forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			782 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			782 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains support for clang's and llvm's instrumentation based
 | |
| // code coverage.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ProfileData/Coverage/CoverageMapping.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/SmallBitVector.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
 | |
| #include "llvm/ProfileData/InstrProfReader.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Errc.h"
 | |
| #include "llvm/Support/Error.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include "llvm/Support/MemoryBuffer.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <map>
 | |
| #include <memory>
 | |
| #include <string>
 | |
| #include <system_error>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace coverage;
 | |
| 
 | |
| #define DEBUG_TYPE "coverage-mapping"
 | |
| 
 | |
| Counter CounterExpressionBuilder::get(const CounterExpression &E) {
 | |
|   auto It = ExpressionIndices.find(E);
 | |
|   if (It != ExpressionIndices.end())
 | |
|     return Counter::getExpression(It->second);
 | |
|   unsigned I = Expressions.size();
 | |
|   Expressions.push_back(E);
 | |
|   ExpressionIndices[E] = I;
 | |
|   return Counter::getExpression(I);
 | |
| }
 | |
| 
 | |
| void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
 | |
|                                             SmallVectorImpl<Term> &Terms) {
 | |
|   switch (C.getKind()) {
 | |
|   case Counter::Zero:
 | |
|     break;
 | |
|   case Counter::CounterValueReference:
 | |
|     Terms.emplace_back(C.getCounterID(), Factor);
 | |
|     break;
 | |
|   case Counter::Expression:
 | |
|     const auto &E = Expressions[C.getExpressionID()];
 | |
|     extractTerms(E.LHS, Factor, Terms);
 | |
|     extractTerms(
 | |
|         E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
 | |
|   // Gather constant terms.
 | |
|   SmallVector<Term, 32> Terms;
 | |
|   extractTerms(ExpressionTree, +1, Terms);
 | |
| 
 | |
|   // If there are no terms, this is just a zero. The algorithm below assumes at
 | |
|   // least one term.
 | |
|   if (Terms.size() == 0)
 | |
|     return Counter::getZero();
 | |
| 
 | |
|   // Group the terms by counter ID.
 | |
|   llvm::sort(Terms, [](const Term &LHS, const Term &RHS) {
 | |
|     return LHS.CounterID < RHS.CounterID;
 | |
|   });
 | |
| 
 | |
|   // Combine terms by counter ID to eliminate counters that sum to zero.
 | |
|   auto Prev = Terms.begin();
 | |
|   for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
 | |
|     if (I->CounterID == Prev->CounterID) {
 | |
|       Prev->Factor += I->Factor;
 | |
|       continue;
 | |
|     }
 | |
|     ++Prev;
 | |
|     *Prev = *I;
 | |
|   }
 | |
|   Terms.erase(++Prev, Terms.end());
 | |
| 
 | |
|   Counter C;
 | |
|   // Create additions. We do this before subtractions to avoid constructs like
 | |
|   // ((0 - X) + Y), as opposed to (Y - X).
 | |
|   for (auto T : Terms) {
 | |
|     if (T.Factor <= 0)
 | |
|       continue;
 | |
|     for (int I = 0; I < T.Factor; ++I)
 | |
|       if (C.isZero())
 | |
|         C = Counter::getCounter(T.CounterID);
 | |
|       else
 | |
|         C = get(CounterExpression(CounterExpression::Add, C,
 | |
|                                   Counter::getCounter(T.CounterID)));
 | |
|   }
 | |
| 
 | |
|   // Create subtractions.
