | 
						|
  SmallVector<std::pair<unsigned, unsigned>, 4> getRegsAndSizes() const;
 | 
						|
};
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
#endif // LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
 |