forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1449 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1449 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- Function.cpp - Implement the Global object classes -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Function class for the IR library.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "SymbolTableListTraitsImpl.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/SymbolTableListTraits.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/ValueSymbolTable.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| #include <string>
 | |
| 
 | |
| using namespace llvm;
 | |
| using ProfileCount = Function::ProfileCount;
 | |
| 
 | |
| // Explicit instantiations of SymbolTableListTraits since some of the methods
 | |
| // are not in the public header file...
 | |
| template class llvm::SymbolTableListTraits<BasicBlock>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Argument Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
 | |
|     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| void Argument::setParent(Function *parent) {
 | |
|   Parent = parent;
 | |
| }
 | |
| 
 | |
| bool Argument::hasNonNullAttr() const {
 | |
|   if (!getType()->isPointerTy()) return false;
 | |
|   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
 | |
|     return true;
 | |
|   else if (getDereferenceableBytes() > 0 &&
 | |
|            !NullPointerIsDefined(getParent(),
 | |
|                                  getType()->getPointerAddressSpace()))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Argument::hasByValAttr() const {
 | |
|   if (!getType()->isPointerTy()) return false;
 | |
|   return hasAttribute(Attribute::ByVal);
 | |
| }
 | |
| 
 | |
| bool Argument::hasSwiftSelfAttr() const {
 | |
|   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
 | |
| }
 | |
| 
 | |
| bool Argument::hasSwiftErrorAttr() const {
 | |
|   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
 | |
| }
 | |
| 
 | |
| bool Argument::hasInAllocaAttr() const {
 | |
|   if (!getType()->isPointerTy()) return false;
 | |
|   return hasAttribute(Attribute::InAlloca);
 | |
| }
 | |
| 
 | |
| bool Argument::hasByValOrInAllocaAttr() const {
 | |
|   if (!getType()->isPointerTy()) return false;
 | |
|   AttributeList Attrs = getParent()->getAttributes();
 | |
|   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
 | |
|          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
 | |
| }
 | |
| 
 | |
| unsigned Argument::getParamAlignment() const {
 | |
|   assert(getType()->isPointerTy() && "Only pointers have alignments");
 | |
|   return getParent()->getParamAlignment(getArgNo());
 | |
| }
 | |
| 
 | |
| uint64_t Argument::getDereferenceableBytes() const {
 | |
|   assert(getType()->isPointerTy() &&
 | |
|          "Only pointers have dereferenceable bytes");
 | |
|   return getParent()->getParamDereferenceableBytes(getArgNo());
 | |
| }
 | |
| 
 | |
| uint64_t Argument::getDereferenceableOrNullBytes() const {
 | |
|   assert(getType()->isPointerTy() &&
 | |
|          "Only pointers have dereferenceable bytes");
 | |
|   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
 | |
| }
 | |
| 
 | |
| bool Argument::hasNestAttr() const {
 | |
|   if (!getType()->isPointerTy()) return false;
 | |
|   return hasAttribute(Attribute::Nest);
 | |
| }
 | |
| 
 | |
| bool Argument::hasNoAliasAttr() const {
 | |
|   if (!getType()->isPointerTy()) return false;
 | |
|   return hasAttribute(Attribute::NoAlias);
 | |
| }
 | |
| 
 | |
| bool Argument::hasNoCaptureAttr() const {
 | |
|   if (!getType()->isPointerTy()) return false;
 | |
|   return hasAttribute(Attribute::NoCapture);
 | |
| }
 | |
| 
 | |
| bool Argument::hasStructRetAttr() const {
 | |
|   if (!getType()->isPointerTy()) return false;
 | |
|   return hasAttribute(Attribute::StructRet);
 | |
| }
 | |
| 
 | |
| bool Argument::hasReturnedAttr() const {
 | |
|   return hasAttribute(Attribute::Returned);
 | |
| }
 | |
| 
 | |
| bool Argument::hasZExtAttr() const {
 | |
|   return hasAttribute(Attribute::ZExt);
 | |
| }
 | |
| 
 | |
| bool Argument::hasSExtAttr() const {
 | |
|   return hasAttribute(Attribute::SExt);
 | |
| }
 | |
| 
 | |
| bool Argument::onlyReadsMemory() const {
 | |
|   AttributeList Attrs = getParent()->getAttributes();
 | |
|   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
 | |
|          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
 | |
| }
 | |
| 
 | |
| void Argument::addAttrs(AttrBuilder &B) {
 | |
|   AttributeList AL = getParent()->getAttributes();
 | |
|   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
 | |
|   getParent()->setAttributes(AL);
 | |
| }
 | |
| 
 | |
| void Argument::addAttr(Attribute::AttrKind Kind) {
 | |
|   getParent()->addParamAttr(getArgNo(), Kind);
 | |
| }
 | |
| 
 | |
| void Argument::addAttr(Attribute Attr) {
 | |
|   getParent()->addParamAttr(getArgNo(), Attr);
 | |
| }
 | |
| 
 | |
| void Argument::removeAttr(Attribute::AttrKind Kind) {
 | |
|   getParent()->removeParamAttr(getArgNo(), Kind);
 | |
| }
 | |
| 
 | |
| bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
 | |
|   return getParent()->hasParamAttribute(getArgNo(), Kind);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helper Methods in Function
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| LLVMContext &Function::getContext() const {
 | |
|   return getType()->getContext();
 | |
| }
 | |
| 
 | |
| unsigned Function::getInstructionCount() const {
 | |
|   unsigned NumInstrs = 0;
 | |
|   for (const BasicBlock &BB : BasicBlocks)
 | |
|     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
 | |
|                                BB.instructionsWithoutDebug().end());
 | |
|   return NumInstrs;
 | |
| }
 | |
| 
 | |
| Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
 | |
|                            const Twine &N, Module &M) {
 | |
|   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
 | |
| }
 | |
| 
 | |
| void Function::removeFromParent() {
 | |
|   getParent()->getFunctionList().remove(getIterator());
 | |
| }
 | |
| 
 | |
| void Function::eraseFromParent() {
 | |
|   getParent()->getFunctionList().erase(getIterator());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Function Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
 | |
|   // If AS == -1 and we are passed a valid module pointer we place the function
 | |
|   // in the program address space. Otherwise we default to AS0.
 | |
|   if (AddrSpace == static_cast<unsigned>(-1))
 | |
|     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
 | |
|   return AddrSpace;
 | |
| }
 | |
| 
 | |
| Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
 | |
|                    const Twine &name, Module *ParentModule)
 | |
|     : GlobalObject(Ty, Value::FunctionVal,
 | |
|                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
 | |
|                    computeAddrSpace(AddrSpace, ParentModule)),
 | |
|       NumArgs(Ty->getNumParams()) {
 | |
|   assert(FunctionType::isValidReturnType(getReturnType()) &&
 | |
|          "invalid return type");
 | |
|   setGlobalObjectSubClassData(0);
 | |
| 
 | |
|   // We only need a symbol table for a function if the context keeps value names
 | |
|   if (!getContext().shouldDiscardValueNames())
 | |
|     SymTab = make_unique<ValueSymbolTable>();
 | |
| 
 | |
|   // If the function has arguments, mark them as lazily built.