 | |
|   for (auto T : Terms) {
 | |
|     if (T.Factor >= 0)
 | |
|       continue;
 | |
|     for (int I = 0; I < -T.Factor; ++I)
 | |
|       C = get(CounterExpression(CounterExpression::Subtract, C,
 | |
|                                 Counter::getCounter(T.CounterID)));
 | |
|   }
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) {
 | |
|   return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS)));
 | |
| }
 | |
| 
 | |
| Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) {
 | |
|   return simplify(
 | |
|       get(CounterExpression(CounterExpression::Subtract, LHS, RHS)));
 | |
| }
 | |
| 
 | |
| void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
 | |
|   switch (C.getKind()) {
 | |
|   case Counter::Zero:
 | |
|     OS << '0';
 | |
|     return;
 | |
|   case Counter::CounterValueReference:
 | |
|     OS << '#' << C.getCounterID();
 | |
|     break;
 | |
|   case Counter::Expression: {
 | |
|     if (C.getExpressionID() >= Expressions.size())
 | |
|       return;
 | |
|     const auto &E = Expressions[C.getExpressionID()];
 | |
|     OS << '(';
 | |
|     dump(E.LHS, OS);
 | |
|     OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
 | |
|     dump(E.RHS, OS);
 | |
|     OS << ')';
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   if (CounterValues.empty())
 | |
|     return;
 | |
|   Expected<int64_t> Value = evaluate(C);
 | |
|   if (auto E = Value.takeError()) {
 | |
|     consumeError(std::move(E));
 | |
|     return;
 | |
|   }
 | |
|   OS << '[' << *Value << ']';
 | |
| }
 | |
| 
 | |
| Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
 | |
|   switch (C.getKind()) {
 | |
|   case Counter::Zero:
 | |
|     return 0;
 | |
|   case Counter::CounterValueReference:
 | |
|     if (C.getCounterID() >= CounterValues.size())
 | |
|       return errorCodeToError(errc::argument_out_of_domain);
 | |
|     return CounterValues[C.getCounterID()];
 | |
|   case Counter::Expression: {
 | |
|     if (C.getExpressionID() >= Expressions.size())
 | |
|       return errorCodeToError(errc::argument_out_of_domain);
 | |
|     const auto &E = Expressions[C.getExpressionID()];
 | |
|     Expected<int64_t> LHS = evaluate(E.LHS);
 | |
|     if (!LHS)
 | |
|       return LHS;
 | |
|     Expected<int64_t> RHS = evaluate(E.RHS);
 | |
|     if (!RHS)
 | |
|       return RHS;
 | |
|     return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS;
 | |
|   }
 | |
|   }
 | |
|   llvm_unreachable("Unhandled CounterKind");
 | |
| }
 | |
| 
 | |
| void FunctionRecordIterator::skipOtherFiles() {
 | |
|   while (Current != Records.end() && !Filename.empty() &&
 | |
|          Filename != Current->Filenames[0])
 | |
|     ++Current;
 | |
|   if (Current == Records.end())
 | |
|     *this = FunctionRecordIterator();
 | |
| }
 | |
| 
 | |
| Error CoverageMapping::loadFunctionRecord(
 | |
|     const CoverageMappingRecord &Record,
 | |
|     IndexedInstrProfReader &ProfileReader) {
 | |
|   StringRef OrigFuncName = Record.FunctionName;
 | |
|   if (OrigFuncName.empty())
 | |
|     return make_error<CoverageMapError>(coveragemap_error::malformed);
 | |
| 
 | |
|   if (Record.Filenames.empty())
 | |
|     OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
 | |
|   else
 | |
|     OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
 | |
| 
 | |
|   CounterMappingContext Ctx(Record.Expressions);
 | |
| 
 | |
|   std::vector<uint64_t> Counts;
 | |
|   if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
 | |
|                                                 Record.FunctionHash, Counts)) {
 | |
|     instrprof_error IPE = InstrProfError::take(std::move(E));
 | |
|     if (IPE == instrprof_error::hash_mismatch) {
 | |
|       FuncHashMismatches.emplace_back(Record.FunctionName, Record.FunctionHash);
 | |
|       return Error::success();
 | |
|     } else if (IPE != instrprof_error::unknown_function)
 | |
|       return make_error<InstrProfError>(IPE);
 | |
|     Counts.assign(Record.MappingRegions.size(), 0);
 | |
|   }
 | |
|   Ctx.setCounts(Counts);
 | |
| 
 | |
|   assert(!Record.MappingRegions.empty() && "Function has no regions");
 | |
| 
 | |
|   // This coverage record is a zero region for a function that's unused in
 | |
|   // some TU, but used in a different TU. Ignore it. The coverage maps from the
 | |
|   // the other TU will either be loaded (providing full region counts) or they
 | |
|   // won't (in which case we don't unintuitively report functions as uncovered
 | |
|   // when they have non-zero counts in the profile).
