forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			14474 lines
		
	
	
		
			561 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			14474 lines
		
	
	
		
			561 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the PPCISelLowering class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "PPCISelLowering.h"
 | 
						|
#include "MCTargetDesc/PPCPredicates.h"
 | 
						|
#include "PPC.h"
 | 
						|
#include "PPCCCState.h"
 | 
						|
#include "PPCCallingConv.h"
 | 
						|
#include "PPCFrameLowering.h"
 | 
						|
#include "PPCInstrInfo.h"
 | 
						|
#include "PPCMachineFunctionInfo.h"
 | 
						|
#include "PPCPerfectShuffle.h"
 | 
						|
#include "PPCRegisterInfo.h"
 | 
						|
#include "PPCSubtarget.h"
 | 
						|
#include "PPCTargetMachine.h"
 | 
						|
#include "llvm/ADT/APFloat.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/CodeGen/CallingConvLower.h"
 | 
						|
#include "llvm/CodeGen/ISDOpcodes.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/RuntimeLibcalls.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGNodes.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetLowering.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/ValueTypes.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/MC/MCExpr.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/Support/AtomicOrdering.h"
 | 
						|
#include "llvm/Support/BranchProbability.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CodeGen.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/Format.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
#include "llvm/Support/MachineValueType.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <list>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "ppc-lowering"
 | 
						|
 | 
						|
static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
 | 
						|
cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
 | 
						|
cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
 | 
						|
cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool> DisableSCO("disable-ppc-sco",
 | 
						|
cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
 | 
						|
cl::desc("enable quad precision float support on ppc"), cl::Hidden);
 | 
						|
 | 
						|
STATISTIC(NumTailCalls, "Number of tail calls");
 | 
						|
STATISTIC(NumSiblingCalls, "Number of sibling calls");
 | 
						|
 | 
						|
static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
 | 
						|
 | 
						|
// FIXME: Remove this once the bug has been fixed!
 | 
						|
extern cl::opt<bool> ANDIGlueBug;
 | 
						|
 | 
						|
PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
 | 
						|
                                     const PPCSubtarget &STI)
 | 
						|
    : TargetLowering(TM), Subtarget(STI) {
 | 
						|
  // Use _setjmp/_longjmp instead of setjmp/longjmp.
 | 
						|
  setUseUnderscoreSetJmp(true);
 | 
						|
  setUseUnderscoreLongJmp(true);
 | 
						|
 | 
						|
  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
 | 
						|
  // arguments are at least 4/8 bytes aligned.
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
  setMinStackArgumentAlignment(isPPC64 ? 8:4);
 | 
						|
 | 
						|
  // Set up the register classes.
 | 
						|
  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
 | 
						|
  if (!useSoftFloat()) {
 | 
						|
    if (hasSPE()) {
 | 
						|
      addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass);
 | 
						|
      addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
 | 
						|
    } else {
 | 
						|
      addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
 | 
						|
      addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Match BITREVERSE to customized fast code sequence in the td file.
 | 
						|
  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
 | 
						|
  setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
 | 
						|
 | 
						|
  // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
 | 
						|
  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
 | 
						|
 | 
						|
  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
 | 
						|
  for (MVT VT : MVT::integer_valuetypes()) {
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
 | 
						|
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | 
						|
 | 
						|
  // PowerPC has pre-inc load and store's.
 | 
						|
  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
 | 
						|
  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
 | 
						|
  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
 | 
						|
  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
 | 
						|
  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
 | 
						|
  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
 | 
						|
  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
 | 
						|
  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
 | 
						|
  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
 | 
						|
  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
 | 
						|
  if (!Subtarget.hasSPE()) {
 | 
						|
    setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
 | 
						|
    setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
 | 
						|
    setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
 | 
						|
    setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
 | 
						|
  const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
 | 
						|
  for (MVT VT : ScalarIntVTs) {
 | 
						|
    setOperationAction(ISD::ADDC, VT, Legal);
 | 
						|
    setOperationAction(ISD::ADDE, VT, Legal);
 | 
						|
    setOperationAction(ISD::SUBC, VT, Legal);
 | 
						|
    setOperationAction(ISD::SUBE, VT, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.useCRBits()) {
 | 
						|
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | 
						|
 | 
						|
    if (isPPC64 || Subtarget.hasFPCVT()) {
 | 
						|
      setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
 | 
						|
      AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
 | 
						|
                         isPPC64 ? MVT::i64 : MVT::i32);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
 | 
						|
      AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
 | 
						|
                        isPPC64 ? MVT::i64 : MVT::i32);
 | 
						|
    } else {
 | 
						|
      setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    // PowerPC does not support direct load/store of condition registers.
 | 
						|
    setOperationAction(ISD::LOAD, MVT::i1, Custom);
 | 
						|
    setOperationAction(ISD::STORE, MVT::i1, Custom);
 | 
						|
 | 
						|
    // FIXME: Remove this once the ANDI glue bug is fixed:
 | 
						|
    if (ANDIGlueBug)
 | 
						|
      setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
 | 
						|
 | 
						|
    for (MVT VT : MVT::integer_valuetypes()) {
 | 
						|
      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
 | 
						|
      setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
 | 
						|
      setTruncStoreAction(VT, MVT::i1, Expand);
 | 
						|
    }
 | 
						|
 | 
						|
    addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
 | 
						|
  }
 | 
						|
 | 
						|
  // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
 | 
						|
  // PPC (the libcall is not available).
 | 
						|
  setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
 | 
						|
  setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
 | 
						|
 | 
						|
  // We do not currently implement these libm ops for PowerPC.
 | 
						|
  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
 | 
						|
  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
 | 
						|
  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
 | 
						|
  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
 | 
						|
  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
 | 
						|
  setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
 | 
						|
 | 
						|
  // PowerPC has no SREM/UREM instructions unless we are on P9
 | 
						|
  // On P9 we may use a hardware instruction to compute the remainder.
 | 
						|
  // The instructions are not legalized directly because in the cases where the
 | 
						|
  // result of both the remainder and the division is required it is more
 | 
						|
  // efficient to compute the remainder from the result of the division rather
 | 
						|
  // than use the remainder instruction.
 | 
						|
  if (Subtarget.isISA3_0()) {
 | 
						|
    setOperationAction(ISD::SREM, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::UREM, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::SREM, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::UREM, MVT::i64, Custom);
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::SREM, MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::UREM, MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::SREM, MVT::i64, Expand);
 | 
						|
    setOperationAction(ISD::UREM, MVT::i64, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasP9Vector()) {
 | 
						|
    setOperationAction(ISD::ABS, MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::ABS, MVT::v8i16, Legal);
 | 
						|
    setOperationAction(ISD::ABS, MVT::v16i8, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
 | 
						|
  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
 | 
						|
 | 
						|
  // We don't support sin/cos/sqrt/fmod/pow
 | 
						|
  setOperationAction(ISD::FSIN , MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FCOS , MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FREM , MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FPOW , MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FSIN , MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FCOS , MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FREM , MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FPOW , MVT::f32, Expand);
 | 
						|
  if (Subtarget.hasSPE()) {
 | 
						|
    setOperationAction(ISD::FMA  , MVT::f64, Expand);
 | 
						|
    setOperationAction(ISD::FMA  , MVT::f32, Expand);
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::FMA  , MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FMA  , MVT::f32, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
 | 
						|
 | 
						|
  // If we're enabling GP optimizations, use hardware square root
 | 
						|
  if (!Subtarget.hasFSQRT() &&
 | 
						|
      !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
 | 
						|
        Subtarget.hasFRE()))
 | 
						|
    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
 | 
						|
 | 
						|
  if (!Subtarget.hasFSQRT() &&
 | 
						|
      !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
 | 
						|
        Subtarget.hasFRES()))
 | 
						|
    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
 | 
						|
 | 
						|
  if (Subtarget.hasFCPSGN()) {
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasFPRND()) {
 | 
						|
    setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FROUND, MVT::f64, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::FROUND, MVT::f32, Legal);
 | 
						|
  }
 | 
						|
 | 
						|
  // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
 | 
						|
  // to speed up scalar BSWAP64.
 | 
						|
  // CTPOP or CTTZ were introduced in P8/P9 respectively
 | 
						|
  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
 | 
						|
  if (Subtarget.isISA3_0()) {
 | 
						|
    setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
 | 
						|
    setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
 | 
						|
    setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
 | 
						|
    setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
 | 
						|
    setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
 | 
						|
    setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
 | 
						|
    setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
 | 
						|
    setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // PowerPC does not have ROTR
 | 
						|
  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
 | 
						|
  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
 | 
						|
 | 
						|
  if (!Subtarget.useCRBits()) {
 | 
						|
    // PowerPC does not have Select
 | 
						|
    setOperationAction(ISD::SELECT, MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::SELECT, MVT::i64, Expand);
 | 
						|
    setOperationAction(ISD::SELECT, MVT::f32, Expand);
 | 
						|
    setOperationAction(ISD::SELECT, MVT::f64, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // PowerPC wants to turn select_cc of FP into fsel when possible.
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
 | 
						|
 | 
						|
  // PowerPC wants to optimize integer setcc a bit
 | 
						|
  if (!Subtarget.useCRBits())
 | 
						|
    setOperationAction(ISD::SETCC, MVT::i32, Custom);
 | 
						|
 | 
						|
  // PowerPC does not have BRCOND which requires SetCC
 | 
						|
  if (!Subtarget.useCRBits())
 | 
						|
    setOperationAction(ISD::BRCOND, MVT::Other, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
 | 
						|
 | 
						|
  if (Subtarget.hasSPE()) {
 | 
						|
    // SPE has built-in conversions
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
 | 
						|
  } else {
 | 
						|
    // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | 
						|
 | 
						|
    // PowerPC does not have [U|S]INT_TO_FP
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasDirectMove() && isPPC64) {
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::i32, Legal);
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::i64, Legal);
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::f64, Legal);
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::f32, Expand);
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::i64, Expand);
 | 
						|
    setOperationAction(ISD::BITCAST, MVT::f64, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // We cannot sextinreg(i1).  Expand to shifts.
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | 
						|
 | 
						|
  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
 | 
						|
  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
 | 
						|
  // support continuation, user-level threading, and etc.. As a result, no
 | 
						|
  // other SjLj exception interfaces are implemented and please don't build
 | 
						|
  // your own exception handling based on them.
 | 
						|
  // LLVM/Clang supports zero-cost DWARF exception handling.
 | 
						|
  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
 | 
						|
 | 
						|
  // We want to legalize GlobalAddress and ConstantPool nodes into the
 | 
						|
  // appropriate instructions to materialize the address.
 | 
						|
  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
 | 
						|
 | 
						|
  // TRAP is legal.
 | 
						|
  setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | 
						|
 | 
						|
  // TRAMPOLINE is custom lowered.
 | 
						|
  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
 | 
						|
 | 
						|
  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
 | 
						|
  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
 | 
						|
 | 
						|
  if (Subtarget.isSVR4ABI()) {
 | 
						|
    if (isPPC64) {
 | 
						|
      // VAARG always uses double-word chunks, so promote anything smaller.
 | 
						|
      setOperationAction(ISD::VAARG, MVT::i1, Promote);
 | 
						|
      AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
 | 
						|
      setOperationAction(ISD::VAARG, MVT::i8, Promote);
 | 
						|
      AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
 | 
						|
      setOperationAction(ISD::VAARG, MVT::i16, Promote);
 | 
						|
      AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
 | 
						|
      setOperationAction(ISD::VAARG, MVT::i32, Promote);
 | 
						|
      AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
 | 
						|
      setOperationAction(ISD::VAARG, MVT::Other, Expand);
 | 
						|
    } else {
 | 
						|
      // VAARG is custom lowered with the 32-bit SVR4 ABI.
 | 
						|
      setOperationAction(ISD::VAARG, MVT::Other, Custom);
 | 
						|
      setOperationAction(ISD::VAARG, MVT::i64, Custom);
 | 
						|
    }
 | 
						|
  } else
 | 
						|
    setOperationAction(ISD::VAARG, MVT::Other, Expand);
 | 
						|
 | 
						|
  if (Subtarget.isSVR4ABI() && !isPPC64)
 | 
						|
    // VACOPY is custom lowered with the 32-bit SVR4 ABI.
 | 
						|
    setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
 | 
						|
  else
 | 
						|
    setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
 | 
						|
 | 
						|
  // Use the default implementation.
 | 
						|
  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
 | 
						|
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
 | 
						|
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
 | 
						|
  setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
 | 
						|
  setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
 | 
						|
 | 
						|
  // We want to custom lower some of our intrinsics.
 | 
						|
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | 
						|
 | 
						|
  // To handle counter-based loop conditions.
 | 
						|
  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
 | 
						|
  setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
 | 
						|
  setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
 | 
						|
 | 
						|
  // Comparisons that require checking two conditions.
 | 
						|
  if (Subtarget.hasSPE()) {
 | 
						|
    setCondCodeAction(ISD::SETO, MVT::f32, Expand);
 | 
						|
    setCondCodeAction(ISD::SETO, MVT::f64, Expand);
 | 
						|
    setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
 | 
						|
    setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
 | 
						|
  }
 | 
						|
  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
 | 
						|
  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
 | 
						|
  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
 | 
						|
  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
 | 
						|
  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
 | 
						|
  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
 | 
						|
  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
 | 
						|
  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
 | 
						|
  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
 | 
						|
  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
 | 
						|
  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
 | 
						|
  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
 | 
						|
 | 
						|
  if (Subtarget.has64BitSupport()) {
 | 
						|
    // They also have instructions for converting between i64 and fp.
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
 | 
						|
    // This is just the low 32 bits of a (signed) fp->i64 conversion.
 | 
						|
    // We cannot do this with Promote because i64 is not a legal type.
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
 | 
						|
 | 
						|
    if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
 | 
						|
      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | 
						|
  } else {
 | 
						|
    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
 | 
						|
    if (Subtarget.hasSPE())
 | 
						|
      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
 | 
						|
    else
 | 
						|
      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  // With the instructions enabled under FPCVT, we can do everything.
 | 
						|
  if (Subtarget.hasFPCVT()) {
 | 
						|
    if (Subtarget.has64BitSupport()) {
 | 
						|
      setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | 
						|
      setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
 | 
						|
      setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
 | 
						|
    }
 | 
						|
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.use64BitRegs()) {
 | 
						|
    // 64-bit PowerPC implementations can support i64 types directly
 | 
						|
    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
 | 
						|
    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
 | 
						|
    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
 | 
						|
    // 64-bit PowerPC wants to expand i128 shifts itself.
 | 
						|
    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
 | 
						|
    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
 | 
						|
  } else {
 | 
						|
    // 32-bit PowerPC wants to expand i64 shifts itself.
 | 
						|
    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
 | 
						|
    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasAltivec()) {
 | 
						|
    // First set operation action for all vector types to expand. Then we
 | 
						|
    // will selectively turn on ones that can be effectively codegen'd.
 | 
						|
    for (MVT VT : MVT::vector_valuetypes()) {
 | 
						|
      // add/sub are legal for all supported vector VT's.
 | 
						|
      setOperationAction(ISD::ADD, VT, Legal);
 | 
						|
      setOperationAction(ISD::SUB, VT, Legal);
 | 
						|
 | 
						|
      // Vector instructions introduced in P8
 | 
						|
      if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
 | 
						|
        setOperationAction(ISD::CTPOP, VT, Legal);
 | 
						|
        setOperationAction(ISD::CTLZ, VT, Legal);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        setOperationAction(ISD::CTPOP, VT, Expand);
 | 
						|
        setOperationAction(ISD::CTLZ, VT, Expand);
 | 
						|
      }
 | 
						|
 | 
						|
      // Vector instructions introduced in P9
 | 
						|
      if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
 | 
						|
        setOperationAction(ISD::CTTZ, VT, Legal);
 | 
						|
      else
 | 
						|
        setOperationAction(ISD::CTTZ, VT, Expand);
 | 
						|
 | 
						|
      // We promote all shuffles to v16i8.
 | 
						|
      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
 | 
						|
      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
 | 
						|
 | 
						|
      // We promote all non-typed operations to v4i32.
 | 
						|
      setOperationAction(ISD::AND   , VT, Promote);
 | 
						|
      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::OR    , VT, Promote);
 | 
						|
      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::XOR   , VT, Promote);
 | 
						|
      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::LOAD  , VT, Promote);
 | 
						|
      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::SELECT, VT, Promote);
 | 
						|
      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::VSELECT, VT, Legal);
 | 
						|
      setOperationAction(ISD::SELECT_CC, VT, Promote);
 | 
						|
      AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
 | 
						|
      setOperationAction(ISD::STORE, VT, Promote);
 | 
						|
      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
 | 
						|
 | 
						|
      // No other operations are legal.
 | 
						|
      setOperationAction(ISD::MUL , VT, Expand);
 | 
						|
      setOperationAction(ISD::SDIV, VT, Expand);
 | 
						|
      setOperationAction(ISD::SREM, VT, Expand);
 | 
						|
      setOperationAction(ISD::UDIV, VT, Expand);
 | 
						|
      setOperationAction(ISD::UREM, VT, Expand);
 | 
						|
      setOperationAction(ISD::FDIV, VT, Expand);
 | 
						|
      setOperationAction(ISD::FREM, VT, Expand);
 | 
						|
      setOperationAction(ISD::FNEG, VT, Expand);
 | 
						|
      setOperationAction(ISD::FSQRT, VT, Expand);
 | 
						|
      setOperationAction(ISD::FLOG, VT, Expand);
 | 
						|
      setOperationAction(ISD::FLOG10, VT, Expand);
 | 
						|
      setOperationAction(ISD::FLOG2, VT, Expand);
 | 
						|
      setOperationAction(ISD::FEXP, VT, Expand);
 | 
						|
      setOperationAction(ISD::FEXP2, VT, Expand);
 | 
						|
      setOperationAction(ISD::FSIN, VT, Expand);
 | 
						|
      setOperationAction(ISD::FCOS, VT, Expand);
 | 
						|
      setOperationAction(ISD::FABS, VT, Expand);
 | 
						|
      setOperationAction(ISD::FFLOOR, VT, Expand);
 | 
						|
      setOperationAction(ISD::FCEIL,  VT, Expand);
 | 
						|
      setOperationAction(ISD::FTRUNC, VT, Expand);
 | 
						|
      setOperationAction(ISD::FRINT,  VT, Expand);
 | 
						|
      setOperationAction(ISD::FNEARBYINT, VT, Expand);
 | 
						|
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
 | 
						|
      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
 | 
						|
      setOperationAction(ISD::MULHU, VT, Expand);
 | 
						|
      setOperationAction(ISD::MULHS, VT, Expand);
 | 
						|
      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
 | 
						|
      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
 | 
						|
      setOperationAction(ISD::UDIVREM, VT, Expand);
 | 
						|
      setOperationAction(ISD::SDIVREM, VT, Expand);
 | 
						|
      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
 | 
						|
      setOperationAction(ISD::FPOW, VT, Expand);
 | 
						|
      setOperationAction(ISD::BSWAP, VT, Expand);
 | 
						|
      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
 | 
						|
      setOperationAction(ISD::ROTL, VT, Expand);
 | 
						|
      setOperationAction(ISD::ROTR, VT, Expand);
 | 
						|
 | 
						|
      for (MVT InnerVT : MVT::vector_valuetypes()) {
 | 
						|
        setTruncStoreAction(VT, InnerVT, Expand);
 | 
						|
        setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
 | 
						|
        setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
 | 
						|
        setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
 | 
						|
    // with merges, splats, etc.
 | 
						|
    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::SELECT, MVT::v4i32,
 | 
						|
                       Subtarget.useCRBits() ? Legal : Expand);
 | 
						|
    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
 | 
						|
    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
 | 
						|
 | 
						|
    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
 | 
						|
    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
 | 
						|
    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
 | 
						|
    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
 | 
						|
 | 
						|
    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
 | 
						|
 | 
						|
    if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
 | 
						|
      setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Subtarget.hasP8Altivec())
 | 
						|
      setOperationAction(ISD::MUL, MVT::v4i32, Legal);
 | 
						|
    else
 | 
						|
      setOperationAction(ISD::MUL, MVT::v4i32, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
 | 
						|
    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
 | 
						|
 | 
						|
    // Altivec does not contain unordered floating-point compare instructions
 | 
						|
    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
 | 
						|
    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
 | 
						|
    setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
 | 
						|
    setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
 | 
						|
 | 
						|
    if (Subtarget.hasVSX()) {
 | 
						|
      setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
 | 
						|
      if (Subtarget.hasP8Vector()) {
 | 
						|
        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
 | 
						|
        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
 | 
						|
      }
 | 
						|
      if (Subtarget.hasDirectMove() && isPPC64) {
 | 
						|
        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
 | 
						|
        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
 | 
						|
        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
 | 
						|
        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
 | 
						|
        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
 | 
						|
        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
 | 
						|
        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
 | 
						|
        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
 | 
						|
      }
 | 
						|
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::MUL, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FMA, MVT::v2f64, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
 | 
						|
 | 
						|
      // Share the Altivec comparison restrictions.
 | 
						|
      setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
 | 
						|
      setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
 | 
						|
      setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
 | 
						|
      setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
 | 
						|
 | 
						|
      setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::STORE, MVT::v2f64, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
 | 
						|
 | 
						|
      if (Subtarget.hasP8Vector())
 | 
						|
        addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
 | 
						|
 | 
						|
      addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
 | 
						|
 | 
						|
      addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
 | 
						|
      addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
 | 
						|
      addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
 | 
						|
 | 
						|
      if (Subtarget.hasP8Altivec()) {
 | 
						|
        setOperationAction(ISD::SHL, MVT::v2i64, Legal);
 | 
						|
        setOperationAction(ISD::SRA, MVT::v2i64, Legal);
 | 
						|
        setOperationAction(ISD::SRL, MVT::v2i64, Legal);
 | 
						|
 | 
						|
        // 128 bit shifts can be accomplished via 3 instructions for SHL and
 | 
						|
        // SRL, but not for SRA because of the instructions available:
 | 
						|
        // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
 | 
						|
        // doing
 | 
						|
        setOperationAction(ISD::SHL, MVT::v1i128, Expand);
 | 
						|
        setOperationAction(ISD::SRL, MVT::v1i128, Expand);
 | 
						|
        setOperationAction(ISD::SRA, MVT::v1i128, Expand);
 | 
						|
 | 
						|
        setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        setOperationAction(ISD::SHL, MVT::v2i64, Expand);
 | 
						|
        setOperationAction(ISD::SRA, MVT::v2i64, Expand);
 | 
						|
        setOperationAction(ISD::SRL, MVT::v2i64, Expand);
 | 
						|
 | 
						|
        setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
 | 
						|
 | 
						|
        // VSX v2i64 only supports non-arithmetic operations.
 | 
						|
        setOperationAction(ISD::ADD, MVT::v2i64, Expand);
 | 
						|
        setOperationAction(ISD::SUB, MVT::v2i64, Expand);
 | 
						|
      }
 | 
						|
 | 
						|
      setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
 | 
						|
      AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
 | 
						|
      setOperationAction(ISD::STORE, MVT::v2i64, Promote);
 | 
						|
      AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
 | 
						|
 | 
						|
      setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
 | 
						|
      setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
 | 
						|
      setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
 | 
						|
 | 
						|
      setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
 | 
						|
      setOperationAction(ISD::FABS, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::FABS, MVT::v2f64, Legal);
 | 
						|
 | 
						|
      if (Subtarget.hasDirectMove())
 | 
						|
        setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
 | 
						|
      setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
 | 
						|
 | 
						|
      addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Subtarget.hasP8Altivec()) {
 | 
						|
      addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
 | 
						|
      addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Subtarget.hasP9Vector()) {
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
 | 
						|
 | 
						|
      // 128 bit shifts can be accomplished via 3 instructions for SHL and
 | 
						|
      // SRL, but not for SRA because of the instructions available:
 | 
						|
      // VS{RL} and VS{RL}O.
 | 
						|
      setOperationAction(ISD::SHL, MVT::v1i128, Legal);
 | 
						|
      setOperationAction(ISD::SRL, MVT::v1i128, Legal);
 | 
						|
      setOperationAction(ISD::SRA, MVT::v1i128, Expand);
 | 
						|
 | 
						|
      if (EnableQuadPrecision) {
 | 
						|
        addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
 | 
						|
        setOperationAction(ISD::FADD, MVT::f128, Legal);
 | 
						|
        setOperationAction(ISD::FSUB, MVT::f128, Legal);
 | 
						|
        setOperationAction(ISD::FDIV, MVT::f128, Legal);
 | 
						|
        setOperationAction(ISD::FMUL, MVT::f128, Legal);
 | 
						|
        setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
 | 
						|
        // No extending loads to f128 on PPC.
 | 
						|
        for (MVT FPT : MVT::fp_valuetypes())
 | 
						|
          setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
 | 
						|
        setOperationAction(ISD::FMA, MVT::f128, Legal);
 | 
						|
        setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
 | 
						|
        setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
 | 
						|
        setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
 | 
						|
        setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
 | 
						|
        setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
 | 
						|
        setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
 | 
						|
 | 
						|
        setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
 | 
						|
        setOperationAction(ISD::FRINT, MVT::f128, Legal);
 | 
						|
        setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
 | 
						|
        setOperationAction(ISD::FCEIL, MVT::f128, Legal);
 | 
						|
        setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
 | 
						|
        setOperationAction(ISD::FROUND, MVT::f128, Legal);
 | 
						|
 | 
						|
        setOperationAction(ISD::SELECT, MVT::f128, Expand);
 | 
						|
        setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
 | 
						|
        setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
 | 
						|
        setTruncStoreAction(MVT::f128, MVT::f64, Expand);
 | 
						|
        setTruncStoreAction(MVT::f128, MVT::f32, Expand);
 | 
						|
        setOperationAction(ISD::BITCAST, MVT::i128, Custom);
 | 
						|
        // No implementation for these ops for PowerPC.
 | 
						|
        setOperationAction(ISD::FSIN , MVT::f128, Expand);
 | 
						|
        setOperationAction(ISD::FCOS , MVT::f128, Expand);
 | 
						|
        setOperationAction(ISD::FPOW, MVT::f128, Expand);
 | 
						|
        setOperationAction(ISD::FPOWI, MVT::f128, Expand);
 | 
						|
        setOperationAction(ISD::FREM, MVT::f128, Expand);
 | 
						|
      }
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    if (Subtarget.hasP9Altivec()) {
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
 | 
						|
      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasQPX()) {
 | 
						|
    setOperationAction(ISD::FADD, MVT::v4f64, Legal);
 | 
						|
    setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
 | 
						|
    setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
 | 
						|
    setOperationAction(ISD::FREM, MVT::v4f64, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
 | 
						|
    setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
 | 
						|
    setOperationAction(ISD::STORE , MVT::v4f64, Custom);
 | 
						|
 | 
						|
    setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
 | 
						|
    setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
 | 
						|
 | 
						|
    if (!Subtarget.useCRBits())
 | 
						|
      setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
 | 
						|
    setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
 | 
						|
    setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
 | 
						|
    setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
 | 
						|
    setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
 | 
						|
    setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
 | 
						|
    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
 | 
						|
    setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
 | 
						|
    setOperationAction(ISD::FABS , MVT::v4f64, Legal);
 | 
						|
    setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
 | 
						|
    setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
 | 
						|
    setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
 | 
						|
    setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
 | 
						|
    setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
 | 
						|
    setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
 | 
						|
    setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
 | 
						|
    setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
 | 
						|
    setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
 | 
						|
 | 
						|
    setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
 | 
						|
    setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
 | 
						|
 | 
						|
    addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
 | 
						|
 | 
						|
    setOperationAction(ISD::FADD, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FREM, MVT::v4f32, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
 | 
						|
    setOperationAction(ISD::STORE , MVT::v4f32, Custom);
 | 
						|
 | 
						|
    if (!Subtarget.useCRBits())
 | 
						|
      setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
 | 
						|
    setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
 | 
						|
    setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
 | 
						|
    setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
 | 
						|
    setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
 | 
						|
    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FABS , MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
 | 
						|
    setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
 | 
						|
    setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
 | 
						|
    setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
 | 
						|
    setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
 | 
						|
    setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
 | 
						|
    setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
 | 
						|
    setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
 | 
						|
 | 
						|
    setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
 | 
						|
    setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
 | 
						|
 | 
						|
    addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
 | 
						|
 | 
						|
    setOperationAction(ISD::AND , MVT::v4i1, Legal);
 | 
						|
    setOperationAction(ISD::OR , MVT::v4i1, Legal);
 | 
						|
    setOperationAction(ISD::XOR , MVT::v4i1, Legal);
 | 
						|
 | 
						|
    if (!Subtarget.useCRBits())
 | 
						|
      setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
 | 
						|
    setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
 | 
						|
    setOperationAction(ISD::STORE , MVT::v4i1, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
 | 
						|
    setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
 | 
						|
    setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
 | 
						|
    setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
 | 
						|
    setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
 | 
						|
    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
 | 
						|
    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
 | 
						|
 | 
						|
    addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
 | 
						|
 | 
						|
    setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
 | 
						|
    setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
 | 
						|
    setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
 | 
						|
    setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
 | 
						|
    setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
 | 
						|
    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
 | 
						|
 | 
						|
    // These need to set FE_INEXACT, and so cannot be vectorized here.
 | 
						|
    setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
 | 
						|
    setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
 | 
						|
 | 
						|
    if (TM.Options.UnsafeFPMath) {
 | 
						|
      setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
 | 
						|
      setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
 | 
						|
 | 
						|
      setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
 | 
						|
      setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
 | 
						|
    } else {
 | 
						|
      setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
 | 
						|
      setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
 | 
						|
 | 
						|
      setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
 | 
						|
      setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.has64BitSupport())
 | 
						|
    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
 | 
						|
 | 
						|
  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
 | 
						|
 | 
						|
  if (!isPPC64) {
 | 
						|
    setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
 | 
						|
    setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  setBooleanContents(ZeroOrOneBooleanContent);
 | 
						|
 | 
						|
  if (Subtarget.hasAltivec()) {
 | 
						|
    // Altivec instructions set fields to all zeros or all ones.
 | 
						|
    setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isPPC64) {
 | 
						|
    // These libcalls are not available in 32-bit.
 | 
						|
    setLibcallName(RTLIB::SHL_I128, nullptr);
 | 
						|
    setLibcallName(RTLIB::SRL_I128, nullptr);
 | 
						|
    setLibcallName(RTLIB::SRA_I128, nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
 | 
						|
 | 
						|
  // We have target-specific dag combine patterns for the following nodes:
 | 
						|
  setTargetDAGCombine(ISD::ADD);
 | 
						|
  setTargetDAGCombine(ISD::SHL);
 | 
						|
  setTargetDAGCombine(ISD::SRA);
 | 
						|
  setTargetDAGCombine(ISD::SRL);
 | 
						|
  setTargetDAGCombine(ISD::SINT_TO_FP);
 | 
						|
  setTargetDAGCombine(ISD::BUILD_VECTOR);
 | 
						|
  if (Subtarget.hasFPCVT())
 | 
						|
    setTargetDAGCombine(ISD::UINT_TO_FP);
 | 
						|
  setTargetDAGCombine(ISD::LOAD);
 | 
						|
  setTargetDAGCombine(ISD::STORE);
 | 
						|
  setTargetDAGCombine(ISD::BR_CC);
 | 
						|
  if (Subtarget.useCRBits())
 | 
						|
    setTargetDAGCombine(ISD::BRCOND);
 | 
						|
  setTargetDAGCombine(ISD::BSWAP);
 | 
						|
  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
 | 
						|
  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
 | 
						|
  setTargetDAGCombine(ISD::INTRINSIC_VOID);
 | 
						|
 | 
						|
  setTargetDAGCombine(ISD::SIGN_EXTEND);
 | 
						|
  setTargetDAGCombine(ISD::ZERO_EXTEND);
 | 
						|
  setTargetDAGCombine(ISD::ANY_EXTEND);
 | 
						|
 | 
						|
  setTargetDAGCombine(ISD::TRUNCATE);
 | 
						|
 | 
						|
  if (Subtarget.useCRBits()) {
 | 
						|
    setTargetDAGCombine(ISD::TRUNCATE);
 | 
						|
    setTargetDAGCombine(ISD::SETCC);
 | 
						|
    setTargetDAGCombine(ISD::SELECT_CC);
 | 
						|
  }
 | 
						|
 | 
						|
  // Use reciprocal estimates.
 | 
						|
  if (TM.Options.UnsafeFPMath) {
 | 
						|
    setTargetDAGCombine(ISD::FDIV);
 | 
						|
    setTargetDAGCombine(ISD::FSQRT);
 | 
						|
  }
 | 
						|
 | 
						|
  // Darwin long double math library functions have $LDBL128 appended.
 | 
						|
  if (Subtarget.isDarwin()) {
 | 
						|
    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
 | 
						|
    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
 | 
						|
    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
 | 
						|
    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
 | 
						|
    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
 | 
						|
    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
 | 
						|
    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
 | 
						|
    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
 | 
						|
    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
 | 
						|
    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
 | 
						|
  }
 | 
						|
 | 
						|
  if (EnableQuadPrecision) {
 | 
						|
    setLibcallName(RTLIB::LOG_F128, "logf128");
 | 
						|
    setLibcallName(RTLIB::LOG2_F128, "log2f128");
 | 
						|
    setLibcallName(RTLIB::LOG10_F128, "log10f128");
 | 
						|
    setLibcallName(RTLIB::EXP_F128, "expf128");
 | 
						|
    setLibcallName(RTLIB::EXP2_F128, "exp2f128");
 | 
						|
    setLibcallName(RTLIB::SIN_F128, "sinf128");
 | 
						|
    setLibcallName(RTLIB::COS_F128, "cosf128");
 | 
						|
    setLibcallName(RTLIB::POW_F128, "powf128");
 | 
						|
    setLibcallName(RTLIB::FMIN_F128, "fminf128");
 | 
						|
    setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
 | 
						|
    setLibcallName(RTLIB::POWI_F128, "__powikf2");
 | 
						|
    setLibcallName(RTLIB::REM_F128, "fmodf128");
 | 
						|
  }
 | 
						|
 | 
						|
  // With 32 condition bits, we don't need to sink (and duplicate) compares
 | 
						|
  // aggressively in CodeGenPrep.
 | 
						|
  if (Subtarget.useCRBits()) {
 | 
						|
    setHasMultipleConditionRegisters();
 | 
						|
    setJumpIsExpensive();
 | 
						|
  }
 | 
						|
 | 
						|
  setMinFunctionAlignment(2);
 | 
						|
  if (Subtarget.isDarwin())
 | 
						|
    setPrefFunctionAlignment(4);
 | 
						|
 | 
						|
  switch (Subtarget.getDarwinDirective()) {
 | 
						|
  default: break;
 | 
						|
  case PPC::DIR_970:
 | 
						|
  case PPC::DIR_A2:
 | 
						|
  case PPC::DIR_E500:
 | 
						|
  case PPC::DIR_E500mc:
 | 
						|
  case PPC::DIR_E5500:
 | 
						|
  case PPC::DIR_PWR4:
 | 
						|
  case PPC::DIR_PWR5:
 | 
						|
  case PPC::DIR_PWR5X:
 | 
						|
  case PPC::DIR_PWR6:
 | 
						|
  case PPC::DIR_PWR6X:
 | 
						|
  case PPC::DIR_PWR7:
 | 
						|
  case PPC::DIR_PWR8:
 | 
						|
  case PPC::DIR_PWR9:
 | 
						|
    setPrefFunctionAlignment(4);
 | 
						|
    setPrefLoopAlignment(4);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.enableMachineScheduler())
 | 
						|
    setSchedulingPreference(Sched::Source);
 | 
						|
  else
 | 
						|
    setSchedulingPreference(Sched::Hybrid);
 | 
						|
 | 
						|
  computeRegisterProperties(STI.getRegisterInfo());
 | 
						|
 | 
						|
  // The Freescale cores do better with aggressive inlining of memcpy and
 | 
						|
  // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
 | 
						|
  if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
 | 
						|
      Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
 | 
						|
    MaxStoresPerMemset = 32;
 | 
						|
    MaxStoresPerMemsetOptSize = 16;
 | 
						|
    MaxStoresPerMemcpy = 32;
 | 
						|
    MaxStoresPerMemcpyOptSize = 8;
 | 
						|
    MaxStoresPerMemmove = 32;
 | 
						|
    MaxStoresPerMemmoveOptSize = 8;
 | 
						|
  } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
 | 
						|
    // The A2 also benefits from (very) aggressive inlining of memcpy and
 | 
						|
    // friends. The overhead of a the function call, even when warm, can be
 | 
						|
    // over one hundred cycles.
 | 
						|
    MaxStoresPerMemset = 128;
 | 
						|
    MaxStoresPerMemcpy = 128;
 | 
						|
    MaxStoresPerMemmove = 128;
 | 
						|
    MaxLoadsPerMemcmp = 128;
 | 
						|
  } else {
 | 
						|
    MaxLoadsPerMemcmp = 8;
 | 
						|
    MaxLoadsPerMemcmpOptSize = 4;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
 | 
						|
/// the desired ByVal argument alignment.
 | 
						|
static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
 | 
						|
                             unsigned MaxMaxAlign) {
 | 
						|
  if (MaxAlign == MaxMaxAlign)
 | 
						|
    return;
 | 
						|
  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
 | 
						|
    if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
 | 
						|
      MaxAlign = 32;
 | 
						|
    else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
 | 
						|
      MaxAlign = 16;
 | 
						|
  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | 
						|
    unsigned EltAlign = 0;
 | 
						|
    getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
 | 
						|
    if (EltAlign > MaxAlign)
 | 
						|
      MaxAlign = EltAlign;
 | 
						|
  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
    for (auto *EltTy : STy->elements()) {
 | 
						|
      unsigned EltAlign = 0;
 | 
						|
      getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
 | 
						|
      if (EltAlign > MaxAlign)
 | 
						|
        MaxAlign = EltAlign;
 | 
						|
      if (MaxAlign == MaxMaxAlign)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
 | 
						|
/// function arguments in the caller parameter area.
 | 
						|
unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
 | 
						|
                                                  const DataLayout &DL) const {
 | 
						|
  // Darwin passes everything on 4 byte boundary.
 | 
						|
  if (Subtarget.isDarwin())
 | 
						|
    return 4;
 | 
						|
 | 
						|
  // 16byte and wider vectors are passed on 16byte boundary.
 | 
						|
  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
 | 
						|
  unsigned Align = Subtarget.isPPC64() ? 8 : 4;
 | 
						|
  if (Subtarget.hasAltivec() || Subtarget.hasQPX())
 | 
						|
    getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
 | 
						|
  return Align;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
 | 
						|
                                                          CallingConv:: ID CC,
 | 
						|
                                                          EVT VT) const {
 | 
						|
  if (Subtarget.hasSPE() && VT == MVT::f64)
 | 
						|
    return 2;
 | 
						|
  return PPCTargetLowering::getNumRegisters(Context, VT);
 | 
						|
}
 | 
						|
 | 
						|
MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
 | 
						|
                                                     CallingConv:: ID CC,
 | 
						|
                                                     EVT VT) const {
 | 
						|
  if (Subtarget.hasSPE() && VT == MVT::f64)
 | 
						|
    return MVT::i32;
 | 
						|
  return PPCTargetLowering::getRegisterType(Context, VT);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::useSoftFloat() const {
 | 
						|
  return Subtarget.useSoftFloat();
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::hasSPE() const {
 | 
						|
  return Subtarget.hasSPE();
 | 
						|
}
 | 
						|
 | 
						|
const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | 
						|
  switch ((PPCISD::NodeType)Opcode) {
 | 
						|
  case PPCISD::FIRST_NUMBER:    break;
 | 
						|
  case PPCISD::FSEL:            return "PPCISD::FSEL";
 | 
						|
  case PPCISD::FCFID:           return "PPCISD::FCFID";
 | 
						|
  case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
 | 
						|
  case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
 | 
						|
  case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
 | 
						|
  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
 | 
						|
  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
 | 
						|
  case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
 | 
						|
  case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
 | 
						|
  case PPCISD::FP_TO_UINT_IN_VSR:
 | 
						|
                                return "PPCISD::FP_TO_UINT_IN_VSR,";
 | 
						|
  case PPCISD::FP_TO_SINT_IN_VSR:
 | 
						|
                                return "PPCISD::FP_TO_SINT_IN_VSR";
 | 
						|
  case PPCISD::FRE:             return "PPCISD::FRE";
 | 
						|
  case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
 | 
						|
  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
 | 
						|
  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
 | 
						|
  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
 | 
						|
  case PPCISD::VPERM:           return "PPCISD::VPERM";
 | 
						|
  case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
 | 
						|
  case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
 | 
						|
  case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
 | 
						|
  case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
 | 
						|
  case PPCISD::VECSHL:          return "PPCISD::VECSHL";
 | 
						|
  case PPCISD::CMPB:            return "PPCISD::CMPB";
 | 
						|
  case PPCISD::Hi:              return "PPCISD::Hi";
 | 
						|
  case PPCISD::Lo:              return "PPCISD::Lo";
 | 
						|
  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
 | 
						|
  case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
 | 
						|
  case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
 | 
						|
  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
 | 
						|
  case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
 | 
						|
  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
 | 
						|
  case PPCISD::SRL:             return "PPCISD::SRL";
 | 
						|
  case PPCISD::SRA:             return "PPCISD::SRA";
 | 
						|
  case PPCISD::SHL:             return "PPCISD::SHL";
 | 
						|
  case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
 | 
						|
  case PPCISD::CALL:            return "PPCISD::CALL";
 | 
						|
  case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
 | 
						|
  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
 | 
						|
  case PPCISD::BCTRL:           return "PPCISD::BCTRL";
 | 
						|
  case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
 | 
						|
  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
 | 
						|
  case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
 | 
						|
  case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
 | 
						|
  case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
 | 
						|
  case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
 | 
						|
  case PPCISD::MFVSR:           return "PPCISD::MFVSR";
 | 
						|
  case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
 | 
						|
  case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
 | 
						|
  case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
 | 
						|
  case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
 | 
						|
  case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
 | 
						|
  case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
 | 
						|
  case PPCISD::VCMP:            return "PPCISD::VCMP";
 | 
						|
  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
 | 
						|
  case PPCISD::LBRX:            return "PPCISD::LBRX";
 | 
						|
  case PPCISD::STBRX:           return "PPCISD::STBRX";
 | 
						|
  case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
 | 
						|
  case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
 | 
						|
  case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
 | 
						|
  case PPCISD::STXSIX:          return "PPCISD::STXSIX";
 | 
						|
  case PPCISD::VEXTS:           return "PPCISD::VEXTS";
 | 
						|
  case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
 | 
						|
  case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
 | 
						|
  case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
 | 
						|
  case PPCISD::ST_VSR_SCAL_INT:
 | 
						|
                                return "PPCISD::ST_VSR_SCAL_INT";
 | 
						|
  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
 | 
						|
  case PPCISD::BDNZ:            return "PPCISD::BDNZ";
 | 
						|
  case PPCISD::BDZ:             return "PPCISD::BDZ";
 | 
						|
  case PPCISD::MFFS:            return "PPCISD::MFFS";
 | 
						|
  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
 | 
						|
  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
 | 
						|
  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
 | 
						|
  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
 | 
						|
  case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
 | 
						|
  case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
 | 
						|
  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
 | 
						|
  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
 | 
						|
  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
 | 
						|
  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
 | 
						|
  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
 | 
						|
  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
 | 
						|
  case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
 | 
						|
  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
 | 
						|
  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
 | 
						|
  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
 | 
						|
  case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
 | 
						|
  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
 | 
						|
  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
 | 
						|
  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
 | 
						|
  case PPCISD::SC:              return "PPCISD::SC";
 | 
						|
  case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
 | 
						|
  case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
 | 
						|
  case PPCISD::RFEBB:           return "PPCISD::RFEBB";
 | 
						|
  case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
 | 
						|
  case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
 | 
						|
  case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
 | 
						|
  case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
 | 
						|
  case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
 | 
						|
  case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
 | 
						|
  case PPCISD::QBFLT:           return "PPCISD::QBFLT";
 | 
						|
  case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
 | 
						|
  case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
 | 
						|
  case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
 | 
						|
                                          EVT VT) const {
 | 
						|
  if (!VT.isVector())
 | 
						|
    return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
 | 
						|
 | 
						|
  if (Subtarget.hasQPX())
 | 
						|
    return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
 | 
						|
 | 
						|
  return VT.changeVectorElementTypeToInteger();
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
 | 
						|
  assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Node matching predicates, for use by the tblgen matching code.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
 | 
						|
static bool isFloatingPointZero(SDValue Op) {
 | 
						|
  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
 | 
						|
    return CFP->getValueAPF().isZero();
 | 
						|
  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
 | 
						|
    // Maybe this has already been legalized into the constant pool?
 | 
						|
    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
 | 
						|
      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
 | 
						|
        return CFP->getValueAPF().isZero();
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
 | 
						|
/// true if Op is undef or if it matches the specified value.
 | 
						|
static bool isConstantOrUndef(int Op, int Val) {
 | 
						|
  return Op < 0 || Op == Val;
 | 
						|
}
 | 
						|
 | 
						|
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
 | 
						|
/// VPKUHUM instruction.
 | 
						|
/// The ShuffleKind distinguishes between big-endian operations with
 | 
						|
/// two different inputs (0), either-endian operations with two identical
 | 
						|
/// inputs (1), and little-endian operations with two different inputs (2).
 | 
						|
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
 | 
						|
bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
 | 
						|
                               SelectionDAG &DAG) {
 | 
						|
  bool IsLE = DAG.getDataLayout().isLittleEndian();
 | 
						|
  if (ShuffleKind == 0) {
 | 
						|
    if (IsLE)
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
 | 
						|
        return false;
 | 
						|
  } else if (ShuffleKind == 2) {
 | 
						|
    if (!IsLE)
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i), i*2))
 | 
						|
        return false;
 | 
						|
  } else if (ShuffleKind == 1) {
 | 
						|
    unsigned j = IsLE ? 0 : 1;
 | 
						|
    for (unsigned i = 0; i != 8; ++i)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
 | 
						|
/// VPKUWUM instruction.
 | 
						|
/// The ShuffleKind distinguishes between big-endian operations with
 | 
						|
/// two different inputs (0), either-endian operations with two identical
 | 
						|
/// inputs (1), and little-endian operations with two different inputs (2).
 | 
						|
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
 | 
						|
bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
 | 
						|
                               SelectionDAG &DAG) {
 | 
						|
  bool IsLE = DAG.getDataLayout().isLittleEndian();
 | 
						|
  if (ShuffleKind == 0) {
 | 
						|
    if (IsLE)
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 0; i != 16; i += 2)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
 | 
						|
        return false;
 | 
						|
  } else if (ShuffleKind == 2) {
 | 
						|
    if (!IsLE)
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 0; i != 16; i += 2)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
 | 
						|
        return false;
 | 
						|
  } else if (ShuffleKind == 1) {
 | 
						|
    unsigned j = IsLE ? 0 : 2;
 | 
						|
    for (unsigned i = 0; i != 8; i += 2)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
 | 
						|
/// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
 | 
						|
/// current subtarget.
 | 
						|
///
 | 
						|
/// The ShuffleKind distinguishes between big-endian operations with
 | 
						|
/// two different inputs (0), either-endian operations with two identical
 | 
						|
/// inputs (1), and little-endian operations with two different inputs (2).
 | 
						|
/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
 | 
						|
bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
 | 
						|
                               SelectionDAG &DAG) {
 | 
						|
  const PPCSubtarget& Subtarget =
 | 
						|
    static_cast<const PPCSubtarget&>(DAG.getSubtarget());
 | 
						|
  if (!Subtarget.hasP8Vector())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool IsLE = DAG.getDataLayout().isLittleEndian();
 | 
						|
  if (ShuffleKind == 0) {
 | 
						|
    if (IsLE)
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 0; i != 16; i += 4)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
 | 
						|
        return false;
 | 
						|
  } else if (ShuffleKind == 2) {
 | 
						|
    if (!IsLE)
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 0; i != 16; i += 4)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
 | 
						|
        return false;
 | 
						|
  } else if (ShuffleKind == 1) {
 | 
						|
    unsigned j = IsLE ? 0 : 4;
 | 
						|
    for (unsigned i = 0; i != 8; i += 4)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVMerge - Common function, used to match vmrg* shuffles.
 | 
						|
///
 | 
						|
static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
 | 
						|
                     unsigned LHSStart, unsigned RHSStart) {
 | 
						|
  if (N->getValueType(0) != MVT::v16i8)
 | 
						|
    return false;
 | 
						|
  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
 | 
						|
         "Unsupported merge size!");
 | 
						|
 | 
						|
  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
 | 
						|
    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
 | 
						|
                             LHSStart+j+i*UnitSize) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
 | 
						|
                             RHSStart+j+i*UnitSize))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
 | 
						|
/// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
 | 
						|
/// The ShuffleKind distinguishes between big-endian merges with two
 | 
						|
/// different inputs (0), either-endian merges with two identical inputs (1),
 | 
						|
/// and little-endian merges with two different inputs (2).  For the latter,
 | 
						|
/// the input operands are swapped (see PPCInstrAltivec.td).
 | 
						|
bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
 | 
						|
                             unsigned ShuffleKind, SelectionDAG &DAG) {
 | 
						|
  if (DAG.getDataLayout().isLittleEndian()) {
 | 
						|
    if (ShuffleKind == 1) // unary
 | 
						|
      return isVMerge(N, UnitSize, 0, 0);
 | 
						|
    else if (ShuffleKind == 2) // swapped
 | 
						|
      return isVMerge(N, UnitSize, 0, 16);
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    if (ShuffleKind == 1) // unary
 | 
						|
      return isVMerge(N, UnitSize, 8, 8);
 | 
						|
    else if (ShuffleKind == 0) // normal
 | 
						|
      return isVMerge(N, UnitSize, 8, 24);
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
 | 
						|
/// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
 | 
						|
/// The ShuffleKind distinguishes between big-endian merges with two
 | 
						|
/// different inputs (0), either-endian merges with two identical inputs (1),
 | 
						|
/// and little-endian merges with two different inputs (2).  For the latter,
 | 
						|
/// the input operands are swapped (see PPCInstrAltivec.td).
 | 
						|
bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
 | 
						|
                             unsigned ShuffleKind, SelectionDAG &DAG) {
 | 
						|
  if (DAG.getDataLayout().isLittleEndian()) {
 | 
						|
    if (ShuffleKind == 1) // unary
 | 
						|
      return isVMerge(N, UnitSize, 8, 8);
 | 
						|
    else if (ShuffleKind == 2) // swapped
 | 
						|
      return isVMerge(N, UnitSize, 8, 24);
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    if (ShuffleKind == 1) // unary
 | 
						|
      return isVMerge(N, UnitSize, 0, 0);
 | 
						|
    else if (ShuffleKind == 0) // normal
 | 
						|
      return isVMerge(N, UnitSize, 0, 16);
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Common function used to match vmrgew and vmrgow shuffles
 | 
						|
 *
 | 
						|
 * The indexOffset determines whether to look for even or odd words in
 | 
						|
 * the shuffle mask. This is based on the of the endianness of the target
 | 
						|
 * machine.
 | 
						|
 *   - Little Endian:
 | 
						|
 *     - Use offset of 0 to check for odd elements
 | 
						|
 *     - Use offset of 4 to check for even elements
 | 
						|
 *   - Big Endian:
 | 
						|
 *     - Use offset of 0 to check for even elements
 | 
						|
 *     - Use offset of 4 to check for odd elements
 | 
						|
 * A detailed description of the vector element ordering for little endian and
 | 
						|
 * big endian can be found at
 | 
						|
 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
 | 
						|
 * Targeting your applications - what little endian and big endian IBM XL C/C++
 | 
						|
 * compiler differences mean to you
 | 
						|
 *
 | 
						|
 * The mask to the shuffle vector instruction specifies the indices of the
 | 
						|
 * elements from the two input vectors to place in the result. The elements are
 | 
						|
 * numbered in array-access order, starting with the first vector. These vectors
 | 
						|
 * are always of type v16i8, thus each vector will contain 16 elements of size
 | 
						|
 * 8. More info on the shuffle vector can be found in the
 | 
						|
 * http://llvm.org/docs/LangRef.html#shufflevector-instruction
 | 
						|
 * Language Reference.
 | 
						|
 *
 | 
						|
 * The RHSStartValue indicates whether the same input vectors are used (unary)
 | 
						|
 * or two different input vectors are used, based on the following:
 | 
						|
 *   - If the instruction uses the same vector for both inputs, the range of the
 | 
						|
 *     indices will be 0 to 15. In this case, the RHSStart value passed should
 | 
						|
 *     be 0.
 | 
						|
 *   - If the instruction has two different vectors then the range of the
 | 
						|
 *     indices will be 0 to 31. In this case, the RHSStart value passed should
 | 
						|
 *     be 16 (indices 0-15 specify elements in the first vector while indices 16
 | 
						|
 *     to 31 specify elements in the second vector).
 | 
						|
 *
 | 
						|
 * \param[in] N The shuffle vector SD Node to analyze
 | 
						|
 * \param[in] IndexOffset Specifies whether to look for even or odd elements
 | 
						|
 * \param[in] RHSStartValue Specifies the starting index for the righthand input
 | 
						|
 * vector to the shuffle_vector instruction
 | 
						|
 * \return true iff this shuffle vector represents an even or odd word merge
 | 
						|
 */
 | 
						|
static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
 | 
						|
                     unsigned RHSStartValue) {
 | 
						|
  if (N->getValueType(0) != MVT::v16i8)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < 2; ++i)
 | 
						|
    for (unsigned j = 0; j < 4; ++j)
 | 
						|
      if (!isConstantOrUndef(N->getMaskElt(i*4+j),
 | 
						|
                             i*RHSStartValue+j+IndexOffset) ||
 | 
						|
          !isConstantOrUndef(N->getMaskElt(i*4+j+8),
 | 
						|
                             i*RHSStartValue+j+IndexOffset+8))
 | 
						|
        return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Determine if the specified shuffle mask is suitable for the vmrgew or
 | 
						|
 * vmrgow instructions.