 | |
|   if (Ty->getNumParams())
 | |
|     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
 | |
| 
 | |
|   if (ParentModule)
 | |
|     ParentModule->getFunctionList().push_back(this);
 | |
| 
 | |
|   HasLLVMReservedName = getName().startswith("llvm.");
 | |
|   // Ensure intrinsics have the right parameter attributes.
 | |
|   // Note, the IntID field will have been set in Value::setName if this function
 | |
|   // name is a valid intrinsic ID.
 | |
|   if (IntID)
 | |
|     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
 | |
| }
 | |
| 
 | |
| Function::~Function() {
 | |
|   dropAllReferences();    // After this it is safe to delete instructions.
 | |
| 
 | |
|   // Delete all of the method arguments and unlink from symbol table...
 | |
|   if (Arguments)
 | |
|     clearArguments();
 | |
| 
 | |
|   // Remove the function from the on-the-side GC table.
 | |
|   clearGC();
 | |
| }
 | |
| 
 | |
| void Function::BuildLazyArguments() const {
 | |
|   // Create the arguments vector, all arguments start out unnamed.
 | |
|   auto *FT = getFunctionType();
 | |
|   if (NumArgs > 0) {
 | |
|     Arguments = std::allocator<Argument>().allocate(NumArgs);
 | |
|     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
 | |
|       Type *ArgTy = FT->getParamType(i);
 | |
|       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
 | |
|       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Clear the lazy arguments bit.
 | |
|   unsigned SDC = getSubclassDataFromValue();
 | |
|   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
 | |
|   assert(!hasLazyArguments());
 | |
| }
 | |
| 
 | |
| static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
 | |
|   return MutableArrayRef<Argument>(Args, Count);
 | |
| }
 | |
| 
 | |
| void Function::clearArguments() {
 | |
|   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
 | |
|     A.setName("");
 | |
|     A.~Argument();
 | |
|   }
 | |
|   std::allocator<Argument>().deallocate(Arguments, NumArgs);
 | |
|   Arguments = nullptr;
 | |
| }
 | |
| 
 | |
| void Function::stealArgumentListFrom(Function &Src) {
 | |
|   assert(isDeclaration() && "Expected no references to current arguments");
 | |
| 
 | |
|   // Drop the current arguments, if any, and set the lazy argument bit.
 | |
|   if (!hasLazyArguments()) {
 | |
|     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
 | |
|                         [](const Argument &A) { return A.use_empty(); }) &&
 | |
|            "Expected arguments to be unused in declaration");
 | |
|     clearArguments();
 | |
|     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
 | |
|   }
 | |
| 
 | |
|   // Nothing to steal if Src has lazy arguments.
 | |
|   if (Src.hasLazyArguments())
 | |
|     return;
 | |
| 
 | |
|   // Steal arguments from Src, and fix the lazy argument bits.
 | |
|   assert(arg_size() == Src.arg_size());
 | |
|   Arguments = Src.Arguments;
 | |
|   Src.Arguments = nullptr;
 | |
|   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
 | |
|     // FIXME: This does the work of transferNodesFromList inefficiently.
 | |
|     SmallString<128> Name;
 | |
|     if (A.hasName())
 | |
|       Name = A.getName();
 | |
|     if (!Name.empty())
 | |
|       A.setName("");
 | |
|     A.setParent(this);
 | |
|     if (!Name.empty())
 | |
|       A.setName(Name);
 | |
|   }
 | |
| 
 | |
|   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
 | |
|   assert(!hasLazyArguments());
 | |
|   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
 | |
| }
 | |
| 
 | |
| // dropAllReferences() - This function causes all the subinstructions to "let
 | |
| // go" of all references that they are maintaining.  This allows one to
 | |
| // 'delete' a whole class at a time, even though there may be circular
 | |
| // references... first all references are dropped, and all use counts go to
 | |
| // zero.  Then everything is deleted for real.  Note that no operations are
 | |
| // valid on an object that has "dropped all references", except operator
 | |
| // delete.
 | |
| //
 | |
| void Function::dropAllReferences() {
 | |
|   setIsMaterializable(false);
 | |
| 
 | |
|   for (BasicBlock &BB : *this)
 | |
|     BB.dropAllReferences();
 | |
| 
 | |
|   // Delete all basic blocks. They are now unused, except possibly by
 | |
|   // blockaddresses, but BasicBlock's destructor takes care of those.
 | |
|   while (!BasicBlocks.empty())
 | |
|     BasicBlocks.begin()->eraseFromParent();
 | |
| 
 | |
|   // Drop uses of any optional data (real or placeholder).
 | |
|   if (getNumOperands()) {
 | |
|     User::dropAllReferences();
 | |
|     setNumHungOffUseOperands(0);
 | |
|     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
 | |
|   }
 | |
| 
 | |
|   // Metadata is stored in a side-table.