 | |
|   if (Record.MappingRegions.size() == 1 &&
 | |
|       Record.MappingRegions[0].Count.isZero() && Counts[0] > 0)
 | |
|     return Error::success();
 | |
| 
 | |
|   FunctionRecord Function(OrigFuncName, Record.Filenames);
 | |
|   for (const auto &Region : Record.MappingRegions) {
 | |
|     Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
 | |
|     if (auto E = ExecutionCount.takeError()) {
 | |
|       consumeError(std::move(E));
 | |
|       return Error::success();
 | |
|     }
 | |
|     Function.pushRegion(Region, *ExecutionCount);
 | |
|   }
 | |
| 
 | |
|   // Don't create records for (filenames, function) pairs we've already seen.
 | |
|   auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
 | |
|                                           Record.Filenames.end());
 | |
|   if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
 | |
|     return Error::success();
 | |
| 
 | |
|   Functions.push_back(std::move(Function));
 | |
|   return Error::success();
 | |
| }
 | |
| 
 | |
| Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
 | |
|     ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
 | |
|     IndexedInstrProfReader &ProfileReader) {
 | |
|   auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
 | |
| 
 | |
|   for (const auto &CoverageReader : CoverageReaders) {
 | |
|     for (auto RecordOrErr : *CoverageReader) {
 | |
|       if (Error E = RecordOrErr.takeError())
 | |
|         return std::move(E);
 | |
|       const auto &Record = *RecordOrErr;
 | |
|       if (Error E = Coverage->loadFunctionRecord(Record, ProfileReader))
 | |
|         return std::move(E);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return std::move(Coverage);
 | |
| }
 | |
| 
 | |
| Expected<std::unique_ptr<CoverageMapping>>
 | |
| CoverageMapping::load(ArrayRef<StringRef> ObjectFilenames,
 | |
|                       StringRef ProfileFilename, ArrayRef<StringRef> Arches) {
 | |
|   auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename);
 | |
|   if (Error E = ProfileReaderOrErr.takeError())
 | |
|     return std::move(E);
 | |
|   auto ProfileReader = std::move(ProfileReaderOrErr.get());
 | |
| 
 | |
|   SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
 | |
|   SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
 | |
|   for (const auto &File : llvm::enumerate(ObjectFilenames)) {
 | |
|     auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(File.value());
 | |
|     if (std::error_code EC = CovMappingBufOrErr.getError())
 | |
|       return errorCodeToError(EC);
 | |
|     StringRef Arch = Arches.empty() ? StringRef() : Arches[File.index()];
 | |
|     auto CoverageReaderOrErr =
 | |
|         BinaryCoverageReader::create(CovMappingBufOrErr.get(), Arch);
 | |
|     if (Error E = CoverageReaderOrErr.takeError())
 | |
|       return std::move(E);
 | |
|     Readers.push_back(std::move(CoverageReaderOrErr.get()));
 | |
|     Buffers.push_back(std::move(CovMappingBufOrErr.get()));
 | |
|   }
 | |
|   return load(Readers, *ProfileReader);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Distributes functions into instantiation sets.
 | |
| ///
 | |
| /// An instantiation set is a collection of functions that have the same source
 | |
| /// code, ie, template functions specializations.