 | 
						|
 *
 | 
						|
 * \param[in] N The shuffle vector SD Node to analyze
 | 
						|
 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
 | 
						|
 * \param[in] ShuffleKind Identify the type of merge:
 | 
						|
 *   - 0 = big-endian merge with two different inputs;
 | 
						|
 *   - 1 = either-endian merge with two identical inputs;
 | 
						|
 *   - 2 = little-endian merge with two different inputs (inputs are swapped for
 | 
						|
 *     little-endian merges).
 | 
						|
 * \param[in] DAG The current SelectionDAG
 | 
						|
 * \return true iff this shuffle mask
 | 
						|
 */
 | 
						|
bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
 | 
						|
                              unsigned ShuffleKind, SelectionDAG &DAG) {
 | 
						|
  if (DAG.getDataLayout().isLittleEndian()) {
 | 
						|
    unsigned indexOffset = CheckEven ? 4 : 0;
 | 
						|
    if (ShuffleKind == 1) // Unary
 | 
						|
      return isVMerge(N, indexOffset, 0);
 | 
						|
    else if (ShuffleKind == 2) // swapped
 | 
						|
      return isVMerge(N, indexOffset, 16);
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    unsigned indexOffset = CheckEven ? 0 : 4;
 | 
						|
    if (ShuffleKind == 1) // Unary
 | 
						|
      return isVMerge(N, indexOffset, 0);
 | 
						|
    else if (ShuffleKind == 0) // Normal
 | 
						|
      return isVMerge(N, indexOffset, 16);
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
 | 
						|
/// amount, otherwise return -1.
 | 
						|
/// The ShuffleKind distinguishes between big-endian operations with two
 | 
						|
/// different inputs (0), either-endian operations with two identical inputs
 | 
						|
/// (1), and little-endian operations with two different inputs (2).  For the
 | 
						|
/// latter, the input operands are swapped (see PPCInstrAltivec.td).
 | 
						|
int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
 | 
						|
                             SelectionDAG &DAG) {
 | 
						|
  if (N->getValueType(0) != MVT::v16i8)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | 
						|
 | 
						|
  // Find the first non-undef value in the shuffle mask.
 | 
						|
  unsigned i;
 | 
						|
  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
 | 
						|
    /*search*/;
 | 
						|
 | 
						|
  if (i == 16) return -1;  // all undef.
 | 
						|
 | 
						|
  // Otherwise, check to see if the rest of the elements are consecutively
 | 
						|
  // numbered from this value.
 | 
						|
  unsigned ShiftAmt = SVOp->getMaskElt(i);
 | 
						|
  if (ShiftAmt < i) return -1;
 | 
						|
 | 
						|
  ShiftAmt -= i;
 | 
						|
  bool isLE = DAG.getDataLayout().isLittleEndian();
 | 
						|
 | 
						|
  if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
 | 
						|
    // Check the rest of the elements to see if they are consecutive.
 | 
						|
    for (++i; i != 16; ++i)
 | 
						|
      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
 | 
						|
        return -1;
 | 
						|
  } else if (ShuffleKind == 1) {
 | 
						|
    // Check the rest of the elements to see if they are consecutive.
 | 
						|
    for (++i; i != 16; ++i)
 | 
						|
      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
 | 
						|
        return -1;
 | 
						|
  } else
 | 
						|
    return -1;
 | 
						|
 | 
						|
  if (isLE)
 | 
						|
    ShiftAmt = 16 - ShiftAmt;
 | 
						|
 | 
						|
  return ShiftAmt;
 | 
						|
}
 | 
						|
 | 
						|
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
 | 
						|
/// specifies a splat of a single element that is suitable for input to
 | 
						|
/// VSPLTB/VSPLTH/VSPLTW.
 | 
						|
bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
 | 
						|
  assert(N->getValueType(0) == MVT::v16i8 &&
 | 
						|
         (EltSize == 1 || EltSize == 2 || EltSize == 4));
 | 
						|
 | 
						|
  // The consecutive indices need to specify an element, not part of two
 | 
						|
  // different elements.  So abandon ship early if this isn't the case.
 | 
						|
  if (N->getMaskElt(0) % EltSize != 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This is a splat operation if each element of the permute is the same, and
 | 
						|
  // if the value doesn't reference the second vector.
 | 
						|
  unsigned ElementBase = N->getMaskElt(0);
 | 
						|
 | 
						|
  // FIXME: Handle UNDEF elements too!
 | 
						|
  if (ElementBase >= 16)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the indices are consecutive, in the case of a multi-byte element
 | 
						|
  // splatted with a v16i8 mask.
 | 
						|
  for (unsigned i = 1; i != EltSize; ++i)
 | 
						|
    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
 | 
						|
      return false;
 | 
						|
 | 
						|
  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
 | 
						|
    if (N->getMaskElt(i) < 0) continue;
 | 
						|
    for (unsigned j = 0; j != EltSize; ++j)
 | 
						|
      if (N->getMaskElt(i+j) != N->getMaskElt(j))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Check that the mask is shuffling N byte elements. Within each N byte
 | 
						|
/// element of the mask, the indices could be either in increasing or
 | 
						|
/// decreasing order as long as they are consecutive.
 | 
						|
/// \param[in] N the shuffle vector SD Node to analyze
 | 
						|
/// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
 | 
						|
/// Word/DoubleWord/QuadWord).
 | 
						|
/// \param[in] StepLen the delta indices number among the N byte element, if
 | 
						|
/// the mask is in increasing/decreasing order then it is 1/-1.
 | 
						|
/// \return true iff the mask is shuffling N byte elements.
 | 
						|
static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
 | 
						|
                                   int StepLen) {
 | 
						|
  assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
 | 
						|
         "Unexpected element width.");
 | 
						|
  assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
 | 
						|
 | 
						|
  unsigned NumOfElem = 16 / Width;
 | 
						|
  unsigned MaskVal[16]; //  Width is never greater than 16
 | 
						|
  for (unsigned i = 0; i < NumOfElem; ++i) {
 | 
						|
    MaskVal[0] = N->getMaskElt(i * Width);
 | 
						|
    if ((StepLen == 1) && (MaskVal[0] % Width)) {
 | 
						|
      return false;
 | 
						|
    } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned int j = 1; j < Width; ++j) {
 | 
						|
      MaskVal[j] = N->getMaskElt(i * Width + j);
 | 
						|
      if (MaskVal[j] != MaskVal[j-1] + StepLen) {
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
 | 
						|
                          unsigned &InsertAtByte, bool &Swap, bool IsLE) {
 | 
						|
  if (!isNByteElemShuffleMask(N, 4, 1))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Now we look at mask elements 0,4,8,12
 | 
						|
  unsigned M0 = N->getMaskElt(0) / 4;
 | 
						|
  unsigned M1 = N->getMaskElt(4) / 4;
 | 
						|
  unsigned M2 = N->getMaskElt(8) / 4;
 | 
						|
  unsigned M3 = N->getMaskElt(12) / 4;
 | 
						|
  unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
 | 
						|
  unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
 | 
						|
 | 
						|
  // Below, let H and L be arbitrary elements of the shuffle mask
 | 
						|
  // where H is in the range [4,7] and L is in the range [0,3].
 | 
						|
  // H, 1, 2, 3 or L, 5, 6, 7
 | 
						|
  if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
 | 
						|
      (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
 | 
						|
    ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
 | 
						|
    InsertAtByte = IsLE ? 12 : 0;
 | 
						|
    Swap = M0 < 4;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // 0, H, 2, 3 or 4, L, 6, 7
 | 
						|
  if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
 | 
						|
      (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
 | 
						|
    ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
 | 
						|
    InsertAtByte = IsLE ? 8 : 4;
 | 
						|
    Swap = M1 < 4;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // 0, 1, H, 3 or 4, 5, L, 7
 | 
						|
  if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
 | 
						|
      (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
 | 
						|
    ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
 | 
						|
    InsertAtByte = IsLE ? 4 : 8;
 | 
						|
    Swap = M2 < 4;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  // 0, 1, 2, H or 4, 5, 6, L
 | 
						|
  if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
 | 
						|
      (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
 | 
						|
    ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
 | 
						|
    InsertAtByte = IsLE ? 0 : 12;
 | 
						|
    Swap = M3 < 4;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If both vector operands for the shuffle are the same vector, the mask will
 | 
						|
  // contain only elements from the first one and the second one will be undef.
 | 
						|
  if (N->getOperand(1).isUndef()) {
 | 
						|
    ShiftElts = 0;
 | 
						|
    Swap = true;
 | 
						|
    unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
 | 
						|
    if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
 | 
						|
      InsertAtByte = IsLE ? 12 : 0;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
 | 
						|
      InsertAtByte = IsLE ? 8 : 4;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
 | 
						|
      InsertAtByte = IsLE ? 4 : 8;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
 | 
						|
      InsertAtByte = IsLE ? 0 : 12;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
 | 
						|
                               bool &Swap, bool IsLE) {
 | 
						|
  assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
 | 
						|
  // Ensure each byte index of the word is consecutive.
 | 
						|
  if (!isNByteElemShuffleMask(N, 4, 1))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Now we look at mask elements 0,4,8,12, which are the beginning of words.
 | 
						|
  unsigned M0 = N->getMaskElt(0) / 4;
 | 
						|
  unsigned M1 = N->getMaskElt(4) / 4;
 | 
						|
  unsigned M2 = N->getMaskElt(8) / 4;
 | 
						|
  unsigned M3 = N->getMaskElt(12) / 4;
 | 
						|
 | 
						|
  // If both vector operands for the shuffle are the same vector, the mask will
 | 
						|
  // contain only elements from the first one and the second one will be undef.
 | 
						|
  if (N->getOperand(1).isUndef()) {
 | 
						|
    assert(M0 < 4 && "Indexing into an undef vector?");
 | 
						|
    if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
 | 
						|
      return false;
 | 
						|
 | 
						|
    ShiftElts = IsLE ? (4 - M0) % 4 : M0;
 | 
						|
    Swap = false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure each word index of the ShuffleVector Mask is consecutive.
 | 
						|
  if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (IsLE) {
 | 
						|
    if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
 | 
						|
      // Input vectors don't need to be swapped if the leading element
 | 
						|
      // of the result is one of the 3 left elements of the second vector
 | 
						|
      // (or if there is no shift to be done at all).
 | 
						|
      Swap = false;
 | 
						|
      ShiftElts = (8 - M0) % 8;
 | 
						|
    } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
 | 
						|
      // Input vectors need to be swapped if the leading element
 | 
						|
      // of the result is one of the 3 left elements of the first vector
 | 
						|
      // (or if we're shifting by 4 - thereby simply swapping the vectors).
 | 
						|
      Swap = true;
 | 
						|
      ShiftElts = (4 - M0) % 4;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  } else {                                          // BE
 | 
						|
    if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
 | 
						|
      // Input vectors don't need to be swapped if the leading element
 | 
						|
      // of the result is one of the 4 elements of the first vector.
 | 
						|
      Swap = false;
 | 
						|
      ShiftElts = M0;
 | 
						|
    } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
 | 
						|
      // Input vectors need to be swapped if the leading element
 | 
						|
      // of the result is one of the 4 elements of the right vector.
 | 
						|
      Swap = true;
 | 
						|
      ShiftElts = M0 - 4;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
 | 
						|
  assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
 | 
						|
 | 
						|
  if (!isNByteElemShuffleMask(N, Width, -1))
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (int i = 0; i < 16; i += Width)
 | 
						|
    if (N->getMaskElt(i) != i + Width - 1)
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
 | 
						|
  return isXXBRShuffleMaskHelper(N, 2);
 | 
						|
}
 | 
						|
 | 
						|
bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
 | 
						|
  return isXXBRShuffleMaskHelper(N, 4);
 | 
						|
}
 | 
						|
 | 
						|
bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
 | 
						|
  return isXXBRShuffleMaskHelper(N, 8);
 | 
						|
}
 | 
						|
 | 
						|
bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
 | 
						|
  return isXXBRShuffleMaskHelper(N, 16);
 | 
						|
}
 | 
						|
 | 
						|
/// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
 | 
						|
/// if the inputs to the instruction should be swapped and set \p DM to the
 | 
						|
/// value for the immediate.
 | 
						|
/// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
 | 
						|
/// AND element 0 of the result comes from the first input (LE) or second input
 | 
						|
/// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
 | 
						|
/// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
 | 
						|
/// mask.
 | 
						|
bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
 | 
						|
                               bool &Swap, bool IsLE) {
 | 
						|
  assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
 | 
						|
 | 
						|
  // Ensure each byte index of the double word is consecutive.
 | 
						|
  if (!isNByteElemShuffleMask(N, 8, 1))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned M0 = N->getMaskElt(0) / 8;
 | 
						|
  unsigned M1 = N->getMaskElt(8) / 8;
 | 
						|
  assert(((M0 | M1) < 4) && "A mask element out of bounds?");
 | 
						|
 | 
						|
  // If both vector operands for the shuffle are the same vector, the mask will
 | 
						|
  // contain only elements from the first one and the second one will be undef.
 | 
						|
  if (N->getOperand(1).isUndef()) {
 | 
						|
    if ((M0 | M1) < 2) {
 | 
						|
      DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
 | 
						|
      Swap = false;
 | 
						|
      return true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsLE) {
 | 
						|
    if (M0 > 1 && M1 < 2) {
 | 
						|
      Swap = false;
 | 
						|
    } else if (M0 < 2 && M1 > 1) {
 | 
						|
      M0 = (M0 + 2) % 4;
 | 
						|
      M1 = (M1 + 2) % 4;
 | 
						|
      Swap = true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Note: if control flow comes here that means Swap is already set above
 | 
						|
    DM = (((~M1) & 1) << 1) + ((~M0) & 1);
 | 
						|
    return true;
 | 
						|
  } else { // BE
 | 
						|
    if (M0 < 2 && M1 > 1) {
 | 
						|
      Swap = false;
 | 
						|
    } else if (M0 > 1 && M1 < 2) {
 | 
						|
      M0 = (M0 + 2) % 4;
 | 
						|
      M1 = (M1 + 2) % 4;
 | 
						|
      Swap = true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Note: if control flow comes here that means Swap is already set above
 | 
						|
    DM = (M0 << 1) + (M1 & 1);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
 | 
						|
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
 | 
						|
unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
 | 
						|
                                SelectionDAG &DAG) {
 | 
						|
  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | 
						|
  assert(isSplatShuffleMask(SVOp, EltSize));
 | 
						|
  if (DAG.getDataLayout().isLittleEndian())
 | 
						|
    return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
 | 
						|
  else
 | 
						|
    return SVOp->getMaskElt(0) / EltSize;
 | 
						|
}
 | 
						|
 | 
						|
/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
 | 
						|
/// by using a vspltis[bhw] instruction of the specified element size, return
 | 
						|
/// the constant being splatted.  The ByteSize field indicates the number of
 | 
						|
/// bytes of each element [124] -> [bhw].
 | 
						|
SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
 | 
						|
  SDValue OpVal(nullptr, 0);
 | 
						|
 | 
						|
  // If ByteSize of the splat is bigger than the element size of the
 | 
						|
  // build_vector, then we have a case where we are checking for a splat where
 | 
						|
  // multiple elements of the buildvector are folded together into a single
 | 
						|
  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
 | 
						|
  unsigned EltSize = 16/N->getNumOperands();
 | 
						|
  if (EltSize < ByteSize) {
 | 
						|
    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
 | 
						|
    SDValue UniquedVals[4];
 | 
						|
    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
 | 
						|
 | 
						|
    // See if all of the elements in the buildvector agree across.
 | 
						|
    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
      if (N->getOperand(i).isUndef()) continue;
 | 
						|
      // If the element isn't a constant, bail fully out.
 | 
						|
      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
 | 
						|
 | 
						|
      if (!UniquedVals[i&(Multiple-1)].getNode())
 | 
						|
        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
 | 
						|
      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
 | 
						|
        return SDValue();  // no match.
 | 
						|
    }
 | 
						|
 | 
						|
    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
 | 
						|
    // either constant or undef values that are identical for each chunk.  See
 | 
						|
    // if these chunks can form into a larger vspltis*.
 | 
						|
 | 
						|
    // Check to see if all of the leading entries are either 0 or -1.  If
 | 
						|
    // neither, then this won't fit into the immediate field.
 | 
						|
    bool LeadingZero = true;
 | 
						|
    bool LeadingOnes = true;
 | 
						|
    for (unsigned i = 0; i != Multiple-1; ++i) {
 | 
						|
      if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
 | 
						|
 | 
						|
      LeadingZero &= isNullConstant(UniquedVals[i]);
 | 
						|
      LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
 | 
						|
    }
 | 
						|
    // Finally, check the least significant entry.
 | 
						|
    if (LeadingZero) {
 | 
						|
      if (!UniquedVals[Multiple-1].getNode())
 | 
						|
        return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
 | 
						|
      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
 | 
						|
      if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
 | 
						|
        return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
 | 
						|
    }
 | 
						|
    if (LeadingOnes) {
 | 
						|
      if (!UniquedVals[Multiple-1].getNode())
 | 
						|
        return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
 | 
						|
      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
 | 
						|
      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
 | 
						|
        return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
 | 
						|
    }
 | 
						|
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if this buildvec has a single non-undef value in its elements.
 | 
						|
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
    if (N->getOperand(i).isUndef()) continue;
 | 
						|
    if (!OpVal.getNode())
 | 
						|
      OpVal = N->getOperand(i);
 | 
						|
    else if (OpVal != N->getOperand(i))
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
 | 
						|
 | 
						|
  unsigned ValSizeInBytes = EltSize;
 | 
						|
  uint64_t Value = 0;
 | 
						|
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
 | 
						|
    Value = CN->getZExtValue();
 | 
						|
  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
 | 
						|
    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
 | 
						|
    Value = FloatToBits(CN->getValueAPF().convertToFloat());
 | 
						|
  }
 | 
						|
 | 
						|
  // If the splat value is larger than the element value, then we can never do
 | 
						|
  // this splat.  The only case that we could fit the replicated bits into our
 | 
						|
  // immediate field for would be zero, and we prefer to use vxor for it.
 | 
						|
  if (ValSizeInBytes < ByteSize) return SDValue();
 | 
						|
 | 
						|
  // If the element value is larger than the splat value, check if it consists
 | 
						|
  // of a repeated bit pattern of size ByteSize.
 | 
						|
  if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Properly sign extend the value.
 | 
						|
  int MaskVal = SignExtend32(Value, ByteSize * 8);
 | 
						|
 | 
						|
  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
 | 
						|
  if (MaskVal == 0) return SDValue();
 | 
						|
 | 
						|
  // Finally, if this value fits in a 5 bit sext field, return it
 | 
						|
  if (SignExtend32<5>(MaskVal) == MaskVal)
 | 
						|
    return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
 | 
						|
/// amount, otherwise return -1.
 | 
						|
int PPC::isQVALIGNIShuffleMask(SDNode *N) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | 
						|
 | 
						|
  // Find the first non-undef value in the shuffle mask.
 | 
						|
  unsigned i;
 | 
						|
  for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
 | 
						|
    /*search*/;
 | 
						|
 | 
						|
  if (i == 4) return -1;  // all undef.
 | 
						|
 | 
						|
  // Otherwise, check to see if the rest of the elements are consecutively
 | 
						|
  // numbered from this value.
 | 
						|
  unsigned ShiftAmt = SVOp->getMaskElt(i);
 | 
						|
  if (ShiftAmt < i) return -1;
 | 
						|
  ShiftAmt -= i;
 | 
						|
 | 
						|
  // Check the rest of the elements to see if they are consecutive.
 | 
						|
  for (++i; i != 4; ++i)
 | 
						|
    if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
 | 
						|
      return -1;
 | 
						|
 | 
						|
  return ShiftAmt;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Addressing Mode Selection
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
 | 
						|
/// or 64-bit immediate, and if the value can be accurately represented as a
 | 
						|
/// sign extension from a 16-bit value.  If so, this returns true and the
 | 
						|
/// immediate.
 | 
						|
bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
 | 
						|
  if (!isa<ConstantSDNode>(N))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
  if (N->getValueType(0) == MVT::i32)
 | 
						|
    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
  else
 | 
						|
    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
}
 | 
						|
bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
 | 
						|
  return isIntS16Immediate(Op.getNode(), Imm);
 | 
						|
}
 | 
						|
 | 
						|
/// SelectAddressRegReg - Given the specified addressed, check to see if it
 | 
						|
/// can be represented as an indexed [r+r] operation.  Returns false if it
 | 
						|
/// can be more efficiently represented with [r+imm].
 | 
						|
bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
 | 
						|
                                            SDValue &Index,
 | 
						|
                                            SelectionDAG &DAG) const {
 | 
						|
  int16_t imm = 0;
 | 
						|
  if (N.getOpcode() == ISD::ADD) {
 | 
						|
    if (isIntS16Immediate(N.getOperand(1), imm))
 | 
						|
      return false;    // r+i
 | 
						|
    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
 | 
						|
      return false;    // r+i
 | 
						|
 | 
						|
    Base = N.getOperand(0);
 | 
						|
    Index = N.getOperand(1);
 | 
						|
    return true;
 | 
						|
  } else if (N.getOpcode() == ISD::OR) {
 | 
						|
    if (isIntS16Immediate(N.getOperand(1), imm))
 | 
						|
      return false;    // r+i can fold it if we can.
 | 
						|
 | 
						|
    // If this is an or of disjoint bitfields, we can codegen this as an add
 | 
						|
    // (for better address arithmetic) if the LHS and RHS of the OR are provably
 | 
						|
    // disjoint.
 | 
						|
    KnownBits LHSKnown, RHSKnown;
 | 
						|
    DAG.computeKnownBits(N.getOperand(0), LHSKnown);
 | 
						|
 | 
						|
    if (LHSKnown.Zero.getBoolValue()) {
 | 
						|
      DAG.computeKnownBits(N.getOperand(1), RHSKnown);
 | 
						|
      // If all of the bits are known zero on the LHS or RHS, the add won't
 | 
						|
      // carry.
 | 
						|
      if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
 | 
						|
        Base = N.getOperand(0);
 | 
						|
        Index = N.getOperand(1);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// If we happen to be doing an i64 load or store into a stack slot that has
 | 
						|
// less than a 4-byte alignment, then the frame-index elimination may need to
 | 
						|
// use an indexed load or store instruction (because the offset may not be a
 | 
						|
// multiple of 4). The extra register needed to hold the offset comes from the
 | 
						|
// register scavenger, and it is possible that the scavenger will need to use
 | 
						|
// an emergency spill slot. As a result, we need to make sure that a spill slot
 | 
						|
// is allocated when doing an i64 load/store into a less-than-4-byte-aligned
 | 
						|
// stack slot.
 | 
						|
static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
 | 
						|
  // FIXME: This does not handle the LWA case.
 | 
						|
  if (VT != MVT::i64)
 | 
						|
    return;
 | 
						|
 | 
						|
  // NOTE: We'll exclude negative FIs here, which come from argument
 | 
						|
  // lowering, because there are no known test cases triggering this problem
 | 
						|
  // using packed structures (or similar). We can remove this exclusion if
 | 
						|
  // we find such a test case. The reason why this is so test-case driven is
 | 
						|
  // because this entire 'fixup' is only to prevent crashes (from the
 | 
						|
  // register scavenger) on not-really-valid inputs. For example, if we have:
 | 
						|
  //   %a = alloca i1
 | 
						|
  //   %b = bitcast i1* %a to i64*
 | 
						|
  //   store i64* a, i64 b
 | 
						|
  // then the store should really be marked as 'align 1', but is not. If it
 | 
						|
  // were marked as 'align 1' then the indexed form would have been
 | 
						|
  // instruction-selected initially, and the problem this 'fixup' is preventing
 | 
						|
  // won't happen regardless.
 | 
						|
  if (FrameIdx < 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
 | 
						|
  unsigned Align = MFI.getObjectAlignment(FrameIdx);
 | 
						|
  if (Align >= 4)
 | 
						|
    return;
 | 
						|
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  FuncInfo->setHasNonRISpills();
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the address N can be represented by a base register plus
 | 
						|
/// a signed 16-bit displacement [r+imm], and if it is not better
 | 
						|
/// represented as reg+reg.  If \p Alignment is non-zero, only accept
 | 
						|
/// displacements that are multiples of that value.
 | 
						|
bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
 | 
						|
                                            SDValue &Base,
 | 
						|
                                            SelectionDAG &DAG,
 | 
						|
                                            unsigned Alignment) const {
 | 
						|
  // FIXME dl should come from parent load or store, not from address
 | 
						|
  SDLoc dl(N);
 | 
						|
  // If this can be more profitably realized as r+r, fail.
 | 
						|
  if (SelectAddressRegReg(N, Disp, Base, DAG))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (N.getOpcode() == ISD::ADD) {
 | 
						|
    int16_t imm = 0;
 | 
						|
    if (isIntS16Immediate(N.getOperand(1), imm) &&
 | 
						|
        (!Alignment || (imm % Alignment) == 0)) {
 | 
						|
      Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
 | 
						|
      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
 | 
						|
        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | 
						|
        fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
 | 
						|
      } else {
 | 
						|
        Base = N.getOperand(0);
 | 
						|
      }
 | 
						|
      return true; // [r+i]
 | 
						|
    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
 | 
						|
      // Match LOAD (ADD (X, Lo(G))).
 | 
						|
      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
 | 
						|
             && "Cannot handle constant offsets yet!");
 | 
						|
      Disp = N.getOperand(1).getOperand(0);  // The global address.
 | 
						|
      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
 | 
						|
             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
 | 
						|
             Disp.getOpcode() == ISD::TargetConstantPool ||
 | 
						|
             Disp.getOpcode() == ISD::TargetJumpTable);
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      return true;  // [&g+r]
 | 
						|
    }
 | 
						|
  } else if (N.getOpcode() == ISD::OR) {
 | 
						|
    int16_t imm = 0;
 | 
						|
    if (isIntS16Immediate(N.getOperand(1), imm) &&
 | 
						|
        (!Alignment || (imm % Alignment) == 0)) {
 | 
						|
      // If this is an or of disjoint bitfields, we can codegen this as an add
 | 
						|
      // (for better address arithmetic) if the LHS and RHS of the OR are
 | 
						|
      // provably disjoint.
 | 
						|
      KnownBits LHSKnown;
 | 
						|
      DAG.computeKnownBits(N.getOperand(0), LHSKnown);
 | 
						|
 | 
						|
      if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
 | 
						|
        // If all of the bits are known zero on the LHS or RHS, the add won't
 | 
						|
        // carry.
 | 
						|
        if (FrameIndexSDNode *FI =
 | 
						|
              dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
 | 
						|
          Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | 
						|
          fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
 | 
						|
        } else {
 | 
						|
          Base = N.getOperand(0);
 | 
						|
        }
 | 
						|
        Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | 
						|
    // Loading from a constant address.
 | 
						|
 | 
						|
    // If this address fits entirely in a 16-bit sext immediate field, codegen
 | 
						|
    // this as "d, 0"
 | 
						|
    int16_t Imm;
 | 
						|
    if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
 | 
						|
      Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
 | 
						|
      Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
 | 
						|
                             CN->getValueType(0));
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle 32-bit sext immediates with LIS + addr mode.
 | 
						|
    if ((CN->getValueType(0) == MVT::i32 ||
 | 
						|
         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
 | 
						|
        (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
 | 
						|
      int Addr = (int)CN->getZExtValue();
 | 
						|
 | 
						|
      // Otherwise, break this down into an LIS + disp.
 | 
						|
      Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
 | 
						|
 | 
						|
      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
 | 
						|
                                   MVT::i32);
 | 
						|
      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
 | 
						|
      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
 | 
						|
  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
 | 
						|
    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | 
						|
    fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
 | 
						|
  } else
 | 
						|
    Base = N;
 | 
						|
  return true;      // [r+0]
 | 
						|
}
 | 
						|
 | 
						|
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
 | 
						|
/// represented as an indexed [r+r] operation.
 | 
						|
bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
 | 
						|
                                                SDValue &Index,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  // Check to see if we can easily represent this as an [r+r] address.  This
 | 
						|
  // will fail if it thinks that the address is more profitably represented as
 | 
						|
  // reg+imm, e.g. where imm = 0.
 | 
						|
  if (SelectAddressRegReg(N, Base, Index, DAG))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If the address is the result of an add, we will utilize the fact that the
 | 
						|
  // address calculation includes an implicit add.  However, we can reduce
 | 
						|
  // register pressure if we do not materialize a constant just for use as the
 | 
						|
  // index register.  We only get rid of the add if it is not an add of a
 | 
						|
  // value and a 16-bit signed constant and both have a single use.
 | 
						|
  int16_t imm = 0;
 | 
						|
  if (N.getOpcode() == ISD::ADD &&
 | 
						|
      (!isIntS16Immediate(N.getOperand(1), imm) ||
 | 
						|
       !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
 | 
						|
    Base = N.getOperand(0);
 | 
						|
    Index = N.getOperand(1);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, do it the hard way, using R0 as the base register.
 | 
						|
  Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
 | 
						|
                         N.getValueType());
 | 
						|
  Index = N;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if we should use a direct load into vector instruction
 | 
						|
/// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
 | 
						|
static bool usePartialVectorLoads(SDNode *N) {
 | 
						|
  if (!N->hasOneUse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If there are any other uses other than scalar to vector, then we should
 | 
						|
  // keep it as a scalar load -> direct move pattern to prevent multiple
 | 
						|
  // loads.  Currently, only check for i64 since we have lxsd/lfd to do this
 | 
						|
  // efficiently, but no update equivalent.
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | 
						|
    EVT MemVT = LD->getMemoryVT();
 | 
						|
    if (MemVT.isSimple() && MemVT.getSimpleVT().SimpleTy == MVT::i64) {
 | 
						|
      SDNode *User = *(LD->use_begin());
 | 
						|
      if (User->getOpcode() == ISD::SCALAR_TO_VECTOR)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getPreIndexedAddressParts - returns true by value, base pointer and
 | 
						|
/// offset pointer and addressing mode by reference if the node's address
 | 
						|
/// can be legally represented as pre-indexed load / store address.
 | 
						|
bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
 | 
						|
                                                  SDValue &Offset,
 | 
						|
                                                  ISD::MemIndexedMode &AM,
 | 
						|
                                                  SelectionDAG &DAG) const {
 | 
						|
  if (DisablePPCPreinc) return false;
 | 
						|
 | 
						|
  bool isLoad = true;
 | 
						|
  SDValue Ptr;
 | 
						|
  EVT VT;
 | 
						|
  unsigned Alignment;
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | 
						|
    Ptr = LD->getBasePtr();
 | 
						|
    VT = LD->getMemoryVT();
 | 
						|
    Alignment = LD->getAlignment();
 | 
						|
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | 
						|
    Ptr = ST->getBasePtr();
 | 
						|
    VT  = ST->getMemoryVT();
 | 
						|
    Alignment = ST->getAlignment();
 | 
						|
    isLoad = false;
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
 | 
						|
  // instructions because we can fold these into a more efficient instruction
 | 
						|
  // instead, (such as LXSD).
 | 
						|
  if (isLoad && usePartialVectorLoads(N)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // PowerPC doesn't have preinc load/store instructions for vectors (except
 | 
						|
  // for QPX, which does have preinc r+r forms).
 | 
						|
  if (VT.isVector()) {
 | 
						|
    if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
 | 
						|
      return false;
 | 
						|
    } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
 | 
						|
      AM = ISD::PRE_INC;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
 | 
						|
    // Common code will reject creating a pre-inc form if the base pointer
 | 
						|
    // is a frame index, or if N is a store and the base pointer is either
 | 
						|
    // the same as or a predecessor of the value being stored.  Check for
 | 
						|
    // those situations here, and try with swapped Base/Offset instead.
 | 
						|
    bool Swap = false;
 | 
						|
 | 
						|
    if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
 | 
						|
      Swap = true;
 | 
						|
    else if (!isLoad) {
 | 
						|
      SDValue Val = cast<StoreSDNode>(N)->getValue();
 | 
						|
      if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
 | 
						|
        Swap = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Swap)
 | 
						|
      std::swap(Base, Offset);
 | 
						|
 | 
						|
    AM = ISD::PRE_INC;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // LDU/STU can only handle immediates that are a multiple of 4.
 | 
						|
  if (VT != MVT::i64) {
 | 
						|
    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    // LDU/STU need an address with at least 4-byte alignment.
 | 
						|
    if (Alignment < 4)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | 
						|
    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
 | 
						|
    // sext i32 to i64 when addr mode is r+i.
 | 
						|
    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
 | 
						|
        LD->getExtensionType() == ISD::SEXTLOAD &&
 | 
						|
        isa<ConstantSDNode>(Offset))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  AM = ISD::PRE_INC;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  LowerOperation implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Return true if we should reference labels using a PICBase, set the HiOpFlags
 | 
						|
/// and LoOpFlags to the target MO flags.
 | 
						|
static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
 | 
						|
                               unsigned &HiOpFlags, unsigned &LoOpFlags,
 | 
						|
                               const GlobalValue *GV = nullptr) {
 | 
						|
  HiOpFlags = PPCII::MO_HA;
 | 
						|
  LoOpFlags = PPCII::MO_LO;
 | 
						|
 | 
						|
  // Don't use the pic base if not in PIC relocation model.
 | 
						|
  if (IsPIC) {
 | 
						|
    HiOpFlags |= PPCII::MO_PIC_FLAG;
 | 
						|
    LoOpFlags |= PPCII::MO_PIC_FLAG;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a reference to a global value that requires a non-lazy-ptr, make
 | 
						|
  // sure that instruction lowering adds it.
 | 
						|
  if (GV && Subtarget.hasLazyResolverStub(GV)) {
 | 
						|
    HiOpFlags |= PPCII::MO_NLP_FLAG;
 | 
						|
    LoOpFlags |= PPCII::MO_NLP_FLAG;
 | 
						|
 | 
						|
    if (GV->hasHiddenVisibility()) {
 | 
						|
      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
 | 
						|
      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
 | 
						|
                             SelectionDAG &DAG) {
 | 
						|
  SDLoc DL(HiPart);
 | 
						|
  EVT PtrVT = HiPart.getValueType();
 | 
						|
  SDValue Zero = DAG.getConstant(0, DL, PtrVT);
 | 
						|
 | 
						|
  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
 | 
						|
  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
 | 
						|
 | 
						|
  // With PIC, the first instruction is actually "GR+hi(&G)".
 | 
						|
  if (isPIC)
 | 
						|
    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
 | 
						|
                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
 | 
						|
 | 
						|
  // Generate non-pic code that has direct accesses to the constant pool.
 | 
						|
  // The address of the global is just (hi(&g)+lo(&g)).
 | 
						|
  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
 | 
						|
}
 | 
						|
 | 
						|
static void setUsesTOCBasePtr(MachineFunction &MF) {
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  FuncInfo->setUsesTOCBasePtr();
 | 
						|
}
 | 
						|
 | 
						|
static void setUsesTOCBasePtr(SelectionDAG &DAG) {
 | 
						|
  setUsesTOCBasePtr(DAG.getMachineFunction());
 | 
						|
}
 | 
						|
 | 
						|
static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
 | 
						|
                           SDValue GA) {
 | 
						|
  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
 | 
						|
  SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
 | 
						|
                DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
 | 
						|
 | 
						|
  SDValue Ops[] = { GA, Reg };
 | 
						|
  return DAG.getMemIntrinsicNode(
 | 
						|
      PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
 | 
						|
      MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
 | 
						|
      MachineMemOperand::MOLoad);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  EVT PtrVT = Op.getValueType();
 | 
						|
  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | 
						|
  const Constant *C = CP->getConstVal();
 | 
						|
 | 
						|
  // 64-bit SVR4 ABI code is always position-independent.
 | 
						|
  // The actual address of the GlobalValue is stored in the TOC.
 | 
						|
  if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
 | 
						|
    setUsesTOCBasePtr(DAG);
 | 
						|
    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
 | 
						|
    return getTOCEntry(DAG, SDLoc(CP), true, GA);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned MOHiFlag, MOLoFlag;
 | 
						|
  bool IsPIC = isPositionIndependent();
 | 
						|
  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
 | 
						|
 | 
						|
  if (IsPIC && Subtarget.isSVR4ABI()) {
 | 
						|
    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
 | 
						|
                                           PPCII::MO_PIC_FLAG);
 | 
						|
    return getTOCEntry(DAG, SDLoc(CP), false, GA);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue CPIHi =
 | 
						|
    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
 | 
						|
  SDValue CPILo =
 | 
						|
    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
 | 
						|
  return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
 | 
						|
}
 | 
						|
 | 
						|
// For 64-bit PowerPC, prefer the more compact relative encodings.
 | 
						|
// This trades 32 bits per jump table entry for one or two instructions
 | 
						|
// on the jump site.
 | 
						|
unsigned PPCTargetLowering::getJumpTableEncoding() const {
 | 
						|
  if (isJumpTableRelative())
 | 
						|
    return MachineJumpTableInfo::EK_LabelDifference32;
 | 
						|
 | 
						|
  return TargetLowering::getJumpTableEncoding();
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isJumpTableRelative() const {
 | 
						|
  if (Subtarget.isPPC64())
 | 
						|
    return true;
 | 
						|
  return TargetLowering::isJumpTableRelative();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
 | 
						|
                                                    SelectionDAG &DAG) const {
 | 
						|
  if (!Subtarget.isPPC64())
 | 
						|
    return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
 | 
						|
 | 
						|
  switch (getTargetMachine().getCodeModel()) {
 | 
						|
  case CodeModel::Small:
 | 
						|
  case CodeModel::Medium:
 | 
						|
    return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
 | 
						|
  default:
 | 
						|
    return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
 | 
						|
                       getPointerTy(DAG.getDataLayout()));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const MCExpr *
 | 
						|
PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
 | 
						|
                                                unsigned JTI,
 | 
						|
                                                MCContext &Ctx) const {
 | 
						|
  if (!Subtarget.isPPC64())
 | 
						|
    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
 | 
						|
 | 
						|
  switch (getTargetMachine().getCodeModel()) {
 | 
						|
  case CodeModel::Small:
 | 
						|
  case CodeModel::Medium:
 | 
						|
    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
 | 
						|
  default:
 | 
						|
    return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  EVT PtrVT = Op.getValueType();
 | 
						|
  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
 | 
						|
 | 
						|
  // 64-bit SVR4 ABI code is always position-independent.
 | 
						|
  // The actual address of the GlobalValue is stored in the TOC.
 | 
						|
  if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
 | 
						|
    setUsesTOCBasePtr(DAG);
 | 
						|
    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
 | 
						|
    return getTOCEntry(DAG, SDLoc(JT), true, GA);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned MOHiFlag, MOLoFlag;
 | 
						|
  bool IsPIC = isPositionIndependent();
 | 
						|
  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
 | 
						|
 | 
						|
  if (IsPIC && Subtarget.isSVR4ABI()) {
 | 
						|
    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
 | 
						|
                                        PPCII::MO_PIC_FLAG);
 | 
						|
    return getTOCEntry(DAG, SDLoc(GA), false, GA);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
 | 
						|
  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
 | 
						|
  return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  EVT PtrVT = Op.getValueType();
 | 
						|
  BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
 | 
						|
  const BlockAddress *BA = BASDN->getBlockAddress();
 | 
						|
 | 
						|
  // 64-bit SVR4 ABI code is always position-independent.
 | 
						|
  // The actual BlockAddress is stored in the TOC.
 | 
						|
  if (Subtarget.isSVR4ABI() &&
 | 
						|
      (Subtarget.isPPC64() || isPositionIndependent())) {
 | 
						|
    if (Subtarget.isPPC64())
 | 
						|
      setUsesTOCBasePtr(DAG);
 | 
						|
    SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
 | 
						|
    return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned MOHiFlag, MOLoFlag;
 | 
						|
  bool IsPIC = isPositionIndependent();
 | 
						|
  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
 | 
						|
  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
 | 
						|
  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
 | 
						|
  return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  // FIXME: TLS addresses currently use medium model code sequences,
 | 
						|
  // which is the most useful form.  Eventually support for small and
 | 
						|
  // large models could be added if users need it, at the cost of
 | 
						|
  // additional complexity.
 | 
						|
  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
 | 
						|
  if (DAG.getTarget().useEmulatedTLS())
 | 
						|
    return LowerToTLSEmulatedModel(GA, DAG);
 | 
						|
 | 
						|
  SDLoc dl(GA);
 | 
						|
  const GlobalValue *GV = GA->getGlobal();
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  bool is64bit = Subtarget.isPPC64();
 | 
						|
  const Module *M = DAG.getMachineFunction().getFunction().getParent();
 | 
						|
  PICLevel::Level picLevel = M->getPICLevel();
 | 
						|
 | 
						|
  TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
 | 
						|
 | 
						|
  if (Model == TLSModel::LocalExec) {
 | 
						|
    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
 | 
						|
                                               PPCII::MO_TPREL_HA);
 | 
						|
    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
 | 
						|
                                               PPCII::MO_TPREL_LO);
 | 
						|
    SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
 | 
						|
                             : DAG.getRegister(PPC::R2, MVT::i32);
 | 
						|
 | 
						|
    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
 | 
						|
    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Model == TLSModel::InitialExec) {
 | 
						|
    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
 | 
						|
    SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
 | 
						|
                                                PPCII::MO_TLS);
 | 
						|
    SDValue GOTPtr;
 | 
						|
    if (is64bit) {
 | 
						|
      setUsesTOCBasePtr(DAG);
 | 
						|
      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
 | 
						|
      GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
 | 
						|
                           PtrVT, GOTReg, TGA);
 | 
						|
    } else
 | 
						|
      GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
 | 
						|
    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
 | 
						|
                                   PtrVT, TGA, GOTPtr);
 | 
						|
    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Model == TLSModel::GeneralDynamic) {
 | 
						|
    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
 | 
						|
    SDValue GOTPtr;
 | 
						|
    if (is64bit) {
 | 
						|
      setUsesTOCBasePtr(DAG);
 | 
						|
      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
 | 
						|
      GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
 | 
						|
                                   GOTReg, TGA);
 | 
						|
    } else {
 | 
						|
      if (picLevel == PICLevel::SmallPIC)
 | 
						|
        GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
 | 
						|
      else
 | 
						|
        GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
 | 
						|
    }
 | 
						|
    return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
 | 
						|
                       GOTPtr, TGA, TGA);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Model == TLSModel::LocalDynamic) {
 | 
						|
    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
 | 
						|
    SDValue GOTPtr;
 | 
						|
    if (is64bit) {
 | 
						|
      setUsesTOCBasePtr(DAG);
 | 
						|
      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
 | 
						|
      GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
 | 
						|
                           GOTReg, TGA);
 | 
						|
    } else {
 | 
						|
      if (picLevel == PICLevel::SmallPIC)
 | 
						|
        GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
 | 
						|
      else
 | 
						|
        GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
 | 
						|
    }
 | 
						|
    SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
 | 
						|
                                  PtrVT, GOTPtr, TGA, TGA);
 | 
						|
    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
 | 
						|
                                      PtrVT, TLSAddr, TGA);
 | 
						|
    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Unknown TLS model!");
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  EVT PtrVT = Op.getValueType();
 | 
						|
  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
 | 
						|
  SDLoc DL(GSDN);
 | 
						|
  const GlobalValue *GV = GSDN->getGlobal();
 | 
						|
 | 
						|
  // 64-bit SVR4 ABI code is always position-independent.
 | 
						|
  // The actual address of the GlobalValue is stored in the TOC.
 | 
						|
  if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
 | 
						|
    setUsesTOCBasePtr(DAG);
 | 
						|
    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
 | 
						|
    return getTOCEntry(DAG, DL, true, GA);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned MOHiFlag, MOLoFlag;
 | 
						|
  bool IsPIC = isPositionIndependent();
 | 
						|
  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
 | 
						|
 | 
						|
  if (IsPIC && Subtarget.isSVR4ABI()) {
 | 
						|
    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
 | 
						|
                                            GSDN->getOffset(),
 | 
						|
                                            PPCII::MO_PIC_FLAG);
 | 
						|
    return getTOCEntry(DAG, DL, false, GA);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue GAHi =
 | 
						|
    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
 | 
						|
  SDValue GALo =
 | 
						|
    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
 | 
						|
 | 
						|
  SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
 | 
						|
 | 
						|
  // If the global reference is actually to a non-lazy-pointer, we have to do an
 | 
						|
  // extra load to get the address of the global.
 | 
						|
  if (MOHiFlag & PPCII::MO_NLP_FLAG)
 | 
						|
    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
 | 
						|
  return Ptr;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  if (Op.getValueType() == MVT::v2i64) {
 | 
						|
    // When the operands themselves are v2i64 values, we need to do something
 | 
						|
    // special because VSX has no underlying comparison operations for these.
 | 
						|
    if (Op.getOperand(0).getValueType() == MVT::v2i64) {
 | 
						|
      // Equality can be handled by casting to the legal type for Altivec
 | 
						|
      // comparisons, everything else needs to be expanded.
 | 
						|
      if (CC == ISD::SETEQ || CC == ISD::SETNE) {
 | 
						|
        return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
 | 
						|
                 DAG.getSetCC(dl, MVT::v4i32,
 | 
						|
                   DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
 | 
						|
                   DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
 | 
						|
                   CC));
 | 
						|
      }
 | 
						|
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
 | 
						|
    // We handle most of these in the usual way.
 | 
						|
    return Op;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we're comparing for equality to zero, expose the fact that this is
 | 
						|
  // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
 | 
						|
  // fold the new nodes.
 | 
						|
  if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
 | 
						|
    return V;
 | 
						|
 | 
						|
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | 
						|
    // Leave comparisons against 0 and -1 alone for now, since they're usually
 | 
						|
    // optimized.  FIXME: revisit this when we can custom lower all setcc
 | 
						|
    // optimizations.
 | 
						|
    if (C->isAllOnesValue() || C->isNullValue())
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have an integer seteq/setne, turn it into a compare against zero
 | 
						|
  // by xor'ing the rhs with the lhs, which is faster than setting a
 | 
						|
  // condition register, reading it back out, and masking the correct bit.  The
 | 
						|
  // normal approach here uses sub to do this instead of xor.  Using xor exposes
 | 
						|
  // the result to other bit-twiddling opportunities.
 | 
						|
  EVT LHSVT = Op.getOperand(0).getValueType();
 | 
						|
  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | 
						|
    EVT VT = Op.getValueType();
 | 
						|
    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
 | 
						|
                                Op.getOperand(1));
 | 
						|
    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDNode *Node = Op.getNode();
 | 
						|
  EVT VT = Node->getValueType(0);
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDValue InChain = Node->getOperand(0);
 | 
						|
  SDValue VAListPtr = Node->getOperand(1);
 | 
						|
  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
 | 
						|
  SDLoc dl(Node);
 | 
						|
 | 
						|
  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
 | 
						|
 | 
						|
  // gpr_index
 | 
						|
  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
 | 
						|
                                    VAListPtr, MachinePointerInfo(SV), MVT::i8);
 | 
						|
  InChain = GprIndex.getValue(1);
 | 
						|
 | 
						|
  if (VT == MVT::i64) {
 | 
						|
    // Check if GprIndex is even
 | 
						|
    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
 | 
						|
                                 DAG.getConstant(1, dl, MVT::i32));
 | 
						|
    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
 | 
						|
                                DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
 | 
						|
    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
 | 
						|
                                          DAG.getConstant(1, dl, MVT::i32));
 | 
						|
    // Align GprIndex to be even if it isn't
 | 
						|
    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
 | 
						|
                           GprIndex);
 | 
						|
  }
 | 
						|
 | 
						|
  // fpr index is 1 byte after gpr
 | 
						|
  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
 | 
						|
                               DAG.getConstant(1, dl, MVT::i32));
 | 
						|
 | 
						|
  // fpr
 | 
						|
  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
 | 
						|
                                    FprPtr, MachinePointerInfo(SV), MVT::i8);
 | 
						|
  InChain = FprIndex.getValue(1);
 | 
						|
 | 
						|
  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
 | 
						|
                                       DAG.getConstant(8, dl, MVT::i32));
 | 
						|
 | 
						|
  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
 | 
						|
                                        DAG.getConstant(4, dl, MVT::i32));
 | 
						|
 | 
						|
  // areas
 | 
						|
  SDValue OverflowArea =
 | 
						|
      DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
 | 
						|
  InChain = OverflowArea.getValue(1);
 | 
						|
 | 
						|
  SDValue RegSaveArea =
 | 
						|
      DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
 | 
						|
  InChain = RegSaveArea.getValue(1);
 | 
						|
 | 
						|
  // select overflow_area if index > 8
 | 
						|
  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
 | 
						|
                            DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
 | 
						|
 | 
						|
  // adjustment constant gpr_index * 4/8
 | 
						|
  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
 | 
						|
                                    VT.isInteger() ? GprIndex : FprIndex,
 | 
						|
                                    DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
 | 
						|
                                                    MVT::i32));
 | 
						|
 | 
						|
  // OurReg = RegSaveArea + RegConstant
 | 
						|
  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
 | 
						|
                               RegConstant);
 | 
						|
 | 
						|
  // Floating types are 32 bytes into RegSaveArea
 | 
						|
  if (VT.isFloatingPoint())
 | 
						|
    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
 | 
						|
                         DAG.getConstant(32, dl, MVT::i32));
 | 
						|
 | 
						|
  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
 | 
						|
  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
 | 
						|
                                   VT.isInteger() ? GprIndex : FprIndex,
 | 
						|
                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
 | 
						|
                                                   MVT::i32));
 | 
						|
 | 
						|
  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
 | 
						|
                              VT.isInteger() ? VAListPtr : FprPtr,
 | 
						|
                              MachinePointerInfo(SV), MVT::i8);
 | 
						|
 | 
						|
  // determine if we should load from reg_save_area or overflow_area
 | 
						|
  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
 | 
						|
 | 
						|
  // increase overflow_area by 4/8 if gpr/fpr > 8
 | 
						|
  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
 | 
						|
                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
 | 
						|
                                          dl, MVT::i32));
 | 
						|
 | 
						|
  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
 | 
						|
                             OverflowAreaPlusN);
 | 
						|
 | 
						|
  InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
 | 
						|
                              MachinePointerInfo(), MVT::i32);
 | 
						|
 | 
						|
  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
 | 
						|
 | 
						|
  // We have to copy the entire va_list struct:
 | 
						|
  // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
 | 
						|
  return DAG.getMemcpy(Op.getOperand(0), Op,
 | 
						|
                       Op.getOperand(1), Op.getOperand(2),
 | 
						|
                       DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
 | 
						|
                       false, MachinePointerInfo(), MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
 | 
						|
                                                  SelectionDAG &DAG) const {
 | 
						|
  return Op.getOperand(0);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue Trmp = Op.getOperand(1); // trampoline
 | 
						|
  SDValue FPtr = Op.getOperand(2); // nested function
 | 
						|
  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  bool isPPC64 = (PtrVT == MVT::i64);
 | 
						|
  Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
 | 
						|
 | 
						|
  TargetLowering::ArgListTy Args;
 | 
						|
  TargetLowering::ArgListEntry Entry;
 | 
						|
 | 
						|
  Entry.Ty = IntPtrTy;
 | 
						|
  Entry.Node = Trmp; Args.push_back(Entry);
 | 
						|
 | 
						|
  // TrampSize == (isPPC64 ? 48 : 40);
 | 
						|
  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
 | 
						|
                               isPPC64 ? MVT::i64 : MVT::i32);
 | 
						|
  Args.push_back(Entry);
 | 
						|
 | 
						|
  Entry.Node = FPtr; Args.push_back(Entry);
 | 
						|
  Entry.Node = Nest; Args.push_back(Entry);
 | 
						|
 | 
						|
  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
 | 
						|
  TargetLowering::CallLoweringInfo CLI(DAG);
 | 
						|
  CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
 | 
						|
      CallingConv::C, Type::getVoidTy(*DAG.getContext()),
 | 
						|
      DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
 | 
						|
 | 
						|
  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
 | 
						|
  return CallResult.second;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
 | 
						|
    // vastart just stores the address of the VarArgsFrameIndex slot into the
 | 
						|
    // memory location argument.
 | 
						|
    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | 
						|
    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | 
						|
    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
 | 
						|
                        MachinePointerInfo(SV));
 | 
						|
  }
 | 
						|
 | 
						|
  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
 | 
						|
  // We suppose the given va_list is already allocated.
 | 
						|
  //
 | 
						|
  // typedef struct {
 | 
						|
  //  char gpr;     /* index into the array of 8 GPRs
 | 
						|
  //                 * stored in the register save area
 | 
						|
  //                 * gpr=0 corresponds to r3,
 | 
						|
  //                 * gpr=1 to r4, etc.
 | 
						|
  //                 */
 | 
						|
  //  char fpr;     /* index into the array of 8 FPRs
 | 
						|
  //                 * stored in the register save area
 | 
						|
  //                 * fpr=0 corresponds to f1,
 | 
						|
  //                 * fpr=1 to f2, etc.
 | 
						|
  //                 */
 | 
						|
  //  char *overflow_arg_area;
 | 
						|
  //                /* location on stack that holds
 | 
						|
  //                 * the next overflow argument
 | 
						|
  //                 */
 | 
						|
  //  char *reg_save_area;
 | 
						|
  //               /* where r3:r10 and f1:f8 (if saved)
 | 
						|
  //                * are stored
 | 
						|
  //                */
 | 
						|
  // } va_list[1];
 | 
						|
 | 
						|
  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
 | 
						|
  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
 | 
						|
  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
 | 
						|
                                            PtrVT);
 | 
						|
  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
 | 
						|
                                 PtrVT);
 | 
						|
 | 
						|
  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
 | 
						|
  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
 | 
						|
 | 
						|
  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
 | 
						|
  SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
 | 
						|
 | 
						|
  uint64_t FPROffset = 1;
 | 
						|
  SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
 | 
						|
 | 
						|
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | 
						|
 | 
						|
  // Store first byte : number of int regs
 | 
						|
  SDValue firstStore =
 | 
						|
      DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
 | 
						|
                        MachinePointerInfo(SV), MVT::i8);
 | 
						|
  uint64_t nextOffset = FPROffset;
 | 
						|
  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
 | 
						|
                                  ConstFPROffset);
 | 
						|
 | 
						|
  // Store second byte : number of float regs
 | 
						|
  SDValue secondStore =
 | 
						|
      DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
 | 
						|
                        MachinePointerInfo(SV, nextOffset), MVT::i8);
 | 
						|
  nextOffset += StackOffset;
 | 
						|
  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
 | 
						|
 | 
						|
  // Store second word : arguments given on stack
 | 
						|
  SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
 | 
						|
                                    MachinePointerInfo(SV, nextOffset));
 | 
						|
  nextOffset += FrameOffset;
 | 
						|
  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
 | 
						|
 | 
						|
  // Store third word : arguments given in registers
 | 
						|
  return DAG.getStore(thirdStore, dl, FR, nextPtr,
 | 
						|
                      MachinePointerInfo(SV, nextOffset));
 | 
						|
}
 | 
						|
 | 
						|
#include "PPCGenCallingConv.inc"
 | 
						|
 | 
						|
// Function whose sole purpose is to kill compiler warnings
 | 
						|
// stemming from unused functions included from PPCGenCallingConv.inc.