 | |
|   clearMetadata();
 | |
| }
 | |
| 
 | |
| void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
 | |
|   AttributeList PAL = getAttributes();
 | |
|   PAL = PAL.addAttribute(getContext(), i, Kind);
 | |
|   setAttributes(PAL);
 | |
| }
 | |
| 
 | |
| void Function::addAttribute(unsigned i, Attribute Attr) {
 | |
|   AttributeList PAL = getAttributes();
 | |
|   PAL = PAL.addAttribute(getContext(), i, Attr);
 | |
|   setAttributes(PAL);
 | |
| }
 | |
| 
 | |
| void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
 | |
|   AttributeList PAL = getAttributes();
 | |
|   PAL = PAL.addAttributes(getContext(), i, Attrs);
 | |
|   setAttributes(PAL);
 | |
| }
 | |
| 
 | |
| void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
 | |
|   AttributeList PAL = getAttributes();
 | |
|   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
 | |
|   setAttributes(PAL);
 | |
| }
 | |
| 
 | |
| void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
 | |
|   AttributeList PAL = getAttributes();
 | |
|   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
 | |
|   setAttributes(PAL);
 | |
| }
 | |
| 
 | |
| void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
 | |
|   AttributeList PAL = getAttributes();
 | |
|   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
 | |
|   setAttributes(PAL);
 | |
| }
 | |
| 
 | |
| void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
 | |
|   AttributeList PAL = getAttributes();
 | |
|   PAL = PAL.removeAttribute(getContext(), i, Kind);
 | |
|   setAttributes(PAL);
 | |
| }
 | |
| 
 | |
| void Function::removeAttribute(unsigned i, StringRef Kind) {
 | |
|   AttributeList PAL = getAttributes();
 | |
|   PAL = PAL.removeAttribute(getContext(), i, Kind);
 | |
|   setAttributes(PAL);
 | |
| }
 | |
| 
 | |
| void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
 | |
|   AttributeList PAL = getAttributes();
 | |
|   PAL = PAL.removeAttributes(getContext(), i, Attrs);
 | |
|   setAttributes(PAL);
 | |
| }
 | |
| 
 | |
| void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
 | |
|   AttributeList PAL = getAttributes();
 | |
|   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
 | |
|   setAttributes(PAL);
 | |
| }
 | |
| 
 | |
| void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
 | |
|   AttributeList PAL = getAttributes();
 | |
|   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
 | |
|   setAttributes(PAL);
 | |
| }
 | |
| 
 | |
| void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
 | |
|   AttributeList PAL = getAttributes();
 | |
|   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
 | |
|   setAttributes(PAL);
 | |
| }
 | |
| 
 | |
| void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
 | |
|   AttributeList PAL = getAttributes();
 | |
|   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
 | |
|   setAttributes(PAL);
 | |
| }
 | |
| 
 | |
| void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
 | |
|   AttributeList PAL = getAttributes();
 | |
|   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
 | |
|   setAttributes(PAL);
 | |
| }
 | |
| 
 | |
| void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
 | |
|   AttributeList PAL = getAttributes();
 | |
|   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
 | |
|   setAttributes(PAL);
 | |
| }
 | |
| 
 | |
| void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
 | |
|                                                  uint64_t Bytes) {
 | |
|   AttributeList PAL = getAttributes();
 | |
|   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
 | |
|   setAttributes(PAL);
 | |
| }
 | |
| 
 | |
| const std::string &Function::getGC() const {
 | |
|   assert(hasGC() && "Function has no collector");
 | |
|   return getContext().getGC(*this);
 | |
| }
 | |
| 
 | |
| void Function::setGC(std::string Str) {
 | |
|   setValueSubclassDataBit(14, !Str.empty());
 | |
|   getContext().setGC(*this, std::move(Str));
 | |
| }
 | |
| 
 | |
| void Function::clearGC() {
 | |
|   if (!hasGC())
 | |
|     return;
 | |
|   getContext().deleteGC(*this);
 | |
|   setValueSubclassDataBit(14, false);
 | |
| }
 | |
| 
 | |
| /// Copy all additional attributes (those not needed to create a Function) from
 | |
| /// the Function Src to this one.
 | |
| void Function::copyAttributesFrom(const Function *Src) {
 | |
|   GlobalObject::copyAttributesFrom(Src);
 | |
|   setCallingConv(Src->getCallingConv());
 | |
|   setAttributes(Src->getAttributes());
 | |
|   if (Src->hasGC())
 | |
|     setGC(Src->getGC());
 | |
|   else
 | |
|     clearGC();
 | |
|   if (Src->hasPersonalityFn())
 | |
|     setPersonalityFn(Src->getPersonalityFn());
 | |
|   if (Src->hasPrefixData())
 | |
|     setPrefixData(Src->getPrefixData());
 | |
|   if (Src->hasPrologueData())
 | |
|     setPrologueData(Src->getPrologueData());
 | |
| }
 | |
| 
 | |
| /// Table of string intrinsic names indexed by enum value.
 | |
| static const char * const IntrinsicNameTable[] = {
 | |
|   "not_intrinsic",
 | |
| #define GET_INTRINSIC_NAME_TABLE
 | |
| #include "llvm/IR/IntrinsicImpl.inc"
 | |
| #undef GET_INTRINSIC_NAME_TABLE
 | |
| };
 | |
| 
 | |
| /// Table of per-target intrinsic name tables.
 | |
| #define GET_INTRINSIC_TARGET_DATA
 | |
| #include "llvm/IR/IntrinsicImpl.inc"
 | |
| #undef GET_INTRINSIC_TARGET_DATA
 | |
| 
 | |
| /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
 | |
| /// target as \c Name, or the generic table if \c Name is not target specific.
 | |
| ///
 | |
| /// Returns the relevant slice of \c IntrinsicNameTable
 | |
| static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
 | |
|   assert(Name.startswith("llvm."));
 | |
| 
 | |
|   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
 | |
|   // Drop "llvm." and take the first dotted component. That will be the target
 | |
|   // if this is target specific.
 | |
|   StringRef Target = Name.drop_front(5).split('.').first;
 | |
|   auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
 | |
|                              [](const IntrinsicTargetInfo &TI,
 | |
|                                 StringRef Target) { return TI.Name < Target; });
 | |
|   // We've either found the target or just fall back to the generic set, which
 | |
|   // is always first.
 | |
|   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
 | |
|   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
 | |
| }
 | |
| 
 | |
| /// This does the actual lookup of an intrinsic ID which
 | |
| /// matches the given function name.
 | |
| Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
 | |
|   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
 | |
|   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
 | |
|   if (Idx == -1)
 | |
|     return Intrinsic::not_intrinsic;
 | |
| 
 | |
|   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
 | |
|   // an index into a sub-table.
 | |
|   int Adjust = NameTable.data() - IntrinsicNameTable;
 | |
|   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
 | |
| 
 | |
|   // If the intrinsic is not overloaded, require an exact match. If it is
 | |
|   // overloaded, require either exact or prefix match.
 | |
|   const auto MatchSize = strlen(NameTable[Idx]);
 | |
|   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
 | |
|   bool IsExactMatch = Name.size() == MatchSize;
 | |
|   return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
 | |
| }
 | |
| 
 | |
| void Function::recalculateIntrinsicID() {
 | |
|   StringRef Name = getName();
 | |
|   if (!Name.startswith("llvm.")) {
 | |
|     HasLLVMReservedName = false;
 | |
|     IntID = Intrinsic::not_intrinsic;
 | |
|     return;
 | |
|   }
 | |
|   HasLLVMReservedName = true;
 | |
|   IntID = lookupIntrinsicID(Name);
 | |
| }
 | |
| 
 | |
| /// Returns a stable mangling for the type specified for use in the name
 | |
| /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
 | |
| /// of named types is simply their name.  Manglings for unnamed types consist
 | |
| /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
 | |
| /// combined with the mangling of their component types.  A vararg function
 | |
| /// type will have a suffix of 'vararg'.  Since function types can contain
 | |
| /// other function types, we close a function type mangling with suffix 'f'
 | |
| /// which can't be confused with it's prefix.  This ensures we don't have
 | |
| /// collisions between two unrelated function types. Otherwise, you might
 | |
| /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
 | |
| ///
 | |
| static std::string getMangledTypeStr(Type* Ty) {
 | |
|   std::string Result;
 | |
|   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
 | |
|     Result += "p" + utostr(PTyp->getAddressSpace()) +
 | |
|       getMangledTypeStr(PTyp->getElementType());
 | |
|   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
 | |
|     Result += "a" + utostr(ATyp->getNumElements()) +
 | |
|       getMangledTypeStr(ATyp->getElementType());
 | |
|   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
 | |
|     if (!STyp->isLiteral()) {
 | |
|       Result += "s_";
 | |
|       Result += STyp->getName();
 | |
|     } else {
 | |
|       Result += "sl_";
 | |
|       for (auto Elem : STyp->elements())
 | |
|         Result += getMangledTypeStr(Elem);
 | |
|     }
 | |
|     // Ensure nested structs are distinguishable.