 | |
| class FunctionInstantiationSetCollector {
 | |
|   using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
 | |
|   MapT InstantiatedFunctions;
 | |
| 
 | |
| public:
 | |
|   void insert(const FunctionRecord &Function, unsigned FileID) {
 | |
|     auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
 | |
|     while (I != E && I->FileID != FileID)
 | |
|       ++I;
 | |
|     assert(I != E && "function does not cover the given file");
 | |
|     auto &Functions = InstantiatedFunctions[I->startLoc()];
 | |
|     Functions.push_back(&Function);
 | |
|   }
 | |
| 
 | |
|   MapT::iterator begin() { return InstantiatedFunctions.begin(); }
 | |
|   MapT::iterator end() { return InstantiatedFunctions.end(); }
 | |
| };
 | |
| 
 | |
| class SegmentBuilder {
 | |
|   std::vector<CoverageSegment> &Segments;
 | |
|   SmallVector<const CountedRegion *, 8> ActiveRegions;
 | |
| 
 | |
|   SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}
 | |
| 
 | |
|   /// Emit a segment with the count from \p Region starting at \p StartLoc.
 | |
|   //
 | |
|   /// \p IsRegionEntry: The segment is at the start of a new non-gap region.
 | |
|   /// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
 | |
|   void startSegment(const CountedRegion &Region, LineColPair StartLoc,
 | |
|                     bool IsRegionEntry, bool EmitSkippedRegion = false) {
 | |
|     bool HasCount = !EmitSkippedRegion &&
 | |
|                     (Region.Kind != CounterMappingRegion::SkippedRegion);
 | |
| 
 | |
|     // If the new segment wouldn't affect coverage rendering, skip it.
 | |
|     if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
 | |
|       const auto &Last = Segments.back();
 | |
|       if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
 | |
|           !Last.IsRegionEntry)
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (HasCount)
 | |
|       Segments.emplace_back(StartLoc.first, StartLoc.second,
 | |
|                             Region.ExecutionCount, IsRegionEntry,
 | |
|                             Region.Kind == CounterMappingRegion::GapRegion);
 | |
|     else
 | |
|       Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);
 | |
| 
 | |
|     LLVM_DEBUG({
 | |
|       const auto &Last = Segments.back();
 | |
|       dbgs() << "Segment at " << Last.Line << ":" << Last.Col
 | |
|              << " (count = " << Last.Count << ")"
 | |
|              << (Last.IsRegionEntry ? ", RegionEntry" : "")
 | |
|              << (!Last.HasCount ? ", Skipped" : "")
 | |
|              << (Last.IsGapRegion ? ", Gap" : "") << "\n";
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   /// Emit segments for active regions which end before \p Loc.
 | |
|   ///
 | |
|   /// \p Loc: The start location of the next region. If None, all active
 | |
|   /// regions are completed.
 | |
|   /// \p FirstCompletedRegion: Index of the first completed region.
 | |
|   void completeRegionsUntil(Optional<LineColPair> Loc,
 | |
|                             unsigned FirstCompletedRegion) {
 | |
|     // Sort the completed regions by end location. This makes it simple to
 | |
|     // emit closing segments in sorted order.
 | |
|     auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
 | |
|     std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
 | |
|                       [](const CountedRegion *L, const CountedRegion *R) {
 | |
|                         return L->endLoc() < R->endLoc();
 | |
|                       });
 | |
| 
 | |
|     // Emit segments for all completed regions.
 | |
|     for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
 | |
|          ++I) {
 | |
|       const auto *CompletedRegion = ActiveRegions[I];
 | |
|       assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&
 | |
|              "Completed region ends after start of new region");
 | |
| 
 | |
|       const auto *PrevCompletedRegion = ActiveRegions[I - 1];
 | |
|       auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();
 | |
| 
 | |
|       // Don't emit any more segments if they start where the new region begins.
 | |
|       if (Loc && CompletedSegmentLoc == *Loc)
 | |
|         break;
 | |
| 
 | |
|       // Don't emit a segment if the next completed region ends at the same
 | |
|       // location as this one.
 | |
|       if (CompletedSegmentLoc == CompletedRegion->endLoc())
 | |
|         continue;
 | |
| 
 | |
|       // Use the count from the last completed region which ends at this loc.