 | 
						|
CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
 | 
						|
  return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
 | 
						|
                                      CCValAssign::LocInfo &LocInfo,
 | 
						|
                                      ISD::ArgFlagsTy &ArgFlags,
 | 
						|
                                      CCState &State) {
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
 | 
						|
                                             MVT &LocVT,
 | 
						|
                                             CCValAssign::LocInfo &LocInfo,
 | 
						|
                                             ISD::ArgFlagsTy &ArgFlags,
 | 
						|
                                             CCState &State) {
 | 
						|
  static const MCPhysReg ArgRegs[] = {
 | 
						|
    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | 
						|
    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | 
						|
  };
 | 
						|
  const unsigned NumArgRegs = array_lengthof(ArgRegs);
 | 
						|
 | 
						|
  unsigned RegNum = State.getFirstUnallocated(ArgRegs);
 | 
						|
 | 
						|
  // Skip one register if the first unallocated register has an even register
 | 
						|
  // number and there are still argument registers available which have not been
 | 
						|
  // allocated yet. RegNum is actually an index into ArgRegs, which means we
 | 
						|
  // need to skip a register if RegNum is odd.
 | 
						|
  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
 | 
						|
    State.AllocateReg(ArgRegs[RegNum]);
 | 
						|
  }
 | 
						|
 | 
						|
  // Always return false here, as this function only makes sure that the first
 | 
						|
  // unallocated register has an odd register number and does not actually
 | 
						|
  // allocate a register for the current argument.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
 | 
						|
                                                  MVT &LocVT,
 | 
						|
                                                  CCValAssign::LocInfo &LocInfo,
 | 
						|
                                                  ISD::ArgFlagsTy &ArgFlags,
 | 
						|
                                                  CCState &State) {
 | 
						|
  static const MCPhysReg ArgRegs[] = {
 | 
						|
    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | 
						|
    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | 
						|
  };
 | 
						|
  const unsigned NumArgRegs = array_lengthof(ArgRegs);
 | 
						|
 | 
						|
  unsigned RegNum = State.getFirstUnallocated(ArgRegs);
 | 
						|
  int RegsLeft = NumArgRegs - RegNum;
 | 
						|
 | 
						|
  // Skip if there is not enough registers left for long double type (4 gpr regs
 | 
						|
  // in soft float mode) and put long double argument on the stack.
 | 
						|
  if (RegNum != NumArgRegs && RegsLeft < 4) {
 | 
						|
    for (int i = 0; i < RegsLeft; i++) {
 | 
						|
      State.AllocateReg(ArgRegs[RegNum + i]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
 | 
						|
                                               MVT &LocVT,
 | 
						|
                                               CCValAssign::LocInfo &LocInfo,
 | 
						|
                                               ISD::ArgFlagsTy &ArgFlags,
 | 
						|
                                               CCState &State) {
 | 
						|
  static const MCPhysReg ArgRegs[] = {
 | 
						|
    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | 
						|
    PPC::F8
 | 
						|
  };
 | 
						|
 | 
						|
  const unsigned NumArgRegs = array_lengthof(ArgRegs);
 | 
						|
 | 
						|
  unsigned RegNum = State.getFirstUnallocated(ArgRegs);
 | 
						|
 | 
						|
  // If there is only one Floating-point register left we need to put both f64
 | 
						|
  // values of a split ppc_fp128 value on the stack.
 | 
						|
  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
 | 
						|
    State.AllocateReg(ArgRegs[RegNum]);
 | 
						|
  }
 | 
						|
 | 
						|
  // Always return false here, as this function only makes sure that the two f64
 | 
						|
  // values a ppc_fp128 value is split into are both passed in registers or both
 | 
						|
  // passed on the stack and does not actually allocate a register for the
 | 
						|
  // current argument.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// FPR - The set of FP registers that should be allocated for arguments,
 | 
						|
/// on Darwin.
 | 
						|
static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
 | 
						|
                                PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
 | 
						|
                                PPC::F11, PPC::F12, PPC::F13};
 | 
						|
 | 
						|
/// QFPR - The set of QPX registers that should be allocated for arguments.
 | 
						|
static const MCPhysReg QFPR[] = {
 | 
						|
    PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
 | 
						|
    PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
 | 
						|
 | 
						|
/// CalculateStackSlotSize - Calculates the size reserved for this argument on
 | 
						|
/// the stack.
 | 
						|
static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
 | 
						|
                                       unsigned PtrByteSize) {
 | 
						|
  unsigned ArgSize = ArgVT.getStoreSize();
 | 
						|
  if (Flags.isByVal())
 | 
						|
    ArgSize = Flags.getByValSize();
 | 
						|
 | 
						|
  // Round up to multiples of the pointer size, except for array members,
 | 
						|
  // which are always packed.
 | 
						|
  if (!Flags.isInConsecutiveRegs())
 | 
						|
    ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
 | 
						|
  return ArgSize;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateStackSlotAlignment - Calculates the alignment of this argument
 | 
						|
/// on the stack.
 | 
						|
static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
 | 
						|
                                            ISD::ArgFlagsTy Flags,
 | 
						|
                                            unsigned PtrByteSize) {
 | 
						|
  unsigned Align = PtrByteSize;
 | 
						|
 | 
						|
  // Altivec parameters are padded to a 16 byte boundary.
 | 
						|
  if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
 | 
						|
      ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
 | 
						|
      ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
 | 
						|
      ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
 | 
						|
    Align = 16;
 | 
						|
  // QPX vector types stored in double-precision are padded to a 32 byte
 | 
						|
  // boundary.
 | 
						|
  else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
 | 
						|
    Align = 32;
 | 
						|
 | 
						|
  // ByVal parameters are aligned as requested.
 | 
						|
  if (Flags.isByVal()) {
 | 
						|
    unsigned BVAlign = Flags.getByValAlign();
 | 
						|
    if (BVAlign > PtrByteSize) {
 | 
						|
      if (BVAlign % PtrByteSize != 0)
 | 
						|
          llvm_unreachable(
 | 
						|
            "ByVal alignment is not a multiple of the pointer size");
 | 
						|
 | 
						|
      Align = BVAlign;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Array members are always packed to their original alignment.
 | 
						|
  if (Flags.isInConsecutiveRegs()) {
 | 
						|
    // If the array member was split into multiple registers, the first
 | 
						|
    // needs to be aligned to the size of the full type.  (Except for
 | 
						|
    // ppcf128, which is only aligned as its f64 components.)
 | 
						|
    if (Flags.isSplit() && OrigVT != MVT::ppcf128)
 | 
						|
      Align = OrigVT.getStoreSize();
 | 
						|
    else
 | 
						|
      Align = ArgVT.getStoreSize();
 | 
						|
  }
 | 
						|
 | 
						|
  return Align;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateStackSlotUsed - Return whether this argument will use its
 | 
						|
/// stack slot (instead of being passed in registers).  ArgOffset,
 | 
						|
/// AvailableFPRs, and AvailableVRs must hold the current argument
 | 
						|
/// position, and will be updated to account for this argument.
 | 
						|
static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
 | 
						|
                                   ISD::ArgFlagsTy Flags,
 | 
						|
                                   unsigned PtrByteSize,
 | 
						|
                                   unsigned LinkageSize,
 | 
						|
                                   unsigned ParamAreaSize,
 | 
						|
                                   unsigned &ArgOffset,
 | 
						|
                                   unsigned &AvailableFPRs,
 | 
						|
                                   unsigned &AvailableVRs, bool HasQPX) {
 | 
						|
  bool UseMemory = false;
 | 
						|
 | 
						|
  // Respect alignment of argument on the stack.
 | 
						|
  unsigned Align =
 | 
						|
    CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
 | 
						|
  ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
 | 
						|
  // If there's no space left in the argument save area, we must
 | 
						|
  // use memory (this check also catches zero-sized arguments).
 | 
						|
  if (ArgOffset >= LinkageSize + ParamAreaSize)
 | 
						|
    UseMemory = true;
 | 
						|
 | 
						|
  // Allocate argument on the stack.
 | 
						|
  ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
 | 
						|
  if (Flags.isInConsecutiveRegsLast())
 | 
						|
    ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
  // If we overran the argument save area, we must use memory
 | 
						|
  // (this check catches arguments passed partially in memory)
 | 
						|
  if (ArgOffset > LinkageSize + ParamAreaSize)
 | 
						|
    UseMemory = true;
 | 
						|
 | 
						|
  // However, if the argument is actually passed in an FPR or a VR,
 | 
						|
  // we don't use memory after all.
 | 
						|
  if (!Flags.isByVal()) {
 | 
						|
    if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
 | 
						|
        // QPX registers overlap with the scalar FP registers.
 | 
						|
        (HasQPX && (ArgVT == MVT::v4f32 ||
 | 
						|
                    ArgVT == MVT::v4f64 ||
 | 
						|
                    ArgVT == MVT::v4i1)))
 | 
						|
      if (AvailableFPRs > 0) {
 | 
						|
        --AvailableFPRs;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
 | 
						|
        ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
 | 
						|
        ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
 | 
						|
        ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
 | 
						|
      if (AvailableVRs > 0) {
 | 
						|
        --AvailableVRs;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return UseMemory;
 | 
						|
}
 | 
						|
 | 
						|
/// EnsureStackAlignment - Round stack frame size up from NumBytes to
 | 
						|
/// ensure minimum alignment required for target.
 | 
						|
static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
 | 
						|
                                     unsigned NumBytes) {
 | 
						|
  unsigned TargetAlign = Lowering->getStackAlignment();
 | 
						|
  unsigned AlignMask = TargetAlign - 1;
 | 
						|
  NumBytes = (NumBytes + AlignMask) & ~AlignMask;
 | 
						|
  return NumBytes;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFormalArguments(
 | 
						|
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  if (Subtarget.isSVR4ABI()) {
 | 
						|
    if (Subtarget.isPPC64())
 | 
						|
      return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
 | 
						|
                                         dl, DAG, InVals);
 | 
						|
    else
 | 
						|
      return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
 | 
						|
                                         dl, DAG, InVals);
 | 
						|
  } else {
 | 
						|
    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
 | 
						|
                                       dl, DAG, InVals);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
 | 
						|
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
 | 
						|
  // 32-bit SVR4 ABI Stack Frame Layout:
 | 
						|
  //              +-----------------------------------+
 | 
						|
  //        +-->  |            Back chain             |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     | Floating-point register save area |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     |    General register save area     |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     |          CR save word             |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     |         VRSAVE save word          |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     |         Alignment padding         |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     |     Vector register save area     |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     |       Local variable space        |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     |        Parameter list area        |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  //        |     |           LR save word            |
 | 
						|
  //        |     +-----------------------------------+
 | 
						|
  // SP-->  +---  |            Back chain             |
 | 
						|
  //              +-----------------------------------+
 | 
						|
  //
 | 
						|
  // Specifications:
 | 
						|
  //   System V Application Binary Interface PowerPC Processor Supplement
 | 
						|
  //   AltiVec Technology Programming Interface Manual
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
  // Potential tail calls could cause overwriting of argument stack slots.
 | 
						|
  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
 | 
						|
                       (CallConv == CallingConv::Fast));
 | 
						|
  unsigned PtrByteSize = 4;
 | 
						|
 | 
						|
  // Assign locations to all of the incoming arguments.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
 | 
						|
  // Reserve space for the linkage area on the stack.
 | 
						|
  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | 
						|
  CCInfo.AllocateStack(LinkageSize, PtrByteSize);
 | 
						|
  if (useSoftFloat() || hasSPE())
 | 
						|
    CCInfo.PreAnalyzeFormalArguments(Ins);
 | 
						|
 | 
						|
  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
 | 
						|
  CCInfo.clearWasPPCF128();
 | 
						|
 | 
						|
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | 
						|
    CCValAssign &VA = ArgLocs[i];
 | 
						|
 | 
						|
    // Arguments stored in registers.
 | 
						|
    if (VA.isRegLoc()) {
 | 
						|
      const TargetRegisterClass *RC;
 | 
						|
      EVT ValVT = VA.getValVT();
 | 
						|
 | 
						|
      switch (ValVT.getSimpleVT().SimpleTy) {
 | 
						|
        default:
 | 
						|
          llvm_unreachable("ValVT not supported by formal arguments Lowering");
 | 
						|
        case MVT::i1:
 | 
						|
        case MVT::i32:
 | 
						|
          RC = &PPC::GPRCRegClass;
 | 
						|
          break;
 | 
						|
        case MVT::f32:
 | 
						|
          if (Subtarget.hasP8Vector())
 | 
						|
            RC = &PPC::VSSRCRegClass;
 | 
						|
          else if (Subtarget.hasSPE())
 | 
						|
            RC = &PPC::SPE4RCRegClass;
 | 
						|
          else
 | 
						|
            RC = &PPC::F4RCRegClass;
 | 
						|
          break;
 | 
						|
        case MVT::f64:
 | 
						|
          if (Subtarget.hasVSX())
 | 
						|
            RC = &PPC::VSFRCRegClass;
 | 
						|
          else if (Subtarget.hasSPE())
 | 
						|
            RC = &PPC::SPERCRegClass;
 | 
						|
          else
 | 
						|
            RC = &PPC::F8RCRegClass;
 | 
						|
          break;
 | 
						|
        case MVT::v16i8:
 | 
						|
        case MVT::v8i16:
 | 
						|
        case MVT::v4i32:
 | 
						|
          RC = &PPC::VRRCRegClass;
 | 
						|
          break;
 | 
						|
        case MVT::v4f32:
 | 
						|
          RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
 | 
						|
          break;
 | 
						|
        case MVT::v2f64:
 | 
						|
        case MVT::v2i64:
 | 
						|
          RC = &PPC::VRRCRegClass;
 | 
						|
          break;
 | 
						|
        case MVT::v4f64:
 | 
						|
          RC = &PPC::QFRCRegClass;
 | 
						|
          break;
 | 
						|
        case MVT::v4i1:
 | 
						|
          RC = &PPC::QBRCRegClass;
 | 
						|
          break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Transform the arguments stored in physical registers into virtual ones.
 | 
						|
      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | 
						|
      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
 | 
						|
                                            ValVT == MVT::i1 ? MVT::i32 : ValVT);
 | 
						|
 | 
						|
      if (ValVT == MVT::i1)
 | 
						|
        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
 | 
						|
 | 
						|
      InVals.push_back(ArgValue);
 | 
						|
    } else {
 | 
						|
      // Argument stored in memory.
 | 
						|
      assert(VA.isMemLoc());
 | 
						|
 | 
						|
      // Get the extended size of the argument type in stack
 | 
						|
      unsigned ArgSize = VA.getLocVT().getStoreSize();
 | 
						|
      // Get the actual size of the argument type
 | 
						|
      unsigned ObjSize = VA.getValVT().getStoreSize();
 | 
						|
      unsigned ArgOffset = VA.getLocMemOffset();
 | 
						|
      // Stack objects in PPC32 are right justified.
 | 
						|
      ArgOffset += ArgSize - ObjSize;
 | 
						|
      int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
 | 
						|
 | 
						|
      // Create load nodes to retrieve arguments from the stack.
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
      InVals.push_back(
 | 
						|
          DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Assign locations to all of the incoming aggregate by value arguments.
 | 
						|
  // Aggregates passed by value are stored in the local variable space of the
 | 
						|
  // caller's stack frame, right above the parameter list area.
 | 
						|
  SmallVector<CCValAssign, 16> ByValArgLocs;
 | 
						|
  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
 | 
						|
                      ByValArgLocs, *DAG.getContext());
 | 
						|
 | 
						|
  // Reserve stack space for the allocations in CCInfo.
 | 
						|
  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
 | 
						|
 | 
						|
  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
 | 
						|
 | 
						|
  // Area that is at least reserved in the caller of this function.
 | 
						|
  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
 | 
						|
  MinReservedArea = std::max(MinReservedArea, LinkageSize);
 | 
						|
 | 
						|
  // Set the size that is at least reserved in caller of this function.  Tail
 | 
						|
  // call optimized function's reserved stack space needs to be aligned so that
 | 
						|
  // taking the difference between two stack areas will result in an aligned
 | 
						|
  // stack.
 | 
						|
  MinReservedArea =
 | 
						|
      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
 | 
						|
  FuncInfo->setMinReservedArea(MinReservedArea);
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> MemOps;
 | 
						|
 | 
						|
  // If the function takes variable number of arguments, make a frame index for
 | 
						|
  // the start of the first vararg value... for expansion of llvm.va_start.
 | 
						|
  if (isVarArg) {
 | 
						|
    static const MCPhysReg GPArgRegs[] = {
 | 
						|
      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | 
						|
      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | 
						|
    };
 | 
						|
    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
 | 
						|
 | 
						|
    static const MCPhysReg FPArgRegs[] = {
 | 
						|
      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | 
						|
      PPC::F8
 | 
						|
    };
 | 
						|
    unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
 | 
						|
 | 
						|
    if (useSoftFloat() || hasSPE())
 | 
						|
       NumFPArgRegs = 0;
 | 
						|
 | 
						|
    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
 | 
						|
    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
 | 
						|
 | 
						|
    // Make room for NumGPArgRegs and NumFPArgRegs.
 | 
						|
    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
 | 
						|
                NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
 | 
						|
 | 
						|
    FuncInfo->setVarArgsStackOffset(
 | 
						|
      MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
 | 
						|
                            CCInfo.getNextStackOffset(), true));
 | 
						|
 | 
						|
    FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
 | 
						|
    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | 
						|
 | 
						|
    // The fixed integer arguments of a variadic function are stored to the
 | 
						|
    // VarArgsFrameIndex on the stack so that they may be loaded by
 | 
						|
    // dereferencing the result of va_next.
 | 
						|
    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
 | 
						|
      // Get an existing live-in vreg, or add a new one.
 | 
						|
      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
 | 
						|
      if (!VReg)
 | 
						|
        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
 | 
						|
 | 
						|
      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | 
						|
      SDValue Store =
 | 
						|
          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
 | 
						|
      MemOps.push_back(Store);
 | 
						|
      // Increment the address by four for the next argument to store
 | 
						|
      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
 | 
						|
      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
 | 
						|
    // is set.
 | 
						|
    // The double arguments are stored to the VarArgsFrameIndex
 | 
						|
    // on the stack.
 | 
						|
    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
 | 
						|
      // Get an existing live-in vreg, or add a new one.
 | 
						|
      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
 | 
						|
      if (!VReg)
 | 
						|
        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
 | 
						|
 | 
						|
      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
 | 
						|
      SDValue Store =
 | 
						|
          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
 | 
						|
      MemOps.push_back(Store);
 | 
						|
      // Increment the address by eight for the next argument to store
 | 
						|
      SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
 | 
						|
                                         PtrVT);
 | 
						|
      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemOps.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
 | 
						|
// value to MVT::i64 and then truncate to the correct register size.
 | 
						|
SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
 | 
						|
                                             EVT ObjectVT, SelectionDAG &DAG,
 | 
						|
                                             SDValue ArgVal,
 | 
						|
                                             const SDLoc &dl) const {
 | 
						|
  if (Flags.isSExt())
 | 
						|
    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
 | 
						|
                         DAG.getValueType(ObjectVT));
 | 
						|
  else if (Flags.isZExt())
 | 
						|
    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
 | 
						|
                         DAG.getValueType(ObjectVT));
 | 
						|
 | 
						|
  return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
 | 
						|
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  // TODO: add description of PPC stack frame format, or at least some docs.
 | 
						|
  //
 | 
						|
  bool isELFv2ABI = Subtarget.isELFv2ABI();
 | 
						|
  bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
 | 
						|
  assert(!(CallConv == CallingConv::Fast && isVarArg) &&
 | 
						|
         "fastcc not supported on varargs functions");
 | 
						|
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
  // Potential tail calls could cause overwriting of argument stack slots.
 | 
						|
  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
 | 
						|
                       (CallConv == CallingConv::Fast));
 | 
						|
  unsigned PtrByteSize = 8;
 | 
						|
  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | 
						|
 | 
						|
  static const MCPhysReg GPR[] = {
 | 
						|
    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | 
						|
    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | 
						|
  };
 | 
						|
  static const MCPhysReg VR[] = {
 | 
						|
    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | 
						|
    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | 
						|
  };
 | 
						|
 | 
						|
  const unsigned Num_GPR_Regs = array_lengthof(GPR);
 | 
						|
  const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
 | 
						|
  const unsigned Num_VR_Regs  = array_lengthof(VR);
 | 
						|
  const unsigned Num_QFPR_Regs = Num_FPR_Regs;
 | 
						|
 | 
						|
  // Do a first pass over the arguments to determine whether the ABI
 | 
						|
  // guarantees that our caller has allocated the parameter save area
 | 
						|
  // on its stack frame.  In the ELFv1 ABI, this is always the case;
 | 
						|
  // in the ELFv2 ABI, it is true if this is a vararg function or if
 | 
						|
  // any parameter is located in a stack slot.
 | 
						|
 | 
						|
  bool HasParameterArea = !isELFv2ABI || isVarArg;
 | 
						|
  unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
 | 
						|
  unsigned NumBytes = LinkageSize;
 | 
						|
  unsigned AvailableFPRs = Num_FPR_Regs;
 | 
						|
  unsigned AvailableVRs = Num_VR_Regs;
 | 
						|
  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
 | 
						|
    if (Ins[i].Flags.isNest())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
 | 
						|
                               PtrByteSize, LinkageSize, ParamAreaSize,
 | 
						|
                               NumBytes, AvailableFPRs, AvailableVRs,
 | 
						|
                               Subtarget.hasQPX()))
 | 
						|
      HasParameterArea = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add DAG nodes to load the arguments or copy them out of registers.  On
 | 
						|
  // entry to a function on PPC, the arguments start after the linkage area,
 | 
						|
  // although the first ones are often in registers.
 | 
						|
 | 
						|
  unsigned ArgOffset = LinkageSize;
 | 
						|
  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | 
						|
  unsigned &QFPR_idx = FPR_idx;
 | 
						|
  SmallVector<SDValue, 8> MemOps;
 | 
						|
  Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
 | 
						|
  unsigned CurArgIdx = 0;
 | 
						|
  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
 | 
						|
    SDValue ArgVal;
 | 
						|
    bool needsLoad = false;
 | 
						|
    EVT ObjectVT = Ins[ArgNo].VT;
 | 
						|
    EVT OrigVT = Ins[ArgNo].ArgVT;
 | 
						|
    unsigned ObjSize = ObjectVT.getStoreSize();
 | 
						|
    unsigned ArgSize = ObjSize;
 | 
						|
    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
 | 
						|
    if (Ins[ArgNo].isOrigArg()) {
 | 
						|
      std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
 | 
						|
      CurArgIdx = Ins[ArgNo].getOrigArgIndex();
 | 
						|
    }
 | 
						|
    // We re-align the argument offset for each argument, except when using the
 | 
						|
    // fast calling convention, when we need to make sure we do that only when
 | 
						|
    // we'll actually use a stack slot.
 | 
						|
    unsigned CurArgOffset, Align;
 | 
						|
    auto ComputeArgOffset = [&]() {
 | 
						|
      /* Respect alignment of argument on the stack.  */
 | 
						|
      Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
 | 
						|
      ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
 | 
						|
      CurArgOffset = ArgOffset;
 | 
						|
    };
 | 
						|
 | 
						|
    if (CallConv != CallingConv::Fast) {
 | 
						|
      ComputeArgOffset();
 | 
						|
 | 
						|
      /* Compute GPR index associated with argument offset.  */
 | 
						|
      GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
 | 
						|
      GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME the codegen can be much improved in some cases.
 | 
						|
    // We do not have to keep everything in memory.
 | 
						|
    if (Flags.isByVal()) {
 | 
						|
      assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
 | 
						|
 | 
						|
      if (CallConv == CallingConv::Fast)
 | 
						|
        ComputeArgOffset();
 | 
						|
 | 
						|
      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
 | 
						|
      ObjSize = Flags.getByValSize();
 | 
						|
      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
      // Empty aggregate parameters do not take up registers.  Examples:
 | 
						|
      //   struct { } a;
 | 
						|
      //   union  { } b;
 | 
						|
      //   int c[0];
 | 
						|
      // etc.  However, we have to provide a place-holder in InVals, so
 | 
						|
      // pretend we have an 8-byte item at the current address for that
 | 
						|
      // purpose.
 | 
						|
      if (!ObjSize) {
 | 
						|
        int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
 | 
						|
        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
        InVals.push_back(FIN);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Create a stack object covering all stack doublewords occupied
 | 
						|
      // by the argument.  If the argument is (fully or partially) on
 | 
						|
      // the stack, or if the argument is fully in registers but the
 | 
						|
      // caller has allocated the parameter save anyway, we can refer
 | 
						|
      // directly to the caller's stack frame.  Otherwise, create a
 | 
						|
      // local copy in our own frame.
 | 
						|
      int FI;
 | 
						|
      if (HasParameterArea ||
 | 
						|
          ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
 | 
						|
        FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
 | 
						|
      else
 | 
						|
        FI = MFI.CreateStackObject(ArgSize, Align, false);
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
 | 
						|
      // Handle aggregates smaller than 8 bytes.
 | 
						|
      if (ObjSize < PtrByteSize) {
 | 
						|
        // The value of the object is its address, which differs from the
 | 
						|
        // address of the enclosing doubleword on big-endian systems.
 | 
						|
        SDValue Arg = FIN;
 | 
						|
        if (!isLittleEndian) {
 | 
						|
          SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
 | 
						|
          Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
 | 
						|
        }
 | 
						|
        InVals.push_back(Arg);
 | 
						|
 | 
						|
        if (GPR_idx != Num_GPR_Regs) {
 | 
						|
          unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
 | 
						|
          FuncInfo->addLiveInAttr(VReg, Flags);
 | 
						|
          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | 
						|
          SDValue Store;
 | 
						|
 | 
						|
          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
 | 
						|
            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
 | 
						|
                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
 | 
						|
            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
 | 
						|
                                      MachinePointerInfo(&*FuncArg), ObjType);
 | 
						|
          } else {
 | 
						|
            // For sizes that don't fit a truncating store (3, 5, 6, 7),
 | 
						|
            // store the whole register as-is to the parameter save area
 | 
						|
            // slot.
 | 
						|
            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | 
						|
                                 MachinePointerInfo(&*FuncArg));
 | 
						|
          }
 | 
						|
 | 
						|
          MemOps.push_back(Store);
 | 
						|
        }
 | 
						|
        // Whether we copied from a register or not, advance the offset
 | 
						|
        // into the parameter save area by a full doubleword.
 | 
						|
        ArgOffset += PtrByteSize;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // The value of the object is its address, which is the address of
 | 
						|
      // its first stack doubleword.
 | 
						|
      InVals.push_back(FIN);
 | 
						|
 | 
						|
      // Store whatever pieces of the object are in registers to memory.
 | 
						|
      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
 | 
						|
        if (GPR_idx == Num_GPR_Regs)
 | 
						|
          break;
 | 
						|
 | 
						|
        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | 
						|
        FuncInfo->addLiveInAttr(VReg, Flags);
 | 
						|
        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | 
						|
        SDValue Addr = FIN;
 | 
						|
        if (j) {
 | 
						|
          SDValue Off = DAG.getConstant(j, dl, PtrVT);
 | 
						|
          Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
 | 
						|
        }
 | 
						|
        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
 | 
						|
                                     MachinePointerInfo(&*FuncArg, j));
 | 
						|
        MemOps.push_back(Store);
 | 
						|
        ++GPR_idx;
 | 
						|
      }
 | 
						|
      ArgOffset += ArgSize;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (ObjectVT.getSimpleVT().SimpleTy) {
 | 
						|
    default: llvm_unreachable("Unhandled argument type!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i32:
 | 
						|
    case MVT::i64:
 | 
						|
      if (Flags.isNest()) {
 | 
						|
        // The 'nest' parameter, if any, is passed in R11.
 | 
						|
        unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
 | 
						|
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 | 
						|
 | 
						|
        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
 | 
						|
          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // These can be scalar arguments or elements of an integer array type
 | 
						|
      // passed directly.  Clang may use those instead of "byval" aggregate
 | 
						|
      // types to avoid forcing arguments to memory unnecessarily.
 | 
						|
      if (GPR_idx != Num_GPR_Regs) {
 | 
						|
        unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
 | 
						|
        FuncInfo->addLiveInAttr(VReg, Flags);
 | 
						|
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 | 
						|
 | 
						|
        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
 | 
						|
          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
 | 
						|
          // value to MVT::i64 and then truncate to the correct register size.
 | 
						|
          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
 | 
						|
      } else {
 | 
						|
        if (CallConv == CallingConv::Fast)
 | 
						|
          ComputeArgOffset();
 | 
						|
 | 
						|
        needsLoad = true;
 | 
						|
        ArgSize = PtrByteSize;
 | 
						|
      }
 | 
						|
      if (CallConv != CallingConv::Fast || needsLoad)
 | 
						|
        ArgOffset += 8;
 | 
						|
      break;
 | 
						|
 | 
						|
    case MVT::f32:
 | 
						|
    case MVT::f64:
 | 
						|
      // These can be scalar arguments or elements of a float array type
 | 
						|
      // passed directly.  The latter are used to implement ELFv2 homogenous
 | 
						|
      // float aggregates.
 | 
						|
      if (FPR_idx != Num_FPR_Regs) {
 | 
						|
        unsigned VReg;
 | 
						|
 | 
						|
        if (ObjectVT == MVT::f32)
 | 
						|
          VReg = MF.addLiveIn(FPR[FPR_idx],
 | 
						|
                              Subtarget.hasP8Vector()
 | 
						|
                                  ? &PPC::VSSRCRegClass
 | 
						|
                                  : &PPC::F4RCRegClass);
 | 
						|
        else
 | 
						|
          VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
 | 
						|
                                                ? &PPC::VSFRCRegClass
 | 
						|
                                                : &PPC::F8RCRegClass);
 | 
						|
 | 
						|
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | 
						|
        ++FPR_idx;
 | 
						|
      } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
 | 
						|
        // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
 | 
						|
        // once we support fp <-> gpr moves.
 | 
						|
 | 
						|
        // This can only ever happen in the presence of f32 array types,
 | 
						|
        // since otherwise we never run out of FPRs before running out
 | 
						|
        // of GPRs.
 | 
						|
        unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
 | 
						|
        FuncInfo->addLiveInAttr(VReg, Flags);
 | 
						|
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 | 
						|
 | 
						|
        if (ObjectVT == MVT::f32) {
 | 
						|
          if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
 | 
						|
            ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
 | 
						|
                                 DAG.getConstant(32, dl, MVT::i32));
 | 
						|
          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
 | 
						|
        }
 | 
						|
 | 
						|
        ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
 | 
						|
      } else {
 | 
						|
        if (CallConv == CallingConv::Fast)
 | 
						|
          ComputeArgOffset();
 | 
						|
 | 
						|
        needsLoad = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // When passing an array of floats, the array occupies consecutive
 | 
						|
      // space in the argument area; only round up to the next doubleword
 | 
						|
      // at the end of the array.  Otherwise, each float takes 8 bytes.
 | 
						|
      if (CallConv != CallingConv::Fast || needsLoad) {
 | 
						|
        ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
 | 
						|
        ArgOffset += ArgSize;
 | 
						|
        if (Flags.isInConsecutiveRegsLast())
 | 
						|
          ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case MVT::v4f32:
 | 
						|
    case MVT::v4i32:
 | 
						|
    case MVT::v8i16:
 | 
						|
    case MVT::v16i8:
 | 
						|
    case MVT::v2f64:
 | 
						|
    case MVT::v2i64:
 | 
						|
    case MVT::v1i128:
 | 
						|
    case MVT::f128:
 | 
						|
      if (!Subtarget.hasQPX()) {
 | 
						|
        // These can be scalar arguments or elements of a vector array type
 | 
						|
        // passed directly.  The latter are used to implement ELFv2 homogenous
 | 
						|
        // vector aggregates.
 | 
						|
        if (VR_idx != Num_VR_Regs) {
 | 
						|
          unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
 | 
						|
          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | 
						|
          ++VR_idx;
 | 
						|
        } else {
 | 
						|
          if (CallConv == CallingConv::Fast)
 | 
						|
            ComputeArgOffset();
 | 
						|
          needsLoad = true;
 | 
						|
        }
 | 
						|
        if (CallConv != CallingConv::Fast || needsLoad)
 | 
						|
          ArgOffset += 16;
 | 
						|
        break;
 | 
						|
      } // not QPX
 | 
						|
 | 
						|
      assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
 | 
						|
             "Invalid QPX parameter type");
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
 | 
						|
    case MVT::v4f64:
 | 
						|
    case MVT::v4i1:
 | 
						|
      // QPX vectors are treated like their scalar floating-point subregisters
 | 
						|
      // (except that they're larger).
 | 
						|
      unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
 | 
						|
      if (QFPR_idx != Num_QFPR_Regs) {
 | 
						|
        const TargetRegisterClass *RC;
 | 
						|
        switch (ObjectVT.getSimpleVT().SimpleTy) {
 | 
						|
        case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
 | 
						|
        case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
 | 
						|
        default:         RC = &PPC::QBRCRegClass; break;
 | 
						|
        }
 | 
						|
 | 
						|
        unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
 | 
						|
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | 
						|
        ++QFPR_idx;
 | 
						|
      } else {
 | 
						|
        if (CallConv == CallingConv::Fast)
 | 
						|
          ComputeArgOffset();
 | 
						|
        needsLoad = true;
 | 
						|
      }
 | 
						|
      if (CallConv != CallingConv::Fast || needsLoad)
 | 
						|
        ArgOffset += Sz;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // We need to load the argument to a virtual register if we determined
 | 
						|
    // above that we ran out of physical registers of the appropriate type.
 | 
						|
    if (needsLoad) {
 | 
						|
      if (ObjSize < ArgSize && !isLittleEndian)
 | 
						|
        CurArgOffset += ArgSize - ObjSize;
 | 
						|
      int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
 | 
						|
    }
 | 
						|
 | 
						|
    InVals.push_back(ArgVal);
 | 
						|
  }
 | 
						|
 | 
						|
  // Area that is at least reserved in the caller of this function.
 | 
						|
  unsigned MinReservedArea;
 | 
						|
  if (HasParameterArea)
 | 
						|
    MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
 | 
						|
  else
 | 
						|
    MinReservedArea = LinkageSize;
 | 
						|
 | 
						|
  // Set the size that is at least reserved in caller of this function.  Tail
 | 
						|
  // call optimized functions' reserved stack space needs to be aligned so that
 | 
						|
  // taking the difference between two stack areas will result in an aligned
 | 
						|
  // stack.
 | 
						|
  MinReservedArea =
 | 
						|
      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
 | 
						|
  FuncInfo->setMinReservedArea(MinReservedArea);
 | 
						|
 | 
						|
  // If the function takes variable number of arguments, make a frame index for
 | 
						|
  // the start of the first vararg value... for expansion of llvm.va_start.
 | 
						|
  if (isVarArg) {
 | 
						|
    int Depth = ArgOffset;
 | 
						|
 | 
						|
    FuncInfo->setVarArgsFrameIndex(
 | 
						|
      MFI.CreateFixedObject(PtrByteSize, Depth, true));
 | 
						|
    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | 
						|
 | 
						|
    // If this function is vararg, store any remaining integer argument regs
 | 
						|
    // to their spots on the stack so that they may be loaded by dereferencing
 | 
						|
    // the result of va_next.
 | 
						|
    for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
 | 
						|
         GPR_idx < Num_GPR_Regs; ++GPR_idx) {
 | 
						|
      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | 
						|
      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | 
						|
      SDValue Store =
 | 
						|
          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
 | 
						|
      MemOps.push_back(Store);
 | 
						|
      // Increment the address by four for the next argument to store
 | 
						|
      SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
 | 
						|
      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemOps.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
 | 
						|
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  // TODO: add description of PPC stack frame format, or at least some docs.
 | 
						|
  //
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
  bool isPPC64 = PtrVT == MVT::i64;
 | 
						|
  // Potential tail calls could cause overwriting of argument stack slots.
 | 
						|
  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
 | 
						|
                       (CallConv == CallingConv::Fast));
 | 
						|
  unsigned PtrByteSize = isPPC64 ? 8 : 4;
 | 
						|
  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | 
						|
  unsigned ArgOffset = LinkageSize;
 | 
						|
  // Area that is at least reserved in caller of this function.
 | 
						|
  unsigned MinReservedArea = ArgOffset;
 | 
						|
 | 
						|
  static const MCPhysReg GPR_32[] = {           // 32-bit registers.
 | 
						|
    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | 
						|
    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | 
						|
  };
 | 
						|
  static const MCPhysReg GPR_64[] = {           // 64-bit registers.
 | 
						|
    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | 
						|
    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | 
						|
  };
 | 
						|
  static const MCPhysReg VR[] = {
 | 
						|
    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | 
						|
    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | 
						|
  };
 | 
						|
 | 
						|
  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
 | 
						|
  const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
 | 
						|
  const unsigned Num_VR_Regs  = array_lengthof( VR);
 | 
						|
 | 
						|
  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | 
						|
 | 
						|
  const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
 | 
						|
 | 
						|
  // In 32-bit non-varargs functions, the stack space for vectors is after the
 | 
						|
  // stack space for non-vectors.  We do not use this space unless we have
 | 
						|
  // too many vectors to fit in registers, something that only occurs in
 | 
						|
  // constructed examples:), but we have to walk the arglist to figure
 | 
						|
  // that out...for the pathological case, compute VecArgOffset as the
 | 
						|
  // start of the vector parameter area.  Computing VecArgOffset is the
 | 
						|
  // entire point of the following loop.
 | 
						|
  unsigned VecArgOffset = ArgOffset;
 | 
						|
  if (!isVarArg && !isPPC64) {
 | 
						|
    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
 | 
						|
         ++ArgNo) {
 | 
						|
      EVT ObjectVT = Ins[ArgNo].VT;
 | 
						|
      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
 | 
						|
 | 
						|
      if (Flags.isByVal()) {
 | 
						|
        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
 | 
						|
        unsigned ObjSize = Flags.getByValSize();
 | 
						|
        unsigned ArgSize =
 | 
						|
                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
        VecArgOffset += ArgSize;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      switch(ObjectVT.getSimpleVT().SimpleTy) {
 | 
						|
      default: llvm_unreachable("Unhandled argument type!");
 | 
						|
      case MVT::i1:
 | 
						|
      case MVT::i32:
 | 
						|
      case MVT::f32:
 | 
						|
        VecArgOffset += 4;
 | 
						|
        break;
 | 
						|
      case MVT::i64:  // PPC64
 | 
						|
      case MVT::f64:
 | 
						|
        // FIXME: We are guaranteed to be !isPPC64 at this point.
 | 
						|
        // Does MVT::i64 apply?
 | 
						|
        VecArgOffset += 8;
 | 
						|
        break;
 | 
						|
      case MVT::v4f32:
 | 
						|
      case MVT::v4i32:
 | 
						|
      case MVT::v8i16:
 | 
						|
      case MVT::v16i8:
 | 
						|
        // Nothing to do, we're only looking at Nonvector args here.
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // We've found where the vector parameter area in memory is.  Skip the
 | 
						|
  // first 12 parameters; these don't use that memory.
 | 
						|
  VecArgOffset = ((VecArgOffset+15)/16)*16;
 | 
						|
  VecArgOffset += 12*16;
 | 
						|
 | 
						|
  // Add DAG nodes to load the arguments or copy them out of registers.  On
 | 
						|
  // entry to a function on PPC, the arguments start after the linkage area,
 | 
						|
  // although the first ones are often in registers.
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> MemOps;
 | 
						|
  unsigned nAltivecParamsAtEnd = 0;
 | 
						|
  Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
 | 
						|
  unsigned CurArgIdx = 0;
 | 
						|
  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
 | 
						|
    SDValue ArgVal;
 | 
						|
    bool needsLoad = false;
 | 
						|
    EVT ObjectVT = Ins[ArgNo].VT;
 | 
						|
    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
 | 
						|
    unsigned ArgSize = ObjSize;
 | 
						|
    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
 | 
						|
    if (Ins[ArgNo].isOrigArg()) {
 | 
						|
      std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
 | 
						|
      CurArgIdx = Ins[ArgNo].getOrigArgIndex();
 | 
						|
    }
 | 
						|
    unsigned CurArgOffset = ArgOffset;
 | 
						|
 | 
						|
    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
 | 
						|
    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
 | 
						|
        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
 | 
						|
      if (isVarArg || isPPC64) {
 | 
						|
        MinReservedArea = ((MinReservedArea+15)/16)*16;
 | 
						|
        MinReservedArea += CalculateStackSlotSize(ObjectVT,
 | 
						|
                                                  Flags,
 | 
						|
                                                  PtrByteSize);
 | 
						|
      } else  nAltivecParamsAtEnd++;
 | 
						|
    } else
 | 
						|
      // Calculate min reserved area.
 | 
						|
      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
 | 
						|
                                                Flags,
 | 
						|
                                                PtrByteSize);
 | 
						|
 | 
						|
    // FIXME the codegen can be much improved in some cases.
 | 
						|
    // We do not have to keep everything in memory.
 | 
						|
    if (Flags.isByVal()) {
 | 
						|
      assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
 | 
						|
 | 
						|
      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
 | 
						|
      ObjSize = Flags.getByValSize();
 | 
						|
      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
      // Objects of size 1 and 2 are right justified, everything else is
 | 
						|
      // left justified.  This means the memory address is adjusted forwards.
 | 
						|
      if (ObjSize==1 || ObjSize==2) {
 | 
						|
        CurArgOffset = CurArgOffset + (4 - ObjSize);
 | 
						|
      }
 | 
						|
      // The value of the object is its address.
 | 
						|
      int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
      InVals.push_back(FIN);
 | 
						|
      if (ObjSize==1 || ObjSize==2) {
 | 
						|
        if (GPR_idx != Num_GPR_Regs) {
 | 
						|
          unsigned VReg;
 | 
						|
          if (isPPC64)
 | 
						|
            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | 
						|
          else
 | 
						|
            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
 | 
						|
          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | 
						|
          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
 | 
						|
          SDValue Store =
 | 
						|
              DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
 | 
						|
                                MachinePointerInfo(&*FuncArg), ObjType);
 | 
						|
          MemOps.push_back(Store);
 | 
						|
          ++GPR_idx;
 | 
						|
        }
 | 
						|
 | 
						|
        ArgOffset += PtrByteSize;
 | 
						|
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
 | 
						|
        // Store whatever pieces of the object are in registers
 | 
						|
        // to memory.  ArgOffset will be the address of the beginning
 | 
						|
        // of the object.
 | 
						|
        if (GPR_idx != Num_GPR_Regs) {
 | 
						|
          unsigned VReg;
 | 
						|
          if (isPPC64)
 | 
						|
            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | 
						|
          else
 | 
						|
            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
 | 
						|
          int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
 | 
						|
          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | 
						|
          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
 | 
						|
                                       MachinePointerInfo(&*FuncArg, j));
 | 
						|
          MemOps.push_back(Store);
 | 
						|
          ++GPR_idx;
 | 
						|
          ArgOffset += PtrByteSize;
 | 
						|
        } else {
 | 
						|
          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (ObjectVT.getSimpleVT().SimpleTy) {
 | 
						|
    default: llvm_unreachable("Unhandled argument type!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i32:
 | 
						|
      if (!isPPC64) {
 | 
						|
        if (GPR_idx != Num_GPR_Regs) {
 | 
						|
          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
 | 
						|
          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
 | 
						|
 | 
						|
          if (ObjectVT == MVT::i1)
 | 
						|
            ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
 | 
						|
 | 
						|
          ++GPR_idx;
 | 
						|
        } else {
 | 
						|
          needsLoad = true;
 | 
						|
          ArgSize = PtrByteSize;
 | 
						|
        }
 | 
						|
        // All int arguments reserve stack space in the Darwin ABI.
 | 
						|
        ArgOffset += PtrByteSize;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case MVT::i64:  // PPC64
 | 
						|
      if (GPR_idx != Num_GPR_Regs) {
 | 
						|
        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | 
						|
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 | 
						|
 | 
						|
        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
 | 
						|
          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
 | 
						|
          // value to MVT::i64 and then truncate to the correct register size.
 | 
						|
          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
 | 
						|
 | 
						|
        ++GPR_idx;
 | 
						|
      } else {
 | 
						|
        needsLoad = true;
 | 
						|
        ArgSize = PtrByteSize;
 | 
						|
      }
 | 
						|
      // All int arguments reserve stack space in the Darwin ABI.
 | 
						|
      ArgOffset += 8;
 | 
						|
      break;
 | 
						|
 | 
						|
    case MVT::f32:
 | 
						|
    case MVT::f64:
 | 
						|
      // Every 4 bytes of argument space consumes one of the GPRs available for
 | 
						|
      // argument passing.
 | 
						|
      if (GPR_idx != Num_GPR_Regs) {
 | 
						|
        ++GPR_idx;
 | 
						|
        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
 | 
						|
          ++GPR_idx;
 | 
						|
      }
 | 
						|
      if (FPR_idx != Num_FPR_Regs) {
 | 
						|
        unsigned VReg;
 | 
						|
 | 
						|
        if (ObjectVT == MVT::f32)
 | 
						|
          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
 | 
						|
        else
 | 
						|
          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
 | 
						|
 | 
						|
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | 
						|
        ++FPR_idx;
 | 
						|
      } else {
 | 
						|
        needsLoad = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // All FP arguments reserve stack space in the Darwin ABI.
 | 
						|
      ArgOffset += isPPC64 ? 8 : ObjSize;
 | 
						|
      break;
 | 
						|
    case MVT::v4f32:
 | 
						|
    case MVT::v4i32:
 | 
						|
    case MVT::v8i16:
 | 
						|
    case MVT::v16i8:
 | 
						|
      // Note that vector arguments in registers don't reserve stack space,
 | 
						|
      // except in varargs functions.
 | 
						|
      if (VR_idx != Num_VR_Regs) {
 | 
						|
        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
 | 
						|
        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | 
						|
        if (isVarArg) {
 | 
						|
          while ((ArgOffset % 16) != 0) {
 | 
						|
            ArgOffset += PtrByteSize;
 | 
						|
            if (GPR_idx != Num_GPR_Regs)
 | 
						|
              GPR_idx++;
 | 
						|
          }
 | 
						|
          ArgOffset += 16;
 | 
						|
          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
 | 
						|
        }
 | 
						|
        ++VR_idx;
 | 
						|
      } else {
 | 
						|
        if (!isVarArg && !isPPC64) {
 | 
						|
          // Vectors go after all the nonvectors.
 | 
						|
          CurArgOffset = VecArgOffset;
 | 
						|
          VecArgOffset += 16;
 | 
						|
        } else {
 | 
						|
          // Vectors are aligned.
 | 
						|
          ArgOffset = ((ArgOffset+15)/16)*16;
 | 
						|
          CurArgOffset = ArgOffset;
 | 
						|
          ArgOffset += 16;
 | 
						|
        }
 | 
						|
        needsLoad = true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // We need to load the argument to a virtual register if we determined above
 | 
						|
    // that we ran out of physical registers of the appropriate type.
 | 
						|
    if (needsLoad) {
 | 
						|
      int FI = MFI.CreateFixedObject(ObjSize,
 | 
						|
                                     CurArgOffset + (ArgSize - ObjSize),
 | 
						|
                                     isImmutable);
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | 
						|
      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
 | 
						|
    }
 | 
						|
 | 
						|
    InVals.push_back(ArgVal);
 | 
						|
  }
 | 
						|
 | 
						|
  // Allow for Altivec parameters at the end, if needed.
 | 
						|
  if (nAltivecParamsAtEnd) {
 | 
						|
    MinReservedArea = ((MinReservedArea+15)/16)*16;
 | 
						|
    MinReservedArea += 16*nAltivecParamsAtEnd;
 | 
						|
  }
 | 
						|
 | 
						|
  // Area that is at least reserved in the caller of this function.
 | 
						|
  MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
 | 
						|
 | 
						|
  // Set the size that is at least reserved in caller of this function.  Tail
 | 
						|
  // call optimized functions' reserved stack space needs to be aligned so that
 | 
						|
  // taking the difference between two stack areas will result in an aligned
 | 
						|
  // stack.
 | 
						|
  MinReservedArea =
 | 
						|
      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
 | 
						|
  FuncInfo->setMinReservedArea(MinReservedArea);
 | 
						|
 | 
						|
  // If the function takes variable number of arguments, make a frame index for
 | 
						|
  // the start of the first vararg value... for expansion of llvm.va_start.
 | 
						|
  if (isVarArg) {
 | 
						|
    int Depth = ArgOffset;
 | 
						|
 | 
						|
    FuncInfo->setVarArgsFrameIndex(
 | 
						|
      MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
 | 
						|
                            Depth, true));
 | 
						|
    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
 | 
						|
 | 
						|
    // If this function is vararg, store any remaining integer argument regs
 | 
						|
    // to their spots on the stack so that they may be loaded by dereferencing
 | 
						|
    // the result of va_next.
 | 
						|
    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
 | 
						|
      unsigned VReg;
 | 
						|
 | 
						|
      if (isPPC64)
 | 
						|
        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | 
						|
      else
 | 
						|
        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
 | 
						|
 | 
						|
      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | 
						|
      SDValue Store =
 | 
						|
          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
 | 
						|
      MemOps.push_back(Store);
 | 
						|
      // Increment the address by four for the next argument to store
 | 
						|
      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
 | 
						|
      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemOps.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
 | 
						|
/// adjusted to accommodate the arguments for the tailcall.
 | 
						|
static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
 | 
						|
                                   unsigned ParamSize) {
 | 
						|
 | 
						|
  if (!isTailCall) return 0;
 | 
						|
 | 
						|
  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
 | 
						|
  unsigned CallerMinReservedArea = FI->getMinReservedArea();
 | 
						|
  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
 | 
						|
  // Remember only if the new adjustment is bigger.
 | 
						|
  if (SPDiff < FI->getTailCallSPDelta())
 | 
						|
    FI->setTailCallSPDelta(SPDiff);
 | 
						|
 | 
						|
  return SPDiff;
 | 
						|
}
 | 
						|
 | 
						|
static bool isFunctionGlobalAddress(SDValue Callee);
 | 
						|
 | 
						|
static bool
 | 
						|
callsShareTOCBase(const Function *Caller, SDValue Callee,
 | 
						|
                    const TargetMachine &TM) {
 | 
						|
  // If !G, Callee can be an external symbol.
 | 
						|
  GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
 | 
						|
  if (!G)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The medium and large code models are expected to provide a sufficiently
 | 
						|
  // large TOC to provide all data addressing needs of a module with a
 | 
						|
  // single TOC. Since each module will be addressed with a single TOC then we
 | 
						|
  // only need to check that caller and callee don't cross dso boundaries.
 | 
						|
  if (CodeModel::Medium == TM.getCodeModel() ||
 | 
						|
      CodeModel::Large == TM.getCodeModel())
 | 
						|
    return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
 | 
						|
 | 
						|
  // Otherwise we need to ensure callee and caller are in the same section,
 | 
						|
  // since the linker may allocate multiple TOCs, and we don't know which
 | 
						|
  // sections will belong to the same TOC base.
 | 
						|
 | 
						|
  const GlobalValue *GV = G->getGlobal();
 | 
						|
  if (!GV->isStrongDefinitionForLinker())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Any explicitly-specified sections and section prefixes must also match.
 | 
						|
  // Also, if we're using -ffunction-sections, then each function is always in
 | 
						|
  // a different section (the same is true for COMDAT functions).
 | 
						|
  if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
 | 
						|
      GV->getSection() != Caller->getSection())
 | 
						|
    return false;
 | 
						|
  if (const auto *F = dyn_cast<Function>(GV)) {
 | 
						|
    if (F->getSectionPrefix() != Caller->getSectionPrefix())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the callee might be interposed, then we can't assume the ultimate call
 | 
						|
  // target will be in the same section. Even in cases where we can assume that
 | 
						|
  // interposition won't happen, in any case where the linker might insert a
 | 
						|
  // stub to allow for interposition, we must generate code as though
 | 
						|
  // interposition might occur. To understand why this matters, consider a
 | 
						|
  // situation where: a -> b -> c where the arrows indicate calls. b and c are
 | 
						|
  // in the same section, but a is in a different module (i.e. has a different
 | 
						|
  // TOC base pointer). If the linker allows for interposition between b and c,
 | 
						|
  // then it will generate a stub for the call edge between b and c which will
 | 
						|
  // save the TOC pointer into the designated stack slot allocated by b. If we
 | 
						|
  // return true here, and therefore allow a tail call between b and c, that
 | 
						|
  // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
 | 
						|
  // pointer into the stack slot allocated by a (where the a -> b stub saved
 | 
						|
  // a's TOC base pointer). If we're not considering a tail call, but rather,
 | 
						|
  // whether a nop is needed after the call instruction in b, because the linker
 | 
						|
  // will insert a stub, it might complain about a missing nop if we omit it
 | 
						|
  // (although many don't complain in this case).