 | |
|     Result += "s";
 | |
|   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
 | |
|     Result += "f_" + getMangledTypeStr(FT->getReturnType());
 | |
|     for (size_t i = 0; i < FT->getNumParams(); i++)
 | |
|       Result += getMangledTypeStr(FT->getParamType(i));
 | |
|     if (FT->isVarArg())
 | |
|       Result += "vararg";
 | |
|     // Ensure nested function types are distinguishable.
 | |
|     Result += "f";
 | |
|   } else if (isa<VectorType>(Ty)) {
 | |
|     Result += "v" + utostr(Ty->getVectorNumElements()) +
 | |
|       getMangledTypeStr(Ty->getVectorElementType());
 | |
|   } else if (Ty) {
 | |
|     switch (Ty->getTypeID()) {
 | |
|     default: llvm_unreachable("Unhandled type");
 | |
|     case Type::VoidTyID:      Result += "isVoid";   break;
 | |
|     case Type::MetadataTyID:  Result += "Metadata"; break;
 | |
|     case Type::HalfTyID:      Result += "f16";      break;
 | |
|     case Type::FloatTyID:     Result += "f32";      break;
 | |
|     case Type::DoubleTyID:    Result += "f64";      break;
 | |
|     case Type::X86_FP80TyID:  Result += "f80";      break;
 | |
|     case Type::FP128TyID:     Result += "f128";     break;
 | |
|     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
 | |
|     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
 | |
|     case Type::IntegerTyID:
 | |
|       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| StringRef Intrinsic::getName(ID id) {
 | |
|   assert(id < num_intrinsics && "Invalid intrinsic ID!");
 | |
|   assert(!isOverloaded(id) &&
 | |
|          "This version of getName does not support overloading");
 | |
|   return IntrinsicNameTable[id];
 | |
| }
 | |
| 
 | |
| std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
 | |
|   assert(id < num_intrinsics && "Invalid intrinsic ID!");
 | |
|   std::string Result(IntrinsicNameTable[id]);
 | |
|   for (Type *Ty : Tys) {
 | |
|     Result += "." + getMangledTypeStr(Ty);
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// IIT_Info - These are enumerators that describe the entries returned by the
 | |
| /// getIntrinsicInfoTableEntries function.
 | |
| ///
 | |
| /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
 | |
| enum IIT_Info {
 | |
|   // Common values should be encoded with 0-15.
 | |
|   IIT_Done = 0,
 | |
|   IIT_I1   = 1,
 | |
|   IIT_I8   = 2,
 | |
|   IIT_I16  = 3,
 | |
|   IIT_I32  = 4,
 | |
|   IIT_I64  = 5,
 | |
|   IIT_F16  = 6,
 | |
|   IIT_F32  = 7,
 | |
|   IIT_F64  = 8,
 | |
|   IIT_V2   = 9,
 | |
|   IIT_V4   = 10,
 | |
|   IIT_V8   = 11,
 | |
|   IIT_V16  = 12,
 | |
|   IIT_V32  = 13,
 | |
|   IIT_PTR  = 14,
 | |
|   IIT_ARG  = 15,
 | |
| 
 | |
|   // Values from 16+ are only encodable with the inefficient encoding.
 | |
|   IIT_V64  = 16,
 | |
|   IIT_MMX  = 17,
 | |
|   IIT_TOKEN = 18,
 | |
|   IIT_METADATA = 19,
 | |
|   IIT_EMPTYSTRUCT = 20,
 | |
|   IIT_STRUCT2 = 21,
 | |
|   IIT_STRUCT3 = 22,
 | |
|   IIT_STRUCT4 = 23,
 | |
|   IIT_STRUCT5 = 24,
 | |
|   IIT_EXTEND_ARG = 25,
 | |
|   IIT_TRUNC_ARG = 26,
 | |
|   IIT_ANYPTR = 27,
 | |
|   IIT_V1   = 28,
 | |
|   IIT_VARARG = 29,
 | |
|   IIT_HALF_VEC_ARG = 30,
 | |
|   IIT_SAME_VEC_WIDTH_ARG = 31,
 | |
|   IIT_PTR_TO_ARG = 32,
 | |
|   IIT_PTR_TO_ELT = 33,
 | |
|   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
 | |
|   IIT_I128 = 35,
 | |
|   IIT_V512 = 36,
 | |
|   IIT_V1024 = 37,
 | |
|   IIT_STRUCT6 = 38,
 | |
|   IIT_STRUCT7 = 39,
 | |
|   IIT_STRUCT8 = 40,
 | |
|   IIT_F128 = 41
 | |
| };
 | |
| 
 | |
| static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
 | |
|                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
 | |
|   using namespace Intrinsic;
 | |
| 
 | |
|   IIT_Info Info = IIT_Info(Infos[NextElt++]);
 | |
|   unsigned StructElts = 2;
 | |
| 
 | |
|   switch (Info) {
 | |
|   case IIT_Done:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
 | |
|     return;
 | |
|   case IIT_VARARG:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
 | |
|     return;
 | |
|   case IIT_MMX:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
 | |
|     return;
 | |
|   case IIT_TOKEN:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
 | |
|     return;
 | |
|   case IIT_METADATA:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
 | |
|     return;
 | |
|   case IIT_F16:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
 | |
|     return;
 | |
|   case IIT_F32:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
 | |
|     return;
 | |
|   case IIT_F64:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
 | |
|     return;
 | |
|   case IIT_F128:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
 | |
|     return;
 | |
|   case IIT_I1:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
 | |
|     return;
 | |
|   case IIT_I8:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
 | |
|     return;
 | |
|   case IIT_I16:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
 | |
|     return;
 | |
|   case IIT_I32:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
 | |
|     return;
 | |
|   case IIT_I64:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
 | |
|     return;
 | |
|   case IIT_I128:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
 | |
|     return;
 | |
|   case IIT_V1:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
 | |
|     DecodeIITType(NextElt, Infos, OutputTable);
 | |
|     return;
 | |
|   case IIT_V2:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
 | |
|     DecodeIITType(NextElt, Infos, OutputTable);
 | |
|     return;
 | |
|   case IIT_V4:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
 | |
|     DecodeIITType(NextElt, Infos, OutputTable);
 | |
|     return;
 | |
|   case IIT_V8:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
 | |
|     DecodeIITType(NextElt, Infos, OutputTable);
 | |
|     return;
 | |
|   case IIT_V16:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
 | |
|     DecodeIITType(NextElt, Infos, OutputTable);
 | |
|     return;
 | |
|   case IIT_V32:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
 | |
|     DecodeIITType(NextElt, Infos, OutputTable);
 | |
|     return;
 | |
|   case IIT_V64:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
 | |
|     DecodeIITType(NextElt, Infos, OutputTable);
 | |
|     return;
 | |
|   case IIT_V512:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
 | |
|     DecodeIITType(NextElt, Infos, OutputTable);
 | |
|     return;
 | |