 | |
|       for (unsigned J = I + 1; J < E; ++J)
 | |
|         if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
 | |
|           CompletedRegion = ActiveRegions[J];
 | |
| 
 | |
|       startSegment(*CompletedRegion, CompletedSegmentLoc, false);
 | |
|     }
 | |
| 
 | |
|     auto Last = ActiveRegions.back();
 | |
|     if (FirstCompletedRegion && Last->endLoc() != *Loc) {
 | |
|       // If there's a gap after the end of the last completed region and the
 | |
|       // start of the new region, use the last active region to fill the gap.
 | |
|       startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
 | |
|                    false);
 | |
|     } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
 | |
|       // Emit a skipped segment if there are no more active regions. This
 | |
|       // ensures that gaps between functions are marked correctly.
 | |
|       startSegment(*Last, Last->endLoc(), false, true);
 | |
|     }
 | |
| 
 | |
|     // Pop the completed regions.
 | |
|     ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
 | |
|   }
 | |
| 
 | |
|   void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
 | |
|     for (const auto &CR : enumerate(Regions)) {
 | |
|       auto CurStartLoc = CR.value().startLoc();
 | |
| 
 | |
|       // Active regions which end before the current region need to be popped.
 | |
|       auto CompletedRegions =
 | |
|           std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
 | |
|                                 [&](const CountedRegion *Region) {
 | |
|                                   return !(Region->endLoc() <= CurStartLoc);
 | |
|                                 });
 | |
|       if (CompletedRegions != ActiveRegions.end()) {
 | |
|         unsigned FirstCompletedRegion =
 | |
|             std::distance(ActiveRegions.begin(), CompletedRegions);
 | |
|         completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
 | |
|       }
 | |
| 
 | |
|       bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;
 | |
| 
 | |
|       // Try to emit a segment for the current region.
 | |
|       if (CurStartLoc == CR.value().endLoc()) {
 | |
|         // Avoid making zero-length regions active. If it's the last region,
 | |
|         // emit a skipped segment. Otherwise use its predecessor's count.
 | |
|         const bool Skipped = (CR.index() + 1) == Regions.size();
 | |
|         startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
 | |
|                      CurStartLoc, !GapRegion, Skipped);
 | |
|         continue;
 | |
|       }
 | |
|       if (CR.index() + 1 == Regions.size() ||
 | |
|           CurStartLoc != Regions[CR.index() + 1].startLoc()) {
 | |
|         // Emit a segment if the next region doesn't start at the same location
 | |
|         // as this one.
 | |
|         startSegment(CR.value(), CurStartLoc, !GapRegion);
 | |
|       }
 | |
| 
 | |
|       // This region is active (i.e not completed).
 | |
|       ActiveRegions.push_back(&CR.value());
 | |
|     }
 | |
| 
 | |
|     // Complete any remaining active regions.
 | |
|     if (!ActiveRegions.empty())
 | |
|       completeRegionsUntil(None, 0);
 | |
|   }
 | |
| 
 | |
|   /// Sort a nested sequence of regions from a single file.
 | |
|   static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
 | |
|     llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) {
 | |
|       if (LHS.startLoc() != RHS.startLoc())
 | |
|         return LHS.startLoc() < RHS.startLoc();
 | |
|       if (LHS.endLoc() != RHS.endLoc())
 | |
|         // When LHS completely contains RHS, we sort LHS first.
 | |
|         return RHS.endLoc() < LHS.endLoc();
 | |
|       // If LHS and RHS cover the same area, we need to sort them according
 | |
|       // to their kinds so that the most suitable region will become "active"
 | |
|       // in combineRegions(). Because we accumulate counter values only from
 | |
|       // regions of the same kind as the first region of the area, prefer
 | |
|       // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
 | |
|       static_assert(CounterMappingRegion::CodeRegion <
 | |
|                             CounterMappingRegion::ExpansionRegion &&
 | |
|                         CounterMappingRegion::ExpansionRegion <
 | |
|                             CounterMappingRegion::SkippedRegion,
 | |
|                     "Unexpected order of region kind values");
 | |
|       return LHS.Kind < RHS.Kind;
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   /// Combine counts of regions which cover the same area.