 | 
						|
  if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool
 | 
						|
needStackSlotPassParameters(const PPCSubtarget &Subtarget,
 | 
						|
                            const SmallVectorImpl<ISD::OutputArg> &Outs) {
 | 
						|
  assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
 | 
						|
 | 
						|
  const unsigned PtrByteSize = 8;
 | 
						|
  const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | 
						|
 | 
						|
  static const MCPhysReg GPR[] = {
 | 
						|
    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | 
						|
    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | 
						|
  };
 | 
						|
  static const MCPhysReg VR[] = {
 | 
						|
    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | 
						|
    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | 
						|
  };
 | 
						|
 | 
						|
  const unsigned NumGPRs = array_lengthof(GPR);
 | 
						|
  const unsigned NumFPRs = 13;
 | 
						|
  const unsigned NumVRs = array_lengthof(VR);
 | 
						|
  const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
 | 
						|
 | 
						|
  unsigned NumBytes = LinkageSize;
 | 
						|
  unsigned AvailableFPRs = NumFPRs;
 | 
						|
  unsigned AvailableVRs = NumVRs;
 | 
						|
 | 
						|
  for (const ISD::OutputArg& Param : Outs) {
 | 
						|
    if (Param.Flags.isNest()) continue;
 | 
						|
 | 
						|
    if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
 | 
						|
                               PtrByteSize, LinkageSize, ParamAreaSize,
 | 
						|
                               NumBytes, AvailableFPRs, AvailableVRs,
 | 
						|
                               Subtarget.hasQPX()))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool
 | 
						|
hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
 | 
						|
  if (CS.arg_size() != CallerFn->arg_size())
 | 
						|
    return false;
 | 
						|
 | 
						|
  ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
 | 
						|
  ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
 | 
						|
  Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
 | 
						|
 | 
						|
  for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
 | 
						|
    const Value* CalleeArg = *CalleeArgIter;
 | 
						|
    const Value* CallerArg = &(*CallerArgIter);
 | 
						|
    if (CalleeArg == CallerArg)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
 | 
						|
    //        tail call @callee([4 x i64] undef, [4 x i64] %b)
 | 
						|
    //      }
 | 
						|
    // 1st argument of callee is undef and has the same type as caller.
 | 
						|
    if (CalleeArg->getType() == CallerArg->getType() &&
 | 
						|
        isa<UndefValue>(CalleeArg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if TCO is possible between the callers and callees
 | 
						|
// calling conventions.
 | 
						|
static bool
 | 
						|
areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
 | 
						|
                                    CallingConv::ID CalleeCC) {
 | 
						|
  // Tail calls are possible with fastcc and ccc.
 | 
						|
  auto isTailCallableCC  = [] (CallingConv::ID CC){
 | 
						|
      return  CC == CallingConv::C || CC == CallingConv::Fast;
 | 
						|
  };
 | 
						|
  if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can safely tail call both fastcc and ccc callees from a c calling
 | 
						|
  // convention caller. If the caller is fastcc, we may have less stack space
 | 
						|
  // than a non-fastcc caller with the same signature so disable tail-calls in
 | 
						|
  // that case.
 | 
						|
  return CallerCC == CallingConv::C || CallerCC == CalleeCC;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
 | 
						|
                                    SDValue Callee,
 | 
						|
                                    CallingConv::ID CalleeCC,
 | 
						|
                                    ImmutableCallSite CS,
 | 
						|
                                    bool isVarArg,
 | 
						|
                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
                                    const SmallVectorImpl<ISD::InputArg> &Ins,
 | 
						|
                                    SelectionDAG& DAG) const {
 | 
						|
  bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
 | 
						|
 | 
						|
  if (DisableSCO && !TailCallOpt) return false;
 | 
						|
 | 
						|
  // Variadic argument functions are not supported.
 | 
						|
  if (isVarArg) return false;
 | 
						|
 | 
						|
  auto &Caller = DAG.getMachineFunction().getFunction();
 | 
						|
  // Check that the calling conventions are compatible for tco.
 | 
						|
  if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Caller contains any byval parameter is not supported.
 | 
						|
  if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Callee contains any byval parameter is not supported, too.
 | 
						|
  // Note: This is a quick work around, because in some cases, e.g.
 | 
						|
  // caller's stack size > callee's stack size, we are still able to apply
 | 
						|
  // sibling call optimization. For example, gcc is able to do SCO for caller1
 | 
						|
  // in the following example, but not for caller2.
 | 
						|
  //   struct test {
 | 
						|
  //     long int a;
 | 
						|
  //     char ary[56];
 | 
						|
  //   } gTest;
 | 
						|
  //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
 | 
						|
  //     b->a = v.a;
 | 
						|
  //     return 0;
 | 
						|
  //   }
 | 
						|
  //   void caller1(struct test a, struct test c, struct test *b) {
 | 
						|
  //     callee(gTest, b); }
 | 
						|
  //   void caller2(struct test *b) { callee(gTest, b); }
 | 
						|
  if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If callee and caller use different calling conventions, we cannot pass
 | 
						|
  // parameters on stack since offsets for the parameter area may be different.
 | 
						|
  if (Caller.getCallingConv() != CalleeCC &&
 | 
						|
      needStackSlotPassParameters(Subtarget, Outs))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // No TCO/SCO on indirect call because Caller have to restore its TOC
 | 
						|
  if (!isFunctionGlobalAddress(Callee) &&
 | 
						|
      !isa<ExternalSymbolSDNode>(Callee))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the caller and callee potentially have different TOC bases then we
 | 
						|
  // cannot tail call since we need to restore the TOC pointer after the call.
 | 
						|
  // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
 | 
						|
  if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TCO allows altering callee ABI, so we don't have to check further.
 | 
						|
  if (CalleeCC == CallingConv::Fast && TailCallOpt)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (DisableSCO) return false;
 | 
						|
 | 
						|
  // If callee use the same argument list that caller is using, then we can
 | 
						|
  // apply SCO on this case. If it is not, then we need to check if callee needs
 | 
						|
  // stack for passing arguments.
 | 
						|
  if (!hasSameArgumentList(&Caller, CS) &&
 | 
						|
      needStackSlotPassParameters(Subtarget, Outs)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
 | 
						|
/// for tail call optimization. Targets which want to do tail call
 | 
						|
/// optimization should implement this function.
 | 
						|
bool
 | 
						|
PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
 | 
						|
                                                     CallingConv::ID CalleeCC,
 | 
						|
                                                     bool isVarArg,
 | 
						|
                                      const SmallVectorImpl<ISD::InputArg> &Ins,
 | 
						|
                                                     SelectionDAG& DAG) const {
 | 
						|
  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Variable argument functions are not supported.
 | 
						|
  if (isVarArg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
 | 
						|
  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
 | 
						|
    // Functions containing by val parameters are not supported.
 | 
						|
    for (unsigned i = 0; i != Ins.size(); i++) {
 | 
						|
       ISD::ArgFlagsTy Flags = Ins[i].Flags;
 | 
						|
       if (Flags.isByVal()) return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Non-PIC/GOT tail calls are supported.
 | 
						|
    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // At the moment we can only do local tail calls (in same module, hidden
 | 
						|
    // or protected) if we are generating PIC.
 | 
						|
    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
 | 
						|
      return G->getGlobal()->hasHiddenVisibility()
 | 
						|
          || G->getGlobal()->hasProtectedVisibility();
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isCallCompatibleAddress - Return the immediate to use if the specified
 | 
						|
/// 32-bit value is representable in the immediate field of a BxA instruction.
 | 
						|
static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
 | 
						|
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | 
						|
  if (!C) return nullptr;
 | 
						|
 | 
						|
  int Addr = C->getZExtValue();
 | 
						|
  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
 | 
						|
      SignExtend32<26>(Addr) != Addr)
 | 
						|
    return nullptr;  // Top 6 bits have to be sext of immediate.
 | 
						|
 | 
						|
  return DAG
 | 
						|
      .getConstant(
 | 
						|
          (int)C->getZExtValue() >> 2, SDLoc(Op),
 | 
						|
          DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
 | 
						|
      .getNode();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct TailCallArgumentInfo {
 | 
						|
  SDValue Arg;
 | 
						|
  SDValue FrameIdxOp;
 | 
						|
  int FrameIdx = 0;
 | 
						|
 | 
						|
  TailCallArgumentInfo() = default;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
 | 
						|
static void StoreTailCallArgumentsToStackSlot(
 | 
						|
    SelectionDAG &DAG, SDValue Chain,
 | 
						|
    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
 | 
						|
    SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
 | 
						|
  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
 | 
						|
    SDValue Arg = TailCallArgs[i].Arg;
 | 
						|
    SDValue FIN = TailCallArgs[i].FrameIdxOp;
 | 
						|
    int FI = TailCallArgs[i].FrameIdx;
 | 
						|
    // Store relative to framepointer.
 | 
						|
    MemOpChains.push_back(DAG.getStore(
 | 
						|
        Chain, dl, Arg, FIN,
 | 
						|
        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
 | 
						|
/// the appropriate stack slot for the tail call optimized function call.
 | 
						|
static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
 | 
						|
                                             SDValue OldRetAddr, SDValue OldFP,
 | 
						|
                                             int SPDiff, const SDLoc &dl) {
 | 
						|
  if (SPDiff) {
 | 
						|
    // Calculate the new stack slot for the return address.
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
 | 
						|
    const PPCFrameLowering *FL = Subtarget.getFrameLowering();
 | 
						|
    bool isPPC64 = Subtarget.isPPC64();
 | 
						|
    int SlotSize = isPPC64 ? 8 : 4;
 | 
						|
    int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
 | 
						|
    int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
 | 
						|
                                                         NewRetAddrLoc, true);
 | 
						|
    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
 | 
						|
    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
 | 
						|
    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
 | 
						|
                         MachinePointerInfo::getFixedStack(MF, NewRetAddr));
 | 
						|
 | 
						|
    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
 | 
						|
    // slot as the FP is never overwritten.
 | 
						|
    if (Subtarget.isDarwinABI()) {
 | 
						|
      int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
 | 
						|
      int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
 | 
						|
                                                         true);
 | 
						|
      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
 | 
						|
      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
 | 
						|
                           MachinePointerInfo::getFixedStack(
 | 
						|
                               DAG.getMachineFunction(), NewFPIdx));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
 | 
						|
/// the position of the argument.
 | 
						|
static void
 | 
						|
CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
 | 
						|
                         SDValue Arg, int SPDiff, unsigned ArgOffset,
 | 
						|
                     SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
 | 
						|
  int Offset = ArgOffset + SPDiff;
 | 
						|
  uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
 | 
						|
  int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
 | 
						|
  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
 | 
						|
  SDValue FIN = DAG.getFrameIndex(FI, VT);
 | 
						|
  TailCallArgumentInfo Info;
 | 
						|
  Info.Arg = Arg;
 | 
						|
  Info.FrameIdxOp = FIN;
 | 
						|
  Info.FrameIdx = FI;
 | 
						|
  TailCallArguments.push_back(Info);
 | 
						|
}
 | 
						|
 | 
						|
/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
 | 
						|
/// stack slot. Returns the chain as result and the loaded frame pointers in
 | 
						|
/// LROpOut/FPOpout. Used when tail calling.
 | 
						|
SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
 | 
						|
    SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
 | 
						|
    SDValue &FPOpOut, const SDLoc &dl) const {
 | 
						|
  if (SPDiff) {
 | 
						|
    // Load the LR and FP stack slot for later adjusting.
 | 
						|
    EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
 | 
						|
    LROpOut = getReturnAddrFrameIndex(DAG);
 | 
						|
    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
 | 
						|
    Chain = SDValue(LROpOut.getNode(), 1);
 | 
						|
 | 
						|
    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
 | 
						|
    // slot as the FP is never overwritten.
 | 
						|
    if (Subtarget.isDarwinABI()) {
 | 
						|
      FPOpOut = getFramePointerFrameIndex(DAG);
 | 
						|
      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
 | 
						|
      Chain = SDValue(FPOpOut.getNode(), 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
 | 
						|
/// by "Src" to address "Dst" of size "Size".  Alignment information is
 | 
						|
/// specified by the specific parameter attribute. The copy will be passed as
 | 
						|
/// a byval function parameter.
 | 
						|
/// Sometimes what we are copying is the end of a larger object, the part that
 | 
						|
/// does not fit in registers.
 | 
						|
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
 | 
						|
                                         SDValue Chain, ISD::ArgFlagsTy Flags,
 | 
						|
                                         SelectionDAG &DAG, const SDLoc &dl) {
 | 
						|
  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
 | 
						|
  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
 | 
						|
                       false, false, false, MachinePointerInfo(),
 | 
						|
                       MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
 | 
						|
/// tail calls.
 | 
						|
static void LowerMemOpCallTo(
 | 
						|
    SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
 | 
						|
    SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
 | 
						|
    bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
 | 
						|
    SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
 | 
						|
  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
 | 
						|
  if (!isTailCall) {
 | 
						|
    if (isVector) {
 | 
						|
      SDValue StackPtr;
 | 
						|
      if (isPPC64)
 | 
						|
        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
 | 
						|
      else
 | 
						|
        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | 
						|
      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
 | 
						|
                           DAG.getConstant(ArgOffset, dl, PtrVT));
 | 
						|
    }
 | 
						|
    MemOpChains.push_back(
 | 
						|
        DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
 | 
						|
    // Calculate and remember argument location.
 | 
						|
  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
 | 
						|
                                  TailCallArguments);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
 | 
						|
                const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
 | 
						|
                SDValue FPOp,
 | 
						|
                SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
 | 
						|
  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
 | 
						|
  // might overwrite each other in case of tail call optimization.
 | 
						|
  SmallVector<SDValue, 8> MemOpChains2;
 | 
						|
  // Do not flag preceding copytoreg stuff together with the following stuff.
 | 
						|
  InFlag = SDValue();
 | 
						|
  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
 | 
						|
                                    MemOpChains2, dl);
 | 
						|
  if (!MemOpChains2.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
 | 
						|
 | 
						|
  // Store the return address to the appropriate stack slot.
 | 
						|
  Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
 | 
						|
 | 
						|
  // Emit callseq_end just before tailcall node.
 | 
						|
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
 | 
						|
                             DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
 | 
						|
  InFlag = Chain.getValue(1);
 | 
						|
}
 | 
						|
 | 
						|
// Is this global address that of a function that can be called by name? (as
 | 
						|
// opposed to something that must hold a descriptor for an indirect call).
 | 
						|
static bool isFunctionGlobalAddress(SDValue Callee) {
 | 
						|
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | 
						|
    if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
 | 
						|
        Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
 | 
						|
      return false;
 | 
						|
 | 
						|
    return G->getGlobal()->getValueType()->isFunctionTy();
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned
 | 
						|
PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
 | 
						|
            SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
 | 
						|
            bool isPatchPoint, bool hasNest,
 | 
						|
            SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
 | 
						|
            SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
 | 
						|
            ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
  bool isSVR4ABI = Subtarget.isSVR4ABI();
 | 
						|
  bool isELFv2ABI = Subtarget.isELFv2ABI();
 | 
						|
 | 
						|
  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
 | 
						|
  NodeTys.push_back(MVT::Other);   // Returns a chain
 | 
						|
  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
 | 
						|
 | 
						|
  unsigned CallOpc = PPCISD::CALL;
 | 
						|
 | 
						|
  bool needIndirectCall = true;
 | 
						|
  if (!isSVR4ABI || !isPPC64)
 | 
						|
    if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
 | 
						|
      // If this is an absolute destination address, use the munged value.
 | 
						|
      Callee = SDValue(Dest, 0);
 | 
						|
      needIndirectCall = false;
 | 
						|
    }
 | 
						|
 | 
						|
  // PC-relative references to external symbols should go through $stub, unless
 | 
						|
  // we're building with the leopard linker or later, which automatically
 | 
						|
  // synthesizes these stubs.
 | 
						|
  const TargetMachine &TM = DAG.getTarget();
 | 
						|
  const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
 | 
						|
  const GlobalValue *GV = nullptr;
 | 
						|
  if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
 | 
						|
    GV = G->getGlobal();
 | 
						|
  bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
 | 
						|
  bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
 | 
						|
 | 
						|
  if (isFunctionGlobalAddress(Callee)) {
 | 
						|
    GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
 | 
						|
    // A call to a TLS address is actually an indirect call to a
 | 
						|
    // thread-specific pointer.
 | 
						|
    unsigned OpFlags = 0;
 | 
						|
    if (UsePlt)
 | 
						|
      OpFlags = PPCII::MO_PLT;
 | 
						|
 | 
						|
    // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
 | 
						|
    // every direct call is) turn it into a TargetGlobalAddress /
 | 
						|
    // TargetExternalSymbol node so that legalize doesn't hack it.
 | 
						|
    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
 | 
						|
                                        Callee.getValueType(), 0, OpFlags);
 | 
						|
    needIndirectCall = false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | 
						|
    unsigned char OpFlags = 0;
 | 
						|
 | 
						|
    if (UsePlt)
 | 
						|
      OpFlags = PPCII::MO_PLT;
 | 
						|
 | 
						|
    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
 | 
						|
                                         OpFlags);
 | 
						|
    needIndirectCall = false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isPatchPoint) {
 | 
						|
    // We'll form an invalid direct call when lowering a patchpoint; the full
 | 
						|
    // sequence for an indirect call is complicated, and many of the
 | 
						|
    // instructions introduced might have side effects (and, thus, can't be
 | 
						|
    // removed later). The call itself will be removed as soon as the
 | 
						|
    // argument/return lowering is complete, so the fact that it has the wrong
 | 
						|
    // kind of operands should not really matter.
 | 
						|
    needIndirectCall = false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (needIndirectCall) {
 | 
						|
    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
 | 
						|
    // to do the call, we can't use PPCISD::CALL.
 | 
						|
    SDValue MTCTROps[] = {Chain, Callee, InFlag};
 | 
						|
 | 
						|
    if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
 | 
						|
      // Function pointers in the 64-bit SVR4 ABI do not point to the function
 | 
						|
      // entry point, but to the function descriptor (the function entry point
 | 
						|
      // address is part of the function descriptor though).
 | 
						|
      // The function descriptor is a three doubleword structure with the
 | 
						|
      // following fields: function entry point, TOC base address and
 | 
						|
      // environment pointer.
 | 
						|
      // Thus for a call through a function pointer, the following actions need
 | 
						|
      // to be performed:
 | 
						|
      //   1. Save the TOC of the caller in the TOC save area of its stack
 | 
						|
      //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
 | 
						|
      //   2. Load the address of the function entry point from the function
 | 
						|
      //      descriptor.
 | 
						|
      //   3. Load the TOC of the callee from the function descriptor into r2.
 | 
						|
      //   4. Load the environment pointer from the function descriptor into
 | 
						|
      //      r11.
 | 
						|
      //   5. Branch to the function entry point address.
 | 
						|
      //   6. On return of the callee, the TOC of the caller needs to be
 | 
						|
      //      restored (this is done in FinishCall()).
 | 
						|
      //
 | 
						|
      // The loads are scheduled at the beginning of the call sequence, and the
 | 
						|
      // register copies are flagged together to ensure that no other
 | 
						|
      // operations can be scheduled in between. E.g. without flagging the
 | 
						|
      // copies together, a TOC access in the caller could be scheduled between
 | 
						|
      // the assignment of the callee TOC and the branch to the callee, which
 | 
						|
      // results in the TOC access going through the TOC of the callee instead
 | 
						|
      // of going through the TOC of the caller, which leads to incorrect code.
 | 
						|
 | 
						|
      // Load the address of the function entry point from the function
 | 
						|
      // descriptor.
 | 
						|
      SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
 | 
						|
      if (LDChain.getValueType() == MVT::Glue)
 | 
						|
        LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
 | 
						|
 | 
						|
      auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
 | 
						|
                          ? (MachineMemOperand::MODereferenceable |
 | 
						|
                             MachineMemOperand::MOInvariant)
 | 
						|
                          : MachineMemOperand::MONone;
 | 
						|
 | 
						|
      MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
 | 
						|
      SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
 | 
						|
                                        /* Alignment = */ 8, MMOFlags);
 | 
						|
 | 
						|
      // Load environment pointer into r11.
 | 
						|
      SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
 | 
						|
      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
 | 
						|
      SDValue LoadEnvPtr =
 | 
						|
          DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
 | 
						|
                      /* Alignment = */ 8, MMOFlags);
 | 
						|
 | 
						|
      SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
 | 
						|
      SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
 | 
						|
      SDValue TOCPtr =
 | 
						|
          DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
 | 
						|
                      /* Alignment = */ 8, MMOFlags);
 | 
						|
 | 
						|
      setUsesTOCBasePtr(DAG);
 | 
						|
      SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
 | 
						|
                                        InFlag);
 | 
						|
      Chain = TOCVal.getValue(0);
 | 
						|
      InFlag = TOCVal.getValue(1);
 | 
						|
 | 
						|
      // If the function call has an explicit 'nest' parameter, it takes the
 | 
						|
      // place of the environment pointer.
 | 
						|
      if (!hasNest) {
 | 
						|
        SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
 | 
						|
                                          InFlag);
 | 
						|
 | 
						|
        Chain = EnvVal.getValue(0);
 | 
						|
        InFlag = EnvVal.getValue(1);
 | 
						|
      }
 | 
						|
 | 
						|
      MTCTROps[0] = Chain;
 | 
						|
      MTCTROps[1] = LoadFuncPtr;
 | 
						|
      MTCTROps[2] = InFlag;
 | 
						|
    }
 | 
						|
 | 
						|
    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
 | 
						|
                        makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
 | 
						|
    NodeTys.clear();
 | 
						|
    NodeTys.push_back(MVT::Other);
 | 
						|
    NodeTys.push_back(MVT::Glue);
 | 
						|
    Ops.push_back(Chain);
 | 
						|
    CallOpc = PPCISD::BCTRL;
 | 
						|
    Callee.setNode(nullptr);
 | 
						|
    // Add use of X11 (holding environment pointer)
 | 
						|
    if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
 | 
						|
      Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
 | 
						|
    // Add CTR register as callee so a bctr can be emitted later.
 | 
						|
    if (isTailCall)
 | 
						|
      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a direct call, pass the chain and the callee.
 | 
						|
  if (Callee.getNode()) {
 | 
						|
    Ops.push_back(Chain);
 | 
						|
    Ops.push_back(Callee);
 | 
						|
  }
 | 
						|
  // If this is a tail call add stack pointer delta.
 | 
						|
  if (isTailCall)
 | 
						|
    Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
 | 
						|
 | 
						|
  // Add argument registers to the end of the list so that they are known live
 | 
						|
  // into the call.
 | 
						|
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | 
						|
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | 
						|
                                  RegsToPass[i].second.getValueType()));
 | 
						|
 | 
						|
  // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
 | 
						|
  // into the call.
 | 
						|
  if (isSVR4ABI && isPPC64 && !isPatchPoint) {
 | 
						|
    setUsesTOCBasePtr(DAG);
 | 
						|
    Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
 | 
						|
  }
 | 
						|
 | 
						|
  return CallOpc;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerCallResult(
 | 
						|
    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | 
						|
                    *DAG.getContext());
 | 
						|
 | 
						|
  CCRetInfo.AnalyzeCallResult(
 | 
						|
      Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
 | 
						|
               ? RetCC_PPC_Cold
 | 
						|
               : RetCC_PPC);
 | 
						|
 | 
						|
  // Copy all of the result registers out of their specified physreg.
 | 
						|
  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
 | 
						|
    CCValAssign &VA = RVLocs[i];
 | 
						|
    assert(VA.isRegLoc() && "Can only return in registers!");
 | 
						|
 | 
						|
    SDValue Val = DAG.getCopyFromReg(Chain, dl,
 | 
						|
                                     VA.getLocReg(), VA.getLocVT(), InFlag);
 | 
						|
    Chain = Val.getValue(1);
 | 
						|
    InFlag = Val.getValue(2);
 | 
						|
 | 
						|
    switch (VA.getLocInfo()) {
 | 
						|
    default: llvm_unreachable("Unknown loc info!");
 | 
						|
    case CCValAssign::Full: break;
 | 
						|
    case CCValAssign::AExt:
 | 
						|
      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
 | 
						|
      break;
 | 
						|
    case CCValAssign::ZExt:
 | 
						|
      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
 | 
						|
                        DAG.getValueType(VA.getValVT()));
 | 
						|
      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
 | 
						|
      break;
 | 
						|
    case CCValAssign::SExt:
 | 
						|
      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
 | 
						|
                        DAG.getValueType(VA.getValVT()));
 | 
						|
      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    InVals.push_back(Val);
 | 
						|
  }
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::FinishCall(
 | 
						|
    CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
 | 
						|
    bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
 | 
						|
    SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
 | 
						|
    SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
 | 
						|
    unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
 | 
						|
    SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
 | 
						|
  std::vector<EVT> NodeTys;
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
 | 
						|
                                 SPDiff, isTailCall, isPatchPoint, hasNest,
 | 
						|
                                 RegsToPass, Ops, NodeTys, CS, Subtarget);
 | 
						|
 | 
						|
  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
 | 
						|
  if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
 | 
						|
    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
 | 
						|
 | 
						|
  // When performing tail call optimization the callee pops its arguments off
 | 
						|
  // the stack. Account for this here so these bytes can be pushed back on in
 | 
						|
  // PPCFrameLowering::eliminateCallFramePseudoInstr.
 | 
						|
  int BytesCalleePops =
 | 
						|
    (CallConv == CallingConv::Fast &&
 | 
						|
     getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
 | 
						|
 | 
						|
  // Add a register mask operand representing the call-preserved registers.
 | 
						|
  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
 | 
						|
  const uint32_t *Mask =
 | 
						|
      TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
 | 
						|
  assert(Mask && "Missing call preserved mask for calling convention");
 | 
						|
  Ops.push_back(DAG.getRegisterMask(Mask));
 | 
						|
 | 
						|
  if (InFlag.getNode())
 | 
						|
    Ops.push_back(InFlag);
 | 
						|
 | 
						|
  // Emit tail call.
 | 
						|
  if (isTailCall) {
 | 
						|
    assert(((Callee.getOpcode() == ISD::Register &&
 | 
						|
             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
 | 
						|
            Callee.getOpcode() == ISD::TargetExternalSymbol ||
 | 
						|
            Callee.getOpcode() == ISD::TargetGlobalAddress ||
 | 
						|
            isa<ConstantSDNode>(Callee)) &&
 | 
						|
    "Expecting an global address, external symbol, absolute value or register");
 | 
						|
 | 
						|
    DAG.getMachineFunction().getFrameInfo().setHasTailCall();
 | 
						|
    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add a NOP immediately after the branch instruction when using the 64-bit
 | 
						|
  // SVR4 ABI. At link time, if caller and callee are in a different module and
 | 
						|
  // thus have a different TOC, the call will be replaced with a call to a stub
 | 
						|
  // function which saves the current TOC, loads the TOC of the callee and
 | 
						|
  // branches to the callee. The NOP will be replaced with a load instruction
 | 
						|
  // which restores the TOC of the caller from the TOC save slot of the current
 | 
						|
  // stack frame. If caller and callee belong to the same module (and have the
 | 
						|
  // same TOC), the NOP will remain unchanged.
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
 | 
						|
      !isPatchPoint) {
 | 
						|
    if (CallOpc == PPCISD::BCTRL) {
 | 
						|
      // This is a call through a function pointer.
 | 
						|
      // Restore the caller TOC from the save area into R2.
 | 
						|
      // See PrepareCall() for more information about calls through function
 | 
						|
      // pointers in the 64-bit SVR4 ABI.
 | 
						|
      // We are using a target-specific load with r2 hard coded, because the
 | 
						|
      // result of a target-independent load would never go directly into r2,
 | 
						|
      // since r2 is a reserved register (which prevents the register allocator
 | 
						|
      // from allocating it), resulting in an additional register being
 | 
						|
      // allocated and an unnecessary move instruction being generated.
 | 
						|
      CallOpc = PPCISD::BCTRL_LOAD_TOC;
 | 
						|
 | 
						|
      EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
      SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
 | 
						|
      unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
 | 
						|
      SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
 | 
						|
      SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
 | 
						|
 | 
						|
      // The address needs to go after the chain input but before the flag (or
 | 
						|
      // any other variadic arguments).
 | 
						|
      Ops.insert(std::next(Ops.begin()), AddTOC);
 | 
						|
    } else if (CallOpc == PPCISD::CALL &&
 | 
						|
      !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
 | 
						|
      // Otherwise insert NOP for non-local calls.
 | 
						|
      CallOpc = PPCISD::CALL_NOP;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
 | 
						|
  InFlag = Chain.getValue(1);
 | 
						|
 | 
						|
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
 | 
						|
                             DAG.getIntPtrConstant(BytesCalleePops, dl, true),
 | 
						|
                             InFlag, dl);
 | 
						|
  if (!Ins.empty())
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
 | 
						|
  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
 | 
						|
                         Ins, dl, DAG, InVals);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 | 
						|
                             SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  SelectionDAG &DAG                     = CLI.DAG;
 | 
						|
  SDLoc &dl                             = CLI.DL;
 | 
						|
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
 | 
						|
  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
 | 
						|
  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
 | 
						|
  SDValue Chain                         = CLI.Chain;
 | 
						|
  SDValue Callee                        = CLI.Callee;
 | 
						|
  bool &isTailCall                      = CLI.IsTailCall;
 | 
						|
  CallingConv::ID CallConv              = CLI.CallConv;
 | 
						|
  bool isVarArg                         = CLI.IsVarArg;
 | 
						|
  bool isPatchPoint                     = CLI.IsPatchPoint;
 | 
						|
  ImmutableCallSite CS                  = CLI.CS;
 | 
						|
 | 
						|
  if (isTailCall) {
 | 
						|
    if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
 | 
						|
      isTailCall = false;
 | 
						|
    else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
 | 
						|
      isTailCall =
 | 
						|
        IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
 | 
						|
                                                 isVarArg, Outs, Ins, DAG);
 | 
						|
    else
 | 
						|
      isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
 | 
						|
                                                     Ins, DAG);
 | 
						|
    if (isTailCall) {
 | 
						|
      ++NumTailCalls;
 | 
						|
      if (!getTargetMachine().Options.GuaranteedTailCallOpt)
 | 
						|
        ++NumSiblingCalls;
 | 
						|
 | 
						|
      assert(isa<GlobalAddressSDNode>(Callee) &&
 | 
						|
             "Callee should be an llvm::Function object.");
 | 
						|
      LLVM_DEBUG(
 | 
						|
          const GlobalValue *GV =
 | 
						|
              cast<GlobalAddressSDNode>(Callee)->getGlobal();
 | 
						|
          const unsigned Width =
 | 
						|
              80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
 | 
						|
          dbgs() << "TCO caller: "
 | 
						|
                 << left_justify(DAG.getMachineFunction().getName(), Width)
 | 
						|
                 << ", callee linkage: " << GV->getVisibility() << ", "
 | 
						|
                 << GV->getLinkage() << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isTailCall && CS && CS.isMustTailCall())
 | 
						|
    report_fatal_error("failed to perform tail call elimination on a call "
 | 
						|
                       "site marked musttail");
 | 
						|
 | 
						|
  // When long calls (i.e. indirect calls) are always used, calls are always
 | 
						|
  // made via function pointer. If we have a function name, first translate it
 | 
						|
  // into a pointer.
 | 
						|
  if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
 | 
						|
      !isTailCall)
 | 
						|
    Callee = LowerGlobalAddress(Callee, DAG);
 | 
						|
 | 
						|
  if (Subtarget.isSVR4ABI()) {
 | 
						|
    if (Subtarget.isPPC64())
 | 
						|
      return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
 | 
						|
                              isTailCall, isPatchPoint, Outs, OutVals, Ins,
 | 
						|
                              dl, DAG, InVals, CS);
 | 
						|
    else
 | 
						|
      return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
 | 
						|
                              isTailCall, isPatchPoint, Outs, OutVals, Ins,
 | 
						|
                              dl, DAG, InVals, CS);
 | 
						|
  }
 | 
						|
 | 
						|
  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
 | 
						|
                          isTailCall, isPatchPoint, Outs, OutVals, Ins,
 | 
						|
                          dl, DAG, InVals, CS);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerCall_32SVR4(
 | 
						|
    SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    bool isTailCall, bool isPatchPoint,
 | 
						|
    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
    const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
 | 
						|
    ImmutableCallSite CS) const {
 | 
						|
  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
 | 
						|
  // of the 32-bit SVR4 ABI stack frame layout.
 | 
						|
 | 
						|
  assert((CallConv == CallingConv::C ||
 | 
						|
          CallConv == CallingConv::Cold ||
 | 
						|
          CallConv == CallingConv::Fast) && "Unknown calling convention!");
 | 
						|
 | 
						|
  unsigned PtrByteSize = 4;
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
 | 
						|
  // Mark this function as potentially containing a function that contains a
 | 
						|
  // tail call. As a consequence the frame pointer will be used for dynamicalloc
 | 
						|
  // and restoring the callers stack pointer in this functions epilog. This is
 | 
						|
  // done because by tail calling the called function might overwrite the value
 | 
						|
  // in this function's (MF) stack pointer stack slot 0(SP).
 | 
						|
  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
 | 
						|
      CallConv == CallingConv::Fast)
 | 
						|
    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
 | 
						|
 | 
						|
  // Count how many bytes are to be pushed on the stack, including the linkage
 | 
						|
  // area, parameter list area and the part of the local variable space which
 | 
						|
  // contains copies of aggregates which are passed by value.
 | 
						|
 | 
						|
  // Assign locations to all of the outgoing arguments.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
 | 
						|
 | 
						|
  // Reserve space for the linkage area on the stack.
 | 
						|
  CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
 | 
						|
                       PtrByteSize);
 | 
						|
  if (useSoftFloat())
 | 
						|
    CCInfo.PreAnalyzeCallOperands(Outs);
 | 
						|
 | 
						|
  if (isVarArg) {
 | 
						|
    // Handle fixed and variable vector arguments differently.
 | 
						|
    // Fixed vector arguments go into registers as long as registers are
 | 
						|
    // available. Variable vector arguments always go into memory.
 | 
						|
    unsigned NumArgs = Outs.size();
 | 
						|
 | 
						|
    for (unsigned i = 0; i != NumArgs; ++i) {
 | 
						|
      MVT ArgVT = Outs[i].VT;
 | 
						|
      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
 | 
						|
      bool Result;
 | 
						|
 | 
						|
      if (Outs[i].IsFixed) {
 | 
						|
        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
 | 
						|
                               CCInfo);
 | 
						|
      } else {
 | 
						|
        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
 | 
						|
                                      ArgFlags, CCInfo);
 | 
						|
      }
 | 
						|
 | 
						|
      if (Result) {
 | 
						|
#ifndef NDEBUG
 | 
						|
        errs() << "Call operand #" << i << " has unhandled type "
 | 
						|
             << EVT(ArgVT).getEVTString() << "\n";
 | 
						|
#endif
 | 
						|
        llvm_unreachable(nullptr);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // All arguments are treated the same.
 | 
						|
    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
 | 
						|
  }
 | 
						|
  CCInfo.clearWasPPCF128();
 | 
						|
 | 
						|
  // Assign locations to all of the outgoing aggregate by value arguments.
 | 
						|
  SmallVector<CCValAssign, 16> ByValArgLocs;
 | 
						|
  CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
 | 
						|
 | 
						|
  // Reserve stack space for the allocations in CCInfo.
 | 
						|
  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
 | 
						|
 | 
						|
  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
 | 
						|
 | 
						|
  // Size of the linkage area, parameter list area and the part of the local
 | 
						|
  // space variable where copies of aggregates which are passed by value are
 | 
						|
  // stored.
 | 
						|
  unsigned NumBytes = CCByValInfo.getNextStackOffset();
 | 
						|
 | 
						|
  // Calculate by how many bytes the stack has to be adjusted in case of tail
 | 
						|
  // call optimization.
 | 
						|
  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
 | 
						|
 | 
						|
  // Adjust the stack pointer for the new arguments...
 | 
						|
  // These operations are automatically eliminated by the prolog/epilog pass
 | 
						|
  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
 | 
						|
  SDValue CallSeqStart = Chain;
 | 
						|
 | 
						|
  // Load the return address and frame pointer so it can be moved somewhere else
 | 
						|
  // later.
 | 
						|
  SDValue LROp, FPOp;
 | 
						|
  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
 | 
						|
 | 
						|
  // Set up a copy of the stack pointer for use loading and storing any
 | 
						|
  // arguments that may not fit in the registers available for argument
 | 
						|
  // passing.
 | 
						|
  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | 
						|
 | 
						|
  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | 
						|
  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
 | 
						|
  SmallVector<SDValue, 8> MemOpChains;
 | 
						|
 | 
						|
  bool seenFloatArg = false;
 | 
						|
  // Walk the register/memloc assignments, inserting copies/loads.
 | 
						|
  for (unsigned i = 0, j = 0, e = ArgLocs.size();
 | 
						|
       i != e;
 | 
						|
       ++i) {
 | 
						|
    CCValAssign &VA = ArgLocs[i];
 | 
						|
    SDValue Arg = OutVals[i];
 | 
						|
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | 
						|
 | 
						|
    if (Flags.isByVal()) {
 | 
						|
      // Argument is an aggregate which is passed by value, thus we need to
 | 
						|
      // create a copy of it in the local variable space of the current stack
 | 
						|
      // frame (which is the stack frame of the caller) and pass the address of
 | 
						|
      // this copy to the callee.
 | 
						|
      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
 | 
						|
      CCValAssign &ByValVA = ByValArgLocs[j++];
 | 
						|
      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
 | 
						|
 | 
						|
      // Memory reserved in the local variable space of the callers stack frame.
 | 
						|
      unsigned LocMemOffset = ByValVA.getLocMemOffset();
 | 
						|
 | 
						|
      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
 | 
						|
      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
 | 
						|
                           StackPtr, PtrOff);
 | 
						|
 | 
						|
      // Create a copy of the argument in the local area of the current
 | 
						|
      // stack frame.
 | 
						|
      SDValue MemcpyCall =
 | 
						|
        CreateCopyOfByValArgument(Arg, PtrOff,
 | 
						|
                                  CallSeqStart.getNode()->getOperand(0),
 | 
						|
                                  Flags, DAG, dl);
 | 
						|
 | 
						|
      // This must go outside the CALLSEQ_START..END.
 | 
						|
      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
 | 
						|
                                                     SDLoc(MemcpyCall));
 | 
						|
      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
 | 
						|
                             NewCallSeqStart.getNode());
 | 
						|
      Chain = CallSeqStart = NewCallSeqStart;
 | 
						|
 | 
						|
      // Pass the address of the aggregate copy on the stack either in a
 | 
						|
      // physical register or in the parameter list area of the current stack
 | 
						|
      // frame to the callee.
 | 
						|
      Arg = PtrOff;
 | 
						|
    }
 | 
						|
 | 
						|
    // When useCRBits() is true, there can be i1 arguments.
 | 
						|
    // It is because getRegisterType(MVT::i1) => MVT::i1,
 | 
						|
    // and for other integer types getRegisterType() => MVT::i32.
 | 
						|
    // Extend i1 and ensure callee will get i32.
 | 
						|
    if (Arg.getValueType() == MVT::i1)
 | 
						|
      Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
 | 
						|
                        dl, MVT::i32, Arg);
 | 
						|
 | 
						|
    if (VA.isRegLoc()) {
 | 
						|
      seenFloatArg |= VA.getLocVT().isFloatingPoint();
 | 
						|
      // Put argument in a physical register.
 | 
						|
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | 
						|
    } else {
 | 
						|
      // Put argument in the parameter list area of the current stack frame.
 | 
						|
      assert(VA.isMemLoc());
 | 
						|
      unsigned LocMemOffset = VA.getLocMemOffset();
 | 
						|
 | 
						|
      if (!isTailCall) {
 | 
						|
        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
 | 
						|
        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
 | 
						|
                             StackPtr, PtrOff);
 | 
						|
 | 
						|
        MemOpChains.push_back(
 | 
						|
            DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
 | 
						|
      } else {
 | 
						|
        // Calculate and remember argument location.
 | 
						|
        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
 | 
						|
                                 TailCallArguments);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemOpChains.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
 | 
						|
 | 
						|
  // Build a sequence of copy-to-reg nodes chained together with token chain
 | 
						|
  // and flag operands which copy the outgoing args into the appropriate regs.
 | 
						|
  SDValue InFlag;
 | 
						|
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | 
						|
    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | 
						|
                             RegsToPass[i].second, InFlag);
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Set CR bit 6 to true if this is a vararg call with floating args passed in
 | 
						|
  // registers.
 | 
						|
  if (isVarArg) {
 | 
						|
    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
    SDValue Ops[] = { Chain, InFlag };
 | 
						|
 | 
						|
    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
 | 
						|
                        dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
 | 
						|
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isTailCall)
 | 
						|
    PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
 | 
						|
                    TailCallArguments);
 | 
						|
 | 
						|
  return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
 | 
						|
                    /* unused except on PPC64 ELFv1 */ false, DAG,
 | 
						|
                    RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
 | 
						|
                    NumBytes, Ins, InVals, CS);
 | 
						|
}
 | 
						|
 | 
						|
// Copy an argument into memory, being careful to do this outside the
 | 
						|
// call sequence for the call to which the argument belongs.
 | 
						|
SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
 | 
						|
    SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
 | 
						|
    SelectionDAG &DAG, const SDLoc &dl) const {
 | 
						|
  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
 | 
						|
                        CallSeqStart.getNode()->getOperand(0),
 | 
						|
                        Flags, DAG, dl);
 | 
						|
  // The MEMCPY must go outside the CALLSEQ_START..END.
 | 
						|
  int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
 | 
						|
  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
 | 
						|
                                                 SDLoc(MemcpyCall));
 | 
						|
  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
 | 
						|
                         NewCallSeqStart.getNode());
 | 
						|
  return NewCallSeqStart;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerCall_64SVR4(
 | 
						|
    SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    bool isTailCall, bool isPatchPoint,
 | 
						|
    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
    const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
 | 
						|
    ImmutableCallSite CS) const {
 | 
						|
  bool isELFv2ABI = Subtarget.isELFv2ABI();
 | 
						|
  bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
  unsigned NumOps = Outs.size();
 | 
						|
  bool hasNest = false;
 | 
						|
  bool IsSibCall = false;
 | 
						|
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  unsigned PtrByteSize = 8;
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
 | 
						|
  if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
 | 
						|
    IsSibCall = true;
 | 
						|
 | 
						|
  // Mark this function as potentially containing a function that contains a
 | 
						|
  // tail call. As a consequence the frame pointer will be used for dynamicalloc
 | 
						|
  // and restoring the callers stack pointer in this functions epilog. This is
 | 
						|
  // done because by tail calling the called function might overwrite the value
 | 
						|
  // in this function's (MF) stack pointer stack slot 0(SP).
 | 
						|
  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
 | 
						|
      CallConv == CallingConv::Fast)
 | 
						|
    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
 | 
						|
 | 
						|
  assert(!(CallConv == CallingConv::Fast && isVarArg) &&
 | 
						|
         "fastcc not supported on varargs functions");
 | 
						|
 | 
						|
  // Count how many bytes are to be pushed on the stack, including the linkage
 | 
						|
  // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
 | 
						|
  // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
 | 
						|
  // area is 32 bytes reserved space for [SP][CR][LR][TOC].
 | 
						|
  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | 
						|
  unsigned NumBytes = LinkageSize;
 | 
						|
  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | 
						|
  unsigned &QFPR_idx = FPR_idx;
 | 
						|
 | 
						|
  static const MCPhysReg GPR[] = {
 | 
						|
    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | 
						|
    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | 
						|
  };
 | 
						|
  static const MCPhysReg VR[] = {
 | 
						|
    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | 
						|
    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | 
						|
  };
 | 
						|
 | 
						|
  const unsigned NumGPRs = array_lengthof(GPR);
 | 
						|
  const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
 | 
						|
  const unsigned NumVRs  = array_lengthof(VR);
 | 
						|
  const unsigned NumQFPRs = NumFPRs;
 | 
						|
 | 
						|
  // On ELFv2, we can avoid allocating the parameter area if all the arguments
 | 
						|
  // can be passed to the callee in registers.
 | 
						|
  // For the fast calling convention, there is another check below.
 | 
						|
  // Note: We should keep consistent with LowerFormalArguments_64SVR4()
 | 
						|
  bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
 | 
						|
  if (!HasParameterArea) {
 | 
						|
    unsigned ParamAreaSize = NumGPRs * PtrByteSize;
 | 
						|
    unsigned AvailableFPRs = NumFPRs;
 | 
						|
    unsigned AvailableVRs = NumVRs;
 | 
						|
    unsigned NumBytesTmp = NumBytes;
 | 
						|
    for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
      if (Outs[i].Flags.isNest()) continue;
 | 
						|
      if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
 | 
						|
                                PtrByteSize, LinkageSize, ParamAreaSize,
 | 
						|
                                NumBytesTmp, AvailableFPRs, AvailableVRs,
 | 
						|
                                Subtarget.hasQPX()))
 | 
						|
        HasParameterArea = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // When using the fast calling convention, we don't provide backing for
 | 
						|
  // arguments that will be in registers.
 | 
						|
  unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
 | 
						|
 | 
						|
  // Avoid allocating parameter area for fastcc functions if all the arguments
 | 
						|
  // can be passed in the registers.
 | 
						|
  if (CallConv == CallingConv::Fast)
 | 
						|
    HasParameterArea = false;
 | 
						|
 | 
						|
  // Add up all the space actually used.
 | 
						|
  for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | 
						|
    EVT ArgVT = Outs[i].VT;
 | 
						|
    EVT OrigVT = Outs[i].ArgVT;
 | 
						|
 | 
						|
    if (Flags.isNest())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (CallConv == CallingConv::Fast) {
 | 
						|
      if (Flags.isByVal()) {
 | 
						|
        NumGPRsUsed += (Flags.getByValSize()+7)/8;
 | 
						|
        if (NumGPRsUsed > NumGPRs)
 | 
						|
          HasParameterArea = true;
 | 
						|
      } else {
 | 
						|
        switch (ArgVT.getSimpleVT().SimpleTy) {
 | 
						|
        default: llvm_unreachable("Unexpected ValueType for argument!");
 | 
						|
        case MVT::i1:
 | 
						|
        case MVT::i32:
 | 
						|
        case MVT::i64:
 | 
						|
          if (++NumGPRsUsed <= NumGPRs)
 | 
						|
            continue;
 | 
						|
          break;
 | 
						|
        case MVT::v4i32:
 | 
						|
        case MVT::v8i16:
 | 
						|
        case MVT::v16i8:
 | 
						|
        case MVT::v2f64:
 | 
						|
        case MVT::v2i64:
 | 
						|
        case MVT::v1i128:
 | 
						|
        case MVT::f128:
 | 
						|
          if (++NumVRsUsed <= NumVRs)
 | 
						|
            continue;
 | 
						|
          break;
 | 
						|
        case MVT::v4f32:
 | 
						|
          // When using QPX, this is handled like a FP register, otherwise, it
 | 
						|
          // is an Altivec register.
 | 
						|
          if (Subtarget.hasQPX()) {
 | 
						|
            if (++NumFPRsUsed <= NumFPRs)
 | 
						|
              continue;
 | 
						|
          } else {
 | 
						|
            if (++NumVRsUsed <= NumVRs)
 | 
						|
              continue;
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        case MVT::f32:
 | 
						|
        case MVT::f64:
 | 
						|
        case MVT::v4f64: // QPX
 | 
						|
        case MVT::v4i1:  // QPX
 | 
						|
          if (++NumFPRsUsed <= NumFPRs)
 | 
						|
            continue;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        HasParameterArea = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Respect alignment of argument on the stack.  */
 | 
						|
    unsigned Align =
 | 
						|
      CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
 | 
						|
    NumBytes = ((NumBytes + Align - 1) / Align) * Align;
 | 
						|
 | 
						|
    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
 | 
						|
    if (Flags.isInConsecutiveRegsLast())
 | 
						|
      NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumBytesActuallyUsed = NumBytes;
 | 
						|
 | 
						|
  // In the old ELFv1 ABI,
 | 
						|
  // the prolog code of the callee may store up to 8 GPR argument registers to
 | 
						|
  // the stack, allowing va_start to index over them in memory if its varargs.
 | 
						|
  // Because we cannot tell if this is needed on the caller side, we have to
 | 
						|
  // conservatively assume that it is needed.  As such, make sure we have at
 | 
						|
  // least enough stack space for the caller to store the 8 GPRs.
 | 
						|
  // In the ELFv2 ABI, we allocate the parameter area iff a callee
 | 
						|
  // really requires memory operands, e.g. a vararg function.
 | 
						|
  if (HasParameterArea)
 | 
						|
    NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
 | 
						|
  else
 | 
						|
    NumBytes = LinkageSize;
 | 
						|
 | 
						|
  // Tail call needs the stack to be aligned.
 | 
						|
  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
 | 
						|
      CallConv == CallingConv::Fast)
 | 
						|
    NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
 | 
						|
 | 
						|
  int SPDiff = 0;
 | 
						|
 | 
						|
  // Calculate by how many bytes the stack has to be adjusted in case of tail
 | 
						|
  // call optimization.
 | 
						|
  if (!IsSibCall)
 | 
						|
    SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
 | 
						|
 | 
						|
  // To protect arguments on the stack from being clobbered in a tail call,
 | 
						|
  // force all the loads to happen before doing any other lowering.
 | 
						|
  if (isTailCall)
 | 
						|
    Chain = DAG.getStackArgumentTokenFactor(Chain);
 | 
						|
 | 
						|
  // Adjust the stack pointer for the new arguments...
 | 
						|
  // These operations are automatically eliminated by the prolog/epilog pass
 | 
						|
  if (!IsSibCall)
 | 
						|
    Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
 | 
						|
  SDValue CallSeqStart = Chain;
 | 
						|
 | 
						|
  // Load the return address and frame pointer so it can be move somewhere else
 | 
						|
  // later.
 | 
						|
  SDValue LROp, FPOp;
 | 
						|
  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
 | 
						|
 | 
						|
  // Set up a copy of the stack pointer for use loading and storing any
 | 
						|
  // arguments that may not fit in the registers available for argument
 | 
						|
  // passing.
 | 
						|
  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
 | 
						|
 | 
						|
  // Figure out which arguments are going to go in registers, and which in
 | 
						|
  // memory.  Also, if this is a vararg function, floating point operations
 | 
						|
  // must be stored to our stack, and loaded into integer regs as well, if
 | 
						|
  // any integer regs are available for argument passing.
 | 
						|
  unsigned ArgOffset = LinkageSize;
 | 
						|
 | 
						|
  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | 
						|
  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> MemOpChains;
 | 
						|
  for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
    SDValue Arg = OutVals[i];
 | 
						|
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | 
						|
    EVT ArgVT = Outs[i].VT;
 | 
						|
    EVT OrigVT = Outs[i].ArgVT;
 | 
						|
 | 
						|
    // PtrOff will be used to store the current argument to the stack if a
 | 
						|
    // register cannot be found for it.
 | 
						|
    SDValue PtrOff;
 | 
						|
 | 
						|
    // We re-align the argument offset for each argument, except when using the
 | 
						|
    // fast calling convention, when we need to make sure we do that only when
 | 
						|
    // we'll actually use a stack slot.
 | 
						|
    auto ComputePtrOff = [&]() {
 | 
						|
      /* Respect alignment of argument on the stack.  */
 | 
						|
      unsigned Align =
 | 
						|
        CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
 | 
						|
      ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
 | 
						|
 | 
						|
      PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
 | 
						|
 | 
						|
      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | 
						|
    };
 | 
						|
 | 
						|
    if (CallConv != CallingConv::Fast) {
 | 
						|
      ComputePtrOff();
 | 
						|
 | 
						|
      /* Compute GPR index associated with argument offset.  */
 | 
						|
      GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
 | 
						|
      GPR_idx = std::min(GPR_idx, NumGPRs);
 | 
						|
    }
 | 
						|
 | 
						|
    // Promote integers to 64-bit values.
 | 
						|
    if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
 | 
						|
      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
 | 
						|
      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
 | 
						|
      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME memcpy is used way more than necessary.  Correctness first.
 | 
						|
    // Note: "by value" is code for passing a structure by value, not
 | 
						|
    // basic types.
 | 
						|
    if (Flags.isByVal()) {
 | 
						|
      // Note: Size includes alignment padding, so
 | 
						|
      //   struct x { short a; char b; }
 | 
						|
      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
 | 
						|
      // These are the proper values we need for right-justifying the
 | 
						|
      // aggregate in a parameter register.
 | 
						|
      unsigned Size = Flags.getByValSize();
 | 
						|
 | 
						|
      // An empty aggregate parameter takes up no storage and no
 | 
						|
      // registers.
 | 
						|
      if (Size == 0)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (CallConv == CallingConv::Fast)
 | 
						|
        ComputePtrOff();
 | 
						|
 | 
						|
      // All aggregates smaller than 8 bytes must be passed right-justified.
 | 
						|
      if (Size==1 || Size==2 || Size==4) {
 | 
						|
        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
 | 
						|
        if (GPR_idx != NumGPRs) {
 | 
						|
          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
 | 
						|
                                        MachinePointerInfo(), VT);
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
 | 
						|
          ArgOffset += PtrByteSize;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (GPR_idx == NumGPRs && Size < 8) {
 | 
						|
        SDValue AddPtr = PtrOff;
 | 
						|
        if (!isLittleEndian) {
 | 
						|
          SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
 | 
						|
                                          PtrOff.getValueType());
 | 
						|
          AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
 | 
						|
        }
 | 
						|
        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
 | 
						|
                                                          CallSeqStart,
 | 
						|
                                                          Flags, DAG, dl);
 | 
						|
        ArgOffset += PtrByteSize;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Copy entire object into memory.  There are cases where gcc-generated
 | 
						|
      // code assumes it is there, even if it could be put entirely into
 | 
						|
      // registers.  (This is not what the doc says.)
 | 
						|
 | 
						|
      // FIXME: The above statement is likely due to a misunderstanding of the
 | 
						|
      // documents.  All arguments must be copied into the parameter area BY
 | 
						|
      // THE CALLEE in the event that the callee takes the address of any
 | 
						|
      // formal argument.  That has not yet been implemented.  However, it is
 | 
						|
      // reasonable to use the stack area as a staging area for the register
 | 
						|
      // load.
 | 
						|
 | 
						|
      // Skip this for small aggregates, as we will use the same slot for a
 | 
						|
      // right-justified copy, below.
 | 
						|
      if (Size >= 8)
 | 
						|
        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
 | 
						|
                                                          CallSeqStart,
 | 
						|
                                                          Flags, DAG, dl);
 | 
						|
 | 
						|
      // When a register is available, pass a small aggregate right-justified.