|   case IIT_V1024:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
 | |
|     DecodeIITType(NextElt, Infos, OutputTable);
 | |
|     return;
 | |
|   case IIT_PTR:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
 | |
|     DecodeIITType(NextElt, Infos, OutputTable);
 | |
|     return;
 | |
|   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
 | |
|                                              Infos[NextElt++]));
 | |
|     DecodeIITType(NextElt, Infos, OutputTable);
 | |
|     return;
 | |
|   }
 | |
|   case IIT_ARG: {
 | |
|     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
 | |
|     return;
 | |
|   }
 | |
|   case IIT_EXTEND_ARG: {
 | |
|     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
 | |
|                                              ArgInfo));
 | |
|     return;
 | |
|   }
 | |
|   case IIT_TRUNC_ARG: {
 | |
|     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
 | |
|                                              ArgInfo));
 | |
|     return;
 | |
|   }
 | |
|   case IIT_HALF_VEC_ARG: {
 | |
|     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
 | |
|                                              ArgInfo));
 | |
|     return;
 | |
|   }
 | |
|   case IIT_SAME_VEC_WIDTH_ARG: {
 | |
|     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
 | |
|                                              ArgInfo));
 | |
|     return;
 | |
|   }
 | |
|   case IIT_PTR_TO_ARG: {
 | |
|     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
 | |
|                                              ArgInfo));
 | |
|     return;
 | |
|   }
 | |
|   case IIT_PTR_TO_ELT: {
 | |
|     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
 | |
|     return;
 | |
|   }
 | |
|   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
 | |
|     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
 | |
|     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
 | |
|     OutputTable.push_back(
 | |
|         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
 | |
|     return;
 | |
|   }
 | |
|   case IIT_EMPTYSTRUCT:
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
 | |
|     return;
 | |
|   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
 | |
|   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
 | |
|   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
 | |
|   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
 | |
|   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
 | |
|   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
 | |
|   case IIT_STRUCT2: {
 | |
|     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
 | |
| 
 | |
|     for (unsigned i = 0; i != StructElts; ++i)
 | |
|       DecodeIITType(NextElt, Infos, OutputTable);
 | |
|     return;
 | |
|   }
 | |
|   }
 | |
|   llvm_unreachable("unhandled");
 | |
| }
 | |
| 
 | |
| #define GET_INTRINSIC_GENERATOR_GLOBAL
 | |
| #include "llvm/IR/IntrinsicImpl.inc"
 | |
| #undef GET_INTRINSIC_GENERATOR_GLOBAL
 | |
| 
 | |
| void Intrinsic::getIntrinsicInfoTableEntries(ID id,
 | |
|                                              SmallVectorImpl<IITDescriptor> &T){
 | |
|   // Check to see if the intrinsic's type was expressible by the table.
 | |
|   unsigned TableVal = IIT_Table[id-1];
 | |
| 
 | |
|   // Decode the TableVal into an array of IITValues.
 | |
|   SmallVector<unsigned char, 8> IITValues;
 | |
|   ArrayRef<unsigned char> IITEntries;
 | |
|   unsigned NextElt = 0;
 | |
|   if ((TableVal >> 31) != 0) {
 | |
|     // This is an offset into the IIT_LongEncodingTable.
 | |
|     IITEntries = IIT_LongEncodingTable;
 | |
| 
 | |
|     // Strip sentinel bit.
 | |
|     NextElt = (TableVal << 1) >> 1;
 | |
|   } else {
 | |
|     // Decode the TableVal into an array of IITValues.  If the entry was encoded
 | |
|     // into a single word in the table itself, decode it now.
 | |
|     do {
 | |
|       IITValues.push_back(TableVal & 0xF);
 | |
|       TableVal >>= 4;
 | |
|     } while (TableVal);
 | |
| 
 | |
|     IITEntries = IITValues;
 | |
|     NextElt = 0;
 | |
|   }
 | |
| 
 | |
|   // Okay, decode the table into the output vector of IITDescriptors.
 | |
|   DecodeIITType(NextElt, IITEntries, T);
 | |
|   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
 | |
|     DecodeIITType(NextElt, IITEntries, T);
 | |
| }
 | |
| 
 | |
| static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
 | |
|                              ArrayRef<Type*> Tys, LLVMContext &Context) {
 | |
|   using namespace Intrinsic;
 | |
| 
 | |
|   IITDescriptor D = Infos.front();
 | |
|   Infos = Infos.slice(1);
 | |
| 
 | |
|   switch (D.Kind) {
 | |
|   case IITDescriptor::Void: return Type::getVoidTy(Context);
 | |
|   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
 | |
|   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
 | |
|   case IITDescriptor::Token: return Type::getTokenTy(Context);
 | |
|   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
 | |
|   case IITDescriptor::Half: return Type::getHalfTy(Context);
 | |
|   case IITDescriptor::Float: return Type::getFloatTy(Context);
 | |
|   case IITDescriptor::Double: return Type::getDoubleTy(Context);
 | |
|   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
 | |
| 
 | |
|   case IITDescriptor::Integer:
 | |
|     return IntegerType::get(Context, D.Integer_Width);
 | |
|   case IITDescriptor::Vector:
 | |
|     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
 | |
|   case IITDescriptor::Pointer:
 | |
|     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
 | |
|                             D.Pointer_AddressSpace);
 | |
|   case IITDescriptor::Struct: {
 | |
|     SmallVector<Type *, 8> Elts;
 | |
|     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
 | |
|       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
 | |
|     return StructType::get(Context, Elts);
 | |
|   }
 | |
|   case IITDescriptor::Argument:
 | |
|     return Tys[D.getArgumentNumber()];
 | |
|   case IITDescriptor::ExtendArgument: {
 | |
|     Type *Ty = Tys[D.getArgumentNumber()];
 | |
|     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
 | |
|       return VectorType::getExtendedElementVectorType(VTy);
 | |
| 
 | |
|     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
 | |
|   }
 | |
|   case IITDescriptor::TruncArgument: {
 | |
|     Type *Ty = Tys[D.getArgumentNumber()];
 | |
|     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
 | |