 | |
|   static ArrayRef<CountedRegion>
 | |
|   combineRegions(MutableArrayRef<CountedRegion> Regions) {
 | |
|     if (Regions.empty())
 | |
|       return Regions;
 | |
|     auto Active = Regions.begin();
 | |
|     auto End = Regions.end();
 | |
|     for (auto I = Regions.begin() + 1; I != End; ++I) {
 | |
|       if (Active->startLoc() != I->startLoc() ||
 | |
|           Active->endLoc() != I->endLoc()) {
 | |
|         // Shift to the next region.
 | |
|         ++Active;
 | |
|         if (Active != I)
 | |
|           *Active = *I;
 | |
|         continue;
 | |
|       }
 | |
|       // Merge duplicate region.
 | |
|       // If CodeRegions and ExpansionRegions cover the same area, it's probably
 | |
|       // a macro which is fully expanded to another macro. In that case, we need
 | |
|       // to accumulate counts only from CodeRegions, or else the area will be
 | |
|       // counted twice.
 | |
|       // On the other hand, a macro may have a nested macro in its body. If the
 | |
|       // outer macro is used several times, the ExpansionRegion for the nested
 | |
|       // macro will also be added several times. These ExpansionRegions cover
 | |
|       // the same source locations and have to be combined to reach the correct
 | |
|       // value for that area.
 | |
|       // We add counts of the regions of the same kind as the active region
 | |
|       // to handle the both situations.
 | |
|       if (I->Kind == Active->Kind)
 | |
|         Active->ExecutionCount += I->ExecutionCount;
 | |
|     }
 | |
|     return Regions.drop_back(std::distance(++Active, End));
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   /// Build a sorted list of CoverageSegments from a list of Regions.
 | |
|   static std::vector<CoverageSegment>
 | |
|   buildSegments(MutableArrayRef<CountedRegion> Regions) {
 | |
|     std::vector<CoverageSegment> Segments;
 | |
|     SegmentBuilder Builder(Segments);
 | |
| 
 | |
|     sortNestedRegions(Regions);
 | |
|     ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);
 | |
| 
 | |
|     LLVM_DEBUG({
 | |
|       dbgs() << "Combined regions:\n";
 | |
|       for (const auto &CR : CombinedRegions)
 | |
|         dbgs() << "  " << CR.LineStart << ":" << CR.ColumnStart << " -> "
 | |
|                << CR.LineEnd << ":" << CR.ColumnEnd
 | |
|                << " (count=" << CR.ExecutionCount << ")\n";
 | |
|     });
 | |
| 
 | |
|     Builder.buildSegmentsImpl(CombinedRegions);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
 | |
|       const auto &L = Segments[I - 1];
 | |
|       const auto &R = Segments[I];
 | |
|       if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
 | |
|         LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col
 | |
|                           << " followed by " << R.Line << ":" << R.Col << "\n");
 | |
|         assert(false && "Coverage segments not unique or sorted");
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return Segments;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
 | |
|   std::vector<StringRef> Filenames;
 | |
|   for (const auto &Function : getCoveredFunctions())
 | |
|     Filenames.insert(Filenames.end(), Function.Filenames.begin(),
 | |
|                      Function.Filenames.end());
 | |
|   llvm::sort(Filenames);
 | |
|   auto Last = std::unique(Filenames.begin(), Filenames.end());
 | |
|   Filenames.erase(Last, Filenames.end());
 | |
|   return Filenames;
 | |
| }
 | |
| 
 | |
| static SmallBitVector gatherFileIDs(StringRef SourceFile,
 | |
|                                     const FunctionRecord &Function) {
 | |
|   SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
 | |
|   for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
 | |
|     if (SourceFile == Function.Filenames[I])
 | |
|       FilenameEquivalence[I] = true;
 | |
|   return FilenameEquivalence;
 | |
| }
 | |
| 
 | |
| /// Return the ID of the file where the definition of the function is located.