 | 
						|
      if (Size < 8 && GPR_idx != NumGPRs) {
 | 
						|
        // The easiest way to get this right-justified in a register
 | 
						|
        // is to copy the structure into the rightmost portion of a
 | 
						|
        // local variable slot, then load the whole slot into the
 | 
						|
        // register.
 | 
						|
        // FIXME: The memcpy seems to produce pretty awful code for
 | 
						|
        // small aggregates, particularly for packed ones.
 | 
						|
        // FIXME: It would be preferable to use the slot in the
 | 
						|
        // parameter save area instead of a new local variable.
 | 
						|
        SDValue AddPtr = PtrOff;
 | 
						|
        if (!isLittleEndian) {
 | 
						|
          SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
 | 
						|
          AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
 | 
						|
        }
 | 
						|
        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
 | 
						|
                                                          CallSeqStart,
 | 
						|
                                                          Flags, DAG, dl);
 | 
						|
 | 
						|
        // Load the slot into the register.
 | 
						|
        SDValue Load =
 | 
						|
            DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
 | 
						|
        MemOpChains.push_back(Load.getValue(1));
 | 
						|
        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
 | 
						|
        // Done with this argument.
 | 
						|
        ArgOffset += PtrByteSize;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // For aggregates larger than PtrByteSize, copy the pieces of the
 | 
						|
      // object that fit into registers from the parameter save area.
 | 
						|
      for (unsigned j=0; j<Size; j+=PtrByteSize) {
 | 
						|
        SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
 | 
						|
        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
 | 
						|
        if (GPR_idx != NumGPRs) {
 | 
						|
          SDValue Load =
 | 
						|
              DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
          ArgOffset += PtrByteSize;
 | 
						|
        } else {
 | 
						|
          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (Arg.getSimpleValueType().SimpleTy) {
 | 
						|
    default: llvm_unreachable("Unexpected ValueType for argument!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i32:
 | 
						|
    case MVT::i64:
 | 
						|
      if (Flags.isNest()) {
 | 
						|
        // The 'nest' parameter, if any, is passed in R11.
 | 
						|
        RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
 | 
						|
        hasNest = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // These can be scalar arguments or elements of an integer array type
 | 
						|
      // passed directly.  Clang may use those instead of "byval" aggregate
 | 
						|
      // types to avoid forcing arguments to memory unnecessarily.
 | 
						|
      if (GPR_idx != NumGPRs) {
 | 
						|
        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
 | 
						|
      } else {
 | 
						|
        if (CallConv == CallingConv::Fast)
 | 
						|
          ComputePtrOff();
 | 
						|
 | 
						|
        assert(HasParameterArea &&
 | 
						|
               "Parameter area must exist to pass an argument in memory.");
 | 
						|
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | 
						|
                         true, isTailCall, false, MemOpChains,
 | 
						|
                         TailCallArguments, dl);
 | 
						|
        if (CallConv == CallingConv::Fast)
 | 
						|
          ArgOffset += PtrByteSize;
 | 
						|
      }
 | 
						|
      if (CallConv != CallingConv::Fast)
 | 
						|
        ArgOffset += PtrByteSize;
 | 
						|
      break;
 | 
						|
    case MVT::f32:
 | 
						|
    case MVT::f64: {
 | 
						|
      // These can be scalar arguments or elements of a float array type
 | 
						|
      // passed directly.  The latter are used to implement ELFv2 homogenous
 | 
						|
      // float aggregates.
 | 
						|
 | 
						|
      // Named arguments go into FPRs first, and once they overflow, the
 | 
						|
      // remaining arguments go into GPRs and then the parameter save area.
 | 
						|
      // Unnamed arguments for vararg functions always go to GPRs and
 | 
						|
      // then the parameter save area.  For now, put all arguments to vararg
 | 
						|
      // routines always in both locations (FPR *and* GPR or stack slot).
 | 
						|
      bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
 | 
						|
      bool NeededLoad = false;
 | 
						|
 | 
						|
      // First load the argument into the next available FPR.
 | 
						|
      if (FPR_idx != NumFPRs)
 | 
						|
        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
 | 
						|
 | 
						|
      // Next, load the argument into GPR or stack slot if needed.
 | 
						|
      if (!NeedGPROrStack)
 | 
						|
        ;
 | 
						|
      else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
 | 
						|
        // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
 | 
						|
        // once we support fp <-> gpr moves.
 | 
						|
 | 
						|
        // In the non-vararg case, this can only ever happen in the
 | 
						|
        // presence of f32 array types, since otherwise we never run
 | 
						|
        // out of FPRs before running out of GPRs.
 | 
						|
        SDValue ArgVal;
 | 
						|
 | 
						|
        // Double values are always passed in a single GPR.
 | 
						|
        if (Arg.getValueType() != MVT::f32) {
 | 
						|
          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
 | 
						|
 | 
						|
        // Non-array float values are extended and passed in a GPR.
 | 
						|
        } else if (!Flags.isInConsecutiveRegs()) {
 | 
						|
          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
 | 
						|
          ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
 | 
						|
 | 
						|
        // If we have an array of floats, we collect every odd element
 | 
						|
        // together with its predecessor into one GPR.
 | 
						|
        } else if (ArgOffset % PtrByteSize != 0) {
 | 
						|
          SDValue Lo, Hi;
 | 
						|
          Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
 | 
						|
          Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
 | 
						|
          if (!isLittleEndian)
 | 
						|
            std::swap(Lo, Hi);
 | 
						|
          ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
 | 
						|
 | 
						|
        // The final element, if even, goes into the first half of a GPR.
 | 
						|
        } else if (Flags.isInConsecutiveRegsLast()) {
 | 
						|
          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
 | 
						|
          ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
 | 
						|
          if (!isLittleEndian)
 | 
						|
            ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
 | 
						|
                                 DAG.getConstant(32, dl, MVT::i32));
 | 
						|
 | 
						|
        // Non-final even elements are skipped; they will be handled
 | 
						|
        // together the with subsequent argument on the next go-around.
 | 
						|
        } else
 | 
						|
          ArgVal = SDValue();
 | 
						|
 | 
						|
        if (ArgVal.getNode())
 | 
						|
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
 | 
						|
      } else {
 | 
						|
        if (CallConv == CallingConv::Fast)
 | 
						|
          ComputePtrOff();
 | 
						|
 | 
						|
        // Single-precision floating-point values are mapped to the
 | 
						|
        // second (rightmost) word of the stack doubleword.
 | 
						|
        if (Arg.getValueType() == MVT::f32 &&
 | 
						|
            !isLittleEndian && !Flags.isInConsecutiveRegs()) {
 | 
						|
          SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
 | 
						|
          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
 | 
						|
        }
 | 
						|
 | 
						|
        assert(HasParameterArea &&
 | 
						|
               "Parameter area must exist to pass an argument in memory.");
 | 
						|
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | 
						|
                         true, isTailCall, false, MemOpChains,
 | 
						|
                         TailCallArguments, dl);
 | 
						|
 | 
						|
        NeededLoad = true;
 | 
						|
      }
 | 
						|
      // When passing an array of floats, the array occupies consecutive
 | 
						|
      // space in the argument area; only round up to the next doubleword
 | 
						|
      // at the end of the array.  Otherwise, each float takes 8 bytes.
 | 
						|
      if (CallConv != CallingConv::Fast || NeededLoad) {
 | 
						|
        ArgOffset += (Arg.getValueType() == MVT::f32 &&
 | 
						|
                      Flags.isInConsecutiveRegs()) ? 4 : 8;
 | 
						|
        if (Flags.isInConsecutiveRegsLast())
 | 
						|
          ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case MVT::v4f32:
 | 
						|
    case MVT::v4i32:
 | 
						|
    case MVT::v8i16:
 | 
						|
    case MVT::v16i8:
 | 
						|
    case MVT::v2f64:
 | 
						|
    case MVT::v2i64:
 | 
						|
    case MVT::v1i128:
 | 
						|
    case MVT::f128:
 | 
						|
      if (!Subtarget.hasQPX()) {
 | 
						|
      // These can be scalar arguments or elements of a vector array type
 | 
						|
      // passed directly.  The latter are used to implement ELFv2 homogenous
 | 
						|
      // vector aggregates.
 | 
						|
 | 
						|
      // For a varargs call, named arguments go into VRs or on the stack as
 | 
						|
      // usual; unnamed arguments always go to the stack or the corresponding
 | 
						|
      // GPRs when within range.  For now, we always put the value in both
 | 
						|
      // locations (or even all three).
 | 
						|
      if (isVarArg) {
 | 
						|
        assert(HasParameterArea &&
 | 
						|
               "Parameter area must exist if we have a varargs call.");
 | 
						|
        // We could elide this store in the case where the object fits
 | 
						|
        // entirely in R registers.  Maybe later.
 | 
						|
        SDValue Store =
 | 
						|
            DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
 | 
						|
        MemOpChains.push_back(Store);
 | 
						|
        if (VR_idx != NumVRs) {
 | 
						|
          SDValue Load =
 | 
						|
              DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
 | 
						|
        }
 | 
						|
        ArgOffset += 16;
 | 
						|
        for (unsigned i=0; i<16; i+=PtrByteSize) {
 | 
						|
          if (GPR_idx == NumGPRs)
 | 
						|
            break;
 | 
						|
          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
 | 
						|
                                   DAG.getConstant(i, dl, PtrVT));
 | 
						|
          SDValue Load =
 | 
						|
              DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Non-varargs Altivec params go into VRs or on the stack.
 | 
						|
      if (VR_idx != NumVRs) {
 | 
						|
        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
 | 
						|
      } else {
 | 
						|
        if (CallConv == CallingConv::Fast)
 | 
						|
          ComputePtrOff();
 | 
						|
 | 
						|
        assert(HasParameterArea &&
 | 
						|
               "Parameter area must exist to pass an argument in memory.");
 | 
						|
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | 
						|
                         true, isTailCall, true, MemOpChains,
 | 
						|
                         TailCallArguments, dl);
 | 
						|
        if (CallConv == CallingConv::Fast)
 | 
						|
          ArgOffset += 16;
 | 
						|
      }
 | 
						|
 | 
						|
      if (CallConv != CallingConv::Fast)
 | 
						|
        ArgOffset += 16;
 | 
						|
      break;
 | 
						|
      } // not QPX
 | 
						|
 | 
						|
      assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
 | 
						|
             "Invalid QPX parameter type");
 | 
						|
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case MVT::v4f64:
 | 
						|
    case MVT::v4i1: {
 | 
						|
      bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
 | 
						|
      if (isVarArg) {
 | 
						|
        assert(HasParameterArea &&
 | 
						|
               "Parameter area must exist if we have a varargs call.");
 | 
						|
        // We could elide this store in the case where the object fits
 | 
						|
        // entirely in R registers.  Maybe later.
 | 
						|
        SDValue Store =
 | 
						|
            DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
 | 
						|
        MemOpChains.push_back(Store);
 | 
						|
        if (QFPR_idx != NumQFPRs) {
 | 
						|
          SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
 | 
						|
                                     PtrOff, MachinePointerInfo());
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
 | 
						|
        }
 | 
						|
        ArgOffset += (IsF32 ? 16 : 32);
 | 
						|
        for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
 | 
						|
          if (GPR_idx == NumGPRs)
 | 
						|
            break;
 | 
						|
          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
 | 
						|
                                   DAG.getConstant(i, dl, PtrVT));
 | 
						|
          SDValue Load =
 | 
						|
              DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Non-varargs QPX params go into registers or on the stack.
 | 
						|
      if (QFPR_idx != NumQFPRs) {
 | 
						|
        RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
 | 
						|
      } else {
 | 
						|
        if (CallConv == CallingConv::Fast)
 | 
						|
          ComputePtrOff();
 | 
						|
 | 
						|
        assert(HasParameterArea &&
 | 
						|
               "Parameter area must exist to pass an argument in memory.");
 | 
						|
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | 
						|
                         true, isTailCall, true, MemOpChains,
 | 
						|
                         TailCallArguments, dl);
 | 
						|
        if (CallConv == CallingConv::Fast)
 | 
						|
          ArgOffset += (IsF32 ? 16 : 32);
 | 
						|
      }
 | 
						|
 | 
						|
      if (CallConv != CallingConv::Fast)
 | 
						|
        ArgOffset += (IsF32 ? 16 : 32);
 | 
						|
      break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
 | 
						|
         "mismatch in size of parameter area");
 | 
						|
  (void)NumBytesActuallyUsed;
 | 
						|
 | 
						|
  if (!MemOpChains.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
 | 
						|
 | 
						|
  // Check if this is an indirect call (MTCTR/BCTRL).
 | 
						|
  // See PrepareCall() for more information about calls through function
 | 
						|
  // pointers in the 64-bit SVR4 ABI.
 | 
						|
  if (!isTailCall && !isPatchPoint &&
 | 
						|
      !isFunctionGlobalAddress(Callee) &&
 | 
						|
      !isa<ExternalSymbolSDNode>(Callee)) {
 | 
						|
    // Load r2 into a virtual register and store it to the TOC save area.
 | 
						|
    setUsesTOCBasePtr(DAG);
 | 
						|
    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
 | 
						|
    // TOC save area offset.
 | 
						|
    unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
 | 
						|
    SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
 | 
						|
    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | 
						|
    Chain = DAG.getStore(
 | 
						|
        Val.getValue(1), dl, Val, AddPtr,
 | 
						|
        MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
 | 
						|
    // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
 | 
						|
    // This does not mean the MTCTR instruction must use R12; it's easier
 | 
						|
    // to model this as an extra parameter, so do that.
 | 
						|
    if (isELFv2ABI && !isPatchPoint)
 | 
						|
      RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
 | 
						|
  }
 | 
						|
 | 
						|
  // Build a sequence of copy-to-reg nodes chained together with token chain
 | 
						|
  // and flag operands which copy the outgoing args into the appropriate regs.
 | 
						|
  SDValue InFlag;
 | 
						|
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | 
						|
    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | 
						|
                             RegsToPass[i].second, InFlag);
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isTailCall && !IsSibCall)
 | 
						|
    PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
 | 
						|
                    TailCallArguments);
 | 
						|
 | 
						|
  return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
 | 
						|
                    DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
 | 
						|
                    SPDiff, NumBytes, Ins, InVals, CS);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerCall_Darwin(
 | 
						|
    SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
 | 
						|
    bool isTailCall, bool isPatchPoint,
 | 
						|
    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
    const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
 | 
						|
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
 | 
						|
    ImmutableCallSite CS) const {
 | 
						|
  unsigned NumOps = Outs.size();
 | 
						|
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  bool isPPC64 = PtrVT == MVT::i64;
 | 
						|
  unsigned PtrByteSize = isPPC64 ? 8 : 4;
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
 | 
						|
  // Mark this function as potentially containing a function that contains a
 | 
						|
  // tail call. As a consequence the frame pointer will be used for dynamicalloc
 | 
						|
  // and restoring the callers stack pointer in this functions epilog. This is
 | 
						|
  // done because by tail calling the called function might overwrite the value
 | 
						|
  // in this function's (MF) stack pointer stack slot 0(SP).
 | 
						|
  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
 | 
						|
      CallConv == CallingConv::Fast)
 | 
						|
    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
 | 
						|
 | 
						|
  // Count how many bytes are to be pushed on the stack, including the linkage
 | 
						|
  // area, and parameter passing area.  We start with 24/48 bytes, which is
 | 
						|
  // prereserved space for [SP][CR][LR][3 x unused].
 | 
						|
  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
 | 
						|
  unsigned NumBytes = LinkageSize;
 | 
						|
 | 
						|
  // Add up all the space actually used.
 | 
						|
  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
 | 
						|
  // they all go in registers, but we must reserve stack space for them for
 | 
						|
  // possible use by the caller.  In varargs or 64-bit calls, parameters are
 | 
						|
  // assigned stack space in order, with padding so Altivec parameters are
 | 
						|
  // 16-byte aligned.
 | 
						|
  unsigned nAltivecParamsAtEnd = 0;
 | 
						|
  for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | 
						|
    EVT ArgVT = Outs[i].VT;
 | 
						|
    // Varargs Altivec parameters are padded to a 16 byte boundary.
 | 
						|
    if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
 | 
						|
        ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
 | 
						|
        ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
 | 
						|
      if (!isVarArg && !isPPC64) {
 | 
						|
        // Non-varargs Altivec parameters go after all the non-Altivec
 | 
						|
        // parameters; handle those later so we know how much padding we need.
 | 
						|
        nAltivecParamsAtEnd++;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
 | 
						|
      NumBytes = ((NumBytes+15)/16)*16;
 | 
						|
    }
 | 
						|
    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
 | 
						|
  }
 | 
						|
 | 
						|
  // Allow for Altivec parameters at the end, if needed.
 | 
						|
  if (nAltivecParamsAtEnd) {
 | 
						|
    NumBytes = ((NumBytes+15)/16)*16;
 | 
						|
    NumBytes += 16*nAltivecParamsAtEnd;
 | 
						|
  }
 | 
						|
 | 
						|
  // The prolog code of the callee may store up to 8 GPR argument registers to
 | 
						|
  // the stack, allowing va_start to index over them in memory if its varargs.
 | 
						|
  // Because we cannot tell if this is needed on the caller side, we have to
 | 
						|
  // conservatively assume that it is needed.  As such, make sure we have at
 | 
						|
  // least enough stack space for the caller to store the 8 GPRs.
 | 
						|
  NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
 | 
						|
 | 
						|
  // Tail call needs the stack to be aligned.
 | 
						|
  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
 | 
						|
      CallConv == CallingConv::Fast)
 | 
						|
    NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
 | 
						|
 | 
						|
  // Calculate by how many bytes the stack has to be adjusted in case of tail
 | 
						|
  // call optimization.
 | 
						|
  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
 | 
						|
 | 
						|
  // To protect arguments on the stack from being clobbered in a tail call,
 | 
						|
  // force all the loads to happen before doing any other lowering.
 | 
						|
  if (isTailCall)
 | 
						|
    Chain = DAG.getStackArgumentTokenFactor(Chain);
 | 
						|
 | 
						|
  // Adjust the stack pointer for the new arguments...
 | 
						|
  // These operations are automatically eliminated by the prolog/epilog pass
 | 
						|
  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
 | 
						|
  SDValue CallSeqStart = Chain;
 | 
						|
 | 
						|
  // Load the return address and frame pointer so it can be move somewhere else
 | 
						|
  // later.
 | 
						|
  SDValue LROp, FPOp;
 | 
						|
  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
 | 
						|
 | 
						|
  // Set up a copy of the stack pointer for use loading and storing any
 | 
						|
  // arguments that may not fit in the registers available for argument
 | 
						|
  // passing.
 | 
						|
  SDValue StackPtr;
 | 
						|
  if (isPPC64)
 | 
						|
    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
 | 
						|
  else
 | 
						|
    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | 
						|
 | 
						|
  // Figure out which arguments are going to go in registers, and which in
 | 
						|
  // memory.  Also, if this is a vararg function, floating point operations
 | 
						|
  // must be stored to our stack, and loaded into integer regs as well, if
 | 
						|
  // any integer regs are available for argument passing.
 | 
						|
  unsigned ArgOffset = LinkageSize;
 | 
						|
  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | 
						|
 | 
						|
  static const MCPhysReg GPR_32[] = {           // 32-bit registers.
 | 
						|
    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | 
						|
    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | 
						|
  };
 | 
						|
  static const MCPhysReg GPR_64[] = {           // 64-bit registers.
 | 
						|
    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | 
						|
    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | 
						|
  };
 | 
						|
  static const MCPhysReg VR[] = {
 | 
						|
    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | 
						|
    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | 
						|
  };
 | 
						|
  const unsigned NumGPRs = array_lengthof(GPR_32);
 | 
						|
  const unsigned NumFPRs = 13;
 | 
						|
  const unsigned NumVRs  = array_lengthof(VR);
 | 
						|
 | 
						|
  const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
 | 
						|
 | 
						|
  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | 
						|
  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> MemOpChains;
 | 
						|
  for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
    SDValue Arg = OutVals[i];
 | 
						|
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | 
						|
 | 
						|
    // PtrOff will be used to store the current argument to the stack if a
 | 
						|
    // register cannot be found for it.
 | 
						|
    SDValue PtrOff;
 | 
						|
 | 
						|
    PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
 | 
						|
 | 
						|
    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | 
						|
 | 
						|
    // On PPC64, promote integers to 64-bit values.
 | 
						|
    if (isPPC64 && Arg.getValueType() == MVT::i32) {
 | 
						|
      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
 | 
						|
      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
 | 
						|
      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME memcpy is used way more than necessary.  Correctness first.
 | 
						|
    // Note: "by value" is code for passing a structure by value, not
 | 
						|
    // basic types.
 | 
						|
    if (Flags.isByVal()) {
 | 
						|
      unsigned Size = Flags.getByValSize();
 | 
						|
      // Very small objects are passed right-justified.  Everything else is
 | 
						|
      // passed left-justified.
 | 
						|
      if (Size==1 || Size==2) {
 | 
						|
        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
 | 
						|
        if (GPR_idx != NumGPRs) {
 | 
						|
          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
 | 
						|
                                        MachinePointerInfo(), VT);
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
 | 
						|
          ArgOffset += PtrByteSize;
 | 
						|
        } else {
 | 
						|
          SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
 | 
						|
                                          PtrOff.getValueType());
 | 
						|
          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
 | 
						|
          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
 | 
						|
                                                            CallSeqStart,
 | 
						|
                                                            Flags, DAG, dl);
 | 
						|
          ArgOffset += PtrByteSize;
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Copy entire object into memory.  There are cases where gcc-generated
 | 
						|
      // code assumes it is there, even if it could be put entirely into
 | 
						|
      // registers.  (This is not what the doc says.)
 | 
						|
      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
 | 
						|
                                                        CallSeqStart,
 | 
						|
                                                        Flags, DAG, dl);
 | 
						|
 | 
						|
      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
 | 
						|
      // copy the pieces of the object that fit into registers from the
 | 
						|
      // parameter save area.
 | 
						|
      for (unsigned j=0; j<Size; j+=PtrByteSize) {
 | 
						|
        SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
 | 
						|
        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
 | 
						|
        if (GPR_idx != NumGPRs) {
 | 
						|
          SDValue Load =
 | 
						|
              DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
          ArgOffset += PtrByteSize;
 | 
						|
        } else {
 | 
						|
          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (Arg.getSimpleValueType().SimpleTy) {
 | 
						|
    default: llvm_unreachable("Unexpected ValueType for argument!");
 | 
						|
    case MVT::i1:
 | 
						|
    case MVT::i32:
 | 
						|
    case MVT::i64:
 | 
						|
      if (GPR_idx != NumGPRs) {
 | 
						|
        if (Arg.getValueType() == MVT::i1)
 | 
						|
          Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
 | 
						|
 | 
						|
        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
 | 
						|
      } else {
 | 
						|
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | 
						|
                         isPPC64, isTailCall, false, MemOpChains,
 | 
						|
                         TailCallArguments, dl);
 | 
						|
      }
 | 
						|
      ArgOffset += PtrByteSize;
 | 
						|
      break;
 | 
						|
    case MVT::f32:
 | 
						|
    case MVT::f64:
 | 
						|
      if (FPR_idx != NumFPRs) {
 | 
						|
        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
 | 
						|
 | 
						|
        if (isVarArg) {
 | 
						|
          SDValue Store =
 | 
						|
              DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
 | 
						|
          MemOpChains.push_back(Store);
 | 
						|
 | 
						|
          // Float varargs are always shadowed in available integer registers
 | 
						|
          if (GPR_idx != NumGPRs) {
 | 
						|
            SDValue Load =
 | 
						|
                DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
 | 
						|
            MemOpChains.push_back(Load.getValue(1));
 | 
						|
            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
          }
 | 
						|
          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
 | 
						|
            SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
 | 
						|
            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
 | 
						|
            SDValue Load =
 | 
						|
                DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
 | 
						|
            MemOpChains.push_back(Load.getValue(1));
 | 
						|
            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          // If we have any FPRs remaining, we may also have GPRs remaining.
 | 
						|
          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
 | 
						|
          // GPRs.
 | 
						|
          if (GPR_idx != NumGPRs)
 | 
						|
            ++GPR_idx;
 | 
						|
          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
 | 
						|
              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
 | 
						|
            ++GPR_idx;
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | 
						|
                         isPPC64, isTailCall, false, MemOpChains,
 | 
						|
                         TailCallArguments, dl);
 | 
						|
      if (isPPC64)
 | 
						|
        ArgOffset += 8;
 | 
						|
      else
 | 
						|
        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
 | 
						|
      break;
 | 
						|
    case MVT::v4f32:
 | 
						|
    case MVT::v4i32:
 | 
						|
    case MVT::v8i16:
 | 
						|
    case MVT::v16i8:
 | 
						|
      if (isVarArg) {
 | 
						|
        // These go aligned on the stack, or in the corresponding R registers
 | 
						|
        // when within range.  The Darwin PPC ABI doc claims they also go in
 | 
						|
        // V registers; in fact gcc does this only for arguments that are
 | 
						|
        // prototyped, not for those that match the ...  We do it for all
 | 
						|
        // arguments, seems to work.
 | 
						|
        while (ArgOffset % 16 !=0) {
 | 
						|
          ArgOffset += PtrByteSize;
 | 
						|
          if (GPR_idx != NumGPRs)
 | 
						|
            GPR_idx++;
 | 
						|
        }
 | 
						|
        // We could elide this store in the case where the object fits
 | 
						|
        // entirely in R registers.  Maybe later.
 | 
						|
        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
 | 
						|
                             DAG.getConstant(ArgOffset, dl, PtrVT));
 | 
						|
        SDValue Store =
 | 
						|
            DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
 | 
						|
        MemOpChains.push_back(Store);
 | 
						|
        if (VR_idx != NumVRs) {
 | 
						|
          SDValue Load =
 | 
						|
              DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
 | 
						|
        }
 | 
						|
        ArgOffset += 16;
 | 
						|
        for (unsigned i=0; i<16; i+=PtrByteSize) {
 | 
						|
          if (GPR_idx == NumGPRs)
 | 
						|
            break;
 | 
						|
          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
 | 
						|
                                   DAG.getConstant(i, dl, PtrVT));
 | 
						|
          SDValue Load =
 | 
						|
              DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
 | 
						|
          MemOpChains.push_back(Load.getValue(1));
 | 
						|
          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Non-varargs Altivec params generally go in registers, but have
 | 
						|
      // stack space allocated at the end.
 | 
						|
      if (VR_idx != NumVRs) {
 | 
						|
        // Doesn't have GPR space allocated.
 | 
						|
        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
 | 
						|
      } else if (nAltivecParamsAtEnd==0) {
 | 
						|
        // We are emitting Altivec params in order.
 | 
						|
        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | 
						|
                         isPPC64, isTailCall, true, MemOpChains,
 | 
						|
                         TailCallArguments, dl);
 | 
						|
        ArgOffset += 16;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // If all Altivec parameters fit in registers, as they usually do,
 | 
						|
  // they get stack space following the non-Altivec parameters.  We
 | 
						|
  // don't track this here because nobody below needs it.
 | 
						|
  // If there are more Altivec parameters than fit in registers emit
 | 
						|
  // the stores here.
 | 
						|
  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
 | 
						|
    unsigned j = 0;
 | 
						|
    // Offset is aligned; skip 1st 12 params which go in V registers.
 | 
						|
    ArgOffset = ((ArgOffset+15)/16)*16;
 | 
						|
    ArgOffset += 12*16;
 | 
						|
    for (unsigned i = 0; i != NumOps; ++i) {
 | 
						|
      SDValue Arg = OutVals[i];
 | 
						|
      EVT ArgType = Outs[i].VT;
 | 
						|
      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
 | 
						|
          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
 | 
						|
        if (++j > NumVRs) {
 | 
						|
          SDValue PtrOff;
 | 
						|
          // We are emitting Altivec params in order.
 | 
						|
          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | 
						|
                           isPPC64, isTailCall, true, MemOpChains,
 | 
						|
                           TailCallArguments, dl);
 | 
						|
          ArgOffset += 16;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemOpChains.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
 | 
						|
 | 
						|
  // On Darwin, R12 must contain the address of an indirect callee.  This does
 | 
						|
  // not mean the MTCTR instruction must use R12; it's easier to model this as
 | 
						|
  // an extra parameter, so do that.
 | 
						|
  if (!isTailCall &&
 | 
						|
      !isFunctionGlobalAddress(Callee) &&
 | 
						|
      !isa<ExternalSymbolSDNode>(Callee) &&
 | 
						|
      !isBLACompatibleAddress(Callee, DAG))
 | 
						|
    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
 | 
						|
                                                   PPC::R12), Callee));
 | 
						|
 | 
						|
  // Build a sequence of copy-to-reg nodes chained together with token chain
 | 
						|
  // and flag operands which copy the outgoing args into the appropriate regs.
 | 
						|
  SDValue InFlag;
 | 
						|
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | 
						|
    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | 
						|
                             RegsToPass[i].second, InFlag);
 | 
						|
    InFlag = Chain.getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isTailCall)
 | 
						|
    PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
 | 
						|
                    TailCallArguments);
 | 
						|
 | 
						|
  return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
 | 
						|
                    /* unused except on PPC64 ELFv1 */ false, DAG,
 | 
						|
                    RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
 | 
						|
                    NumBytes, Ins, InVals, CS);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
 | 
						|
                                  MachineFunction &MF, bool isVarArg,
 | 
						|
                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
                                  LLVMContext &Context) const {
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
 | 
						|
  return CCInfo.CheckReturn(
 | 
						|
      Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
 | 
						|
                ? RetCC_PPC_Cold
 | 
						|
                : RetCC_PPC);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
 | 
						|
                               bool isVarArg,
 | 
						|
                               const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
                               const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
                               const SDLoc &dl, SelectionDAG &DAG) const {
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
  CCInfo.AnalyzeReturn(Outs,
 | 
						|
                       (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
 | 
						|
                           ? RetCC_PPC_Cold
 | 
						|
                           : RetCC_PPC);
 | 
						|
 | 
						|
  SDValue Flag;
 | 
						|
  SmallVector<SDValue, 4> RetOps(1, Chain);
 | 
						|
 | 
						|
  // Copy the result values into the output registers.
 | 
						|
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | 
						|
    CCValAssign &VA = RVLocs[i];
 | 
						|
    assert(VA.isRegLoc() && "Can only return in registers!");
 | 
						|
 | 
						|
    SDValue Arg = OutVals[i];
 | 
						|
 | 
						|
    switch (VA.getLocInfo()) {
 | 
						|
    default: llvm_unreachable("Unknown loc info!");
 | 
						|
    case CCValAssign::Full: break;
 | 
						|
    case CCValAssign::AExt:
 | 
						|
      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    case CCValAssign::ZExt:
 | 
						|
      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    case CCValAssign::SExt:
 | 
						|
      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
 | 
						|
    Flag = Chain.getValue(1);
 | 
						|
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
 | 
						|
  }
 | 
						|
 | 
						|
  const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
 | 
						|
  const MCPhysReg *I =
 | 
						|
    TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
 | 
						|
  if (I) {
 | 
						|
    for (; *I; ++I) {
 | 
						|
 | 
						|
      if (PPC::G8RCRegClass.contains(*I))
 | 
						|
        RetOps.push_back(DAG.getRegister(*I, MVT::i64));
 | 
						|
      else if (PPC::F8RCRegClass.contains(*I))
 | 
						|
        RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
 | 
						|
      else if (PPC::CRRCRegClass.contains(*I))
 | 
						|
        RetOps.push_back(DAG.getRegister(*I, MVT::i1));
 | 
						|
      else if (PPC::VRRCRegClass.contains(*I))
 | 
						|
        RetOps.push_back(DAG.getRegister(*I, MVT::Other));
 | 
						|
      else
 | 
						|
        llvm_unreachable("Unexpected register class in CSRsViaCopy!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  RetOps[0] = Chain;  // Update chain.
 | 
						|
 | 
						|
  // Add the flag if we have it.
 | 
						|
  if (Flag.getNode())
 | 
						|
    RetOps.push_back(Flag);
 | 
						|
 | 
						|
  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // Get the correct type for integers.
 | 
						|
  EVT IntVT = Op.getValueType();
 | 
						|
 | 
						|
  // Get the inputs.
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
 | 
						|
  // Build a DYNAREAOFFSET node.
 | 
						|
  SDValue Ops[2] = {Chain, FPSIdx};
 | 
						|
  SDVTList VTs = DAG.getVTList(IntVT);
 | 
						|
  return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  // When we pop the dynamic allocation we need to restore the SP link.
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // Get the correct type for pointers.
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  // Construct the stack pointer operand.
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
 | 
						|
  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
 | 
						|
 | 
						|
  // Get the operands for the STACKRESTORE.
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue SaveSP = Op.getOperand(1);
 | 
						|
 | 
						|
  // Load the old link SP.
 | 
						|
  SDValue LoadLinkSP =
 | 
						|
      DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
 | 
						|
 | 
						|
  // Restore the stack pointer.
 | 
						|
  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
 | 
						|
 | 
						|
  // Store the old link SP.
 | 
						|
  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
 | 
						|
  // Get current frame pointer save index.  The users of this index will be
 | 
						|
  // primarily DYNALLOC instructions.
 | 
						|
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  int RASI = FI->getReturnAddrSaveIndex();
 | 
						|
 | 
						|
  // If the frame pointer save index hasn't been defined yet.
 | 
						|
  if (!RASI) {
 | 
						|
    // Find out what the fix offset of the frame pointer save area.
 | 
						|
    int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
 | 
						|
    // Allocate the frame index for frame pointer save area.
 | 
						|
    RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
 | 
						|
    // Save the result.
 | 
						|
    FI->setReturnAddrSaveIndex(RASI);
 | 
						|
  }
 | 
						|
  return DAG.getFrameIndex(RASI, PtrVT);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
 | 
						|
  // Get current frame pointer save index.  The users of this index will be
 | 
						|
  // primarily DYNALLOC instructions.
 | 
						|
  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  int FPSI = FI->getFramePointerSaveIndex();
 | 
						|
 | 
						|
  // If the frame pointer save index hasn't been defined yet.
 | 
						|
  if (!FPSI) {
 | 
						|
    // Find out what the fix offset of the frame pointer save area.
 | 
						|
    int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
 | 
						|
    // Allocate the frame index for frame pointer save area.
 | 
						|
    FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
 | 
						|
    // Save the result.
 | 
						|
    FI->setFramePointerSaveIndex(FPSI);
 | 
						|
  }
 | 
						|
  return DAG.getFrameIndex(FPSI, PtrVT);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 | 
						|
                                                   SelectionDAG &DAG) const {
 | 
						|
  // Get the inputs.
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue Size  = Op.getOperand(1);
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // Get the correct type for pointers.
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  // Negate the size.
 | 
						|
  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
 | 
						|
                                DAG.getConstant(0, dl, PtrVT), Size);
 | 
						|
  // Construct a node for the frame pointer save index.
 | 
						|
  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
 | 
						|
  // Build a DYNALLOC node.
 | 
						|
  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
 | 
						|
  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
 | 
						|
  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
 | 
						|
                                                     SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
  int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
 | 
						|
  return DAG.getFrameIndex(FI, PtrVT);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
 | 
						|
                     DAG.getVTList(MVT::i32, MVT::Other),
 | 
						|
                     Op.getOperand(0), Op.getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  SDLoc DL(Op);
 | 
						|
  return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
 | 
						|
                     Op.getOperand(0), Op.getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  if (Op.getValueType().isVector())
 | 
						|
    return LowerVectorLoad(Op, DAG);
 | 
						|
 | 
						|
  assert(Op.getValueType() == MVT::i1 &&
 | 
						|
         "Custom lowering only for i1 loads");
 | 
						|
 | 
						|
  // First, load 8 bits into 32 bits, then truncate to 1 bit.
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  LoadSDNode *LD = cast<LoadSDNode>(Op);
 | 
						|
 | 
						|
  SDValue Chain = LD->getChain();
 | 
						|
  SDValue BasePtr = LD->getBasePtr();
 | 
						|
  MachineMemOperand *MMO = LD->getMemOperand();
 | 
						|
 | 
						|
  SDValue NewLD =
 | 
						|
      DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
 | 
						|
                     BasePtr, MVT::i8, MMO);
 | 
						|
  SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
 | 
						|
 | 
						|
  SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
 | 
						|
  return DAG.getMergeValues(Ops, dl);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  if (Op.getOperand(1).getValueType().isVector())
 | 
						|
    return LowerVectorStore(Op, DAG);
 | 
						|
 | 
						|
  assert(Op.getOperand(1).getValueType() == MVT::i1 &&
 | 
						|
         "Custom lowering only for i1 stores");
 | 
						|
 | 
						|
  // First, zero extend to 32 bits, then use a truncating store to 8 bits.
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  StoreSDNode *ST = cast<StoreSDNode>(Op);
 | 
						|
 | 
						|
  SDValue Chain = ST->getChain();
 | 
						|
  SDValue BasePtr = ST->getBasePtr();
 | 
						|
  SDValue Value = ST->getValue();
 | 
						|
  MachineMemOperand *MMO = ST->getMemOperand();
 | 
						|
 | 
						|
  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
 | 
						|
                      Value);
 | 
						|
  return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: Remove this once the ANDI glue bug is fixed:
 | 
						|
SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  assert(Op.getValueType() == MVT::i1 &&
 | 
						|
         "Custom lowering only for i1 results");
 | 
						|
 | 
						|
  SDLoc DL(Op);
 | 
						|
  return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
 | 
						|
                     Op.getOperand(0));
 | 
						|
}
 | 
						|
 | 
						|
/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
 | 
						|
/// possible.
 | 
						|
SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  // Not FP? Not a fsel.
 | 
						|
  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
 | 
						|
      !Op.getOperand(2).getValueType().isFloatingPoint())
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // We might be able to do better than this under some circumstances, but in
 | 
						|
  // general, fsel-based lowering of select is a finite-math-only optimization.
 | 
						|
  // For more information, see section F.3 of the 2.06 ISA specification.
 | 
						|
  if (!DAG.getTarget().Options.NoInfsFPMath ||
 | 
						|
      !DAG.getTarget().Options.NoNaNsFPMath)
 | 
						|
    return Op;
 | 
						|
  // TODO: Propagate flags from the select rather than global settings.
 | 
						|
  SDNodeFlags Flags;
 | 
						|
  Flags.setNoInfs(true);
 | 
						|
  Flags.setNoNaNs(true);
 | 
						|
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | 
						|
 | 
						|
  EVT ResVT = Op.getValueType();
 | 
						|
  EVT CmpVT = Op.getOperand(0).getValueType();
 | 
						|
  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | 
						|
  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // If the RHS of the comparison is a 0.0, we don't need to do the
 | 
						|
  // subtraction at all.
 | 
						|
  SDValue Sel1;
 | 
						|
  if (isFloatingPointZero(RHS))
 | 
						|
    switch (CC) {
 | 
						|
    default: break;       // SETUO etc aren't handled by fsel.
 | 
						|
    case ISD::SETNE:
 | 
						|
      std::swap(TV, FV);
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case ISD::SETEQ:
 | 
						|
      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
 | 
						|
      Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
 | 
						|
      if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
        Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
 | 
						|
                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
 | 
						|
    case ISD::SETULT:
 | 
						|
    case ISD::SETLT:
 | 
						|
      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case ISD::SETOGE:
 | 
						|
    case ISD::SETGE:
 | 
						|
      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
 | 
						|
    case ISD::SETUGT:
 | 
						|
    case ISD::SETGT:
 | 
						|
      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case ISD::SETOLE:
 | 
						|
    case ISD::SETLE:
 | 
						|
      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
 | 
						|
      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
 | 
						|
                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
 | 
						|
    }
 | 
						|
 | 
						|
  SDValue Cmp;
 | 
						|
  switch (CC) {
 | 
						|
  default: break;       // SETUO etc aren't handled by fsel.
 | 
						|
  case ISD::SETNE:
 | 
						|
    std::swap(TV, FV);
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ISD::SETEQ:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | 
						|
    Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
 | 
						|
    if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
 | 
						|
    return DAG.getNode(PPCISD::FSEL, dl, ResVT,
 | 
						|
                       DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
 | 
						|
  case ISD::SETULT:
 | 
						|
  case ISD::SETLT:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | 
						|
    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
 | 
						|
  case ISD::SETOGE:
 | 
						|
  case ISD::SETGE:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | 
						|
    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
 | 
						|
  case ISD::SETUGT:
 | 
						|
  case ISD::SETGT:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | 
						|
    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
 | 
						|
  case ISD::SETOLE:
 | 
						|
  case ISD::SETLE:
 | 
						|
    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
 | 
						|
    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | 
						|
      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | 
						|
    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
 | 
						|
  }
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
 | 
						|
                                               SelectionDAG &DAG,
 | 
						|
                                               const SDLoc &dl) const {
 | 
						|
  assert(Op.getOperand(0).getValueType().isFloatingPoint());
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
  if (Src.getValueType() == MVT::f32)
 | 
						|
    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
 | 
						|
 | 
						|
  SDValue Tmp;
 | 
						|
  switch (Op.getSimpleValueType().SimpleTy) {
 | 
						|
  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
 | 
						|
  case MVT::i32:
 | 
						|
    Tmp = DAG.getNode(
 | 
						|
        Op.getOpcode() == ISD::FP_TO_SINT
 | 
						|
            ? PPCISD::FCTIWZ
 | 
						|
            : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
 | 
						|
        dl, MVT::f64, Src);
 | 
						|
    break;
 | 
						|
  case MVT::i64:
 | 
						|
    assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
 | 
						|
           "i64 FP_TO_UINT is supported only with FPCVT");
 | 
						|
    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
 | 
						|
                                                        PPCISD::FCTIDUZ,
 | 
						|
                      dl, MVT::f64, Src);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert the FP value to an int value through memory.
 | 
						|
  bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
 | 
						|
    (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
 | 
						|
  SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
 | 
						|
  int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
 | 
						|
  MachinePointerInfo MPI =
 | 
						|
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
 | 
						|
 | 
						|
  // Emit a store to the stack slot.
 | 
						|
  SDValue Chain;
 | 
						|
  if (i32Stack) {
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    MachineMemOperand *MMO =
 | 
						|
      MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
 | 
						|
    SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
 | 
						|
    Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
 | 
						|
              DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
 | 
						|
  } else
 | 
						|
    Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
 | 
						|
 | 
						|
  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
 | 
						|
  // add in a bias on big endian.
 | 
						|
  if (Op.getValueType() == MVT::i32 && !i32Stack) {
 | 
						|
    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
 | 
						|
                        DAG.getConstant(4, dl, FIPtr.getValueType()));
 | 
						|
    MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
 | 
						|
  }
 | 
						|
 | 
						|
  RLI.Chain = Chain;
 | 
						|
  RLI.Ptr = FIPtr;
 | 
						|
  RLI.MPI = MPI;
 | 
						|
}
 | 
						|
 | 
						|
/// Custom lowers floating point to integer conversions to use
 | 
						|
/// the direct move instructions available in ISA 2.07 to avoid the
 | 
						|
/// need for load/store combinations.
 | 
						|
SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
 | 
						|
                                                    SelectionDAG &DAG,
 | 
						|
                                                    const SDLoc &dl) const {
 | 
						|
  assert(Op.getOperand(0).getValueType().isFloatingPoint());
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
 | 
						|
  if (Src.getValueType() == MVT::f32)
 | 
						|
    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
 | 
						|
 | 
						|
  SDValue Tmp;
 | 
						|
  switch (Op.getSimpleValueType().SimpleTy) {
 | 
						|
  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
 | 
						|
  case MVT::i32:
 | 
						|
    Tmp = DAG.getNode(
 | 
						|
        Op.getOpcode() == ISD::FP_TO_SINT
 | 
						|
            ? PPCISD::FCTIWZ
 | 
						|
            : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
 | 
						|
        dl, MVT::f64, Src);
 | 
						|
    Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
 | 
						|
    break;
 | 
						|
  case MVT::i64:
 | 
						|
    assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
 | 
						|
           "i64 FP_TO_UINT is supported only with FPCVT");
 | 
						|
    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
 | 
						|
                                                        PPCISD::FCTIDUZ,
 | 
						|
                      dl, MVT::f64, Src);
 | 
						|
    Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return Tmp;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
 | 
						|
                                          const SDLoc &dl) const {
 | 
						|
 | 
						|
  // FP to INT conversions are legal for f128.
 | 
						|
  if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
 | 
						|
  // PPC (the libcall is not available).
 | 
						|
  if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
 | 
						|
    if (Op.getValueType() == MVT::i32) {
 | 
						|
      if (Op.getOpcode() == ISD::FP_TO_SINT) {
 | 
						|
        SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
 | 
						|
                                 MVT::f64, Op.getOperand(0),
 | 
						|
                                 DAG.getIntPtrConstant(0, dl));
 | 
						|
        SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
 | 
						|
                                 MVT::f64, Op.getOperand(0),
 | 
						|
                                 DAG.getIntPtrConstant(1, dl));
 | 
						|
 | 
						|
        // Add the two halves of the long double in round-to-zero mode.
 | 
						|
        SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
 | 
						|
 | 
						|
        // Now use a smaller FP_TO_SINT.
 | 
						|
        return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
 | 
						|
      }
 | 
						|
      if (Op.getOpcode() == ISD::FP_TO_UINT) {
 | 
						|
        const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
 | 
						|
        APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
 | 
						|
        SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
 | 
						|
        //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
 | 
						|
        // FIXME: generated code sucks.
 | 
						|
        // TODO: Are there fast-math-flags to propagate to this FSUB?
 | 
						|
        SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
 | 
						|
                                   Op.getOperand(0), Tmp);
 | 
						|
        True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
 | 
						|
        True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
 | 
						|
                           DAG.getConstant(0x80000000, dl, MVT::i32));
 | 
						|
        SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
 | 
						|
                                    Op.getOperand(0));
 | 
						|
        return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
 | 
						|
                               ISD::SETGE);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
 | 
						|
    return LowerFP_TO_INTDirectMove(Op, DAG, dl);
 | 
						|
 | 
						|
  ReuseLoadInfo RLI;
 | 
						|
  LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
 | 
						|
 | 
						|
  return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
 | 
						|
                     RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
 | 
						|
}
 | 
						|
 | 
						|
// We're trying to insert a regular store, S, and then a load, L. If the
 | 
						|
// incoming value, O, is a load, we might just be able to have our load use the
 | 
						|
// address used by O. However, we don't know if anything else will store to
 | 
						|
// that address before we can load from it. To prevent this situation, we need
 | 
						|
// to insert our load, L, into the chain as a peer of O. To do this, we give L
 | 
						|
// the same chain operand as O, we create a token factor from the chain results
 | 
						|
// of O and L, and we replace all uses of O's chain result with that token
 | 
						|
// factor (see spliceIntoChain below for this last part).
 | 
						|
bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
 | 
						|
                                            ReuseLoadInfo &RLI,
 | 
						|
                                            SelectionDAG &DAG,
 | 
						|
                                            ISD::LoadExtType ET) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  if (ET == ISD::NON_EXTLOAD &&
 | 
						|
      (Op.getOpcode() == ISD::FP_TO_UINT ||
 | 
						|
       Op.getOpcode() == ISD::FP_TO_SINT) &&
 | 
						|
      isOperationLegalOrCustom(Op.getOpcode(),
 | 
						|
                               Op.getOperand(0).getValueType())) {
 | 
						|
 | 
						|
    LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
 | 
						|
  if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
 | 
						|
      LD->isNonTemporal())
 | 
						|
    return false;
 | 
						|
  if (LD->getMemoryVT() != MemVT)
 | 
						|
    return false;
 | 
						|
 | 
						|
  RLI.Ptr = LD->getBasePtr();
 | 
						|
  if (LD->isIndexed() && !LD->getOffset().isUndef()) {
 | 
						|
    assert(LD->getAddressingMode() == ISD::PRE_INC &&
 | 
						|
           "Non-pre-inc AM on PPC?");
 | 
						|
    RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
 | 
						|
                          LD->getOffset());
 | 
						|
  }
 | 
						|
 | 
						|
  RLI.Chain = LD->getChain();
 | 
						|
  RLI.MPI = LD->getPointerInfo();
 | 
						|
  RLI.IsDereferenceable = LD->isDereferenceable();
 | 
						|
  RLI.IsInvariant = LD->isInvariant();
 | 
						|
  RLI.Alignment = LD->getAlignment();
 | 
						|
  RLI.AAInfo = LD->getAAInfo();
 | 
						|
  RLI.Ranges = LD->getRanges();
 | 
						|
 | 
						|
  RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Given the head of the old chain, ResChain, insert a token factor containing
 | 
						|
// it and NewResChain, and make users of ResChain now be users of that token
 | 
						|
// factor.
 | 
						|
// TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
 | 
						|
void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
 | 
						|
                                        SDValue NewResChain,
 | 
						|
                                        SelectionDAG &DAG) const {
 | 
						|
  if (!ResChain)
 | 
						|
    return;
 | 
						|
 | 
						|
  SDLoc dl(NewResChain);
 | 
						|
 | 
						|
  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | 
						|
                           NewResChain, DAG.getUNDEF(MVT::Other));
 | 
						|
  assert(TF.getNode() != NewResChain.getNode() &&
 | 
						|
         "A new TF really is required here");
 | 
						|
 | 
						|
  DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
 | 
						|
  DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze profitability of direct move
 | 
						|
/// prefer float load to int load plus direct move
 | 
						|
/// when there is no integer use of int load
 | 
						|
bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
 | 
						|
  SDNode *Origin = Op.getOperand(0).getNode();
 | 
						|
  if (Origin->getOpcode() != ISD::LOAD)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If there is no LXSIBZX/LXSIHZX, like Power8,
 | 
						|
  // prefer direct move if the memory size is 1 or 2 bytes.
 | 
						|
  MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
 | 
						|
  if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
 | 
						|
    return true;
 | 
						|
 | 
						|
  for (SDNode::use_iterator UI = Origin->use_begin(),
 | 
						|
                            UE = Origin->use_end();
 | 
						|
       UI != UE; ++UI) {
 | 
						|
 | 
						|
    // Only look at the users of the loaded value.
 | 
						|
    if (UI.getUse().get().getResNo() != 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (UI->getOpcode() != ISD::SINT_TO_FP &&
 | 
						|
        UI->getOpcode() != ISD::UINT_TO_FP)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Custom lowers integer to floating point conversions to use
 | 
						|
/// the direct move instructions available in ISA 2.07 to avoid the
 | 
						|
/// need for load/store combinations.
 | 
						|
SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
 | 
						|
                                                    SelectionDAG &DAG,
 | 
						|
                                                    const SDLoc &dl) const {
 | 
						|
  assert((Op.getValueType() == MVT::f32 ||
 | 
						|
          Op.getValueType() == MVT::f64) &&
 | 
						|
         "Invalid floating point type as target of conversion");
 | 
						|
  assert(Subtarget.hasFPCVT() &&
 | 
						|
         "Int to FP conversions with direct moves require FPCVT");
 | 
						|
  SDValue FP;
 | 
						|
  SDValue Src = Op.getOperand(0);
 | 
						|
  bool SinglePrec = Op.getValueType() == MVT::f32;
 | 
						|
  bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
 | 
						|
  bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
 | 
						|
  unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
 | 
						|
                             (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
 | 
						|
 | 
						|
  if (WordInt) {
 | 
						|
    FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
 | 
						|
                     dl, MVT::f64, Src);
 | 
						|
    FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
 | 
						|
    FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
 | 
						|
  }
 | 
						|
 | 
						|
  return FP;
 | 
						|
}
 | 
						|
 | 
						|
static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
 | 
						|
 | 
						|
  EVT VecVT = Vec.getValueType();
 | 
						|
  assert(VecVT.isVector() && "Expected a vector type.");
 | 
						|
  assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
 | 
						|
 | 
						|
  EVT EltVT = VecVT.getVectorElementType();
 | 
						|
  unsigned WideNumElts = 128 / EltVT.getSizeInBits();
 | 
						|
  EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
 | 
						|
 | 
						|
  unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
 | 
						|
  SmallVector<SDValue, 16> Ops(NumConcat);
 | 
						|
  Ops[0] = Vec;
 | 
						|
  SDValue UndefVec = DAG.getUNDEF(VecVT);
 | 
						|
  for (unsigned i = 1; i < NumConcat; ++i)
 | 
						|
    Ops[i] = UndefVec;
 | 
						|
 | 
						|
  return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op,
 | 
						|
                                                SelectionDAG &DAG,
 | 
						|
                                                const SDLoc &dl) const {
 | 
						|
 | 
						|
  unsigned Opc = Op.getOpcode();
 | 
						|
  assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
 | 
						|
         "Unexpected conversion type");
 | 
						|
  assert(Op.getValueType() == MVT::v2f64 && "Supports v2f64 only.");
 | 
						|
 | 
						|
  // CPU's prior to P9 don't have a way to sign-extend in vectors.
 | 
						|
  bool SignedConv = Opc == ISD::SINT_TO_FP;
 | 
						|
  if (SignedConv && !Subtarget.hasP9Altivec())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
 | 
						|
  EVT WideVT = Wide.getValueType();
 | 
						|
  unsigned WideNumElts = WideVT.getVectorNumElements();
 | 
						|
 | 
						|
  SmallVector<int, 16> ShuffV;
 | 
						|
  for (unsigned i = 0; i < WideNumElts; ++i)
 | 
						|
    ShuffV.push_back(i + WideNumElts);
 | 
						|
 | 
						|
  if (Subtarget.isLittleEndian()) {
 | 
						|
    ShuffV[0] = 0;
 | 
						|
    ShuffV[WideNumElts / 2] = 1;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    ShuffV[WideNumElts / 2 - 1] = 0;
 | 
						|
    ShuffV[WideNumElts - 1] = 1;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue ShuffleSrc2 = SignedConv ? DAG.getUNDEF(WideVT) :
 | 
						|
                                     DAG.getConstant(0, dl, WideVT);
 | 
						|
  SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
 | 
						|
  unsigned ExtendOp = SignedConv ? (unsigned) PPCISD::SExtVElems :
 | 
						|
                                   (unsigned) ISD::BITCAST;
 | 
						|
  SDValue Extend = DAG.getNode(ExtendOp, dl, MVT::v2i64, Arrange);
 | 
						|
 | 
						|
  return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
 | 
						|
                                          SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  if (Op.getValueType() == MVT::v2f64 &&
 | 
						|
      Op.getOperand(0).getValueType() == MVT::v2i16)
 | 
						|
    return LowerINT_TO_FPVector(Op, DAG, dl);
 | 
						|
 | 
						|
  // Conversions to f128 are legal.
 | 
						|
  if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
 | 
						|
    return Op;
 | 
						|
 | 
						|
  if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
 | 
						|
    if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDValue Value = Op.getOperand(0);
 | 
						|
    // The values are now known to be -1 (false) or 1 (true). To convert this
 | 
						|
    // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
 | 
						|
    // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
 | 
						|
    Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
 | 
						|
 | 
						|
    SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
 | 
						|
 | 
						|
    Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
 | 
						|
 | 
						|
    if (Op.getValueType() != MVT::v4f64)
 | 
						|
      Value = DAG.getNode(ISD::FP_ROUND, dl,
 | 
						|
                          Op.getValueType(), Value,
 | 
						|
                          DAG.getIntPtrConstant(1, dl));
 | 
						|
    return Value;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
 | 
						|
  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (Op.getOperand(0).getValueType() == MVT::i1)
 | 
						|
    return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
 | 
						|
                       DAG.getConstantFP(1.0, dl, Op.getValueType()),
 | 
						|
                       DAG.getConstantFP(0.0, dl, Op.getValueType()));
 | 
						|
 | 
						|
  // If we have direct moves, we can do all the conversion, skip the store/load
 | 
						|
  // however, without FPCVT we can't do most conversions.
 | 
						|
  if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
 | 
						|
      Subtarget.isPPC64() && Subtarget.hasFPCVT())
 | 
						|
    return LowerINT_TO_FPDirectMove(Op, DAG, dl);
 | 
						|
 | 
						|
  assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
 | 
						|
         "UINT_TO_FP is supported only with FPCVT");
 | 
						|
 | 
						|
  // If we have FCFIDS, then use it when converting to single-precision.
 | 
						|
  // Otherwise, convert to double-precision and then round.
 | 
						|
  unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
 | 
						|
                       ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
 | 
						|
                                                            : PPCISD::FCFIDS)
 | 
						|
                       : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
 | 
						|
                                                            : PPCISD::FCFID);
 | 
						|
  MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
 | 
						|
                  ? MVT::f32
 | 
						|
                  : MVT::f64;
 | 
						|
 | 
						|
  if (Op.getOperand(0).getValueType() == MVT::i64) {
 | 
						|
    SDValue SINT = Op.getOperand(0);
 | 
						|
    // When converting to single-precision, we actually need to convert
 | 
						|
    // to double-precision first and then round to single-precision.
 | 
						|
    // To avoid double-rounding effects during that operation, we have
 | 
						|
    // to prepare the input operand.  Bits that might be truncated when
 | 
						|
    // converting to double-precision are replaced by a bit that won't
 | 
						|
    // be lost at this stage, but is below the single-precision rounding
 | 
						|
    // position.
 | 
						|
    //
 | 
						|
    // However, if -enable-unsafe-fp-math is in effect, accept double
 | 
						|
    // rounding to avoid the extra overhead.
 | 
						|
    if (Op.getValueType() == MVT::f32 &&
 | 
						|
        !Subtarget.hasFPCVT() &&
 | 
						|
        !DAG.getTarget().Options.UnsafeFPMath) {
 | 
						|
 | 
						|
      // Twiddle input to make sure the low 11 bits are zero.  (If this
 | 
						|
      // is the case, we are guaranteed the value will fit into the 53 bit
 | 
						|
      // mantissa of an IEEE double-precision value without rounding.)
 | 
						|
      // If any of those low 11 bits were not zero originally, make sure
 | 
						|
      // bit 12 (value 2048) is set instead, so that the final rounding
 | 
						|
      // to single-precision gets the correct result.
 | 
						|
      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
 | 
						|
                                  SINT, DAG.getConstant(2047, dl, MVT::i64));
 | 
						|
      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
 | 
						|
                          Round, DAG.getConstant(2047, dl, MVT::i64));
 | 
						|
      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
 | 
						|
      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
 | 
						|
                          Round, DAG.getConstant(-2048, dl, MVT::i64));
 | 
						|
 | 
						|
      // However, we cannot use that value unconditionally: if the magnitude
 | 
						|
      // of the input value is small, the bit-twiddling we did above might
 | 
						|
      // end up visibly changing the output.  Fortunately, in that case, we
 | 
						|
      // don't need to twiddle bits since the original input will convert
 | 
						|
      // exactly to double-precision floating-point already.  Therefore,
 | 
						|
      // construct a conditional to use the original value if the top 11
 | 
						|
      // bits are all sign-bit copies, and use the rounded value computed
 | 
						|
      // above otherwise.
 | 
						|
      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
 | 
						|
                                 SINT, DAG.getConstant(53, dl, MVT::i32));
 | 
						|
      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
 | 
						|
                         Cond, DAG.getConstant(1, dl, MVT::i64));
 | 
						|
      Cond = DAG.getSetCC(dl, MVT::i32,
 | 
						|
                          Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
 | 
						|
 | 
						|
      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
 | 
						|
    }
 | 
						|
 | 
						|
    ReuseLoadInfo RLI;
 | 
						|
    SDValue Bits;
 | 
						|
 | 
						|
    MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
    if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
 | 
						|
      Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
 | 
						|
                         RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
 | 
						|
      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
 | 
						|
    } else if (Subtarget.hasLFIWAX() &&
 | 
						|
               canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
 | 
						|
      MachineMemOperand *MMO =
 | 
						|
        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
 | 
						|
                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
 | 
						|
      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
 | 
						|
      Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
 | 
						|
                                     DAG.getVTList(MVT::f64, MVT::Other),
 | 
						|
                                     Ops, MVT::i32, MMO);
 | 
						|
      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
 | 
						|
    } else if (Subtarget.hasFPCVT() &&
 | 
						|
               canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
 | 
						|
      MachineMemOperand *MMO =
 | 
						|
        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
 | 
						|
                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
 | 
						|
      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
 | 
						|
      Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
 | 
						|
                                     DAG.getVTList(MVT::f64, MVT::Other),
 | 
						|
                                     Ops, MVT::i32, MMO);
 | 
						|
      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
 | 
						|
    } else if (((Subtarget.hasLFIWAX() &&
 | 
						|
                 SINT.getOpcode() == ISD::SIGN_EXTEND) ||
 | 
						|
                (Subtarget.hasFPCVT() &&
 | 
						|
                 SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
 | 
						|
               SINT.getOperand(0).getValueType() == MVT::i32) {
 | 
						|
      MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
      EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
 | 
						|
      int FrameIdx = MFI.CreateStackObject(4, 4, false);
 | 
						|
      SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | 
						|
 | 
						|
      SDValue Store =
 | 
						|
          DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
 | 
						|
                       MachinePointerInfo::getFixedStack(
 | 
						|
                           DAG.getMachineFunction(), FrameIdx));
 | 
						|
 | 
						|
      assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
 | 
						|
             "Expected an i32 store");
 | 
						|
 | 
						|
      RLI.Ptr = FIdx;
 | 
						|
      RLI.Chain = Store;
 | 
						|
      RLI.MPI =
 | 
						|
          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
 | 
						|
      RLI.Alignment = 4;
 | 
						|
 | 
						|
      MachineMemOperand *MMO =
 | 
						|
        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
 | 
						|
                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
 | 
						|
      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
 | 
						|
      Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
 | 
						|
                                     PPCISD::LFIWZX : PPCISD::LFIWAX,
 | 
						|
                                     dl, DAG.getVTList(MVT::f64, MVT::Other),
 | 
						|
                                     Ops, MVT::i32, MMO);
 | 
						|
    } else
 | 
						|
      Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
 | 
						|
 | 
						|
    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
 | 
						|
 | 
						|
    if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
 | 
						|
      FP = DAG.getNode(ISD::FP_ROUND, dl,
 | 
						|
                       MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
 | 
						|
    return FP;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
 | 
						|
         "Unhandled INT_TO_FP type in custom expander!");
 | 
						|
  // Since we only generate this in 64-bit mode, we can take advantage of
 | 
						|
  // 64-bit registers.  In particular, sign extend the input value into the
 | 
						|
  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
 | 
						|
  // then lfd it and fcfid it.