|       return VectorType::getTruncatedElementVectorType(VTy);
 | |
| 
 | |
|     IntegerType *ITy = cast<IntegerType>(Ty);
 | |
|     assert(ITy->getBitWidth() % 2 == 0);
 | |
|     return IntegerType::get(Context, ITy->getBitWidth() / 2);
 | |
|   }
 | |
|   case IITDescriptor::HalfVecArgument:
 | |
|     return VectorType::getHalfElementsVectorType(cast<VectorType>(
 | |
|                                                   Tys[D.getArgumentNumber()]));
 | |
|   case IITDescriptor::SameVecWidthArgument: {
 | |
|     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
 | |
|     Type *Ty = Tys[D.getArgumentNumber()];
 | |
|     if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
 | |
|       return VectorType::get(EltTy, VTy->getNumElements());
 | |
|     }
 | |
|     llvm_unreachable("unhandled");
 | |
|   }
 | |
|   case IITDescriptor::PtrToArgument: {
 | |
|     Type *Ty = Tys[D.getArgumentNumber()];
 | |
|     return PointerType::getUnqual(Ty);
 | |
|   }
 | |
|   case IITDescriptor::PtrToElt: {
 | |
|     Type *Ty = Tys[D.getArgumentNumber()];
 | |
|     VectorType *VTy = dyn_cast<VectorType>(Ty);
 | |
|     if (!VTy)
 | |
|       llvm_unreachable("Expected an argument of Vector Type");
 | |
|     Type *EltTy = VTy->getVectorElementType();
 | |
|     return PointerType::getUnqual(EltTy);
 | |
|   }
 | |
|   case IITDescriptor::VecOfAnyPtrsToElt:
 | |
|     // Return the overloaded type (which determines the pointers address space)
 | |
|     return Tys[D.getOverloadArgNumber()];
 | |
|   }
 | |
|   llvm_unreachable("unhandled");
 | |
| }
 | |
| 
 | |
| FunctionType *Intrinsic::getType(LLVMContext &Context,
 | |
|                                  ID id, ArrayRef<Type*> Tys) {
 | |
|   SmallVector<IITDescriptor, 8> Table;
 | |
|   getIntrinsicInfoTableEntries(id, Table);
 | |
| 
 | |
|   ArrayRef<IITDescriptor> TableRef = Table;
 | |
|   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
 | |
| 
 | |
|   SmallVector<Type*, 8> ArgTys;
 | |
|   while (!TableRef.empty())
 | |
|     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
 | |
| 
 | |
|   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
 | |
|   // If we see void type as the type of the last argument, it is vararg intrinsic
 | |
|   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
 | |
|     ArgTys.pop_back();
 | |
|     return FunctionType::get(ResultTy, ArgTys, true);
 | |
|   }
 | |
|   return FunctionType::get(ResultTy, ArgTys, false);
 | |
| }
 | |
| 
 | |
| bool Intrinsic::isOverloaded(ID id) {
 | |
| #define GET_INTRINSIC_OVERLOAD_TABLE
 | |
| #include "llvm/IR/IntrinsicImpl.inc"
 | |
| #undef GET_INTRINSIC_OVERLOAD_TABLE
 | |
| }
 | |
| 
 | |
| bool Intrinsic::isLeaf(ID id) {
 | |
|   switch (id) {
 | |
|   default:
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::experimental_gc_statepoint:
 | |
|   case Intrinsic::experimental_patchpoint_void:
 | |
|   case Intrinsic::experimental_patchpoint_i64:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// This defines the "Intrinsic::getAttributes(ID id)" method.
 | |
| #define GET_INTRINSIC_ATTRIBUTES
 | |
| #include "llvm/IR/IntrinsicImpl.inc"
 | |
| #undef GET_INTRINSIC_ATTRIBUTES
 | |
| 
 | |
| Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
 | |
|   // There can never be multiple globals with the same name of different types,
 | |
|   // because intrinsics must be a specific type.
 | |
|   return
 | |
|     cast<Function>(M->getOrInsertFunction(getName(id, Tys),
 | |
|                                           getType(M->getContext(), id, Tys)));
 | |
| }
 | |
| 
 | |
| // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
 | |
| #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
 | |
| #include "llvm/IR/IntrinsicImpl.inc"
 | |
| #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
 | |
| 
 | |
| // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
 | |
| #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
 | |
| #include "llvm/IR/IntrinsicImpl.inc"
 | |
| #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
 | |
| 
 | |
| bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
 | |
|                                    SmallVectorImpl<Type*> &ArgTys) {
 | |
|   using namespace Intrinsic;
 | |
| 
 | |
|   // If we ran out of descriptors, there are too many arguments.
 | |
|   if (Infos.empty()) return true;
 | |
|   IITDescriptor D = Infos.front();
 | |
|   Infos = Infos.slice(1);
 | |
| 
 | |
|   switch (D.Kind) {
 | |
|     case IITDescriptor::Void: return !Ty->isVoidTy();
 | |
|     case IITDescriptor::VarArg: return true;
 | |
|     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
 | |
|     case IITDescriptor::Token: return !Ty->isTokenTy();
 | |
|     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
 | |
|     case IITDescriptor::Half: return !Ty->isHalfTy();
 | |
|     case IITDescriptor::Float: return !Ty->isFloatTy();
 | |
|     case IITDescriptor::Double: return !Ty->isDoubleTy();
 | |
|     case IITDescriptor::Quad: return !Ty->isFP128Ty();
 | |
|     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
 | |
|     case IITDescriptor::Vector: {
 | |
|       VectorType *VT = dyn_cast<VectorType>(Ty);
 | |
|       return !VT || VT->getNumElements() != D.Vector_Width ||
 | |
|              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
 | |
|     }
 | |
|     case IITDescriptor::Pointer: {
 | |
|       PointerType *PT = dyn_cast<PointerType>(Ty);
 | |
|       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
 | |
|              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
 | |
|     }
 | |
| 
 | |
|     case IITDescriptor::Struct: {
 | |
|       StructType *ST = dyn_cast<StructType>(Ty);
 | |
|       if (!ST || ST->getNumElements() != D.Struct_NumElements)
 | |
|         return true;
 | |
| 
 | |
|       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
 | |
|         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
 | |
|           return true;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     case IITDescriptor::Argument:
 | |
|       // Two cases here - If this is the second occurrence of an argument, verify
 | |
|       // that the later instance matches the previous instance.
 | |
|       if (D.getArgumentNumber() < ArgTys.size())
 | |
|         return Ty != ArgTys[D.getArgumentNumber()];
 | |
| 
 | |
|           // Otherwise, if this is the first instance of an argument, record it and
 | |
|           // verify the "Any" kind.