 | |
| static Optional<unsigned> findMainViewFileID(const FunctionRecord &Function) {
 | |
|   SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
 | |
|   for (const auto &CR : Function.CountedRegions)
 | |
|     if (CR.Kind == CounterMappingRegion::ExpansionRegion)
 | |
|       IsNotExpandedFile[CR.ExpandedFileID] = false;
 | |
|   int I = IsNotExpandedFile.find_first();
 | |
|   if (I == -1)
 | |
|     return None;
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| /// Check if SourceFile is the file that contains the definition of
 | |
| /// the Function. Return the ID of the file in that case or None otherwise.
 | |
| static Optional<unsigned> findMainViewFileID(StringRef SourceFile,
 | |
|                                              const FunctionRecord &Function) {
 | |
|   Optional<unsigned> I = findMainViewFileID(Function);
 | |
|   if (I && SourceFile == Function.Filenames[*I])
 | |
|     return I;
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| static bool isExpansion(const CountedRegion &R, unsigned FileID) {
 | |
|   return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
 | |
| }
 | |
| 
 | |
| CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
 | |
|   CoverageData FileCoverage(Filename);
 | |
|   std::vector<CountedRegion> Regions;
 | |
| 
 | |
|   for (const auto &Function : Functions) {
 | |
|     auto MainFileID = findMainViewFileID(Filename, Function);
 | |
|     auto FileIDs = gatherFileIDs(Filename, Function);
 | |
|     for (const auto &CR : Function.CountedRegions)
 | |
|       if (FileIDs.test(CR.FileID)) {
 | |
|         Regions.push_back(CR);
 | |
|         if (MainFileID && isExpansion(CR, *MainFileID))
 | |
|           FileCoverage.Expansions.emplace_back(CR, Function);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
 | |
|   FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);
 | |
| 
 | |
|   return FileCoverage;
 | |
| }
 | |
| 
 | |
| std::vector<InstantiationGroup>
 | |
| CoverageMapping::getInstantiationGroups(StringRef Filename) const {
 | |
|   FunctionInstantiationSetCollector InstantiationSetCollector;
 | |
|   for (const auto &Function : Functions) {
 | |
|     auto MainFileID = findMainViewFileID(Filename, Function);
 | |
|     if (!MainFileID)
 | |
|       continue;
 | |
|     InstantiationSetCollector.insert(Function, *MainFileID);
 | |
|   }
 | |
| 
 | |
|   std::vector<InstantiationGroup> Result;
 | |
|   for (auto &InstantiationSet : InstantiationSetCollector) {
 | |
|     InstantiationGroup IG{InstantiationSet.first.first,
 | |
|                           InstantiationSet.first.second,
 | |
|                           std::move(InstantiationSet.second)};
 | |
|     Result.emplace_back(std::move(IG));
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| CoverageData
 | |
| CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
 | |
|   auto MainFileID = findMainViewFileID(Function);
 | |
|   if (!MainFileID)
 | |
|     return CoverageData();
 | |
| 
 | |
|   CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
 | |
|   std::vector<CountedRegion> Regions;
 | |
|   for (const auto &CR : Function.CountedRegions)
 | |
|     if (CR.FileID == *MainFileID) {
 | |
|       Regions.push_back(CR);
 | |
|       if (isExpansion(CR, *MainFileID))
 | |
|         FunctionCoverage.Expansions.emplace_back(CR, Function);
 | |
|     }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name
 | |
|                     << "\n");
 | |
|   FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
 | |
| 
 | |
|   return FunctionCoverage;
 | |
| }
 | |
| 
 | |
| CoverageData CoverageMapping::getCoverageForExpansion(
 | |
|     const ExpansionRecord &Expansion) const {
 | |
|   CoverageData ExpansionCoverage(
 | |
|       Expansion.Function.Filenames[Expansion.FileID]);
 | |
|   std::vector<CountedRegion> Regions;
 | |
|   for (const auto &CR : Expansion.Function.CountedRegions)
 | |
|     if (CR.FileID == Expansion.FileID) {
 | |
|       Regions.push_back(CR);
 | |
|       if (isExpansion(CR, Expansion.FileID))
 | |
|         ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
 | |
|     }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
 | |
|                     << Expansion.FileID << "\n");
 | |
|   ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
 | |
| 
 | |
|   return ExpansionCoverage;
 | |
| }
 | |
| 
 | |
| LineCoverageStats::LineCoverageStats(
 | |
|     ArrayRef<const CoverageSegment *> LineSegments,
 | |
|     const CoverageSegment *WrappedSegment, unsigned Line)
 | |
|     : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
 | |
|       LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
 | |
|   // Find the minimum number of regions which start in this line.