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
 | 
						|
  SDValue Ld;
 | 
						|
  if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
 | 
						|
    ReuseLoadInfo RLI;
 | 
						|
    bool ReusingLoad;
 | 
						|
    if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
 | 
						|
                                            DAG))) {
 | 
						|
      int FrameIdx = MFI.CreateStackObject(4, 4, false);
 | 
						|
      SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | 
						|
 | 
						|
      SDValue Store =
 | 
						|
          DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
 | 
						|
                       MachinePointerInfo::getFixedStack(
 | 
						|
                           DAG.getMachineFunction(), FrameIdx));
 | 
						|
 | 
						|
      assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
 | 
						|
             "Expected an i32 store");
 | 
						|
 | 
						|
      RLI.Ptr = FIdx;
 | 
						|
      RLI.Chain = Store;
 | 
						|
      RLI.MPI =
 | 
						|
          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
 | 
						|
      RLI.Alignment = 4;
 | 
						|
    }
 | 
						|
 | 
						|
    MachineMemOperand *MMO =
 | 
						|
      MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
 | 
						|
                              RLI.Alignment, RLI.AAInfo, RLI.Ranges);
 | 
						|
    SDValue Ops[] = { RLI.Chain, RLI.Ptr };
 | 
						|
    Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
 | 
						|
                                   PPCISD::LFIWZX : PPCISD::LFIWAX,
 | 
						|
                                 dl, DAG.getVTList(MVT::f64, MVT::Other),
 | 
						|
                                 Ops, MVT::i32, MMO);
 | 
						|
    if (ReusingLoad)
 | 
						|
      spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
 | 
						|
  } else {
 | 
						|
    assert(Subtarget.isPPC64() &&
 | 
						|
           "i32->FP without LFIWAX supported only on PPC64");
 | 
						|
 | 
						|
    int FrameIdx = MFI.CreateStackObject(8, 8, false);
 | 
						|
    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | 
						|
 | 
						|
    SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
 | 
						|
                                Op.getOperand(0));
 | 
						|
 | 
						|
    // STD the extended value into the stack slot.
 | 
						|
    SDValue Store = DAG.getStore(
 | 
						|
        DAG.getEntryNode(), dl, Ext64, FIdx,
 | 
						|
        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
 | 
						|
 | 
						|
    // Load the value as a double.
 | 
						|
    Ld = DAG.getLoad(
 | 
						|
        MVT::f64, dl, Store, FIdx,
 | 
						|
        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
 | 
						|
  }
 | 
						|
 | 
						|
  // FCFID it and return it.
 | 
						|
  SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
 | 
						|
  if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
 | 
						|
    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
 | 
						|
                     DAG.getIntPtrConstant(0, dl));
 | 
						|
  return FP;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
 | 
						|
                                            SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  /*
 | 
						|
   The rounding mode is in bits 30:31 of FPSR, and has the following
 | 
						|
   settings:
 | 
						|
     00 Round to nearest
 | 
						|
     01 Round to 0
 | 
						|
     10 Round to +inf
 | 
						|
     11 Round to -inf
 | 
						|
 | 
						|
  FLT_ROUNDS, on the other hand, expects the following:
 | 
						|
    -1 Undefined
 | 
						|
     0 Round to 0
 | 
						|
     1 Round to nearest
 | 
						|
     2 Round to +inf
 | 
						|
     3 Round to -inf
 | 
						|
 | 
						|
  To perform the conversion, we do:
 | 
						|
    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
 | 
						|
  */
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
 | 
						|
  // Save FP Control Word to register
 | 
						|
  EVT NodeTys[] = {
 | 
						|
    MVT::f64,    // return register
 | 
						|
    MVT::Glue    // unused in this context
 | 
						|
  };
 | 
						|
  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
 | 
						|
 | 
						|
  // Save FP register to stack slot
 | 
						|
  int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
 | 
						|
  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
 | 
						|
  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
 | 
						|
                               MachinePointerInfo());
 | 
						|
 | 
						|
  // Load FP Control Word from low 32 bits of stack slot.
 | 
						|
  SDValue Four = DAG.getConstant(4, dl, PtrVT);
 | 
						|
  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
 | 
						|
  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
 | 
						|
 | 
						|
  // Transform as necessary
 | 
						|
  SDValue CWD1 =
 | 
						|
    DAG.getNode(ISD::AND, dl, MVT::i32,
 | 
						|
                CWD, DAG.getConstant(3, dl, MVT::i32));
 | 
						|
  SDValue CWD2 =
 | 
						|
    DAG.getNode(ISD::SRL, dl, MVT::i32,
 | 
						|
                DAG.getNode(ISD::AND, dl, MVT::i32,
 | 
						|
                            DAG.getNode(ISD::XOR, dl, MVT::i32,
 | 
						|
                                        CWD, DAG.getConstant(3, dl, MVT::i32)),
 | 
						|
                            DAG.getConstant(3, dl, MVT::i32)),
 | 
						|
                DAG.getConstant(1, dl, MVT::i32));
 | 
						|
 | 
						|
  SDValue RetVal =
 | 
						|
    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
 | 
						|
 | 
						|
  return DAG.getNode((VT.getSizeInBits() < 16 ?
 | 
						|
                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  unsigned BitWidth = VT.getSizeInBits();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  assert(Op.getNumOperands() == 3 &&
 | 
						|
         VT == Op.getOperand(1).getValueType() &&
 | 
						|
         "Unexpected SHL!");
 | 
						|
 | 
						|
  // Expand into a bunch of logical ops.  Note that these ops
 | 
						|
  // depend on the PPC behavior for oversized shift amounts.
 | 
						|
  SDValue Lo = Op.getOperand(0);
 | 
						|
  SDValue Hi = Op.getOperand(1);
 | 
						|
  SDValue Amt = Op.getOperand(2);
 | 
						|
  EVT AmtVT = Amt.getValueType();
 | 
						|
 | 
						|
  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
 | 
						|
                             DAG.getConstant(BitWidth, dl, AmtVT), Amt);
 | 
						|
  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
 | 
						|
  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
 | 
						|
  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
 | 
						|
  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
 | 
						|
                             DAG.getConstant(-BitWidth, dl, AmtVT));
 | 
						|
  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
 | 
						|
  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
 | 
						|
  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
 | 
						|
  SDValue OutOps[] = { OutLo, OutHi };
 | 
						|
  return DAG.getMergeValues(OutOps, dl);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  unsigned BitWidth = VT.getSizeInBits();
 | 
						|
  assert(Op.getNumOperands() == 3 &&
 | 
						|
         VT == Op.getOperand(1).getValueType() &&
 | 
						|
         "Unexpected SRL!");
 | 
						|
 | 
						|
  // Expand into a bunch of logical ops.  Note that these ops
 | 
						|
  // depend on the PPC behavior for oversized shift amounts.
 | 
						|
  SDValue Lo = Op.getOperand(0);
 | 
						|
  SDValue Hi = Op.getOperand(1);
 | 
						|
  SDValue Amt = Op.getOperand(2);
 | 
						|
  EVT AmtVT = Amt.getValueType();
 | 
						|
 | 
						|
  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
 | 
						|
                             DAG.getConstant(BitWidth, dl, AmtVT), Amt);
 | 
						|
  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
 | 
						|
  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
 | 
						|
  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
 | 
						|
  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
 | 
						|
                             DAG.getConstant(-BitWidth, dl, AmtVT));
 | 
						|
  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
 | 
						|
  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
 | 
						|
  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
 | 
						|
  SDValue OutOps[] = { OutLo, OutHi };
 | 
						|
  return DAG.getMergeValues(OutOps, dl);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  unsigned BitWidth = VT.getSizeInBits();
 | 
						|
  assert(Op.getNumOperands() == 3 &&
 | 
						|
         VT == Op.getOperand(1).getValueType() &&
 | 
						|
         "Unexpected SRA!");
 | 
						|
 | 
						|
  // Expand into a bunch of logical ops, followed by a select_cc.
 | 
						|
  SDValue Lo = Op.getOperand(0);
 | 
						|
  SDValue Hi = Op.getOperand(1);
 | 
						|
  SDValue Amt = Op.getOperand(2);
 | 
						|
  EVT AmtVT = Amt.getValueType();
 | 
						|
 | 
						|
  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
 | 
						|
                             DAG.getConstant(BitWidth, dl, AmtVT), Amt);
 | 
						|
  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
 | 
						|
  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
 | 
						|
  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
 | 
						|
  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
 | 
						|
                             DAG.getConstant(-BitWidth, dl, AmtVT));
 | 
						|
  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
 | 
						|
  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
 | 
						|
  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
 | 
						|
                                  Tmp4, Tmp6, ISD::SETLE);
 | 
						|
  SDValue OutOps[] = { OutLo, OutHi };
 | 
						|
  return DAG.getMergeValues(OutOps, dl);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Vector related lowering.
 | 
						|
//
 | 
						|
 | 
						|
/// BuildSplatI - Build a canonical splati of Val with an element size of
 | 
						|
/// SplatSize.  Cast the result to VT.
 | 
						|
static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
 | 
						|
                           SelectionDAG &DAG, const SDLoc &dl) {
 | 
						|
  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
 | 
						|
 | 
						|
  static const MVT VTys[] = { // canonical VT to use for each size.
 | 
						|
    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
 | 
						|
  };
 | 
						|
 | 
						|
  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
 | 
						|
 | 
						|
  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
 | 
						|
  if (Val == -1)
 | 
						|
    SplatSize = 1;
 | 
						|
 | 
						|
  EVT CanonicalVT = VTys[SplatSize-1];
 | 
						|
 | 
						|
  // Build a canonical splat for this value.
 | 
						|
  return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
 | 
						|
}
 | 
						|
 | 
						|
/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
 | 
						|
/// specified intrinsic ID.
 | 
						|
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
 | 
						|
                                const SDLoc &dl, EVT DestVT = MVT::Other) {
 | 
						|
  if (DestVT == MVT::Other) DestVT = Op.getValueType();
 | 
						|
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
 | 
						|
                     DAG.getConstant(IID, dl, MVT::i32), Op);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
 | 
						|
/// specified intrinsic ID.
 | 
						|
static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
 | 
						|
                                SelectionDAG &DAG, const SDLoc &dl,
 | 
						|
                                EVT DestVT = MVT::Other) {
 | 
						|
  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
 | 
						|
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
 | 
						|
                     DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
 | 
						|
/// specified intrinsic ID.
 | 
						|
static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
 | 
						|
                                SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
 | 
						|
                                EVT DestVT = MVT::Other) {
 | 
						|
  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
 | 
						|
  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
 | 
						|
                     DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
 | 
						|
/// amount.  The result has the specified value type.
 | 
						|
static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
 | 
						|
                           SelectionDAG &DAG, const SDLoc &dl) {
 | 
						|
  // Force LHS/RHS to be the right type.
 | 
						|
  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
 | 
						|
  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
 | 
						|
 | 
						|
  int Ops[16];
 | 
						|
  for (unsigned i = 0; i != 16; ++i)
 | 
						|
    Ops[i] = i + Amt;
 | 
						|
  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
 | 
						|
  return DAG.getNode(ISD::BITCAST, dl, VT, T);
 | 
						|
}
 | 
						|
 | 
						|
/// Do we have an efficient pattern in a .td file for this node?
 | 
						|
///
 | 
						|
/// \param V - pointer to the BuildVectorSDNode being matched
 | 
						|
/// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
 | 
						|
///
 | 
						|
/// There are some patterns where it is beneficial to keep a BUILD_VECTOR
 | 
						|
/// node as a BUILD_VECTOR node rather than expanding it. The patterns where
 | 
						|
/// the opposite is true (expansion is beneficial) are:
 | 
						|
/// - The node builds a vector out of integers that are not 32 or 64-bits
 | 
						|
/// - The node builds a vector out of constants
 | 
						|
/// - The node is a "load-and-splat"
 | 
						|
/// In all other cases, we will choose to keep the BUILD_VECTOR.
 | 
						|
static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
 | 
						|
                                            bool HasDirectMove,
 | 
						|
                                            bool HasP8Vector) {
 | 
						|
  EVT VecVT = V->getValueType(0);
 | 
						|
  bool RightType = VecVT == MVT::v2f64 ||
 | 
						|
    (HasP8Vector && VecVT == MVT::v4f32) ||
 | 
						|
    (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
 | 
						|
  if (!RightType)
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool IsSplat = true;
 | 
						|
  bool IsLoad = false;
 | 
						|
  SDValue Op0 = V->getOperand(0);
 | 
						|
 | 
						|
  // This function is called in a block that confirms the node is not a constant
 | 
						|
  // splat. So a constant BUILD_VECTOR here means the vector is built out of
 | 
						|
  // different constants.
 | 
						|
  if (V->isConstant())
 | 
						|
    return false;
 | 
						|
  for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
 | 
						|
    if (V->getOperand(i).isUndef())
 | 
						|
      return false;
 | 
						|
    // We want to expand nodes that represent load-and-splat even if the
 | 
						|
    // loaded value is a floating point truncation or conversion to int.
 | 
						|
    if (V->getOperand(i).getOpcode() == ISD::LOAD ||
 | 
						|
        (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
 | 
						|
         V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
 | 
						|
        (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
 | 
						|
         V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
 | 
						|
        (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
 | 
						|
         V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
 | 
						|
      IsLoad = true;
 | 
						|
    // If the operands are different or the input is not a load and has more
 | 
						|
    // uses than just this BV node, then it isn't a splat.
 | 
						|
    if (V->getOperand(i) != Op0 ||
 | 
						|
        (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
 | 
						|
      IsSplat = false;
 | 
						|
  }
 | 
						|
  return !(IsSplat && IsLoad);
 | 
						|
}
 | 
						|
 | 
						|
// Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
 | 
						|
SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue Op0 = Op->getOperand(0);
 | 
						|
 | 
						|
  if (!EnableQuadPrecision ||
 | 
						|
      (Op.getValueType() != MVT::f128 ) ||
 | 
						|
      (Op0.getOpcode() != ISD::BUILD_PAIR) ||
 | 
						|
      (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
 | 
						|
      (Op0.getOperand(1).getValueType() != MVT::i64))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
 | 
						|
                     Op0.getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
// If this is a case we can't handle, return null and let the default
 | 
						|
// expansion code take care of it.  If we CAN select this case, and if it
 | 
						|
// selects to a single instruction, return Op.  Otherwise, if we can codegen
 | 
						|
// this case more efficiently than a constant pool load, lower it to the
 | 
						|
// sequence of ops that should be used.
 | 
						|
SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
 | 
						|
                                             SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
 | 
						|
  assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
 | 
						|
 | 
						|
  if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
 | 
						|
    // We first build an i32 vector, load it into a QPX register,
 | 
						|
    // then convert it to a floating-point vector and compare it
 | 
						|
    // to a zero vector to get the boolean result.
 | 
						|
    MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
    int FrameIdx = MFI.CreateStackObject(16, 16, false);
 | 
						|
    MachinePointerInfo PtrInfo =
 | 
						|
        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
 | 
						|
    EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | 
						|
 | 
						|
    assert(BVN->getNumOperands() == 4 &&
 | 
						|
      "BUILD_VECTOR for v4i1 does not have 4 operands");
 | 
						|
 | 
						|
    bool IsConst = true;
 | 
						|
    for (unsigned i = 0; i < 4; ++i) {
 | 
						|
      if (BVN->getOperand(i).isUndef()) continue;
 | 
						|
      if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
 | 
						|
        IsConst = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (IsConst) {
 | 
						|
      Constant *One =
 | 
						|
        ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
 | 
						|
      Constant *NegOne =
 | 
						|
        ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
 | 
						|
 | 
						|
      Constant *CV[4];
 | 
						|
      for (unsigned i = 0; i < 4; ++i) {
 | 
						|
        if (BVN->getOperand(i).isUndef())
 | 
						|
          CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
 | 
						|
        else if (isNullConstant(BVN->getOperand(i)))
 | 
						|
          CV[i] = NegOne;
 | 
						|
        else
 | 
						|
          CV[i] = One;
 | 
						|
      }
 | 
						|
 | 
						|
      Constant *CP = ConstantVector::get(CV);
 | 
						|
      SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
 | 
						|
                                          16 /* alignment */);
 | 
						|
 | 
						|
      SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
 | 
						|
      SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
 | 
						|
      return DAG.getMemIntrinsicNode(
 | 
						|
          PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
 | 
						|
          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<SDValue, 4> Stores;
 | 
						|
    for (unsigned i = 0; i < 4; ++i) {
 | 
						|
      if (BVN->getOperand(i).isUndef()) continue;
 | 
						|
 | 
						|
      unsigned Offset = 4*i;
 | 
						|
      SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
 | 
						|
      Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
 | 
						|
 | 
						|
      unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
 | 
						|
      if (StoreSize > 4) {
 | 
						|
        Stores.push_back(
 | 
						|
            DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
 | 
						|
                              PtrInfo.getWithOffset(Offset), MVT::i32));
 | 
						|
      } else {
 | 
						|
        SDValue StoreValue = BVN->getOperand(i);
 | 
						|
        if (StoreSize < 4)
 | 
						|
          StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
 | 
						|
 | 
						|
        Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
 | 
						|
                                      PtrInfo.getWithOffset(Offset)));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue StoreChain;
 | 
						|
    if (!Stores.empty())
 | 
						|
      StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
 | 
						|
    else
 | 
						|
      StoreChain = DAG.getEntryNode();
 | 
						|
 | 
						|
    // Now load from v4i32 into the QPX register; this will extend it to
 | 
						|
    // v4i64 but not yet convert it to a floating point. Nevertheless, this
 | 
						|
    // is typed as v4f64 because the QPX register integer states are not
 | 
						|
    // explicitly represented.
 | 
						|
 | 
						|
    SDValue Ops[] = {StoreChain,
 | 
						|
                     DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
 | 
						|
                     FIdx};
 | 
						|
    SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
 | 
						|
 | 
						|
    SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
 | 
						|
      dl, VTs, Ops, MVT::v4i32, PtrInfo);
 | 
						|
    LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
 | 
						|
      DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
 | 
						|
      LoadedVect);
 | 
						|
 | 
						|
    SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
 | 
						|
 | 
						|
    return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
 | 
						|
  }
 | 
						|
 | 
						|
  // All other QPX vectors are handled by generic code.
 | 
						|
  if (Subtarget.hasQPX())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Check if this is a splat of a constant value.
 | 
						|
  APInt APSplatBits, APSplatUndef;
 | 
						|
  unsigned SplatBitSize;
 | 
						|
  bool HasAnyUndefs;
 | 
						|
  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
 | 
						|
                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
 | 
						|
      SplatBitSize > 32) {
 | 
						|
    // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
 | 
						|
    // lowered to VSX instructions under certain conditions.
 | 
						|
    // Without VSX, there is no pattern more efficient than expanding the node.
 | 
						|
    if (Subtarget.hasVSX() &&
 | 
						|
        haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
 | 
						|
                                        Subtarget.hasP8Vector()))
 | 
						|
      return Op;
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned SplatBits = APSplatBits.getZExtValue();
 | 
						|
  unsigned SplatUndef = APSplatUndef.getZExtValue();
 | 
						|
  unsigned SplatSize = SplatBitSize / 8;
 | 
						|
 | 
						|
  // First, handle single instruction cases.
 | 
						|
 | 
						|
  // All zeros?
 | 
						|
  if (SplatBits == 0) {
 | 
						|
    // Canonicalize all zero vectors to be v4i32.
 | 
						|
    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
 | 
						|
      SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
 | 
						|
      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
 | 
						|
    }
 | 
						|
    return Op;
 | 
						|
  }
 | 
						|
 | 
						|
  // We have XXSPLTIB for constant splats one byte wide
 | 
						|
  if (Subtarget.hasP9Vector() && SplatSize == 1) {
 | 
						|
    // This is a splat of 1-byte elements with some elements potentially undef.
 | 
						|
    // Rather than trying to match undef in the SDAG patterns, ensure that all
 | 
						|
    // elements are the same constant.
 | 
						|
    if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
 | 
						|
      SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
 | 
						|
                                                       dl, MVT::i32));
 | 
						|
      SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
 | 
						|
      if (Op.getValueType() != MVT::v16i8)
 | 
						|
        return DAG.getBitcast(Op.getValueType(), NewBV);
 | 
						|
      return NewBV;
 | 
						|
    }
 | 
						|
 | 
						|
    // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
 | 
						|
    // detect that constant splats like v8i16: 0xABAB are really just splats
 | 
						|
    // of a 1-byte constant. In this case, we need to convert the node to a
 | 
						|
    // splat of v16i8 and a bitcast.
 | 
						|
    if (Op.getValueType() != MVT::v16i8)
 | 
						|
      return DAG.getBitcast(Op.getValueType(),
 | 
						|
                            DAG.getConstant(SplatBits, dl, MVT::v16i8));
 | 
						|
 | 
						|
    return Op;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
 | 
						|
  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
 | 
						|
                    (32-SplatBitSize));
 | 
						|
  if (SextVal >= -16 && SextVal <= 15)
 | 
						|
    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
 | 
						|
 | 
						|
  // Two instruction sequences.
 | 
						|
 | 
						|
  // If this value is in the range [-32,30] and is even, use:
 | 
						|
  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
 | 
						|
  // If this value is in the range [17,31] and is odd, use:
 | 
						|
  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
 | 
						|
  // If this value is in the range [-31,-17] and is odd, use:
 | 
						|
  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
 | 
						|
  // Note the last two are three-instruction sequences.
 | 
						|
  if (SextVal >= -32 && SextVal <= 31) {
 | 
						|
    // To avoid having these optimizations undone by constant folding,
 | 
						|
    // we convert to a pseudo that will be expanded later into one of
 | 
						|
    // the above forms.
 | 
						|
    SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
 | 
						|
    EVT VT = (SplatSize == 1 ? MVT::v16i8 :
 | 
						|
              (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
 | 
						|
    SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
 | 
						|
    SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
 | 
						|
    if (VT == Op.getValueType())
 | 
						|
      return RetVal;
 | 
						|
    else
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
 | 
						|
  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
 | 
						|
  // for fneg/fabs.
 | 
						|
  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
 | 
						|
    // Make -1 and vspltisw -1:
 | 
						|
    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
 | 
						|
 | 
						|
    // Make the VSLW intrinsic, computing 0x8000_0000.
 | 
						|
    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
 | 
						|
                                   OnesV, DAG, dl);
 | 
						|
 | 
						|
    // xor by OnesV to invert it.
 | 
						|
    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
 | 
						|
    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if this is a wide variety of vsplti*, binop self cases.
 | 
						|
  static const signed char SplatCsts[] = {
 | 
						|
    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
 | 
						|
    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
 | 
						|
  };
 | 
						|
 | 
						|
  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
 | 
						|
    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
 | 
						|
    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
 | 
						|
    int i = SplatCsts[idx];
 | 
						|
 | 
						|
    // Figure out what shift amount will be used by altivec if shifted by i in
 | 
						|
    // this splat size.
 | 
						|
    unsigned TypeShiftAmt = i & (SplatBitSize-1);
 | 
						|
 | 
						|
    // vsplti + shl self.
 | 
						|
    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
 | 
						|
      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
 | 
						|
      static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | 
						|
        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
 | 
						|
        Intrinsic::ppc_altivec_vslw
 | 
						|
      };
 | 
						|
      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | 
						|
    }
 | 
						|
 | 
						|
    // vsplti + srl self.
 | 
						|
    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
 | 
						|
      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
 | 
						|
      static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | 
						|
        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
 | 
						|
        Intrinsic::ppc_altivec_vsrw
 | 
						|
      };
 | 
						|
      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | 
						|
    }
 | 
						|
 | 
						|
    // vsplti + sra self.
 | 
						|
    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
 | 
						|
      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
 | 
						|
      static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | 
						|
        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
 | 
						|
        Intrinsic::ppc_altivec_vsraw
 | 
						|
      };
 | 
						|
      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | 
						|
    }
 | 
						|
 | 
						|
    // vsplti + rol self.
 | 
						|
    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
 | 
						|
                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
 | 
						|
      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
 | 
						|
      static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | 
						|
        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
 | 
						|
        Intrinsic::ppc_altivec_vrlw
 | 
						|
      };
 | 
						|
      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
 | 
						|
    }
 | 
						|
 | 
						|
    // t = vsplti c, result = vsldoi t, t, 1
 | 
						|
    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
 | 
						|
      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
 | 
						|
      unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
 | 
						|
      return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
 | 
						|
    }
 | 
						|
    // t = vsplti c, result = vsldoi t, t, 2
 | 
						|
    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
 | 
						|
      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
 | 
						|
      unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
 | 
						|
      return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
 | 
						|
    }
 | 
						|
    // t = vsplti c, result = vsldoi t, t, 3
 | 
						|
    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
 | 
						|
      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
 | 
						|
      unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
 | 
						|
      return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
 | 
						|
/// the specified operations to build the shuffle.
 | 
						|
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
 | 
						|
                                      SDValue RHS, SelectionDAG &DAG,
 | 
						|
                                      const SDLoc &dl) {
 | 
						|
  unsigned OpNum = (PFEntry >> 26) & 0x0F;
 | 
						|
  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
 | 
						|
  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
 | 
						|
 | 
						|
  enum {
 | 
						|
    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
 | 
						|
    OP_VMRGHW,
 | 
						|
    OP_VMRGLW,
 | 
						|
    OP_VSPLTISW0,
 | 
						|
    OP_VSPLTISW1,
 | 
						|
    OP_VSPLTISW2,
 | 
						|
    OP_VSPLTISW3,
 | 
						|
    OP_VSLDOI4,
 | 
						|
    OP_VSLDOI8,
 | 
						|
    OP_VSLDOI12
 | 
						|
  };
 | 
						|
 | 
						|
  if (OpNum == OP_COPY) {
 | 
						|
    if (LHSID == (1*9+2)*9+3) return LHS;
 | 
						|
    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
 | 
						|
    return RHS;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue OpLHS, OpRHS;
 | 
						|
  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
 | 
						|
  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
 | 
						|
 | 
						|
  int ShufIdxs[16];
 | 
						|
  switch (OpNum) {
 | 
						|
  default: llvm_unreachable("Unknown i32 permute!");
 | 
						|
  case OP_VMRGHW:
 | 
						|
    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
 | 
						|
    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
 | 
						|
    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
 | 
						|
    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
 | 
						|
    break;
 | 
						|
  case OP_VMRGLW:
 | 
						|
    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
 | 
						|
    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
 | 
						|
    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
 | 
						|
    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
 | 
						|
    break;
 | 
						|
  case OP_VSPLTISW0:
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      ShufIdxs[i] = (i&3)+0;
 | 
						|
    break;
 | 
						|
  case OP_VSPLTISW1:
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      ShufIdxs[i] = (i&3)+4;
 | 
						|
    break;
 | 
						|
  case OP_VSPLTISW2:
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      ShufIdxs[i] = (i&3)+8;
 | 
						|
    break;
 | 
						|
  case OP_VSPLTISW3:
 | 
						|
    for (unsigned i = 0; i != 16; ++i)
 | 
						|
      ShufIdxs[i] = (i&3)+12;
 | 
						|
    break;
 | 
						|
  case OP_VSLDOI4:
 | 
						|
    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
 | 
						|
  case OP_VSLDOI8:
 | 
						|
    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
 | 
						|
  case OP_VSLDOI12:
 | 
						|
    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
 | 
						|
  }
 | 
						|
  EVT VT = OpLHS.getValueType();
 | 
						|
  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
 | 
						|
  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
 | 
						|
  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
 | 
						|
  return DAG.getNode(ISD::BITCAST, dl, VT, T);
 | 
						|
}
 | 
						|
 | 
						|
/// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
 | 
						|
/// by the VINSERTB instruction introduced in ISA 3.0, else just return default
 | 
						|
/// SDValue.
 | 
						|
SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  const unsigned BytesInVector = 16;
 | 
						|
  bool IsLE = Subtarget.isLittleEndian();
 | 
						|
  SDLoc dl(N);
 | 
						|
  SDValue V1 = N->getOperand(0);
 | 
						|
  SDValue V2 = N->getOperand(1);
 | 
						|
  unsigned ShiftElts = 0, InsertAtByte = 0;
 | 
						|
  bool Swap = false;
 | 
						|
 | 
						|
  // Shifts required to get the byte we want at element 7.
 | 
						|
  unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
 | 
						|
                                   0, 15, 14, 13, 12, 11, 10, 9};
 | 
						|
  unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
 | 
						|
                                1, 2,  3,  4,  5,  6,  7,  8};
 | 
						|
 | 
						|
  ArrayRef<int> Mask = N->getMask();
 | 
						|
  int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
 | 
						|
 | 
						|
  // For each mask element, find out if we're just inserting something
 | 
						|
  // from V2 into V1 or vice versa.
 | 
						|
  // Possible permutations inserting an element from V2 into V1:
 | 
						|
  //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
 | 
						|
  //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
 | 
						|
  //   ...
 | 
						|
  //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
 | 
						|
  // Inserting from V1 into V2 will be similar, except mask range will be
 | 
						|
  // [16,31].
 | 
						|
 | 
						|
  bool FoundCandidate = false;
 | 
						|
  // If both vector operands for the shuffle are the same vector, the mask
 | 
						|
  // will contain only elements from the first one and the second one will be
 | 
						|
  // undef.
 | 
						|
  unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
 | 
						|
  // Go through the mask of half-words to find an element that's being moved
 | 
						|
  // from one vector to the other.
 | 
						|
  for (unsigned i = 0; i < BytesInVector; ++i) {
 | 
						|
    unsigned CurrentElement = Mask[i];
 | 
						|
    // If 2nd operand is undefined, we should only look for element 7 in the
 | 
						|
    // Mask.
 | 
						|
    if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool OtherElementsInOrder = true;
 | 
						|
    // Examine the other elements in the Mask to see if they're in original
 | 
						|
    // order.
 | 
						|
    for (unsigned j = 0; j < BytesInVector; ++j) {
 | 
						|
      if (j == i)
 | 
						|
        continue;
 | 
						|
      // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
 | 
						|
      // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
 | 
						|
      // in which we always assume we're always picking from the 1st operand.
 | 
						|
      int MaskOffset =
 | 
						|
          (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
 | 
						|
      if (Mask[j] != OriginalOrder[j] + MaskOffset) {
 | 
						|
        OtherElementsInOrder = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // If other elements are in original order, we record the number of shifts
 | 
						|
    // we need to get the element we want into element 7. Also record which byte
 | 
						|
    // in the vector we should insert into.
 | 
						|
    if (OtherElementsInOrder) {
 | 
						|
      // If 2nd operand is undefined, we assume no shifts and no swapping.
 | 
						|
      if (V2.isUndef()) {
 | 
						|
        ShiftElts = 0;
 | 
						|
        Swap = false;
 | 
						|
      } else {
 | 
						|
        // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
 | 
						|
        ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
 | 
						|
                         : BigEndianShifts[CurrentElement & 0xF];
 | 
						|
        Swap = CurrentElement < BytesInVector;
 | 
						|
      }
 | 
						|
      InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
 | 
						|
      FoundCandidate = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FoundCandidate)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Candidate found, construct the proper SDAG sequence with VINSERTB,
 | 
						|
  // optionally with VECSHL if shift is required.
 | 
						|
  if (Swap)
 | 
						|
    std::swap(V1, V2);
 | 
						|
  if (V2.isUndef())
 | 
						|
    V2 = V1;
 | 
						|
  if (ShiftElts) {
 | 
						|
    SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
 | 
						|
                              DAG.getConstant(ShiftElts, dl, MVT::i32));
 | 
						|
    return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
 | 
						|
                       DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | 
						|
  }
 | 
						|
  return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
 | 
						|
                     DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | 
						|
}
 | 
						|
 | 
						|
/// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
 | 
						|
/// by the VINSERTH instruction introduced in ISA 3.0, else just return default
 | 
						|
/// SDValue.
 | 
						|
SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  const unsigned NumHalfWords = 8;
 | 
						|
  const unsigned BytesInVector = NumHalfWords * 2;
 | 
						|
  // Check that the shuffle is on half-words.
 | 
						|
  if (!isNByteElemShuffleMask(N, 2, 1))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  bool IsLE = Subtarget.isLittleEndian();
 | 
						|
  SDLoc dl(N);
 | 
						|
  SDValue V1 = N->getOperand(0);
 | 
						|
  SDValue V2 = N->getOperand(1);
 | 
						|
  unsigned ShiftElts = 0, InsertAtByte = 0;
 | 
						|
  bool Swap = false;
 | 
						|
 | 
						|
  // Shifts required to get the half-word we want at element 3.
 | 
						|
  unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
 | 
						|
  unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
 | 
						|
 | 
						|
  uint32_t Mask = 0;
 | 
						|
  uint32_t OriginalOrderLow = 0x1234567;
 | 
						|
  uint32_t OriginalOrderHigh = 0x89ABCDEF;
 | 
						|
  // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
 | 
						|
  // 32-bit space, only need 4-bit nibbles per element.
 | 
						|
  for (unsigned i = 0; i < NumHalfWords; ++i) {
 | 
						|
    unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
 | 
						|
    Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
 | 
						|
  }
 | 
						|
 | 
						|
  // For each mask element, find out if we're just inserting something
 | 
						|
  // from V2 into V1 or vice versa.  Possible permutations inserting an element
 | 
						|
  // from V2 into V1:
 | 
						|
  //   X, 1, 2, 3, 4, 5, 6, 7
 | 
						|
  //   0, X, 2, 3, 4, 5, 6, 7
 | 
						|
  //   0, 1, X, 3, 4, 5, 6, 7
 | 
						|
  //   0, 1, 2, X, 4, 5, 6, 7
 | 
						|
  //   0, 1, 2, 3, X, 5, 6, 7
 | 
						|
  //   0, 1, 2, 3, 4, X, 6, 7
 | 
						|
  //   0, 1, 2, 3, 4, 5, X, 7
 | 
						|
  //   0, 1, 2, 3, 4, 5, 6, X
 | 
						|
  // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
 | 
						|
 | 
						|
  bool FoundCandidate = false;
 | 
						|
  // Go through the mask of half-words to find an element that's being moved
 | 
						|
  // from one vector to the other.
 | 
						|
  for (unsigned i = 0; i < NumHalfWords; ++i) {
 | 
						|
    unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
 | 
						|
    uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
 | 
						|
    uint32_t MaskOtherElts = ~(0xF << MaskShift);
 | 
						|
    uint32_t TargetOrder = 0x0;
 | 
						|
 | 
						|
    // If both vector operands for the shuffle are the same vector, the mask
 | 
						|
    // will contain only elements from the first one and the second one will be
 | 
						|
    // undef.
 | 
						|
    if (V2.isUndef()) {
 | 
						|
      ShiftElts = 0;
 | 
						|
      unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
 | 
						|
      TargetOrder = OriginalOrderLow;
 | 
						|
      Swap = false;
 | 
						|
      // Skip if not the correct element or mask of other elements don't equal
 | 
						|
      // to our expected order.
 | 
						|
      if (MaskOneElt == VINSERTHSrcElem &&
 | 
						|
          (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
 | 
						|
        InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
 | 
						|
        FoundCandidate = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else { // If both operands are defined.
 | 
						|
      // Target order is [8,15] if the current mask is between [0,7].
 | 
						|
      TargetOrder =
 | 
						|
          (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
 | 
						|
      // Skip if mask of other elements don't equal our expected order.
 | 
						|
      if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
 | 
						|
        // We only need the last 3 bits for the number of shifts.
 | 
						|
        ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
 | 
						|
                         : BigEndianShifts[MaskOneElt & 0x7];
 | 
						|
        InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
 | 
						|
        Swap = MaskOneElt < NumHalfWords;
 | 
						|
        FoundCandidate = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FoundCandidate)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Candidate found, construct the proper SDAG sequence with VINSERTH,
 | 
						|
  // optionally with VECSHL if shift is required.
 | 
						|
  if (Swap)
 | 
						|
    std::swap(V1, V2);
 | 
						|
  if (V2.isUndef())
 | 
						|
    V2 = V1;
 | 
						|
  SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
 | 
						|
  if (ShiftElts) {
 | 
						|
    // Double ShiftElts because we're left shifting on v16i8 type.
 | 
						|
    SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
 | 
						|
                              DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
 | 
						|
    SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
 | 
						|
    SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
 | 
						|
                              DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | 
						|
    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
 | 
						|
  }
 | 
						|
  SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
 | 
						|
  SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
 | 
						|
                            DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | 
						|
  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
 | 
						|
}
 | 
						|
 | 
						|
/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
 | 
						|
/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
 | 
						|
/// return the code it can be lowered into.  Worst case, it can always be
 | 
						|
/// lowered into a vperm.
 | 
						|
SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue V1 = Op.getOperand(0);
 | 
						|
  SDValue V2 = Op.getOperand(1);
 | 
						|
  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
 | 
						|
  unsigned ShiftElts, InsertAtByte;
 | 
						|
  bool Swap = false;
 | 
						|
  if (Subtarget.hasP9Vector() &&
 | 
						|
      PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
 | 
						|
                           isLittleEndian)) {
 | 
						|
    if (Swap)
 | 
						|
      std::swap(V1, V2);
 | 
						|
    SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
 | 
						|
    SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
 | 
						|
    if (ShiftElts) {
 | 
						|
      SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
 | 
						|
                                DAG.getConstant(ShiftElts, dl, MVT::i32));
 | 
						|
      SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
 | 
						|
                                DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
 | 
						|
    }
 | 
						|
    SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
 | 
						|
                              DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | 
						|
    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasP9Altivec()) {
 | 
						|
    SDValue NewISDNode;
 | 
						|
    if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
 | 
						|
      return NewISDNode;
 | 
						|
 | 
						|
    if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
 | 
						|
      return NewISDNode;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasVSX() &&
 | 
						|
      PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
 | 
						|
    if (Swap)
 | 
						|
      std::swap(V1, V2);
 | 
						|
    SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
 | 
						|
    SDValue Conv2 =
 | 
						|
        DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
 | 
						|
 | 
						|
    SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
 | 
						|
                              DAG.getConstant(ShiftElts, dl, MVT::i32));
 | 
						|
    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasVSX() &&
 | 
						|
    PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
 | 
						|
    if (Swap)
 | 
						|
      std::swap(V1, V2);
 | 
						|
    SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
 | 
						|
    SDValue Conv2 =
 | 
						|
        DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
 | 
						|
 | 
						|
    SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
 | 
						|
                              DAG.getConstant(ShiftElts, dl, MVT::i32));
 | 
						|
    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasP9Vector()) {
 | 
						|
     if (PPC::isXXBRHShuffleMask(SVOp)) {
 | 
						|
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
 | 
						|
      SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
 | 
						|
    } else if (PPC::isXXBRWShuffleMask(SVOp)) {
 | 
						|
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
 | 
						|
      SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
 | 
						|
    } else if (PPC::isXXBRDShuffleMask(SVOp)) {
 | 
						|
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
 | 
						|
      SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
 | 
						|
    } else if (PPC::isXXBRQShuffleMask(SVOp)) {
 | 
						|
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
 | 
						|
      SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasVSX()) {
 | 
						|
    if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
 | 
						|
      int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
 | 
						|
 | 
						|
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
 | 
						|
      SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
 | 
						|
                                  DAG.getConstant(SplatIdx, dl, MVT::i32));
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
 | 
						|
    }
 | 
						|
 | 
						|
    // Left shifts of 8 bytes are actually swaps. Convert accordingly.
 | 
						|
    if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
 | 
						|
      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
 | 
						|
      SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
 | 
						|
      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.hasQPX()) {
 | 
						|
    if (VT.getVectorNumElements() != 4)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    if (V2.isUndef()) V2 = V1;
 | 
						|
 | 
						|
    int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
 | 
						|
    if (AlignIdx != -1) {
 | 
						|
      return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
 | 
						|
                         DAG.getConstant(AlignIdx, dl, MVT::i32));
 | 
						|
    } else if (SVOp->isSplat()) {
 | 
						|
      int SplatIdx = SVOp->getSplatIndex();
 | 
						|
      if (SplatIdx >= 4) {
 | 
						|
        std::swap(V1, V2);
 | 
						|
        SplatIdx -= 4;
 | 
						|
      }
 | 
						|
 | 
						|
      return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
 | 
						|
                         DAG.getConstant(SplatIdx, dl, MVT::i32));
 | 
						|
    }
 | 
						|
 | 
						|
    // Lower this into a qvgpci/qvfperm pair.
 | 
						|
 | 
						|
    // Compute the qvgpci literal
 | 
						|
    unsigned idx = 0;
 | 
						|
    for (unsigned i = 0; i < 4; ++i) {
 | 
						|
      int m = SVOp->getMaskElt(i);
 | 
						|
      unsigned mm = m >= 0 ? (unsigned) m : i;
 | 
						|
      idx |= mm << (3-i)*3;
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
 | 
						|
                             DAG.getConstant(idx, dl, MVT::i32));
 | 
						|
    return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
 | 
						|
  }
 | 
						|
 | 
						|
  // Cases that are handled by instructions that take permute immediates
 | 
						|
  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
 | 
						|
  // selected by the instruction selector.
 | 
						|
  if (V2.isUndef()) {
 | 
						|
    if (PPC::isSplatShuffleMask(SVOp, 1) ||
 | 
						|
        PPC::isSplatShuffleMask(SVOp, 2) ||
 | 
						|
        PPC::isSplatShuffleMask(SVOp, 4) ||
 | 
						|
        PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
 | 
						|
        PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
 | 
						|
        PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
 | 
						|
        PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
 | 
						|
        PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
 | 
						|
        PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
 | 
						|
        PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
 | 
						|
        PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
 | 
						|
        PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
 | 
						|
        (Subtarget.hasP8Altivec() && (
 | 
						|
         PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
 | 
						|
         PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
 | 
						|
         PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
 | 
						|
      return Op;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Altivec has a variety of "shuffle immediates" that take two vector inputs
 | 
						|
  // and produce a fixed permutation.  If any of these match, do not lower to
 | 
						|
  // VPERM.
 | 
						|
  unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
 | 
						|
  if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
 | 
						|
      PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
 | 
						|
      PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
 | 
						|
      PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
 | 
						|
      PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
 | 
						|
      PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
 | 
						|
      PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
 | 
						|
      PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
 | 
						|
      PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
 | 
						|
      (Subtarget.hasP8Altivec() && (
 | 
						|
       PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
 | 
						|
       PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
 | 
						|
       PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
 | 
						|
  // perfect shuffle table to emit an optimal matching sequence.
 | 
						|
  ArrayRef<int> PermMask = SVOp->getMask();
 | 
						|
 | 
						|
  unsigned PFIndexes[4];
 | 
						|
  bool isFourElementShuffle = true;
 | 
						|
  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
 | 
						|
    unsigned EltNo = 8;   // Start out undef.
 | 
						|
    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
 | 
						|
      if (PermMask[i*4+j] < 0)
 | 
						|
        continue;   // Undef, ignore it.
 | 
						|
 | 
						|
      unsigned ByteSource = PermMask[i*4+j];
 | 
						|
      if ((ByteSource & 3) != j) {
 | 
						|
        isFourElementShuffle = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (EltNo == 8) {
 | 
						|
        EltNo = ByteSource/4;
 | 
						|
      } else if (EltNo != ByteSource/4) {
 | 
						|
        isFourElementShuffle = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    PFIndexes[i] = EltNo;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
 | 
						|
  // perfect shuffle vector to determine if it is cost effective to do this as
 | 
						|
  // discrete instructions, or whether we should use a vperm.
 | 
						|
  // For now, we skip this for little endian until such time as we have a
 | 
						|
  // little-endian perfect shuffle table.
 | 
						|
  if (isFourElementShuffle && !isLittleEndian) {
 | 
						|
    // Compute the index in the perfect shuffle table.
 | 
						|
    unsigned PFTableIndex =
 | 
						|
      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
 | 
						|
 | 
						|
    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | 
						|
    unsigned Cost  = (PFEntry >> 30);
 | 
						|
 | 
						|
    // Determining when to avoid vperm is tricky.  Many things affect the cost
 | 
						|
    // of vperm, particularly how many times the perm mask needs to be computed.
 | 
						|
    // For example, if the perm mask can be hoisted out of a loop or is already
 | 
						|
    // used (perhaps because there are multiple permutes with the same shuffle
 | 
						|
    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
 | 
						|
    // the loop requires an extra register.
 | 
						|
    //
 | 
						|
    // As a compromise, we only emit discrete instructions if the shuffle can be
 | 
						|
    // generated in 3 or fewer operations.  When we have loop information
 | 
						|
    // available, if this block is within a loop, we should avoid using vperm
 | 
						|
    // for 3-operation perms and use a constant pool load instead.
 | 
						|
    if (Cost < 3)
 | 
						|
      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
 | 
						|
  }
 | 
						|
 | 
						|
  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
 | 
						|
  // vector that will get spilled to the constant pool.
 | 
						|
  if (V2.isUndef()) V2 = V1;
 | 
						|
 | 
						|
  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
 | 
						|
  // that it is in input element units, not in bytes.  Convert now.
 | 
						|
 | 
						|
  // For little endian, the order of the input vectors is reversed, and
 | 
						|
  // the permutation mask is complemented with respect to 31.  This is
 | 
						|
  // necessary to produce proper semantics with the big-endian-biased vperm
 | 
						|
  // instruction.
 | 
						|
  EVT EltVT = V1.getValueType().getVectorElementType();
 | 
						|
  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
 | 
						|
 | 
						|
  SmallVector<SDValue, 16> ResultMask;
 | 
						|
  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
 | 
						|
    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
 | 
						|
 | 
						|
    for (unsigned j = 0; j != BytesPerElement; ++j)
 | 
						|
      if (isLittleEndian)
 | 
						|
        ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
 | 
						|
                                             dl, MVT::i32));
 | 
						|
      else
 | 
						|
        ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
 | 
						|
                                             MVT::i32));
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
 | 
						|
  if (isLittleEndian)
 | 
						|
    return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
 | 
						|
                       V2, V1, VPermMask);
 | 
						|
  else
 | 
						|
    return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
 | 
						|
                       V1, V2, VPermMask);
 | 
						|
}
 | 
						|
 | 
						|
/// getVectorCompareInfo - Given an intrinsic, return false if it is not a
 | 
						|
/// vector comparison.  If it is, return true and fill in Opc/isDot with
 | 
						|
/// information about the intrinsic.