 | |
|           assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
 | |
|           ArgTys.push_back(Ty);
 | |
| 
 | |
|           switch (D.getArgumentKind()) {
 | |
|             case IITDescriptor::AK_Any:        return false; // Success
 | |
|             case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
 | |
|             case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
 | |
|             case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
 | |
|             case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
 | |
|           }
 | |
|           llvm_unreachable("all argument kinds not covered");
 | |
| 
 | |
|     case IITDescriptor::ExtendArgument: {
 | |
|       // This may only be used when referring to a previous vector argument.
 | |
|       if (D.getArgumentNumber() >= ArgTys.size())
 | |
|         return true;
 | |
| 
 | |
|       Type *NewTy = ArgTys[D.getArgumentNumber()];
 | |
|       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
 | |
|         NewTy = VectorType::getExtendedElementVectorType(VTy);
 | |
|       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
 | |
|         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
 | |
|       else
 | |
|         return true;
 | |
| 
 | |
|       return Ty != NewTy;
 | |
|     }
 | |
|     case IITDescriptor::TruncArgument: {
 | |
|       // This may only be used when referring to a previous vector argument.
 | |
|       if (D.getArgumentNumber() >= ArgTys.size())
 | |
|         return true;
 | |
| 
 | |
|       Type *NewTy = ArgTys[D.getArgumentNumber()];
 | |
|       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
 | |
|         NewTy = VectorType::getTruncatedElementVectorType(VTy);
 | |
|       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
 | |
|         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
 | |
|       else
 | |
|         return true;
 | |
| 
 | |
|       return Ty != NewTy;
 | |
|     }
 | |
|     case IITDescriptor::HalfVecArgument:
 | |
|       // This may only be used when referring to a previous vector argument.
 | |
|       return D.getArgumentNumber() >= ArgTys.size() ||
 | |
|              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
 | |
|              VectorType::getHalfElementsVectorType(
 | |
|                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
 | |
|     case IITDescriptor::SameVecWidthArgument: {
 | |
|       if (D.getArgumentNumber() >= ArgTys.size())
 | |
|         return true;
 | |
|       VectorType * ReferenceType =
 | |
|         dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
 | |
|       VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
 | |
|       if (!ThisArgType || !ReferenceType ||
 | |
|           (ReferenceType->getVectorNumElements() !=
 | |
|            ThisArgType->getVectorNumElements()))
 | |
|         return true;
 | |
|       return matchIntrinsicType(ThisArgType->getVectorElementType(),
 | |
|                                 Infos, ArgTys);
 | |
|     }
 | |
|     case IITDescriptor::PtrToArgument: {
 | |
|       if (D.getArgumentNumber() >= ArgTys.size())
 | |
|         return true;
 | |
|       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
 | |
|       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
 | |
|       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
 | |
|     }
 | |
|     case IITDescriptor::PtrToElt: {
 | |
|       if (D.getArgumentNumber() >= ArgTys.size())
 | |
|         return true;
 | |
|       VectorType * ReferenceType =
 | |
|         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
 | |
|       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
 | |
| 
 | |
|       return (!ThisArgType || !ReferenceType ||
 | |
|               ThisArgType->getElementType() != ReferenceType->getElementType());
 | |
|     }
 | |
|     case IITDescriptor::VecOfAnyPtrsToElt: {
 | |
|       unsigned RefArgNumber = D.getRefArgNumber();
 | |
| 
 | |
|       // This may only be used when referring to a previous argument.
 | |
|       if (RefArgNumber >= ArgTys.size())
 | |
|         return true;
 | |
| 
 | |
|       // Record the overloaded type
 | |
|       assert(D.getOverloadArgNumber() == ArgTys.size() &&
 | |
|              "Table consistency error");
 | |
|       ArgTys.push_back(Ty);
 | |
| 
 | |
|       // Verify the overloaded type "matches" the Ref type.
 | |
|       // i.e. Ty is a vector with the same width as Ref.
 | |
|       // Composed of pointers to the same element type as Ref.
 | |
|       VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
 | |
|       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
 | |
|       if (!ThisArgVecTy || !ReferenceType ||
 | |
|           (ReferenceType->getVectorNumElements() !=
 | |
|            ThisArgVecTy->getVectorNumElements()))
 | |
|         return true;
 | |
|       PointerType *ThisArgEltTy =
 | |
|               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
 | |
|       if (!ThisArgEltTy)
 | |
|         return true;
 | |
|       return ThisArgEltTy->getElementType() !=
 | |
|              ReferenceType->getVectorElementType();
 | |
|     }
 | |
|   }
 | |
|   llvm_unreachable("unhandled");
 | |
| }
 | |
| 
 | |
| bool
 | |
| Intrinsic::matchIntrinsicVarArg(bool isVarArg,
 | |
|                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
 | |
|   // If there are no descriptors left, then it can't be a vararg.
 | |
|   if (Infos.empty())
 | |
|     return isVarArg;
 | |
| 
 | |
|   // There should be only one descriptor remaining at this point.
 | |
|   if (Infos.size() != 1)
 | |
|     return true;
 | |
| 
 | |
|   // Check and verify the descriptor.
 | |
|   IITDescriptor D = Infos.front();
 | |
|   Infos = Infos.slice(1);
 | |
|   if (D.Kind == IITDescriptor::VarArg)
 | |
|     return !isVarArg;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
 | |
|   Intrinsic::ID ID = F->getIntrinsicID();
 | |
|   if (!ID)
 | |
|     return None;
 | |
| 
 | |
|   FunctionType *FTy = F->getFunctionType();
 | |
|   // Accumulate an array of overloaded types for the given intrinsic
 | |
|   SmallVector<Type *, 4> ArgTys;
 | |
|   {
 | |
|     SmallVector<Intrinsic::IITDescriptor, 8> Table;
 | |
|     getIntrinsicInfoTableEntries(ID, Table);
 | |
|     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
 | |
| 
 | |
|     // If we encounter any problems matching the signature with the descriptor
 | |
|     // just give up remangling. It's up to verifier to report the discrepancy.
 | |
|     if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
 | |
|       return None;
 | |
|     for (auto Ty : FTy->params())
 | |
|       if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
 | |
|         return None;
 | |
|     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
 | |
|       return None;
 | |
|   }
 | |
| 
 | |
|   StringRef Name = F->getName();
 | |
|   if (Name == Intrinsic::getName(ID, ArgTys))
 | |
|     return None;
 | |
| 
 | |
|   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
 | |
|   NewDecl->setCallingConv(F->getCallingConv());
 | |
|   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
 | |
|   return NewDecl;
 | |
| }
 | |
| 
 | |
| /// hasAddressTaken - returns true if there are any uses of this function
 | |
| /// other than direct calls or invokes to it.