 | |
|   unsigned MinRegionCount = 0;
 | |
|   auto isStartOfRegion = [](const CoverageSegment *S) {
 | |
|     return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
 | |
|   };
 | |
|   for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
 | |
|     if (isStartOfRegion(LineSegments[I]))
 | |
|       ++MinRegionCount;
 | |
| 
 | |
|   bool StartOfSkippedRegion = !LineSegments.empty() &&
 | |
|                               !LineSegments.front()->HasCount &&
 | |
|                               LineSegments.front()->IsRegionEntry;
 | |
| 
 | |
|   HasMultipleRegions = MinRegionCount > 1;
 | |
|   Mapped =
 | |
|       !StartOfSkippedRegion &&
 | |
|       ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));
 | |
| 
 | |
|   if (!Mapped)
 | |
|     return;
 | |
| 
 | |
|   // Pick the max count from the non-gap, region entry segments and the
 | |
|   // wrapped count.
 | |
|   if (WrappedSegment)
 | |
|     ExecutionCount = WrappedSegment->Count;
 | |
|   if (!MinRegionCount)
 | |
|     return;
 | |
|   for (const auto *LS : LineSegments)
 | |
|     if (isStartOfRegion(LS))
 | |
|       ExecutionCount = std::max(ExecutionCount, LS->Count);
 | |
| }
 | |
| 
 | |
| LineCoverageIterator &LineCoverageIterator::operator++() {
 | |
|   if (Next == CD.end()) {
 | |
|     Stats = LineCoverageStats();
 | |
|     Ended = true;
 | |
|     return *this;
 | |
|   }
 | |
|   if (Segments.size())
 | |
|     WrappedSegment = Segments.back();
 | |
|   Segments.clear();
 | |
|   while (Next != CD.end() && Next->Line == Line)
 | |
|     Segments.push_back(&*Next++);
 | |
|   Stats = LineCoverageStats(Segments, WrappedSegment, Line);
 | |
|   ++Line;
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| static std::string getCoverageMapErrString(coveragemap_error Err) {
 | |
|   switch (Err) {
 | |
|   case coveragemap_error::success:
 | |
|     return "Success";
 | |
|   case coveragemap_error::eof:
 | |
|     return "End of File";
 | |
|   case coveragemap_error::no_data_found:
 | |
|     return "No coverage data found";
 | |
|   case coveragemap_error::unsupported_version:
 | |
|     return "Unsupported coverage format version";
 | |
|   case coveragemap_error::truncated:
 | |
|     return "Truncated coverage data";
 | |
|   case coveragemap_error::malformed:
 | |
|     return "Malformed coverage data";
 | |
|   }
 | |
|   llvm_unreachable("A value of coveragemap_error has no message.");
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // FIXME: This class is only here to support the transition to llvm::Error. It
 | |
| // will be removed once this transition is complete. Clients should prefer to
 | |
| // deal with the Error value directly, rather than converting to error_code.
 | |
| class CoverageMappingErrorCategoryType : public std::error_category {
 | |
|   const char *name() const noexcept override { return "llvm.coveragemap"; }
 | |
|   std::string message(int IE) const override {
 | |
|     return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| std::string CoverageMapError::message() const {
 | |
|   return getCoverageMapErrString(Err);
 | |
| }
 | |
| 
 | |
| static ManagedStatic<CoverageMappingErrorCategoryType> ErrorCategory;
 | |
| 
 | |
| const std::error_category &llvm::coverage::coveragemap_category() {
 | |
|   return *ErrorCategory;
 | |
| }
 | |
| 
 | |
| char CoverageMapError::ID = 0;
 |