 | 
						|
static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
 | 
						|
                                 bool &isDot, const PPCSubtarget &Subtarget) {
 | 
						|
  unsigned IntrinsicID =
 | 
						|
      cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
 | 
						|
  CompareOpc = -1;
 | 
						|
  isDot = false;
 | 
						|
  switch (IntrinsicID) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  // Comparison predicates.
 | 
						|
  case Intrinsic::ppc_altivec_vcmpbfp_p:
 | 
						|
    CompareOpc = 966;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpeqfp_p:
 | 
						|
    CompareOpc = 198;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequb_p:
 | 
						|
    CompareOpc = 6;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequh_p:
 | 
						|
    CompareOpc = 70;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequw_p:
 | 
						|
    CompareOpc = 134;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequd_p:
 | 
						|
    if (Subtarget.hasP8Altivec()) {
 | 
						|
      CompareOpc = 199;
 | 
						|
      isDot = true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpneb_p:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpneh_p:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpnew_p:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpnezb_p:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpnezh_p:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpnezw_p:
 | 
						|
    if (Subtarget.hasP9Altivec()) {
 | 
						|
      switch (IntrinsicID) {
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Unknown comparison intrinsic.");
 | 
						|
      case Intrinsic::ppc_altivec_vcmpneb_p:
 | 
						|
        CompareOpc = 7;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpneh_p:
 | 
						|
        CompareOpc = 71;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpnew_p:
 | 
						|
        CompareOpc = 135;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpnezb_p:
 | 
						|
        CompareOpc = 263;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpnezh_p:
 | 
						|
        CompareOpc = 327;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpnezw_p:
 | 
						|
        CompareOpc = 391;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      isDot = true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgefp_p:
 | 
						|
    CompareOpc = 454;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtfp_p:
 | 
						|
    CompareOpc = 710;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsb_p:
 | 
						|
    CompareOpc = 774;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsh_p:
 | 
						|
    CompareOpc = 838;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsw_p:
 | 
						|
    CompareOpc = 902;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsd_p:
 | 
						|
    if (Subtarget.hasP8Altivec()) {
 | 
						|
      CompareOpc = 967;
 | 
						|
      isDot = true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtub_p:
 | 
						|
    CompareOpc = 518;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuh_p:
 | 
						|
    CompareOpc = 582;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuw_p:
 | 
						|
    CompareOpc = 646;
 | 
						|
    isDot = true;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtud_p:
 | 
						|
    if (Subtarget.hasP8Altivec()) {
 | 
						|
      CompareOpc = 711;
 | 
						|
      isDot = true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
 | 
						|
  // VSX predicate comparisons use the same infrastructure
 | 
						|
  case Intrinsic::ppc_vsx_xvcmpeqdp_p:
 | 
						|
  case Intrinsic::ppc_vsx_xvcmpgedp_p:
 | 
						|
  case Intrinsic::ppc_vsx_xvcmpgtdp_p:
 | 
						|
  case Intrinsic::ppc_vsx_xvcmpeqsp_p:
 | 
						|
  case Intrinsic::ppc_vsx_xvcmpgesp_p:
 | 
						|
  case Intrinsic::ppc_vsx_xvcmpgtsp_p:
 | 
						|
    if (Subtarget.hasVSX()) {
 | 
						|
      switch (IntrinsicID) {
 | 
						|
      case Intrinsic::ppc_vsx_xvcmpeqdp_p:
 | 
						|
        CompareOpc = 99;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_vsx_xvcmpgedp_p:
 | 
						|
        CompareOpc = 115;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_vsx_xvcmpgtdp_p:
 | 
						|
        CompareOpc = 107;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_vsx_xvcmpeqsp_p:
 | 
						|
        CompareOpc = 67;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_vsx_xvcmpgesp_p:
 | 
						|
        CompareOpc = 83;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_vsx_xvcmpgtsp_p:
 | 
						|
        CompareOpc = 75;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      isDot = true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
 | 
						|
  // Normal Comparisons.
 | 
						|
  case Intrinsic::ppc_altivec_vcmpbfp:
 | 
						|
    CompareOpc = 966;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpeqfp:
 | 
						|
    CompareOpc = 198;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequb:
 | 
						|
    CompareOpc = 6;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequh:
 | 
						|
    CompareOpc = 70;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequw:
 | 
						|
    CompareOpc = 134;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpequd:
 | 
						|
    if (Subtarget.hasP8Altivec())
 | 
						|
      CompareOpc = 199;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpneb:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpneh:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpnew:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpnezb:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpnezh:
 | 
						|
  case Intrinsic::ppc_altivec_vcmpnezw:
 | 
						|
    if (Subtarget.hasP9Altivec())
 | 
						|
      switch (IntrinsicID) {
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Unknown comparison intrinsic.");
 | 
						|
      case Intrinsic::ppc_altivec_vcmpneb:
 | 
						|
        CompareOpc = 7;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpneh:
 | 
						|
        CompareOpc = 71;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpnew:
 | 
						|
        CompareOpc = 135;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpnezb:
 | 
						|
        CompareOpc = 263;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpnezh:
 | 
						|
        CompareOpc = 327;
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_altivec_vcmpnezw:
 | 
						|
        CompareOpc = 391;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgefp:
 | 
						|
    CompareOpc = 454;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtfp:
 | 
						|
    CompareOpc = 710;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsb:
 | 
						|
    CompareOpc = 774;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsh:
 | 
						|
    CompareOpc = 838;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsw:
 | 
						|
    CompareOpc = 902;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtsd:
 | 
						|
    if (Subtarget.hasP8Altivec())
 | 
						|
      CompareOpc = 967;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtub:
 | 
						|
    CompareOpc = 518;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuh:
 | 
						|
    CompareOpc = 582;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtuw:
 | 
						|
    CompareOpc = 646;
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_vcmpgtud:
 | 
						|
    if (Subtarget.hasP8Altivec())
 | 
						|
      CompareOpc = 711;
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
 | 
						|
/// lower, do it, otherwise return null.
 | 
						|
SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
 | 
						|
                                                   SelectionDAG &DAG) const {
 | 
						|
  unsigned IntrinsicID =
 | 
						|
    cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  if (IntrinsicID == Intrinsic::thread_pointer) {
 | 
						|
    // Reads the thread pointer register, used for __builtin_thread_pointer.
 | 
						|
    if (Subtarget.isPPC64())
 | 
						|
      return DAG.getRegister(PPC::X13, MVT::i64);
 | 
						|
    return DAG.getRegister(PPC::R2, MVT::i32);
 | 
						|
  }
 | 
						|
 | 
						|
  // We are looking for absolute values here.
 | 
						|
  // The idea is to try to fit one of two patterns:
 | 
						|
  //  max (a, (0-a))  OR  max ((0-a), a)
 | 
						|
  if (Subtarget.hasP9Vector() &&
 | 
						|
      (IntrinsicID == Intrinsic::ppc_altivec_vmaxsw ||
 | 
						|
       IntrinsicID == Intrinsic::ppc_altivec_vmaxsh ||
 | 
						|
       IntrinsicID == Intrinsic::ppc_altivec_vmaxsb)) {
 | 
						|
    SDValue V1 = Op.getOperand(1);
 | 
						|
    SDValue V2 = Op.getOperand(2);
 | 
						|
    if (V1.getSimpleValueType() == V2.getSimpleValueType() &&
 | 
						|
        (V1.getSimpleValueType() == MVT::v4i32 ||
 | 
						|
         V1.getSimpleValueType() == MVT::v8i16 ||
 | 
						|
         V1.getSimpleValueType() == MVT::v16i8)) {
 | 
						|
      if ( V1.getOpcode() == ISD::SUB &&
 | 
						|
           ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
 | 
						|
           V1.getOperand(1) == V2 ) {
 | 
						|
        // Generate the abs instruction with the operands
 | 
						|
        return DAG.getNode(ISD::ABS, dl, V2.getValueType(),V2);
 | 
						|
      }
 | 
						|
 | 
						|
      if ( V2.getOpcode() == ISD::SUB &&
 | 
						|
           ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
 | 
						|
           V2.getOperand(1) == V1 ) {
 | 
						|
        // Generate the abs instruction with the operands
 | 
						|
        return DAG.getNode(ISD::ABS, dl, V1.getValueType(),V1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a lowered altivec predicate compare, CompareOpc is set to the
 | 
						|
  // opcode number of the comparison.
 | 
						|
  int CompareOpc;
 | 
						|
  bool isDot;
 | 
						|
  if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
 | 
						|
    return SDValue();    // Don't custom lower most intrinsics.
 | 
						|
 | 
						|
  // If this is a non-dot comparison, make the VCMP node and we are done.
 | 
						|
  if (!isDot) {
 | 
						|
    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
 | 
						|
                              Op.getOperand(1), Op.getOperand(2),
 | 
						|
                              DAG.getConstant(CompareOpc, dl, MVT::i32));
 | 
						|
    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the PPCISD altivec 'dot' comparison node.
 | 
						|
  SDValue Ops[] = {
 | 
						|
    Op.getOperand(2),  // LHS
 | 
						|
    Op.getOperand(3),  // RHS
 | 
						|
    DAG.getConstant(CompareOpc, dl, MVT::i32)
 | 
						|
  };
 | 
						|
  EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
 | 
						|
  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
 | 
						|
 | 
						|
  // Now that we have the comparison, emit a copy from the CR to a GPR.
 | 
						|
  // This is flagged to the above dot comparison.
 | 
						|
  SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
 | 
						|
                                DAG.getRegister(PPC::CR6, MVT::i32),
 | 
						|
                                CompNode.getValue(1));
 | 
						|
 | 
						|
  // Unpack the result based on how the target uses it.
 | 
						|
  unsigned BitNo;   // Bit # of CR6.
 | 
						|
  bool InvertBit;   // Invert result?
 | 
						|
  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
 | 
						|
  default:  // Can't happen, don't crash on invalid number though.
 | 
						|
  case 0:   // Return the value of the EQ bit of CR6.
 | 
						|
    BitNo = 0; InvertBit = false;
 | 
						|
    break;
 | 
						|
  case 1:   // Return the inverted value of the EQ bit of CR6.
 | 
						|
    BitNo = 0; InvertBit = true;
 | 
						|
    break;
 | 
						|
  case 2:   // Return the value of the LT bit of CR6.
 | 
						|
    BitNo = 2; InvertBit = false;
 | 
						|
    break;
 | 
						|
  case 3:   // Return the inverted value of the LT bit of CR6.
 | 
						|
    BitNo = 2; InvertBit = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Shift the bit into the low position.
 | 
						|
  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
 | 
						|
                      DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
 | 
						|
  // Isolate the bit.
 | 
						|
  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
 | 
						|
                      DAG.getConstant(1, dl, MVT::i32));
 | 
						|
 | 
						|
  // If we are supposed to, toggle the bit.
 | 
						|
  if (InvertBit)
 | 
						|
    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
 | 
						|
                        DAG.getConstant(1, dl, MVT::i32));
 | 
						|
  return Flags;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
 | 
						|
  // the beginning of the argument list.
 | 
						|
  int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
 | 
						|
  SDLoc DL(Op);
 | 
						|
  switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
 | 
						|
  case Intrinsic::ppc_cfence: {
 | 
						|
    assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
 | 
						|
    assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
 | 
						|
    return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
 | 
						|
                                      DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
 | 
						|
                                                  Op.getOperand(ArgStart + 1)),
 | 
						|
                                      Op.getOperand(0)),
 | 
						|
                   0);
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  // Check for a DIV with the same operands as this REM.
 | 
						|
  for (auto UI : Op.getOperand(1)->uses()) {
 | 
						|
    if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
 | 
						|
        (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
 | 
						|
      if (UI->getOperand(0) == Op.getOperand(0) &&
 | 
						|
          UI->getOperand(1) == Op.getOperand(1))
 | 
						|
        return SDValue();
 | 
						|
  }
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
// Lower scalar BSWAP64 to xxbrd.
 | 
						|
SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  // MTVSRDD
 | 
						|
  Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
 | 
						|
                   Op.getOperand(0));
 | 
						|
  // XXBRD
 | 
						|
  Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
 | 
						|
  // MFVSRD
 | 
						|
  int VectorIndex = 0;
 | 
						|
  if (Subtarget.isLittleEndian())
 | 
						|
    VectorIndex = 1;
 | 
						|
  Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
 | 
						|
                   DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
// ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
 | 
						|
// compared to a value that is atomically loaded (atomic loads zero-extend).
 | 
						|
SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
 | 
						|
                                                SelectionDAG &DAG) const {
 | 
						|
  assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
 | 
						|
         "Expecting an atomic compare-and-swap here.");
 | 
						|
  SDLoc dl(Op);
 | 
						|
  auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
 | 
						|
  EVT MemVT = AtomicNode->getMemoryVT();
 | 
						|
  if (MemVT.getSizeInBits() >= 32)
 | 
						|
    return Op;
 | 
						|
 | 
						|
  SDValue CmpOp = Op.getOperand(2);
 | 
						|
  // If this is already correctly zero-extended, leave it alone.
 | 
						|
  auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
 | 
						|
  if (DAG.MaskedValueIsZero(CmpOp, HighBits))
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // Clear the high bits of the compare operand.
 | 
						|
  unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
 | 
						|
  SDValue NewCmpOp =
 | 
						|
    DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
 | 
						|
                DAG.getConstant(MaskVal, dl, MVT::i32));
 | 
						|
 | 
						|
  // Replace the existing compare operand with the properly zero-extended one.
 | 
						|
  SmallVector<SDValue, 4> Ops;
 | 
						|
  for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
 | 
						|
    Ops.push_back(AtomicNode->getOperand(i));
 | 
						|
  Ops[2] = NewCmpOp;
 | 
						|
  MachineMemOperand *MMO = AtomicNode->getMemOperand();
 | 
						|
  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
 | 
						|
  auto NodeTy =
 | 
						|
    (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
 | 
						|
  return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
 | 
						|
                                                 SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  // Create a stack slot that is 16-byte aligned.
 | 
						|
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
  int FrameIdx = MFI.CreateStackObject(16, 16, false);
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | 
						|
 | 
						|
  // Store the input value into Value#0 of the stack slot.
 | 
						|
  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
 | 
						|
                               MachinePointerInfo());
 | 
						|
  // Load it out.
 | 
						|
  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
 | 
						|
                                                  SelectionDAG &DAG) const {
 | 
						|
  assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
 | 
						|
         "Should only be called for ISD::INSERT_VECTOR_ELT");
 | 
						|
 | 
						|
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
 | 
						|
  // We have legal lowering for constant indices but not for variable ones.
 | 
						|
  if (!C)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDValue V1 = Op.getOperand(0);
 | 
						|
  SDValue V2 = Op.getOperand(1);
 | 
						|
  // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
 | 
						|
  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
 | 
						|
    SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
 | 
						|
    unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
 | 
						|
    unsigned InsertAtElement = C->getZExtValue();
 | 
						|
    unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
 | 
						|
    if (Subtarget.isLittleEndian()) {
 | 
						|
      InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
 | 
						|
    }
 | 
						|
    return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
 | 
						|
                       DAG.getConstant(InsertAtByte, dl, MVT::i32));
 | 
						|
  }
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
 | 
						|
                                                   SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  SDNode *N = Op.getNode();
 | 
						|
 | 
						|
  assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
 | 
						|
         "Unknown extract_vector_elt type");
 | 
						|
 | 
						|
  SDValue Value = N->getOperand(0);
 | 
						|
 | 
						|
  // The first part of this is like the store lowering except that we don't
 | 
						|
  // need to track the chain.
 | 
						|
 | 
						|
  // The values are now known to be -1 (false) or 1 (true). To convert this
 | 
						|
  // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
 | 
						|
  // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
 | 
						|
  Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
 | 
						|
 | 
						|
  // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
 | 
						|
  // understand how to form the extending load.
 | 
						|
  SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
 | 
						|
 | 
						|
  Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
 | 
						|
 | 
						|
  // Now convert to an integer and store.
 | 
						|
  Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
 | 
						|
    DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
 | 
						|
    Value);
 | 
						|
 | 
						|
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
  int FrameIdx = MFI.CreateStackObject(16, 16, false);
 | 
						|
  MachinePointerInfo PtrInfo =
 | 
						|
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | 
						|
 | 
						|
  SDValue StoreChain = DAG.getEntryNode();
 | 
						|
  SDValue Ops[] = {StoreChain,
 | 
						|
                   DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
 | 
						|
                   Value, FIdx};
 | 
						|
  SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
 | 
						|
 | 
						|
  StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
 | 
						|
    dl, VTs, Ops, MVT::v4i32, PtrInfo);
 | 
						|
 | 
						|
  // Extract the value requested.
 | 
						|
  unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
 | 
						|
  SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
 | 
						|
  Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
 | 
						|
 | 
						|
  SDValue IntVal =
 | 
						|
      DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
 | 
						|
 | 
						|
  if (!Subtarget.useCRBits())
 | 
						|
    return IntVal;
 | 
						|
 | 
						|
  return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
 | 
						|
}
 | 
						|
 | 
						|
/// Lowering for QPX v4i1 loads
 | 
						|
SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
 | 
						|
  SDValue LoadChain = LN->getChain();
 | 
						|
  SDValue BasePtr = LN->getBasePtr();
 | 
						|
 | 
						|
  if (Op.getValueType() == MVT::v4f64 ||
 | 
						|
      Op.getValueType() == MVT::v4f32) {
 | 
						|
    EVT MemVT = LN->getMemoryVT();
 | 
						|
    unsigned Alignment = LN->getAlignment();
 | 
						|
 | 
						|
    // If this load is properly aligned, then it is legal.
 | 
						|
    if (Alignment >= MemVT.getStoreSize())
 | 
						|
      return Op;
 | 
						|
 | 
						|
    EVT ScalarVT = Op.getValueType().getScalarType(),
 | 
						|
        ScalarMemVT = MemVT.getScalarType();
 | 
						|
    unsigned Stride = ScalarMemVT.getStoreSize();
 | 
						|
 | 
						|
    SDValue Vals[4], LoadChains[4];
 | 
						|
    for (unsigned Idx = 0; Idx < 4; ++Idx) {
 | 
						|
      SDValue Load;
 | 
						|
      if (ScalarVT != ScalarMemVT)
 | 
						|
        Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
 | 
						|
                              BasePtr,
 | 
						|
                              LN->getPointerInfo().getWithOffset(Idx * Stride),
 | 
						|
                              ScalarMemVT, MinAlign(Alignment, Idx * Stride),
 | 
						|
                              LN->getMemOperand()->getFlags(), LN->getAAInfo());
 | 
						|
      else
 | 
						|
        Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
 | 
						|
                           LN->getPointerInfo().getWithOffset(Idx * Stride),
 | 
						|
                           MinAlign(Alignment, Idx * Stride),
 | 
						|
                           LN->getMemOperand()->getFlags(), LN->getAAInfo());
 | 
						|
 | 
						|
      if (Idx == 0 && LN->isIndexed()) {
 | 
						|
        assert(LN->getAddressingMode() == ISD::PRE_INC &&
 | 
						|
               "Unknown addressing mode on vector load");
 | 
						|
        Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
 | 
						|
                                  LN->getAddressingMode());
 | 
						|
      }
 | 
						|
 | 
						|
      Vals[Idx] = Load;
 | 
						|
      LoadChains[Idx] = Load.getValue(1);
 | 
						|
 | 
						|
      BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
 | 
						|
                            DAG.getConstant(Stride, dl,
 | 
						|
                                            BasePtr.getValueType()));
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
 | 
						|
    SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
 | 
						|
 | 
						|
    if (LN->isIndexed()) {
 | 
						|
      SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
 | 
						|
      return DAG.getMergeValues(RetOps, dl);
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue RetOps[] = { Value, TF };
 | 
						|
    return DAG.getMergeValues(RetOps, dl);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
 | 
						|
  assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
 | 
						|
 | 
						|
  // To lower v4i1 from a byte array, we load the byte elements of the
 | 
						|
  // vector and then reuse the BUILD_VECTOR logic.
 | 
						|
 | 
						|
  SDValue VectElmts[4], VectElmtChains[4];
 | 
						|
  for (unsigned i = 0; i < 4; ++i) {
 | 
						|
    SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
 | 
						|
    Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
 | 
						|
 | 
						|
    VectElmts[i] = DAG.getExtLoad(
 | 
						|
        ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
 | 
						|
        LN->getPointerInfo().getWithOffset(i), MVT::i8,
 | 
						|
        /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
 | 
						|
    VectElmtChains[i] = VectElmts[i].getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
 | 
						|
  SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
 | 
						|
 | 
						|
  SDValue RVals[] = { Value, LoadChain };
 | 
						|
  return DAG.getMergeValues(RVals, dl);
 | 
						|
}
 | 
						|
 | 
						|
/// Lowering for QPX v4i1 stores
 | 
						|
SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
 | 
						|
                                            SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
 | 
						|
  SDValue StoreChain = SN->getChain();
 | 
						|
  SDValue BasePtr = SN->getBasePtr();
 | 
						|
  SDValue Value = SN->getValue();
 | 
						|
 | 
						|
  if (Value.getValueType() == MVT::v4f64 ||
 | 
						|
      Value.getValueType() == MVT::v4f32) {
 | 
						|
    EVT MemVT = SN->getMemoryVT();
 | 
						|
    unsigned Alignment = SN->getAlignment();
 | 
						|
 | 
						|
    // If this store is properly aligned, then it is legal.
 | 
						|
    if (Alignment >= MemVT.getStoreSize())
 | 
						|
      return Op;
 | 
						|
 | 
						|
    EVT ScalarVT = Value.getValueType().getScalarType(),
 | 
						|
        ScalarMemVT = MemVT.getScalarType();
 | 
						|
    unsigned Stride = ScalarMemVT.getStoreSize();
 | 
						|
 | 
						|
    SDValue Stores[4];
 | 
						|
    for (unsigned Idx = 0; Idx < 4; ++Idx) {
 | 
						|
      SDValue Ex = DAG.getNode(
 | 
						|
          ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
 | 
						|
          DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
 | 
						|
      SDValue Store;
 | 
						|
      if (ScalarVT != ScalarMemVT)
 | 
						|
        Store =
 | 
						|
            DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
 | 
						|
                              SN->getPointerInfo().getWithOffset(Idx * Stride),
 | 
						|
                              ScalarMemVT, MinAlign(Alignment, Idx * Stride),
 | 
						|
                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
 | 
						|
      else
 | 
						|
        Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
 | 
						|
                             SN->getPointerInfo().getWithOffset(Idx * Stride),
 | 
						|
                             MinAlign(Alignment, Idx * Stride),
 | 
						|
                             SN->getMemOperand()->getFlags(), SN->getAAInfo());
 | 
						|
 | 
						|
      if (Idx == 0 && SN->isIndexed()) {
 | 
						|
        assert(SN->getAddressingMode() == ISD::PRE_INC &&
 | 
						|
               "Unknown addressing mode on vector store");
 | 
						|
        Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
 | 
						|
                                    SN->getAddressingMode());
 | 
						|
      }
 | 
						|
 | 
						|
      BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
 | 
						|
                            DAG.getConstant(Stride, dl,
 | 
						|
                                            BasePtr.getValueType()));
 | 
						|
      Stores[Idx] = Store;
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
 | 
						|
 | 
						|
    if (SN->isIndexed()) {
 | 
						|
      SDValue RetOps[] = { TF, Stores[0].getValue(1) };
 | 
						|
      return DAG.getMergeValues(RetOps, dl);
 | 
						|
    }
 | 
						|
 | 
						|
    return TF;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
 | 
						|
  assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
 | 
						|
 | 
						|
  // The values are now known to be -1 (false) or 1 (true). To convert this
 | 
						|
  // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
 | 
						|
  // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
 | 
						|
  Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
 | 
						|
 | 
						|
  // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
 | 
						|
  // understand how to form the extending load.
 | 
						|
  SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
 | 
						|
 | 
						|
  Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
 | 
						|
 | 
						|
  // Now convert to an integer and store.
 | 
						|
  Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
 | 
						|
    DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
 | 
						|
    Value);
 | 
						|
 | 
						|
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
  int FrameIdx = MFI.CreateStackObject(16, 16, false);
 | 
						|
  MachinePointerInfo PtrInfo =
 | 
						|
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
 | 
						|
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						|
  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | 
						|
 | 
						|
  SDValue Ops[] = {StoreChain,
 | 
						|
                   DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
 | 
						|
                   Value, FIdx};
 | 
						|
  SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
 | 
						|
 | 
						|
  StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
 | 
						|
    dl, VTs, Ops, MVT::v4i32, PtrInfo);
 | 
						|
 | 
						|
  // Move data into the byte array.
 | 
						|
  SDValue Loads[4], LoadChains[4];
 | 
						|
  for (unsigned i = 0; i < 4; ++i) {
 | 
						|
    unsigned Offset = 4*i;
 | 
						|
    SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
 | 
						|
    Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
 | 
						|
 | 
						|
    Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
 | 
						|
                           PtrInfo.getWithOffset(Offset));
 | 
						|
    LoadChains[i] = Loads[i].getValue(1);
 | 
						|
  }
 | 
						|
 | 
						|
  StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
 | 
						|
 | 
						|
  SDValue Stores[4];
 | 
						|
  for (unsigned i = 0; i < 4; ++i) {
 | 
						|
    SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
 | 
						|
    Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
 | 
						|
 | 
						|
    Stores[i] = DAG.getTruncStore(
 | 
						|
        StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
 | 
						|
        MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
 | 
						|
        SN->getAAInfo());
 | 
						|
  }
 | 
						|
 | 
						|
  StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
 | 
						|
 | 
						|
  return StoreChain;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  if (Op.getValueType() == MVT::v4i32) {
 | 
						|
    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | 
						|
 | 
						|
    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
 | 
						|
    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
 | 
						|
 | 
						|
    SDValue RHSSwap =   // = vrlw RHS, 16
 | 
						|
      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
 | 
						|
 | 
						|
    // Shrinkify inputs to v8i16.
 | 
						|
    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
 | 
						|
    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
 | 
						|
    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
 | 
						|
 | 
						|
    // Low parts multiplied together, generating 32-bit results (we ignore the
 | 
						|
    // top parts).
 | 
						|
    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
 | 
						|
                                        LHS, RHS, DAG, dl, MVT::v4i32);
 | 
						|
 | 
						|
    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
 | 
						|
                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
 | 
						|
    // Shift the high parts up 16 bits.
 | 
						|
    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
 | 
						|
                              Neg16, DAG, dl);
 | 
						|
    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
 | 
						|
  } else if (Op.getValueType() == MVT::v8i16) {
 | 
						|
    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | 
						|
 | 
						|
    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
 | 
						|
 | 
						|
    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
 | 
						|
                            LHS, RHS, Zero, DAG, dl);
 | 
						|
  } else if (Op.getValueType() == MVT::v16i8) {
 | 
						|
    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | 
						|
    bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
 | 
						|
    // Multiply the even 8-bit parts, producing 16-bit sums.
 | 
						|
    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
 | 
						|
                                           LHS, RHS, DAG, dl, MVT::v8i16);
 | 
						|
    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
 | 
						|
 | 
						|
    // Multiply the odd 8-bit parts, producing 16-bit sums.
 | 
						|
    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
 | 
						|
                                          LHS, RHS, DAG, dl, MVT::v8i16);
 | 
						|
    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
 | 
						|
 | 
						|
    // Merge the results together.  Because vmuleub and vmuloub are
 | 
						|
    // instructions with a big-endian bias, we must reverse the
 | 
						|
    // element numbering and reverse the meaning of "odd" and "even"
 | 
						|
    // when generating little endian code.
 | 
						|
    int Ops[16];
 | 
						|
    for (unsigned i = 0; i != 8; ++i) {
 | 
						|
      if (isLittleEndian) {
 | 
						|
        Ops[i*2  ] = 2*i;
 | 
						|
        Ops[i*2+1] = 2*i+16;
 | 
						|
      } else {
 | 
						|
        Ops[i*2  ] = 2*i+1;
 | 
						|
        Ops[i*2+1] = 2*i+1+16;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (isLittleEndian)
 | 
						|
      return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
 | 
						|
    else
 | 
						|
      return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Unknown mul to lower!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// LowerOperation - Provide custom lowering hooks for some operations.
 | 
						|
///
 | 
						|
SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
 | 
						|
  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
 | 
						|
  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
 | 
						|
  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
 | 
						|
  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
 | 
						|
  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
 | 
						|
  case ISD::SETCC:              return LowerSETCC(Op, DAG);
 | 
						|
  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
 | 
						|
  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
 | 
						|
 | 
						|
  // Variable argument lowering.
 | 
						|
  case ISD::VASTART:            return LowerVASTART(Op, DAG);
 | 
						|
  case ISD::VAARG:              return LowerVAARG(Op, DAG);
 | 
						|
  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
 | 
						|
 | 
						|
  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
 | 
						|
  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
 | 
						|
  case ISD::GET_DYNAMIC_AREA_OFFSET:
 | 
						|
    return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
 | 
						|
 | 
						|
  // Exception handling lowering.
 | 
						|
  case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
 | 
						|
  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
 | 
						|
  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
 | 
						|
 | 
						|
  case ISD::LOAD:               return LowerLOAD(Op, DAG);
 | 
						|
  case ISD::STORE:              return LowerSTORE(Op, DAG);
 | 
						|
  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
 | 
						|
  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
 | 
						|
  case ISD::FP_TO_UINT:
 | 
						|
  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
 | 
						|
  case ISD::UINT_TO_FP:
 | 
						|
  case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
 | 
						|
  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
 | 
						|
 | 
						|
  // Lower 64-bit shifts.
 | 
						|
  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
 | 
						|
  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
 | 
						|
  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
 | 
						|
 | 
						|
  // Vector-related lowering.
 | 
						|
  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
 | 
						|
  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | 
						|
  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
 | 
						|
  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
 | 
						|
  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
 | 
						|
  case ISD::MUL:                return LowerMUL(Op, DAG);
 | 
						|
 | 
						|
  // For counter-based loop handling.
 | 
						|
  case ISD::INTRINSIC_W_CHAIN:  return SDValue();
 | 
						|
 | 
						|
  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
 | 
						|
 | 
						|
  // Frame & Return address.
 | 
						|
  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
 | 
						|
  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
 | 
						|
 | 
						|
  case ISD::INTRINSIC_VOID:
 | 
						|
    return LowerINTRINSIC_VOID(Op, DAG);
 | 
						|
  case ISD::SREM:
 | 
						|
  case ISD::UREM:
 | 
						|
    return LowerREM(Op, DAG);
 | 
						|
  case ISD::BSWAP:
 | 
						|
    return LowerBSWAP(Op, DAG);
 | 
						|
  case ISD::ATOMIC_CMP_SWAP:
 | 
						|
    return LowerATOMIC_CMP_SWAP(Op, DAG);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
 | 
						|
                                           SmallVectorImpl<SDValue>&Results,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(N);
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Do not know how to custom type legalize this operation!");
 | 
						|
  case ISD::READCYCLECOUNTER: {
 | 
						|
    SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
 | 
						|
    SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
 | 
						|
 | 
						|
    Results.push_back(RTB);
 | 
						|
    Results.push_back(RTB.getValue(1));
 | 
						|
    Results.push_back(RTB.getValue(2));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_W_CHAIN: {
 | 
						|
    if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
 | 
						|
        Intrinsic::ppc_is_decremented_ctr_nonzero)
 | 
						|
      break;
 | 
						|
 | 
						|
    assert(N->getValueType(0) == MVT::i1 &&
 | 
						|
           "Unexpected result type for CTR decrement intrinsic");
 | 
						|
    EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
 | 
						|
                                 N->getValueType(0));
 | 
						|
    SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
 | 
						|
    SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
 | 
						|
                                 N->getOperand(1));
 | 
						|
 | 
						|
    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
 | 
						|
    Results.push_back(NewInt.getValue(1));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::VAARG: {
 | 
						|
    if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
 | 
						|
      return;
 | 
						|
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
    if (VT == MVT::i64) {
 | 
						|
      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
 | 
						|
 | 
						|
      Results.push_back(NewNode);
 | 
						|
      Results.push_back(NewNode.getValue(1));
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::FP_TO_SINT:
 | 
						|
  case ISD::FP_TO_UINT:
 | 
						|
    // LowerFP_TO_INT() can only handle f32 and f64.
 | 
						|
    if (N->getOperand(0).getValueType() == MVT::ppcf128)
 | 
						|
      return;
 | 
						|
    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
 | 
						|
    return;
 | 
						|
  case ISD::BITCAST:
 | 
						|
    // Don't handle bitcast here.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Other Lowering Code
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
 | 
						|
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | 
						|
  Function *Func = Intrinsic::getDeclaration(M, Id);
 | 
						|
  return Builder.CreateCall(Func, {});
 | 
						|
}
 | 
						|
 | 
						|
// The mappings for emitLeading/TrailingFence is taken from
 | 
						|
// http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
 | 
						|
Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
 | 
						|
                                                 Instruction *Inst,
 | 
						|
                                                 AtomicOrdering Ord) const {
 | 
						|
  if (Ord == AtomicOrdering::SequentiallyConsistent)
 | 
						|
    return callIntrinsic(Builder, Intrinsic::ppc_sync);
 | 
						|
  if (isReleaseOrStronger(Ord))
 | 
						|
    return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
 | 
						|
                                                  Instruction *Inst,
 | 
						|
                                                  AtomicOrdering Ord) const {
 | 
						|
  if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
 | 
						|
    // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
 | 
						|
    // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
 | 
						|
    // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
 | 
						|
    if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
 | 
						|
      return Builder.CreateCall(
 | 
						|
          Intrinsic::getDeclaration(
 | 
						|
              Builder.GetInsertBlock()->getParent()->getParent(),
 | 
						|
              Intrinsic::ppc_cfence, {Inst->getType()}),
 | 
						|
          {Inst});
 | 
						|
    // FIXME: Can use isync for rmw operation.
 | 
						|
    return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
 | 
						|
                                    unsigned AtomicSize,
 | 
						|
                                    unsigned BinOpcode,
 | 
						|
                                    unsigned CmpOpcode,
 | 
						|
                                    unsigned CmpPred) const {
 | 
						|
  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
 | 
						|
  auto LoadMnemonic = PPC::LDARX;
 | 
						|
  auto StoreMnemonic = PPC::STDCX;
 | 
						|
  switch (AtomicSize) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected size of atomic entity");
 | 
						|
  case 1:
 | 
						|
    LoadMnemonic = PPC::LBARX;
 | 
						|
    StoreMnemonic = PPC::STBCX;
 | 
						|
    assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
 | 
						|
    break;
 | 
						|
  case 2:
 | 
						|
    LoadMnemonic = PPC::LHARX;
 | 
						|
    StoreMnemonic = PPC::STHCX;
 | 
						|
    assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
 | 
						|
    break;
 | 
						|
  case 4:
 | 
						|
    LoadMnemonic = PPC::LWARX;
 | 
						|
    StoreMnemonic = PPC::STWCX;
 | 
						|
    break;
 | 
						|
  case 8:
 | 
						|
    LoadMnemonic = PPC::LDARX;
 | 
						|
    StoreMnemonic = PPC::STDCX;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | 
						|
  MachineFunction *F = BB->getParent();
 | 
						|
  MachineFunction::iterator It = ++BB->getIterator();
 | 
						|
 | 
						|
  unsigned dest = MI.getOperand(0).getReg();
 | 
						|
  unsigned ptrA = MI.getOperand(1).getReg();
 | 
						|
  unsigned ptrB = MI.getOperand(2).getReg();
 | 
						|
  unsigned incr = MI.getOperand(3).getReg();
 | 
						|
  DebugLoc dl = MI.getDebugLoc();
 | 
						|
 | 
						|
  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *loop2MBB =
 | 
						|
    CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
 | 
						|
  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  F->insert(It, loopMBB);
 | 
						|
  if (CmpOpcode)
 | 
						|
    F->insert(It, loop2MBB);
 | 
						|
  F->insert(It, exitMBB);
 | 
						|
  exitMBB->splice(exitMBB->begin(), BB,
 | 
						|
                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | 
						|
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
  MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
  unsigned TmpReg = (!BinOpcode) ? incr :
 | 
						|
    RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
 | 
						|
                                           : &PPC::GPRCRegClass);
 | 
						|
 | 
						|
  //  thisMBB:
 | 
						|
  //   ...
 | 
						|
  //   fallthrough --> loopMBB
 | 
						|
  BB->addSuccessor(loopMBB);
 | 
						|
 | 
						|
  //  loopMBB:
 | 
						|
  //   l[wd]arx dest, ptr
 | 
						|
  //   add r0, dest, incr
 | 
						|
  //   st[wd]cx. r0, ptr
 | 
						|
  //   bne- loopMBB
 | 
						|
  //   fallthrough --> exitMBB
 | 
						|
 | 
						|
  // For max/min...
 | 
						|
  //  loopMBB:
 | 
						|
  //   l[wd]arx dest, ptr
 | 
						|
  //   cmpl?[wd] incr, dest
 | 
						|
  //   bgt exitMBB
 | 
						|
  //  loop2MBB:
 | 
						|
  //   st[wd]cx. dest, ptr
 | 
						|
  //   bne- loopMBB
 | 
						|
  //   fallthrough --> exitMBB
 | 
						|
 | 
						|
  BB = loopMBB;
 | 
						|
  BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
 | 
						|
    .addReg(ptrA).addReg(ptrB);
 | 
						|
  if (BinOpcode)
 | 
						|
    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
 | 
						|
  if (CmpOpcode) {
 | 
						|
    // Signed comparisons of byte or halfword values must be sign-extended.
 | 
						|
    if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
 | 
						|
      unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
      BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
 | 
						|
              ExtReg).addReg(dest);
 | 
						|
      BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
 | 
						|
        .addReg(incr).addReg(ExtReg);
 | 
						|
    } else
 | 
						|
      BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
 | 
						|
        .addReg(incr).addReg(dest);
 | 
						|
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
      .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
 | 
						|
    BB->addSuccessor(loop2MBB);
 | 
						|
    BB->addSuccessor(exitMBB);
 | 
						|
    BB = loop2MBB;
 | 
						|
  }
 | 
						|
  BuildMI(BB, dl, TII->get(StoreMnemonic))
 | 
						|
    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
 | 
						|
  BB->addSuccessor(loopMBB);
 | 
						|
  BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
  //  exitMBB:
 | 
						|
  //   ...
 | 
						|
  BB = exitMBB;
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI,
 | 
						|
                                            MachineBasicBlock *BB,
 | 
						|
                                            bool is8bit, // operation
 | 
						|
                                            unsigned BinOpcode,
 | 
						|
                                            unsigned CmpOpcode,
 | 
						|
                                            unsigned CmpPred) const {
 | 
						|
  // If we support part-word atomic mnemonics, just use them
 | 
						|
  if (Subtarget.hasPartwordAtomics())
 | 
						|
    return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode,
 | 
						|
                            CmpOpcode, CmpPred);
 | 
						|
 | 
						|
  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  // In 64 bit mode we have to use 64 bits for addresses, even though the
 | 
						|
  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
 | 
						|
  // registers without caring whether they're 32 or 64, but here we're
 | 
						|
  // doing actual arithmetic on the addresses.
 | 
						|
  bool is64bit = Subtarget.isPPC64();
 | 
						|
  bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
  unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
 | 
						|
 | 
						|
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | 
						|
  MachineFunction *F = BB->getParent();
 | 
						|
  MachineFunction::iterator It = ++BB->getIterator();
 | 
						|
 | 
						|
  unsigned dest = MI.getOperand(0).getReg();
 | 
						|
  unsigned ptrA = MI.getOperand(1).getReg();
 | 
						|
  unsigned ptrB = MI.getOperand(2).getReg();
 | 
						|
  unsigned incr = MI.getOperand(3).getReg();
 | 
						|
  DebugLoc dl = MI.getDebugLoc();
 | 
						|
 | 
						|
  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  MachineBasicBlock *loop2MBB =
 | 
						|
    CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
 | 
						|
  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
  F->insert(It, loopMBB);
 | 
						|
  if (CmpOpcode)
 | 
						|
    F->insert(It, loop2MBB);
 | 
						|
  F->insert(It, exitMBB);
 | 
						|
  exitMBB->splice(exitMBB->begin(), BB,
 | 
						|
                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | 
						|
  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
  MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
  const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
 | 
						|
                                          : &PPC::GPRCRegClass;
 | 
						|
  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned ShiftReg =
 | 
						|
    isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
 | 
						|
  unsigned Ptr1Reg;
 | 
						|
  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
 | 
						|
 | 
						|
  //  thisMBB:
 | 
						|
  //   ...
 | 
						|
  //   fallthrough --> loopMBB
 | 
						|
  BB->addSuccessor(loopMBB);
 | 
						|
 | 
						|
  // The 4-byte load must be aligned, while a char or short may be
 | 
						|
  // anywhere in the word.  Hence all this nasty bookkeeping code.
 | 
						|
  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
 | 
						|
  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
 | 
						|
  //   xori shift, shift1, 24 [16]
 | 
						|
  //   rlwinm ptr, ptr1, 0, 0, 29
 | 
						|
  //   slw incr2, incr, shift
 | 
						|
  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
 | 
						|
  //   slw mask, mask2, shift
 | 
						|
  //  loopMBB:
 | 
						|
  //   lwarx tmpDest, ptr
 | 
						|
  //   add tmp, tmpDest, incr2
 | 
						|
  //   andc tmp2, tmpDest, mask
 | 
						|
  //   and tmp3, tmp, mask
 | 
						|
  //   or tmp4, tmp3, tmp2
 | 
						|
  //   stwcx. tmp4, ptr
 | 
						|
  //   bne- loopMBB
 | 
						|
  //   fallthrough --> exitMBB
 | 
						|
  //   srw dest, tmpDest, shift
 | 
						|
  if (ptrA != ZeroReg) {
 | 
						|
    Ptr1Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
 | 
						|
      .addReg(ptrA).addReg(ptrB);
 | 
						|
  } else {
 | 
						|
    Ptr1Reg = ptrB;
 | 
						|
  }
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
 | 
						|
      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
 | 
						|
  if (!isLittleEndian)
 | 
						|
    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
 | 
						|
        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
 | 
						|
  if (is64bit)
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
 | 
						|
      .addReg(Ptr1Reg).addImm(0).addImm(61);
 | 
						|
  else
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
 | 
						|
      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
 | 
						|
      .addReg(incr).addReg(ShiftReg);
 | 
						|
  if (is8bit)
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
 | 
						|
  else {
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
 | 
						|
  }
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
 | 
						|
      .addReg(Mask2Reg).addReg(ShiftReg);
 | 
						|
 | 
						|
  BB = loopMBB;
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
 | 
						|
    .addReg(ZeroReg).addReg(PtrReg);
 | 
						|
  if (BinOpcode)
 | 
						|
    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
 | 
						|
      .addReg(Incr2Reg).addReg(TmpDestReg);
 | 
						|
  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
 | 
						|
    .addReg(TmpDestReg).addReg(MaskReg);
 | 
						|
  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
 | 
						|
    .addReg(TmpReg).addReg(MaskReg);
 | 
						|
  if (CmpOpcode) {
 | 
						|
    // For unsigned comparisons, we can directly compare the shifted values.
 | 
						|
    // For signed comparisons we shift and sign extend.
 | 
						|
    unsigned SReg = RegInfo.createVirtualRegister(RC);
 | 
						|
    BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg)
 | 
						|
      .addReg(TmpDestReg).addReg(MaskReg);
 | 
						|
    unsigned ValueReg = SReg;
 | 
						|
    unsigned CmpReg = Incr2Reg;
 | 
						|
    if (CmpOpcode == PPC::CMPW) {
 | 
						|
      ValueReg = RegInfo.createVirtualRegister(RC);
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
 | 
						|
        .addReg(SReg).addReg(ShiftReg);
 | 
						|
      unsigned ValueSReg = RegInfo.createVirtualRegister(RC);
 | 
						|
      BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
 | 
						|
        .addReg(ValueReg);
 | 
						|
      ValueReg = ValueSReg;
 | 
						|
      CmpReg = incr;
 | 
						|
    }
 | 
						|
    BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
 | 
						|
      .addReg(CmpReg).addReg(ValueReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
      .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
 | 
						|
    BB->addSuccessor(loop2MBB);
 | 
						|
    BB->addSuccessor(exitMBB);
 | 
						|
    BB = loop2MBB;
 | 
						|
  }
 | 
						|
  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
 | 
						|
    .addReg(Tmp3Reg).addReg(Tmp2Reg);
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::STWCX))
 | 
						|
    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
 | 
						|
  BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
 | 
						|
  BB->addSuccessor(loopMBB);
 | 
						|
  BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
  //  exitMBB:
 | 
						|
  //   ...
 | 
						|
  BB = exitMBB;
 | 
						|
  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
 | 
						|
    .addReg(ShiftReg);
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
llvm::MachineBasicBlock *
 | 
						|
PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
 | 
						|
                                    MachineBasicBlock *MBB) const {
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
 | 
						|
 | 
						|
  MachineFunction *MF = MBB->getParent();
 | 
						|
  MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
 | 
						|
  const BasicBlock *BB = MBB->getBasicBlock();
 | 
						|
  MachineFunction::iterator I = ++MBB->getIterator();
 | 
						|
 | 
						|
  unsigned DstReg = MI.getOperand(0).getReg();
 | 
						|
  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
 | 
						|
  assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
 | 
						|
  unsigned mainDstReg = MRI.createVirtualRegister(RC);
 | 
						|
  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
 | 
						|
 | 
						|
  MVT PVT = getPointerTy(MF->getDataLayout());
 | 
						|
  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
 | 
						|
         "Invalid Pointer Size!");
 | 
						|
  // For v = setjmp(buf), we generate
 | 
						|
  //
 | 
						|
  // thisMBB:
 | 
						|
  //  SjLjSetup mainMBB
 | 
						|
  //  bl mainMBB
 | 
						|
  //  v_restore = 1
 | 
						|
  //  b sinkMBB
 | 
						|
  //
 | 
						|
  // mainMBB:
 | 
						|
  //  buf[LabelOffset] = LR
 | 
						|
  //  v_main = 0
 | 
						|
  //
 | 
						|
  // sinkMBB:
 | 
						|
  //  v = phi(main, restore)
 | 
						|
  //
 | 
						|
 | 
						|
  MachineBasicBlock *thisMBB = MBB;
 | 
						|
  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
 | 
						|
  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
 | 
						|
  MF->insert(I, mainMBB);
 | 
						|
  MF->insert(I, sinkMBB);
 | 
						|
 | 
						|
  MachineInstrBuilder MIB;
 | 
						|
 | 
						|
  // Transfer the remainder of BB and its successor edges to sinkMBB.
 | 
						|
  sinkMBB->splice(sinkMBB->begin(), MBB,
 | 
						|
                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
 | 
						|
  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
 | 
						|
 | 
						|
  // Note that the structure of the jmp_buf used here is not compatible
 | 
						|
  // with that used by libc, and is not designed to be. Specifically, it
 | 
						|
  // stores only those 'reserved' registers that LLVM does not otherwise
 | 
						|
  // understand how to spill. Also, by convention, by the time this
 | 
						|
  // intrinsic is called, Clang has already stored the frame address in the
 | 
						|
  // first slot of the buffer and stack address in the third. Following the
 | 
						|
  // X86 target code, we'll store the jump address in the second slot. We also
 | 
						|
  // need to save the TOC pointer (R2) to handle jumps between shared
 | 
						|
  // libraries, and that will be stored in the fourth slot. The thread
 | 
						|
  // identifier (R13) is not affected.
 | 
						|
 | 
						|
  // thisMBB:
 | 
						|
  const int64_t LabelOffset = 1 * PVT.getStoreSize();
 | 
						|
  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
 | 
						|
  const int64_t BPOffset    = 4 * PVT.getStoreSize();
 | 
						|
 | 
						|
  // Prepare IP either in reg.
 | 
						|
  const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
 | 
						|
  unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
 | 
						|
  unsigned BufReg = MI.getOperand(1).getReg();
 | 
						|
 | 
						|
  if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
 | 
						|
    setUsesTOCBasePtr(*MBB->getParent());
 | 
						|
    MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
 | 
						|
              .addReg(PPC::X2)
 | 
						|
              .addImm(TOCOffset)
 | 
						|
              .addReg(BufReg)
 | 
						|
              .cloneMemRefs(MI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Naked functions never have a base pointer, and so we use r1. For all
 | 
						|
  // other functions, this decision must be delayed until during PEI.
 | 
						|
  unsigned BaseReg;
 | 
						|
  if (MF->getFunction().hasFnAttribute(Attribute::Naked))
 | 
						|
    BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
 | 
						|
  else
 | 
						|
    BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
 | 
						|
 | 
						|
  MIB = BuildMI(*thisMBB, MI, DL,
 | 
						|
                TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
 | 
						|
            .addReg(BaseReg)
 | 
						|
            .addImm(BPOffset)
 | 
						|
            .addReg(BufReg)
 | 
						|
            .cloneMemRefs(MI);
 | 
						|
 | 
						|
  // Setup
 | 
						|
  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
 | 
						|
  MIB.addRegMask(TRI->getNoPreservedMask());
 | 
						|
 | 
						|
  BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
 | 
						|
 | 
						|
  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
 | 
						|
          .addMBB(mainMBB);
 | 
						|
  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
 | 
						|
 | 
						|
  thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
 | 
						|
  thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
 | 
						|
 | 
						|
  // mainMBB:
 | 
						|
  //  mainDstReg = 0
 | 
						|
  MIB =
 | 
						|
      BuildMI(mainMBB, DL,
 | 
						|
              TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
 | 
						|
 | 
						|
  // Store IP
 | 
						|
  if (Subtarget.isPPC64()) {
 | 
						|
    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
 | 
						|
            .addReg(LabelReg)
 | 
						|
            .addImm(LabelOffset)
 | 
						|
            .addReg(BufReg);
 | 
						|
  } else {
 | 
						|
    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
 | 
						|
            .addReg(LabelReg)
 | 
						|
            .addImm(LabelOffset)
 | 
						|
            .addReg(BufReg);
 | 
						|
  }
 | 
						|
  MIB.cloneMemRefs(MI);
 | 
						|
 | 
						|
  BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
 | 
						|
  mainMBB->addSuccessor(sinkMBB);
 | 
						|
 | 
						|
  // sinkMBB:
 | 
						|
  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
 | 
						|
          TII->get(PPC::PHI), DstReg)
 | 
						|
    .addReg(mainDstReg).addMBB(mainMBB)
 | 
						|
    .addReg(restoreDstReg).addMBB(thisMBB);
 | 
						|
 | 
						|
  MI.eraseFromParent();
 | 
						|
  return sinkMBB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
 | 
						|
                                     MachineBasicBlock *MBB) const {
 | 
						|
  DebugLoc DL = MI.getDebugLoc();
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
 | 
						|
  MachineFunction *MF = MBB->getParent();
 | 
						|
  MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
 | 
						|
  MVT PVT = getPointerTy(MF->getDataLayout());
 | 
						|
  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
 | 
						|
         "Invalid Pointer Size!");
 | 
						|
 | 
						|
  const TargetRegisterClass *RC =
 | 
						|
    (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
 | 
						|
  unsigned Tmp = MRI.createVirtualRegister(RC);
 | 
						|
  // Since FP is only updated here but NOT referenced, it's treated as GPR.
 | 
						|
  unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
 | 
						|
  unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
 | 
						|
  unsigned BP =
 | 
						|
      (PVT == MVT::i64)
 | 
						|
          ? PPC::X30
 | 
						|
          : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
 | 
						|
                                                              : PPC::R30);
 | 
						|
 | 
						|
  MachineInstrBuilder MIB;
 | 
						|
 | 
						|
  const int64_t LabelOffset = 1 * PVT.getStoreSize();
 | 
						|
  const int64_t SPOffset    = 2 * PVT.getStoreSize();
 | 
						|
  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
 | 
						|
  const int64_t BPOffset    = 4 * PVT.getStoreSize();
 | 
						|
 | 
						|
  unsigned BufReg = MI.getOperand(0).getReg();
 | 
						|
 | 
						|
  // Reload FP (the jumped-to function may not have had a
 | 
						|
  // frame pointer, and if so, then its r31 will be restored
 | 
						|
  // as necessary).
 | 
						|
  if (PVT == MVT::i64) {
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
 | 
						|
            .addImm(0)
 | 
						|
            .addReg(BufReg);
 | 
						|
  } else {
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
 | 
						|
            .addImm(0)
 | 
						|
            .addReg(BufReg);
 | 
						|
  }
 | 
						|
  MIB.cloneMemRefs(MI);
 | 
						|
 | 
						|
  // Reload IP
 | 
						|
  if (PVT == MVT::i64) {
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
 | 
						|
            .addImm(LabelOffset)
 | 
						|
            .addReg(BufReg);
 | 
						|
  } else {
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
 | 
						|
            .addImm(LabelOffset)
 | 
						|
            .addReg(BufReg);
 | 
						|
  }
 | 
						|
  MIB.cloneMemRefs(MI);
 | 
						|
 | 
						|
  // Reload SP
 | 
						|
  if (PVT == MVT::i64) {
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
 | 
						|
            .addImm(SPOffset)
 | 
						|
            .addReg(BufReg);
 | 
						|
  } else {
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
 | 
						|
            .addImm(SPOffset)
 | 
						|
            .addReg(BufReg);
 | 
						|
  }
 | 
						|
  MIB.cloneMemRefs(MI);
 | 
						|
 | 
						|
  // Reload BP
 | 
						|
  if (PVT == MVT::i64) {
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
 | 
						|
            .addImm(BPOffset)
 | 
						|
            .addReg(BufReg);
 | 
						|
  } else {
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
 | 
						|
            .addImm(BPOffset)
 | 
						|
            .addReg(BufReg);
 | 
						|
  }
 | 
						|
  MIB.cloneMemRefs(MI);
 | 
						|
 | 
						|
  // Reload TOC
 | 
						|
  if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
 | 
						|
    setUsesTOCBasePtr(*MBB->getParent());
 | 
						|
    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
 | 
						|
              .addImm(TOCOffset)
 | 
						|
              .addReg(BufReg)
 | 
						|
              .cloneMemRefs(MI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Jump
 | 
						|
  BuildMI(*MBB, MI, DL,
 | 
						|
          TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
 | 
						|
  BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
 | 
						|
 | 
						|
  MI.eraseFromParent();
 | 
						|
  return MBB;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock *
 | 
						|
PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
 | 
						|
                                               MachineBasicBlock *BB) const {
 | 
						|
  if (MI.getOpcode() == TargetOpcode::STACKMAP ||
 | 
						|
      MI.getOpcode() == TargetOpcode::PATCHPOINT) {
 | 
						|
    if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
 | 
						|
        MI.getOpcode() == TargetOpcode::PATCHPOINT) {
 | 
						|
      // Call lowering should have added an r2 operand to indicate a dependence
 | 
						|
      // on the TOC base pointer value. It can't however, because there is no
 | 
						|
      // way to mark the dependence as implicit there, and so the stackmap code
 | 
						|
      // will confuse it with a regular operand. Instead, add the dependence
 | 
						|
      // here.