 | |
| bool Function::hasAddressTaken(const User* *PutOffender) const {
 | |
|   for (const Use &U : uses()) {
 | |
|     const User *FU = U.getUser();
 | |
|     if (isa<BlockAddress>(FU))
 | |
|       continue;
 | |
|     if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
 | |
|       if (PutOffender)
 | |
|         *PutOffender = FU;
 | |
|       return true;
 | |
|     }
 | |
|     ImmutableCallSite CS(cast<Instruction>(FU));
 | |
|     if (!CS.isCallee(&U)) {
 | |
|       if (PutOffender)
 | |
|         *PutOffender = FU;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Function::isDefTriviallyDead() const {
 | |
|   // Check the linkage
 | |
|   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
 | |
|       !hasAvailableExternallyLinkage())
 | |
|     return false;
 | |
| 
 | |
|   // Check if the function is used by anything other than a blockaddress.
 | |
|   for (const User *U : users())
 | |
|     if (!isa<BlockAddress>(U))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// callsFunctionThatReturnsTwice - Return true if the function has a call to
 | |
| /// setjmp or other function that gcc recognizes as "returning twice".
 | |
| bool Function::callsFunctionThatReturnsTwice() const {
 | |
|   for (const_inst_iterator
 | |
|          I = inst_begin(this), E = inst_end(this); I != E; ++I) {
 | |
|     ImmutableCallSite CS(&*I);
 | |
|     if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Constant *Function::getPersonalityFn() const {
 | |
|   assert(hasPersonalityFn() && getNumOperands());
 | |
|   return cast<Constant>(Op<0>());
 | |
| }
 | |
| 
 | |
| void Function::setPersonalityFn(Constant *Fn) {
 | |
|   setHungoffOperand<0>(Fn);
 | |
|   setValueSubclassDataBit(3, Fn != nullptr);
 | |
| }
 | |
| 
 | |
| Constant *Function::getPrefixData() const {
 | |
|   assert(hasPrefixData() && getNumOperands());
 | |
|   return cast<Constant>(Op<1>());
 | |
| }
 | |
| 
 | |
| void Function::setPrefixData(Constant *PrefixData) {
 | |
|   setHungoffOperand<1>(PrefixData);
 | |
|   setValueSubclassDataBit(1, PrefixData != nullptr);
 | |
| }
 | |
| 
 | |
| Constant *Function::getPrologueData() const {
 | |
|   assert(hasPrologueData() && getNumOperands());
 | |
|   return cast<Constant>(Op<2>());
 | |
| }
 | |
| 
 | |
| void Function::setPrologueData(Constant *PrologueData) {
 | |
|   setHungoffOperand<2>(PrologueData);
 | |
|   setValueSubclassDataBit(2, PrologueData != nullptr);
 | |
| }
 | |
| 
 | |
| void Function::allocHungoffUselist() {
 | |
|   // If we've already allocated a uselist, stop here.
 | |
|   if (getNumOperands())
 | |
|     return;
 | |
| 
 | |
|   allocHungoffUses(3, /*IsPhi=*/ false);
 | |
|   setNumHungOffUseOperands(3);
 | |
| 
 | |
|   // Initialize the uselist with placeholder operands to allow traversal.
 | |
|   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
 | |
|   Op<0>().set(CPN);
 | |
|   Op<1>().set(CPN);
 | |
|   Op<2>().set(CPN);
 | |
| }
 | |
| 
 | |
| template <int Idx>
 | |
| void Function::setHungoffOperand(Constant *C) {
 | |
|   if (C) {
 | |
|     allocHungoffUselist();
 | |
|     Op<Idx>().set(C);
 | |
|   } else if (getNumOperands()) {
 | |
|     Op<Idx>().set(
 | |
|         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
 | |
|   assert(Bit < 16 && "SubclassData contains only 16 bits");
 | |
|   if (On)
 | |
|     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
 | |
|   else
 | |
|     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
 | |
| }
 | |
| 
 | |
| void Function::setEntryCount(ProfileCount Count,
 | |
|                              const DenseSet<GlobalValue::GUID> *S) {
 | |
|   assert(Count.hasValue());
 | |
| #if !defined(NDEBUG)
 | |
|   auto PrevCount = getEntryCount();
 | |
|   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
 | |
| #endif
 | |
|   MDBuilder MDB(getContext());
 | |
|   setMetadata(
 | |
|       LLVMContext::MD_prof,
 | |
|       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
 | |
| }
 | |
| 
 | |
| void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
 | |
|                              const DenseSet<GlobalValue::GUID> *Imports) {
 | |
|   setEntryCount(ProfileCount(Count, Type), Imports);
 | |
| }
 | |
| 
 | |
| ProfileCount Function::getEntryCount() const {
 | |
|   MDNode *MD = getMetadata(LLVMContext::MD_prof);
 | |
|   if (MD && MD->getOperand(0))
 | |
|     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
 | |
|       if (MDS->getString().equals("function_entry_count")) {
 | |
|         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
 | |
|         uint64_t Count = CI->getValue().getZExtValue();
 | |
|         // A value of -1 is used for SamplePGO when there were no samples.
 | |
|         // Treat this the same as unknown.
 | |
|         if (Count == (uint64_t)-1)
 | |
|           return ProfileCount::getInvalid();
 | |
|         return ProfileCount(Count, PCT_Real);
 | |
|       } else if (MDS->getString().equals("synthetic_function_entry_count")) {
 | |
|         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
 | |
|         uint64_t Count = CI->getValue().getZExtValue();
 | |
|         return ProfileCount(Count, PCT_Synthetic);
 | |
|       }
 | |
|     }
 | |
|   return ProfileCount::getInvalid();
 | |
| }
 | |
| 
 | |
| DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
 | |
|   DenseSet<GlobalValue::GUID> R;
 | |
|   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
 | |
|     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
 | |
|       if (MDS->getString().equals("function_entry_count"))
 | |
|         for (unsigned i = 2; i < MD->getNumOperands(); i++)
 | |
|           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
 | |
|                        ->getValue()
 | |
|                        .getZExtValue());
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| void Function::setSectionPrefix(StringRef Prefix) {
 | |
|   MDBuilder MDB(getContext());
 | |
|   setMetadata(LLVMContext::MD_section_prefix,
 | |
|               MDB.createFunctionSectionPrefix(Prefix));
 | |
| }
 | |
| 
 | |
| Optional<StringRef> Function::getSectionPrefix() const {
 | |
|   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
 | |
|     assert(cast<MDString>(MD->getOperand(0))
 | |
|                ->getString()
 | |
|                .equals("function_section_prefix") &&
 | |
|            "Metadata not match");
 | |
|     return cast<MDString>(MD->getOperand(1))->getString();
 | |
|   }
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| bool Function::nullPointerIsDefined() const {
 | |
|   return getFnAttribute("null-pointer-is-valid")
 | |
|           .getValueAsString()
 | |
|           .equals("true");
 | |
| }
 | |
| 
 | |
| bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
 | |
|   if (F && F->nullPointerIsDefined())
 | |
|     return true;
 | |
| 
 | |
|   if (AS != 0)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 |