 | 
						|
      setUsesTOCBasePtr(*BB->getParent());
 | 
						|
      MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
 | 
						|
    }
 | 
						|
 | 
						|
    return emitPatchPoint(MI, BB);
 | 
						|
  }
 | 
						|
 | 
						|
  if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
 | 
						|
      MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
 | 
						|
    return emitEHSjLjSetJmp(MI, BB);
 | 
						|
  } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
 | 
						|
             MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
 | 
						|
    return emitEHSjLjLongJmp(MI, BB);
 | 
						|
  }
 | 
						|
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
 | 
						|
  // To "insert" these instructions we actually have to insert their
 | 
						|
  // control-flow patterns.
 | 
						|
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | 
						|
  MachineFunction::iterator It = ++BB->getIterator();
 | 
						|
 | 
						|
  MachineFunction *F = BB->getParent();
 | 
						|
 | 
						|
  if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
 | 
						|
       MI.getOpcode() == PPC::SELECT_CC_I8 ||
 | 
						|
       MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) {
 | 
						|
    SmallVector<MachineOperand, 2> Cond;
 | 
						|
    if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_CC_I8)
 | 
						|
      Cond.push_back(MI.getOperand(4));
 | 
						|
    else
 | 
						|
      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
 | 
						|
    Cond.push_back(MI.getOperand(1));
 | 
						|
 | 
						|
    DebugLoc dl = MI.getDebugLoc();
 | 
						|
    TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
 | 
						|
                      MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
 | 
						|
  } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_I8 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_F4 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_F8 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_F16 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_QFRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_QSRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_QBRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_VRRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_VSRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_CC_SPE ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_I4 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_I8 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_F4 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_F8 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_F16 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_QFRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_QSRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_QBRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_SPE ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_SPE4 ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_VRRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_VSFRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_VSSRC ||
 | 
						|
             MI.getOpcode() == PPC::SELECT_VSRC) {
 | 
						|
    // The incoming instruction knows the destination vreg to set, the
 | 
						|
    // condition code register to branch on, the true/false values to
 | 
						|
    // select between, and a branch opcode to use.
 | 
						|
 | 
						|
    //  thisMBB:
 | 
						|
    //  ...
 | 
						|
    //   TrueVal = ...
 | 
						|
    //   cmpTY ccX, r1, r2
 | 
						|
    //   bCC copy1MBB
 | 
						|
    //   fallthrough --> copy0MBB
 | 
						|
    MachineBasicBlock *thisMBB = BB;
 | 
						|
    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    DebugLoc dl = MI.getDebugLoc();
 | 
						|
    F->insert(It, copy0MBB);
 | 
						|
    F->insert(It, sinkMBB);
 | 
						|
 | 
						|
    // Transfer the remainder of BB and its successor edges to sinkMBB.
 | 
						|
    sinkMBB->splice(sinkMBB->begin(), BB,
 | 
						|
                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | 
						|
    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
    // Next, add the true and fallthrough blocks as its successors.
 | 
						|
    BB->addSuccessor(copy0MBB);
 | 
						|
    BB->addSuccessor(sinkMBB);
 | 
						|
 | 
						|
    if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_F16 ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_SPE4 ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_SPE ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_QFRC ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_QSRC ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_QBRC ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_VRRC ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_VSFRC ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_VSSRC ||
 | 
						|
        MI.getOpcode() == PPC::SELECT_VSRC) {
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::BC))
 | 
						|
          .addReg(MI.getOperand(1).getReg())
 | 
						|
          .addMBB(sinkMBB);
 | 
						|
    } else {
 | 
						|
      unsigned SelectPred = MI.getOperand(4).getImm();
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
          .addImm(SelectPred)
 | 
						|
          .addReg(MI.getOperand(1).getReg())
 | 
						|
          .addMBB(sinkMBB);
 | 
						|
    }
 | 
						|
 | 
						|
    //  copy0MBB:
 | 
						|
    //   %FalseValue = ...
 | 
						|
    //   # fallthrough to sinkMBB
 | 
						|
    BB = copy0MBB;
 | 
						|
 | 
						|
    // Update machine-CFG edges
 | 
						|
    BB->addSuccessor(sinkMBB);
 | 
						|
 | 
						|
    //  sinkMBB:
 | 
						|
    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | 
						|
    //  ...
 | 
						|
    BB = sinkMBB;
 | 
						|
    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
 | 
						|
        .addReg(MI.getOperand(3).getReg())
 | 
						|
        .addMBB(copy0MBB)
 | 
						|
        .addReg(MI.getOperand(2).getReg())
 | 
						|
        .addMBB(thisMBB);
 | 
						|
  } else if (MI.getOpcode() == PPC::ReadTB) {
 | 
						|
    // To read the 64-bit time-base register on a 32-bit target, we read the
 | 
						|
    // two halves. Should the counter have wrapped while it was being read, we
 | 
						|
    // need to try again.
 | 
						|
    // ...
 | 
						|
    // readLoop:
 | 
						|
    // mfspr Rx,TBU # load from TBU
 | 
						|
    // mfspr Ry,TB  # load from TB
 | 
						|
    // mfspr Rz,TBU # load from TBU
 | 
						|
    // cmpw crX,Rx,Rz # check if 'old'='new'
 | 
						|
    // bne readLoop   # branch if they're not equal
 | 
						|
    // ...
 | 
						|
 | 
						|
    MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    DebugLoc dl = MI.getDebugLoc();
 | 
						|
    F->insert(It, readMBB);
 | 
						|
    F->insert(It, sinkMBB);
 | 
						|
 | 
						|
    // Transfer the remainder of BB and its successor edges to sinkMBB.
 | 
						|
    sinkMBB->splice(sinkMBB->begin(), BB,
 | 
						|
                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | 
						|
    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
    BB->addSuccessor(readMBB);
 | 
						|
    BB = readMBB;
 | 
						|
 | 
						|
    MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
    unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
    unsigned LoReg = MI.getOperand(0).getReg();
 | 
						|
    unsigned HiReg = MI.getOperand(1).getReg();
 | 
						|
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
 | 
						|
 | 
						|
    unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
 | 
						|
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
 | 
						|
      .addReg(HiReg).addReg(ReadAgainReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
      .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
 | 
						|
 | 
						|
    BB->addSuccessor(readMBB);
 | 
						|
    BB->addSuccessor(sinkMBB);
 | 
						|
  } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
 | 
						|
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
 | 
						|
    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 4, 0);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
 | 
						|
    BB = EmitAtomicBinary(MI, BB, 8, 0);
 | 
						|
  else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
 | 
						|
           MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
 | 
						|
           (Subtarget.hasPartwordAtomics() &&
 | 
						|
            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
 | 
						|
           (Subtarget.hasPartwordAtomics() &&
 | 
						|
            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
 | 
						|
    bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
 | 
						|
 | 
						|
    auto LoadMnemonic = PPC::LDARX;
 | 
						|
    auto StoreMnemonic = PPC::STDCX;
 | 
						|
    switch (MI.getOpcode()) {
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Compare and swap of unknown size");
 | 
						|
    case PPC::ATOMIC_CMP_SWAP_I8:
 | 
						|
      LoadMnemonic = PPC::LBARX;
 | 
						|
      StoreMnemonic = PPC::STBCX;
 | 
						|
      assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
 | 
						|
      break;
 | 
						|
    case PPC::ATOMIC_CMP_SWAP_I16:
 | 
						|
      LoadMnemonic = PPC::LHARX;
 | 
						|
      StoreMnemonic = PPC::STHCX;
 | 
						|
      assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
 | 
						|
      break;
 | 
						|
    case PPC::ATOMIC_CMP_SWAP_I32:
 | 
						|
      LoadMnemonic = PPC::LWARX;
 | 
						|
      StoreMnemonic = PPC::STWCX;
 | 
						|
      break;
 | 
						|
    case PPC::ATOMIC_CMP_SWAP_I64:
 | 
						|
      LoadMnemonic = PPC::LDARX;
 | 
						|
      StoreMnemonic = PPC::STDCX;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    unsigned dest = MI.getOperand(0).getReg();
 | 
						|
    unsigned ptrA = MI.getOperand(1).getReg();
 | 
						|
    unsigned ptrB = MI.getOperand(2).getReg();
 | 
						|
    unsigned oldval = MI.getOperand(3).getReg();
 | 
						|
    unsigned newval = MI.getOperand(4).getReg();
 | 
						|
    DebugLoc dl = MI.getDebugLoc();
 | 
						|
 | 
						|
    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    F->insert(It, loop1MBB);
 | 
						|
    F->insert(It, loop2MBB);
 | 
						|
    F->insert(It, midMBB);
 | 
						|
    F->insert(It, exitMBB);
 | 
						|
    exitMBB->splice(exitMBB->begin(), BB,
 | 
						|
                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | 
						|
    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
    //  thisMBB:
 | 
						|
    //   ...
 | 
						|
    //   fallthrough --> loopMBB
 | 
						|
    BB->addSuccessor(loop1MBB);
 | 
						|
 | 
						|
    // loop1MBB:
 | 
						|
    //   l[bhwd]arx dest, ptr
 | 
						|
    //   cmp[wd] dest, oldval
 | 
						|
    //   bne- midMBB
 | 
						|
    // loop2MBB:
 | 
						|
    //   st[bhwd]cx. newval, ptr
 | 
						|
    //   bne- loopMBB
 | 
						|
    //   b exitBB
 | 
						|
    // midMBB:
 | 
						|
    //   st[bhwd]cx. dest, ptr
 | 
						|
    // exitBB:
 | 
						|
    BB = loop1MBB;
 | 
						|
    BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
 | 
						|
      .addReg(ptrA).addReg(ptrB);
 | 
						|
    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
 | 
						|
      .addReg(oldval).addReg(dest);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
 | 
						|
    BB->addSuccessor(loop2MBB);
 | 
						|
    BB->addSuccessor(midMBB);
 | 
						|
 | 
						|
    BB = loop2MBB;
 | 
						|
    BuildMI(BB, dl, TII->get(StoreMnemonic))
 | 
						|
      .addReg(newval).addReg(ptrA).addReg(ptrB);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
 | 
						|
    BB->addSuccessor(loop1MBB);
 | 
						|
    BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
    BB = midMBB;
 | 
						|
    BuildMI(BB, dl, TII->get(StoreMnemonic))
 | 
						|
      .addReg(dest).addReg(ptrA).addReg(ptrB);
 | 
						|
    BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
    //  exitMBB:
 | 
						|
    //   ...
 | 
						|
    BB = exitMBB;
 | 
						|
  } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
 | 
						|
             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
 | 
						|
    // We must use 64-bit registers for addresses when targeting 64-bit,
 | 
						|
    // since we're actually doing arithmetic on them.  Other registers
 | 
						|
    // can be 32-bit.
 | 
						|
    bool is64bit = Subtarget.isPPC64();
 | 
						|
    bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
    bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
 | 
						|
 | 
						|
    unsigned dest = MI.getOperand(0).getReg();
 | 
						|
    unsigned ptrA = MI.getOperand(1).getReg();
 | 
						|
    unsigned ptrB = MI.getOperand(2).getReg();
 | 
						|
    unsigned oldval = MI.getOperand(3).getReg();
 | 
						|
    unsigned newval = MI.getOperand(4).getReg();
 | 
						|
    DebugLoc dl = MI.getDebugLoc();
 | 
						|
 | 
						|
    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | 
						|
    F->insert(It, loop1MBB);
 | 
						|
    F->insert(It, loop2MBB);
 | 
						|
    F->insert(It, midMBB);
 | 
						|
    F->insert(It, exitMBB);
 | 
						|
    exitMBB->splice(exitMBB->begin(), BB,
 | 
						|
                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
 | 
						|
    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
 | 
						|
 | 
						|
    MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
    const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
 | 
						|
                                            : &PPC::GPRCRegClass;
 | 
						|
    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned ShiftReg =
 | 
						|
      isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned Ptr1Reg;
 | 
						|
    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
 | 
						|
    unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
 | 
						|
    //  thisMBB:
 | 
						|
    //   ...
 | 
						|
    //   fallthrough --> loopMBB
 | 
						|
    BB->addSuccessor(loop1MBB);
 | 
						|
 | 
						|
    // The 4-byte load must be aligned, while a char or short may be
 | 
						|
    // anywhere in the word.  Hence all this nasty bookkeeping code.
 | 
						|
    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
 | 
						|
    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
 | 
						|
    //   xori shift, shift1, 24 [16]
 | 
						|
    //   rlwinm ptr, ptr1, 0, 0, 29
 | 
						|
    //   slw newval2, newval, shift
 | 
						|
    //   slw oldval2, oldval,shift
 | 
						|
    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
 | 
						|
    //   slw mask, mask2, shift
 | 
						|
    //   and newval3, newval2, mask
 | 
						|
    //   and oldval3, oldval2, mask
 | 
						|
    // loop1MBB:
 | 
						|
    //   lwarx tmpDest, ptr
 | 
						|
    //   and tmp, tmpDest, mask
 | 
						|
    //   cmpw tmp, oldval3
 | 
						|
    //   bne- midMBB
 | 
						|
    // loop2MBB:
 | 
						|
    //   andc tmp2, tmpDest, mask
 | 
						|
    //   or tmp4, tmp2, newval3
 | 
						|
    //   stwcx. tmp4, ptr
 | 
						|
    //   bne- loop1MBB
 | 
						|
    //   b exitBB
 | 
						|
    // midMBB:
 | 
						|
    //   stwcx. tmpDest, ptr
 | 
						|
    // exitBB:
 | 
						|
    //   srw dest, tmpDest, shift
 | 
						|
    if (ptrA != ZeroReg) {
 | 
						|
      Ptr1Reg = RegInfo.createVirtualRegister(RC);
 | 
						|
      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
 | 
						|
        .addReg(ptrA).addReg(ptrB);
 | 
						|
    } else {
 | 
						|
      Ptr1Reg = ptrB;
 | 
						|
    }
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
 | 
						|
        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
 | 
						|
    if (!isLittleEndian)
 | 
						|
      BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
 | 
						|
          .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
 | 
						|
    if (is64bit)
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
 | 
						|
        .addReg(Ptr1Reg).addImm(0).addImm(61);
 | 
						|
    else
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
 | 
						|
        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
 | 
						|
        .addReg(newval).addReg(ShiftReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
 | 
						|
        .addReg(oldval).addReg(ShiftReg);
 | 
						|
    if (is8bit)
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
 | 
						|
    else {
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
 | 
						|
      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
 | 
						|
        .addReg(Mask3Reg).addImm(65535);
 | 
						|
    }
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
 | 
						|
        .addReg(Mask2Reg).addReg(ShiftReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
 | 
						|
        .addReg(NewVal2Reg).addReg(MaskReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
 | 
						|
        .addReg(OldVal2Reg).addReg(MaskReg);
 | 
						|
 | 
						|
    BB = loop1MBB;
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
 | 
						|
        .addReg(ZeroReg).addReg(PtrReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
 | 
						|
        .addReg(TmpDestReg).addReg(MaskReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
 | 
						|
        .addReg(TmpReg).addReg(OldVal3Reg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
 | 
						|
    BB->addSuccessor(loop2MBB);
 | 
						|
    BB->addSuccessor(midMBB);
 | 
						|
 | 
						|
    BB = loop2MBB;
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
 | 
						|
        .addReg(TmpDestReg).addReg(MaskReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
 | 
						|
        .addReg(Tmp2Reg).addReg(NewVal3Reg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
 | 
						|
        .addReg(ZeroReg).addReg(PtrReg);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::BCC))
 | 
						|
      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
 | 
						|
    BB->addSuccessor(loop1MBB);
 | 
						|
    BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
    BB = midMBB;
 | 
						|
    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
 | 
						|
      .addReg(ZeroReg).addReg(PtrReg);
 | 
						|
    BB->addSuccessor(exitMBB);
 | 
						|
 | 
						|
    //  exitMBB:
 | 
						|
    //   ...
 | 
						|
    BB = exitMBB;
 | 
						|
    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
 | 
						|
      .addReg(ShiftReg);
 | 
						|
  } else if (MI.getOpcode() == PPC::FADDrtz) {
 | 
						|
    // This pseudo performs an FADD with rounding mode temporarily forced
 | 
						|
    // to round-to-zero.  We emit this via custom inserter since the FPSCR
 | 
						|
    // is not modeled at the SelectionDAG level.
 | 
						|
    unsigned Dest = MI.getOperand(0).getReg();
 | 
						|
    unsigned Src1 = MI.getOperand(1).getReg();
 | 
						|
    unsigned Src2 = MI.getOperand(2).getReg();
 | 
						|
    DebugLoc dl = MI.getDebugLoc();
 | 
						|
 | 
						|
    MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
    unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
 | 
						|
 | 
						|
    // Save FPSCR value.
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
 | 
						|
 | 
						|
    // Set rounding mode to round-to-zero.
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
 | 
						|
 | 
						|
    // Perform addition.
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
 | 
						|
 | 
						|
    // Restore FPSCR value.
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
 | 
						|
  } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
 | 
						|
             MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
 | 
						|
             MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
 | 
						|
             MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
 | 
						|
    unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
 | 
						|
                       MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
 | 
						|
                          ? PPC::ANDIo8
 | 
						|
                          : PPC::ANDIo;
 | 
						|
    bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
 | 
						|
                 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
 | 
						|
 | 
						|
    MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
    unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
 | 
						|
                                                  &PPC::GPRCRegClass :
 | 
						|
                                                  &PPC::G8RCRegClass);
 | 
						|
 | 
						|
    DebugLoc dl = MI.getDebugLoc();
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
 | 
						|
        .addReg(MI.getOperand(1).getReg())
 | 
						|
        .addImm(1);
 | 
						|
    BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
 | 
						|
            MI.getOperand(0).getReg())
 | 
						|
        .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
 | 
						|
  } else if (MI.getOpcode() == PPC::TCHECK_RET) {
 | 
						|
    DebugLoc Dl = MI.getDebugLoc();
 | 
						|
    MachineRegisterInfo &RegInfo = F->getRegInfo();
 | 
						|
    unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
 | 
						|
    BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
 | 
						|
    return BB;
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Unexpected instr type to insert");
 | 
						|
  }
 | 
						|
 | 
						|
  MI.eraseFromParent(); // The pseudo instruction is gone now.
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Target Optimization Hooks
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
 | 
						|
  // For the estimates, convergence is quadratic, so we essentially double the
 | 
						|
  // number of digits correct after every iteration. For both FRE and FRSQRTE,
 | 
						|
  // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
 | 
						|
  // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
 | 
						|
  int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
 | 
						|
  if (VT.getScalarType() == MVT::f64)
 | 
						|
    RefinementSteps++;
 | 
						|
  return RefinementSteps;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
 | 
						|
                                           int Enabled, int &RefinementSteps,
 | 
						|
                                           bool &UseOneConstNR,
 | 
						|
                                           bool Reciprocal) const {
 | 
						|
  EVT VT = Operand.getValueType();
 | 
						|
  if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
 | 
						|
      (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
 | 
						|
      (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
 | 
						|
      (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
 | 
						|
      (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
 | 
						|
      (VT == MVT::v4f64 && Subtarget.hasQPX())) {
 | 
						|
    if (RefinementSteps == ReciprocalEstimate::Unspecified)
 | 
						|
      RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
 | 
						|
 | 
						|
    UseOneConstNR = true;
 | 
						|
    return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
 | 
						|
                                            int Enabled,
 | 
						|
                                            int &RefinementSteps) const {
 | 
						|
  EVT VT = Operand.getValueType();
 | 
						|
  if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
 | 
						|
      (VT == MVT::f64 && Subtarget.hasFRE()) ||
 | 
						|
      (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
 | 
						|
      (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
 | 
						|
      (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
 | 
						|
      (VT == MVT::v4f64 && Subtarget.hasQPX())) {
 | 
						|
    if (RefinementSteps == ReciprocalEstimate::Unspecified)
 | 
						|
      RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
 | 
						|
    return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
 | 
						|
  // Note: This functionality is used only when unsafe-fp-math is enabled, and
 | 
						|
  // on cores with reciprocal estimates (which are used when unsafe-fp-math is
 | 
						|
  // enabled for division), this functionality is redundant with the default
 | 
						|
  // combiner logic (once the division -> reciprocal/multiply transformation
 | 
						|
  // has taken place). As a result, this matters more for older cores than for
 | 
						|
  // newer ones.
 | 
						|
 | 
						|
  // Combine multiple FDIVs with the same divisor into multiple FMULs by the
 | 
						|
  // reciprocal if there are two or more FDIVs (for embedded cores with only
 | 
						|
  // one FP pipeline) for three or more FDIVs (for generic OOO cores).
 | 
						|
  switch (Subtarget.getDarwinDirective()) {
 | 
						|
  default:
 | 
						|
    return 3;
 | 
						|
  case PPC::DIR_440:
 | 
						|
  case PPC::DIR_A2:
 | 
						|
  case PPC::DIR_E500:
 | 
						|
  case PPC::DIR_E500mc:
 | 
						|
  case PPC::DIR_E5500:
 | 
						|
    return 2;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// isConsecutiveLSLoc needs to work even if all adds have not yet been
 | 
						|
// collapsed, and so we need to look through chains of them.
 | 
						|
static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
 | 
						|
                                     int64_t& Offset, SelectionDAG &DAG) {
 | 
						|
  if (DAG.isBaseWithConstantOffset(Loc)) {
 | 
						|
    Base = Loc.getOperand(0);
 | 
						|
    Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
 | 
						|
 | 
						|
    // The base might itself be a base plus an offset, and if so, accumulate
 | 
						|
    // that as well.
 | 
						|
    getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
 | 
						|
                            unsigned Bytes, int Dist,
 | 
						|
                            SelectionDAG &DAG) {
 | 
						|
  if (VT.getSizeInBits() / 8 != Bytes)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDValue BaseLoc = Base->getBasePtr();
 | 
						|
  if (Loc.getOpcode() == ISD::FrameIndex) {
 | 
						|
    if (BaseLoc.getOpcode() != ISD::FrameIndex)
 | 
						|
      return false;
 | 
						|
    const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
 | 
						|
    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
 | 
						|
    int FS  = MFI.getObjectSize(FI);
 | 
						|
    int BFS = MFI.getObjectSize(BFI);
 | 
						|
    if (FS != BFS || FS != (int)Bytes) return false;
 | 
						|
    return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Base1 = Loc, Base2 = BaseLoc;
 | 
						|
  int64_t Offset1 = 0, Offset2 = 0;
 | 
						|
  getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
 | 
						|
  getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
 | 
						|
  if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
 | 
						|
    return true;
 | 
						|
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
  const GlobalValue *GV1 = nullptr;
 | 
						|
  const GlobalValue *GV2 = nullptr;
 | 
						|
  Offset1 = 0;
 | 
						|
  Offset2 = 0;
 | 
						|
  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
 | 
						|
  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
 | 
						|
  if (isGA1 && isGA2 && GV1 == GV2)
 | 
						|
    return Offset1 == (Offset2 + Dist*Bytes);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
 | 
						|
// not enforce equality of the chain operands.
 | 
						|
static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
 | 
						|
                            unsigned Bytes, int Dist,
 | 
						|
                            SelectionDAG &DAG) {
 | 
						|
  if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
 | 
						|
    EVT VT = LS->getMemoryVT();
 | 
						|
    SDValue Loc = LS->getBasePtr();
 | 
						|
    return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
 | 
						|
    EVT VT;
 | 
						|
    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | 
						|
    default: return false;
 | 
						|
    case Intrinsic::ppc_qpx_qvlfd:
 | 
						|
    case Intrinsic::ppc_qpx_qvlfda:
 | 
						|
      VT = MVT::v4f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvlfs:
 | 
						|
    case Intrinsic::ppc_qpx_qvlfsa:
 | 
						|
      VT = MVT::v4f32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvlfcd:
 | 
						|
    case Intrinsic::ppc_qpx_qvlfcda:
 | 
						|
      VT = MVT::v2f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvlfcs:
 | 
						|
    case Intrinsic::ppc_qpx_qvlfcsa:
 | 
						|
      VT = MVT::v2f32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvlfiwa:
 | 
						|
    case Intrinsic::ppc_qpx_qvlfiwz:
 | 
						|
    case Intrinsic::ppc_altivec_lvx:
 | 
						|
    case Intrinsic::ppc_altivec_lvxl:
 | 
						|
    case Intrinsic::ppc_vsx_lxvw4x:
 | 
						|
    case Intrinsic::ppc_vsx_lxvw4x_be:
 | 
						|
      VT = MVT::v4i32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_vsx_lxvd2x:
 | 
						|
    case Intrinsic::ppc_vsx_lxvd2x_be:
 | 
						|
      VT = MVT::v2f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_lvebx:
 | 
						|
      VT = MVT::i8;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_lvehx:
 | 
						|
      VT = MVT::i16;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_lvewx:
 | 
						|
      VT = MVT::i32;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  if (N->getOpcode() == ISD::INTRINSIC_VOID) {
 | 
						|
    EVT VT;
 | 
						|
    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | 
						|
    default: return false;
 | 
						|
    case Intrinsic::ppc_qpx_qvstfd:
 | 
						|
    case Intrinsic::ppc_qpx_qvstfda:
 | 
						|
      VT = MVT::v4f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvstfs:
 | 
						|
    case Intrinsic::ppc_qpx_qvstfsa:
 | 
						|
      VT = MVT::v4f32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvstfcd:
 | 
						|
    case Intrinsic::ppc_qpx_qvstfcda:
 | 
						|
      VT = MVT::v2f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvstfcs:
 | 
						|
    case Intrinsic::ppc_qpx_qvstfcsa:
 | 
						|
      VT = MVT::v2f32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvstfiw:
 | 
						|
    case Intrinsic::ppc_qpx_qvstfiwa:
 | 
						|
    case Intrinsic::ppc_altivec_stvx:
 | 
						|
    case Intrinsic::ppc_altivec_stvxl:
 | 
						|
    case Intrinsic::ppc_vsx_stxvw4x:
 | 
						|
      VT = MVT::v4i32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_vsx_stxvd2x:
 | 
						|
      VT = MVT::v2f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_vsx_stxvw4x_be:
 | 
						|
      VT = MVT::v4i32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_vsx_stxvd2x_be:
 | 
						|
      VT = MVT::v2f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_stvebx:
 | 
						|
      VT = MVT::i8;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_stvehx:
 | 
						|
      VT = MVT::i16;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_stvewx:
 | 
						|
      VT = MVT::i32;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Return true is there is a nearyby consecutive load to the one provided
 | 
						|
// (regardless of alignment). We search up and down the chain, looking though
 | 
						|
// token factors and other loads (but nothing else). As a result, a true result
 | 
						|
// indicates that it is safe to create a new consecutive load adjacent to the
 | 
						|
// load provided.
 | 
						|
static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
 | 
						|
  SDValue Chain = LD->getChain();
 | 
						|
  EVT VT = LD->getMemoryVT();
 | 
						|
 | 
						|
  SmallSet<SDNode *, 16> LoadRoots;
 | 
						|
  SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
 | 
						|
  SmallSet<SDNode *, 16> Visited;
 | 
						|
 | 
						|
  // First, search up the chain, branching to follow all token-factor operands.
 | 
						|
  // If we find a consecutive load, then we're done, otherwise, record all
 | 
						|
  // nodes just above the top-level loads and token factors.
 | 
						|
  while (!Queue.empty()) {
 | 
						|
    SDNode *ChainNext = Queue.pop_back_val();
 | 
						|
    if (!Visited.insert(ChainNext).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
 | 
						|
      if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
 | 
						|
        return true;
 | 
						|
 | 
						|
      if (!Visited.count(ChainLD->getChain().getNode()))
 | 
						|
        Queue.push_back(ChainLD->getChain().getNode());
 | 
						|
    } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
 | 
						|
      for (const SDUse &O : ChainNext->ops())
 | 
						|
        if (!Visited.count(O.getNode()))
 | 
						|
          Queue.push_back(O.getNode());
 | 
						|
    } else
 | 
						|
      LoadRoots.insert(ChainNext);
 | 
						|
  }
 | 
						|
 | 
						|
  // Second, search down the chain, starting from the top-level nodes recorded
 | 
						|
  // in the first phase. These top-level nodes are the nodes just above all
 | 
						|
  // loads and token factors. Starting with their uses, recursively look though
 | 
						|
  // all loads (just the chain uses) and token factors to find a consecutive
 | 
						|
  // load.
 | 
						|
  Visited.clear();
 | 
						|
  Queue.clear();
 | 
						|
 | 
						|
  for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
 | 
						|
       IE = LoadRoots.end(); I != IE; ++I) {
 | 
						|
    Queue.push_back(*I);
 | 
						|
 | 
						|
    while (!Queue.empty()) {
 | 
						|
      SDNode *LoadRoot = Queue.pop_back_val();
 | 
						|
      if (!Visited.insert(LoadRoot).second)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
 | 
						|
        if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
 | 
						|
          return true;
 | 
						|
 | 
						|
      for (SDNode::use_iterator UI = LoadRoot->use_begin(),
 | 
						|
           UE = LoadRoot->use_end(); UI != UE; ++UI)
 | 
						|
        if (((isa<MemSDNode>(*UI) &&
 | 
						|
            cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
 | 
						|
            UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
 | 
						|
          Queue.push_back(*UI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// This function is called when we have proved that a SETCC node can be replaced
 | 
						|
/// by subtraction (and other supporting instructions) so that the result of
 | 
						|
/// comparison is kept in a GPR instead of CR. This function is purely for
 | 
						|
/// codegen purposes and has some flags to guide the codegen process.
 | 
						|
static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
 | 
						|
                                     bool Swap, SDLoc &DL, SelectionDAG &DAG) {
 | 
						|
  assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
 | 
						|
 | 
						|
  // Zero extend the operands to the largest legal integer. Originally, they
 | 
						|
  // must be of a strictly smaller size.
 | 
						|
  auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
 | 
						|
                         DAG.getConstant(Size, DL, MVT::i32));
 | 
						|
  auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
 | 
						|
                         DAG.getConstant(Size, DL, MVT::i32));
 | 
						|
 | 
						|
  // Swap if needed. Depends on the condition code.
 | 
						|
  if (Swap)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
 | 
						|
  // Subtract extended integers.
 | 
						|
  auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
 | 
						|
 | 
						|
  // Move the sign bit to the least significant position and zero out the rest.
 | 
						|
  // Now the least significant bit carries the result of original comparison.
 | 
						|
  auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
 | 
						|
                             DAG.getConstant(Size - 1, DL, MVT::i32));
 | 
						|
  auto Final = Shifted;
 | 
						|
 | 
						|
  // Complement the result if needed. Based on the condition code.
 | 
						|
  if (Complement)
 | 
						|
    Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
 | 
						|
                        DAG.getConstant(1, DL, MVT::i64));
 | 
						|
 | 
						|
  return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
 | 
						|
                                                  DAGCombinerInfo &DCI) const {
 | 
						|
  assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  // Size of integers being compared has a critical role in the following
 | 
						|
  // analysis, so we prefer to do this when all types are legal.
 | 
						|
  if (!DCI.isAfterLegalizeDAG())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // If all users of SETCC extend its value to a legal integer type
 | 
						|
  // then we replace SETCC with a subtraction
 | 
						|
  for (SDNode::use_iterator UI = N->use_begin(),
 | 
						|
       UE = N->use_end(); UI != UE; ++UI) {
 | 
						|
    if (UI->getOpcode() != ISD::ZERO_EXTEND)
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | 
						|
  auto OpSize = N->getOperand(0).getValueSizeInBits();
 | 
						|
 | 
						|
  unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
 | 
						|
 | 
						|
  if (OpSize < Size) {
 | 
						|
    switch (CC) {
 | 
						|
    default: break;
 | 
						|
    case ISD::SETULT:
 | 
						|
      return generateEquivalentSub(N, Size, false, false, DL, DAG);
 | 
						|
    case ISD::SETULE:
 | 
						|
      return generateEquivalentSub(N, Size, true, true, DL, DAG);
 | 
						|
    case ISD::SETUGT:
 | 
						|
      return generateEquivalentSub(N, Size, false, true, DL, DAG);
 | 
						|
    case ISD::SETUGE:
 | 
						|
      return generateEquivalentSub(N, Size, true, false, DL, DAG);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
 | 
						|
                                                  DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
 | 
						|
  // If we're tracking CR bits, we need to be careful that we don't have:
 | 
						|
  //   trunc(binary-ops(zext(x), zext(y)))
 | 
						|
  // or
 | 
						|
  //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
 | 
						|
  // such that we're unnecessarily moving things into GPRs when it would be
 | 
						|
  // better to keep them in CR bits.
 | 
						|
 | 
						|
  // Note that trunc here can be an actual i1 trunc, or can be the effective
 | 
						|
  // truncation that comes from a setcc or select_cc.
 | 
						|
  if (N->getOpcode() == ISD::TRUNCATE &&
 | 
						|
      N->getValueType(0) != MVT::i1)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (N->getOperand(0).getValueType() != MVT::i32 &&
 | 
						|
      N->getOperand(0).getValueType() != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (N->getOpcode() == ISD::SETCC ||
 | 
						|
      N->getOpcode() == ISD::SELECT_CC) {
 | 
						|
    // If we're looking at a comparison, then we need to make sure that the
 | 
						|
    // high bits (all except for the first) don't matter the result.
 | 
						|
    ISD::CondCode CC =
 | 
						|
      cast<CondCodeSDNode>(N->getOperand(
 | 
						|
        N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
 | 
						|
    unsigned OpBits = N->getOperand(0).getValueSizeInBits();
 | 
						|
 | 
						|
    if (ISD::isSignedIntSetCC(CC)) {
 | 
						|
      if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
 | 
						|
          DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
 | 
						|
        return SDValue();
 | 
						|
    } else if (ISD::isUnsignedIntSetCC(CC)) {
 | 
						|
      if (!DAG.MaskedValueIsZero(N->getOperand(0),
 | 
						|
                                 APInt::getHighBitsSet(OpBits, OpBits-1)) ||
 | 
						|
          !DAG.MaskedValueIsZero(N->getOperand(1),
 | 
						|
                                 APInt::getHighBitsSet(OpBits, OpBits-1)))
 | 
						|
        return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
 | 
						|
                                             : SDValue());
 | 
						|
    } else {
 | 
						|
      // This is neither a signed nor an unsigned comparison, just make sure
 | 
						|
      // that the high bits are equal.
 | 
						|
      KnownBits Op1Known, Op2Known;
 | 
						|
      DAG.computeKnownBits(N->getOperand(0), Op1Known);
 | 
						|
      DAG.computeKnownBits(N->getOperand(1), Op2Known);
 | 
						|
 | 
						|
      // We don't really care about what is known about the first bit (if
 | 
						|
      // anything), so clear it in all masks prior to comparing them.
 | 
						|
      Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
 | 
						|
      Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
 | 
						|
 | 
						|
      if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
 | 
						|
        return SDValue();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We now know that the higher-order bits are irrelevant, we just need to
 | 
						|
  // make sure that all of the intermediate operations are bit operations, and
 | 
						|
  // all inputs are extensions.
 | 
						|
  if (N->getOperand(0).getOpcode() != ISD::AND &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::OR  &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::XOR &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::SELECT &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::AND &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::OR  &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::XOR &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::SELECT &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SmallVector<SDValue, 4> Inputs;
 | 
						|
  SmallVector<SDValue, 8> BinOps, PromOps;
 | 
						|
  SmallPtrSet<SDNode *, 16> Visited;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < 2; ++i) {
 | 
						|
    if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
 | 
						|
          N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
 | 
						|
          N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
 | 
						|
          N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
 | 
						|
        isa<ConstantSDNode>(N->getOperand(i)))
 | 
						|
      Inputs.push_back(N->getOperand(i));
 | 
						|
    else
 | 
						|
      BinOps.push_back(N->getOperand(i));
 | 
						|
 | 
						|
    if (N->getOpcode() == ISD::TRUNCATE)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Visit all inputs, collect all binary operations (and, or, xor and
 | 
						|
  // select) that are all fed by extensions.
 | 
						|
  while (!BinOps.empty()) {
 | 
						|
    SDValue BinOp = BinOps.back();
 | 
						|
    BinOps.pop_back();
 | 
						|
 | 
						|
    if (!Visited.insert(BinOp.getNode()).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    PromOps.push_back(BinOp);
 | 
						|
 | 
						|
    for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
 | 
						|
      // The condition of the select is not promoted.
 | 
						|
      if (BinOp.getOpcode() == ISD::SELECT && i == 0)
 | 
						|
        continue;
 | 
						|
      if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
 | 
						|
            BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
 | 
						|
            BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
 | 
						|
           BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
 | 
						|
          isa<ConstantSDNode>(BinOp.getOperand(i))) {
 | 
						|
        Inputs.push_back(BinOp.getOperand(i));
 | 
						|
      } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::OR  ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
 | 
						|
        BinOps.push_back(BinOp.getOperand(i));
 | 
						|
      } else {
 | 
						|
        // We have an input that is not an extension or another binary
 | 
						|
        // operation; we'll abort this transformation.
 | 
						|
        return SDValue();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure that this is a self-contained cluster of operations (which
 | 
						|
  // is not quite the same thing as saying that everything has only one
 | 
						|
  // use).
 | 
						|
  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | 
						|
    if (isa<ConstantSDNode>(Inputs[i]))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
 | 
						|
                              UE = Inputs[i].getNode()->use_end();
 | 
						|
         UI != UE; ++UI) {
 | 
						|
      SDNode *User = *UI;
 | 
						|
      if (User != N && !Visited.count(User))
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      // Make sure that we're not going to promote the non-output-value
 | 
						|
      // operand(s) or SELECT or SELECT_CC.
 | 
						|
      // FIXME: Although we could sometimes handle this, and it does occur in
 | 
						|
      // practice that one of the condition inputs to the select is also one of
 | 
						|
      // the outputs, we currently can't deal with this.
 | 
						|
      if (User->getOpcode() == ISD::SELECT) {
 | 
						|
        if (User->getOperand(0) == Inputs[i])
 | 
						|
          return SDValue();
 | 
						|
      } else if (User->getOpcode() == ISD::SELECT_CC) {
 | 
						|
        if (User->getOperand(0) == Inputs[i] ||
 | 
						|
            User->getOperand(1) == Inputs[i])
 | 
						|
          return SDValue();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
 | 
						|
    for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
 | 
						|
                              UE = PromOps[i].getNode()->use_end();
 | 
						|
         UI != UE; ++UI) {
 | 
						|
      SDNode *User = *UI;
 | 
						|
      if (User != N && !Visited.count(User))
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      // Make sure that we're not going to promote the non-output-value
 | 
						|
      // operand(s) or SELECT or SELECT_CC.
 | 
						|
      // FIXME: Although we could sometimes handle this, and it does occur in
 | 
						|
      // practice that one of the condition inputs to the select is also one of
 | 
						|
      // the outputs, we currently can't deal with this.
 | 
						|
      if (User->getOpcode() == ISD::SELECT) {
 | 
						|
        if (User->getOperand(0) == PromOps[i])
 | 
						|
          return SDValue();
 | 
						|
      } else if (User->getOpcode() == ISD::SELECT_CC) {
 | 
						|
        if (User->getOperand(0) == PromOps[i] ||
 | 
						|
            User->getOperand(1) == PromOps[i])
 | 
						|
          return SDValue();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Replace all inputs with the extension operand.
 | 
						|
  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | 
						|
    // Constants may have users outside the cluster of to-be-promoted nodes,
 | 
						|
    // and so we need to replace those as we do the promotions.
 | 
						|
    if (isa<ConstantSDNode>(Inputs[i]))
 | 
						|
      continue;
 | 
						|
    else
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
 | 
						|
  }
 | 
						|
 | 
						|
  std::list<HandleSDNode> PromOpHandles;
 | 
						|
  for (auto &PromOp : PromOps)
 | 
						|
    PromOpHandles.emplace_back(PromOp);
 | 
						|
 | 
						|
  // Replace all operations (these are all the same, but have a different
 | 
						|
  // (i1) return type). DAG.getNode will validate that the types of
 | 
						|
  // a binary operator match, so go through the list in reverse so that
 | 
						|
  // we've likely promoted both operands first. Any intermediate truncations or
 | 
						|
  // extensions disappear.
 | 
						|
  while (!PromOpHandles.empty()) {
 | 
						|
    SDValue PromOp = PromOpHandles.back().getValue();
 | 
						|
    PromOpHandles.pop_back();
 | 
						|
 | 
						|
    if (PromOp.getOpcode() == ISD::TRUNCATE ||
 | 
						|
        PromOp.getOpcode() == ISD::SIGN_EXTEND ||
 | 
						|
        PromOp.getOpcode() == ISD::ZERO_EXTEND ||
 | 
						|
        PromOp.getOpcode() == ISD::ANY_EXTEND) {
 | 
						|
      if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
 | 
						|
          PromOp.getOperand(0).getValueType() != MVT::i1) {
 | 
						|
        // The operand is not yet ready (see comment below).
 | 
						|
        PromOpHandles.emplace_front(PromOp);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue RepValue = PromOp.getOperand(0);
 | 
						|
      if (isa<ConstantSDNode>(RepValue))
 | 
						|
        RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
 | 
						|
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned C;
 | 
						|
    switch (PromOp.getOpcode()) {
 | 
						|
    default:             C = 0; break;
 | 
						|
    case ISD::SELECT:    C = 1; break;
 | 
						|
    case ISD::SELECT_CC: C = 2; break;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
 | 
						|
         PromOp.getOperand(C).getValueType() != MVT::i1) ||
 | 
						|
        (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
 | 
						|
         PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
 | 
						|
      // The to-be-promoted operands of this node have not yet been
 | 
						|
      // promoted (this should be rare because we're going through the
 | 
						|
      // list backward, but if one of the operands has several users in
 | 
						|
      // this cluster of to-be-promoted nodes, it is possible).
 | 
						|
      PromOpHandles.emplace_front(PromOp);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
 | 
						|
                                PromOp.getNode()->op_end());
 | 
						|
 | 
						|
    // If there are any constant inputs, make sure they're replaced now.
 | 
						|
    for (unsigned i = 0; i < 2; ++i)
 | 
						|
      if (isa<ConstantSDNode>(Ops[C+i]))
 | 
						|
        Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
 | 
						|
 | 
						|
    DAG.ReplaceAllUsesOfValueWith(PromOp,
 | 
						|
      DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we're left with the initial truncation itself.
 | 
						|
  if (N->getOpcode() == ISD::TRUNCATE)
 | 
						|
    return N->getOperand(0);
 | 
						|
 | 
						|
  // Otherwise, this is a comparison. The operands to be compared have just
 | 
						|
  // changed type (to i1), but everything else is the same.
 | 
						|
  return SDValue(N, 0);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
 | 
						|
                                                  DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  // If we're tracking CR bits, we need to be careful that we don't have:
 | 
						|
  //   zext(binary-ops(trunc(x), trunc(y)))
 | 
						|
  // or
 | 
						|
  //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
 | 
						|
  // such that we're unnecessarily moving things into CR bits that can more
 | 
						|
  // efficiently stay in GPRs. Note that if we're not certain that the high
 | 
						|
  // bits are set as required by the final extension, we still may need to do
 | 
						|
  // some masking to get the proper behavior.
 | 
						|
 | 
						|
  // This same functionality is important on PPC64 when dealing with
 | 
						|
  // 32-to-64-bit extensions; these occur often when 32-bit values are used as
 | 
						|
  // the return values of functions. Because it is so similar, it is handled
 | 
						|
  // here as well.
 | 
						|
 | 
						|
  if (N->getValueType(0) != MVT::i32 &&
 | 
						|
      N->getValueType(0) != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
 | 
						|
        (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  if (N->getOperand(0).getOpcode() != ISD::AND &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::OR  &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::XOR &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::SELECT &&
 | 
						|
      N->getOperand(0).getOpcode() != ISD::SELECT_CC)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SmallVector<SDValue, 4> Inputs;
 | 
						|
  SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
 | 
						|
  SmallPtrSet<SDNode *, 16> Visited;
 | 
						|
 | 
						|
  // Visit all inputs, collect all binary operations (and, or, xor and
 | 
						|
  // select) that are all fed by truncations.
 | 
						|
  while (!BinOps.empty()) {
 | 
						|
    SDValue BinOp = BinOps.back();
 | 
						|
    BinOps.pop_back();
 | 
						|
 | 
						|
    if (!Visited.insert(BinOp.getNode()).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    PromOps.push_back(BinOp);
 | 
						|
 | 
						|
    for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
 | 
						|
      // The condition of the select is not promoted.
 | 
						|
      if (BinOp.getOpcode() == ISD::SELECT && i == 0)
 | 
						|
        continue;
 | 
						|
      if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
 | 
						|
          isa<ConstantSDNode>(BinOp.getOperand(i))) {
 | 
						|
        Inputs.push_back(BinOp.getOperand(i));
 | 
						|
      } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::OR  ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
 | 
						|
                 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
 | 
						|
        BinOps.push_back(BinOp.getOperand(i));
 | 
						|
      } else {
 | 
						|
        // We have an input that is not a truncation or another binary
 | 
						|
        // operation; we'll abort this transformation.
 | 
						|
        return SDValue();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The operands of a select that must be truncated when the select is
 | 
						|
  // promoted because the operand is actually part of the to-be-promoted set.
 | 
						|
  DenseMap<SDNode *, EVT> SelectTruncOp[2];
 | 
						|
 | 
						|
  // Make sure that this is a self-contained cluster of operations (which
 | 
						|
  // is not quite the same thing as saying that everything has only one
 | 
						|
  // use).
 | 
						|
  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | 
						|
    if (isa<ConstantSDNode>(Inputs[i]))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
 | 
						|
                              UE = Inputs[i].getNode()->use_end();
 | 
						|
         UI != UE; ++UI) {
 | 
						|
      SDNode *User = *UI;
 | 
						|
      if (User != N && !Visited.count(User))
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      // If we're going to promote the non-output-value operand(s) or SELECT or
 | 
						|
      // SELECT_CC, record them for truncation.
 | 
						|
      if (User->getOpcode() == ISD::SELECT) {
 | 
						|
        if (User->getOperand(0) == Inputs[i])
 | 
						|
          SelectTruncOp[0].insert(std::make_pair(User,
 | 
						|
                                    User->getOperand(0).getValueType()));
 | 
						|
      } else if (User->getOpcode() == ISD::SELECT_CC) {
 | 
						|
        if (User->getOperand(0) == Inputs[i])
 | 
						|
          SelectTruncOp[0].insert(std::make_pair(User,
 | 
						|
                                    User->getOperand(0).getValueType()));
 | 
						|
        if (User->getOperand(1) == Inputs[i])
 | 
						|
          SelectTruncOp[1].insert(std::make_pair(User,
 | 
						|
                                    User->getOperand(1).getValueType()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
 | 
						|
    for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
 | 
						|
                              UE = PromOps[i].getNode()->use_end();
 | 
						|
         UI != UE; ++UI) {
 | 
						|
      SDNode *User = *UI;
 | 
						|
      if (User != N && !Visited.count(User))
 | 
						|
        return SDValue();
 | 
						|
 | 
						|
      // If we're going to promote the non-output-value operand(s) or SELECT or
 | 
						|
      // SELECT_CC, record them for truncation.
 | 
						|
      if (User->getOpcode() == ISD::SELECT) {
 | 
						|
        if (User->getOperand(0) == PromOps[i])
 | 
						|
          SelectTruncOp[0].insert(std::make_pair(User,
 | 
						|
                                    User->getOperand(0).getValueType()));
 | 
						|
      } else if (User->getOpcode() == ISD::SELECT_CC) {
 | 
						|
        if (User->getOperand(0) == PromOps[i])
 | 
						|
          SelectTruncOp[0].insert(std::make_pair(User,
 | 
						|
                                    User->getOperand(0).getValueType()));
 | 
						|
        if (User->getOperand(1) == PromOps[i])
 | 
						|
          SelectTruncOp[1].insert(std::make_pair(User,
 | 
						|
                                    User->getOperand(1).getValueType()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned PromBits = N->getOperand(0).getValueSizeInBits();
 | 
						|
  bool ReallyNeedsExt = false;
 | 
						|
  if (N->getOpcode() != ISD::ANY_EXTEND) {
 | 
						|
    // If all of the inputs are not already sign/zero extended, then
 | 
						|
    // we'll still need to do that at the end.
 | 
						|
    for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | 
						|
      if (isa<ConstantSDNode>(Inputs[i]))
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned OpBits =
 | 
						|
        Inputs[i].getOperand(0).getValueSizeInBits();
 | 
						|
      assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
 | 
						|
 | 
						|
      if ((N->getOpcode() == ISD::ZERO_EXTEND &&
 | 
						|
           !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
 | 
						|
                                  APInt::getHighBitsSet(OpBits,
 | 
						|
                                                        OpBits-PromBits))) ||
 | 
						|
          (N->getOpcode() == ISD::SIGN_EXTEND &&
 | 
						|
           DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
 | 
						|
             (OpBits-(PromBits-1)))) {
 | 
						|
        ReallyNeedsExt = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Replace all inputs, either with the truncation operand, or a
 | 
						|
  // truncation or extension to the final output type.
 | 
						|
  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
 | 
						|
    // Constant inputs need to be replaced with the to-be-promoted nodes that
 | 
						|
    // use them because they might have users outside of the cluster of
 | 
						|
    // promoted nodes.
 | 
						|
    if (isa<ConstantSDNode>(Inputs[i]))
 | 
						|
      continue;
 | 
						|
 | 
						|
    SDValue InSrc = Inputs[i].getOperand(0);
 | 
						|
    if (Inputs[i].getValueType() == N->getValueType(0))
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
 | 
						|
    else if (N->getOpcode() == ISD::SIGN_EXTEND)
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
 | 
						|
        DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
 | 
						|
    else if (N->getOpcode() == ISD::ZERO_EXTEND)
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
 | 
						|
        DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
 | 
						|
    else
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
 | 
						|
        DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
 | 
						|
  }
 | 
						|
 | 
						|
  std::list<HandleSDNode> PromOpHandles;
 | 
						|
  for (auto &PromOp : PromOps)
 | 
						|
    PromOpHandles.emplace_back(PromOp);
 | 
						|
 | 
						|
  // Replace all operations (these are all the same, but have a different
 | 
						|
  // (promoted) return type). DAG.getNode will validate that the types of
 | 
						|
  // a binary operator match, so go through the list in reverse so that
 | 
						|
  // we've likely promoted both operands first.
 | 
						|
  while (!PromOpHandles.empty()) {
 | 
						|
    SDValue PromOp = PromOpHandles.back().getValue();
 | 
						|
    PromOpHandles.pop_back();
 | 
						|
 | 
						|
    unsigned C;
 | 
						|
    switch (PromOp.getOpcode()) {
 | 
						|
    default:             C = 0; break;
 | 
						|
    case ISD::SELECT:    C = 1; break;
 | 
						|
    case ISD::SELECT_CC: C = 2; break;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
 | 
						|
         PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
 | 
						|
        (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
 | 
						|
         PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
 | 
						|
      // The to-be-promoted operands of this node have not yet been
 | 
						|
      // promoted (this should be rare because we're going through the
 | 
						|
      // list backward, but if one of the operands has several users in
 | 
						|
      // this cluster of to-be-promoted nodes, it is possible).
 | 
						|
      PromOpHandles.emplace_front(PromOp);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // For SELECT and SELECT_CC nodes, we do a similar check for any
 | 
						|
    // to-be-promoted comparison inputs.
 | 
						|
    if (PromOp.getOpcode() == ISD::SELECT ||
 | 
						|
        PromOp.getOpcode() == ISD::SELECT_CC) {
 | 
						|
      if ((SelectTruncOp[0].count(PromOp.getNode()) &&
 | 
						|
           PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
 | 
						|
          (SelectTruncOp[1].count(PromOp.getNode()) &&
 | 
						|
           PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
 | 
						|
        PromOpHandles.emplace_front(PromOp);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
 | 
						|
                                PromOp.getNode()->op_end());
 | 
						|
 | 
						|
    // If this node has constant inputs, then they'll need to be promoted here.
 | 
						|
    for (unsigned i = 0; i < 2; ++i) {
 | 
						|
      if (!isa<ConstantSDNode>(Ops[C+i]))
 | 
						|
        continue;
 | 
						|
      if (Ops[C+i].getValueType() == N->getValueType(0))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (N->getOpcode() == ISD::SIGN_EXTEND)
 | 
						|
        Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
 | 
						|
      else if (N->getOpcode() == ISD::ZERO_EXTEND)
 | 
						|
        Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
 | 
						|
      else
 | 
						|
        Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
 | 
						|
    }
 | 
						|
 | 
						|
    // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
 | 
						|
    // truncate them again to the original value type.
 | 
						|
    if (PromOp.getOpcode() == ISD::SELECT ||
 | 
						|
        PromOp.getOpcode() == ISD::SELECT_CC) {
 | 
						|
      auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
 | 
						|
      if (SI0 != SelectTruncOp[0].end())
 | 
						|
        Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
 | 
						|
      auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
 | 
						|
      if (SI1 != SelectTruncOp[1].end())
 | 
						|
        Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
 | 
						|
    }
 | 
						|
 | 
						|
    DAG.ReplaceAllUsesOfValueWith(PromOp,
 | 
						|
      DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we're left with the initial extension itself.
 | 
						|
  if (!ReallyNeedsExt)
 | 
						|
    return N->getOperand(0);
 | 
						|
 | 
						|
  // To zero extend, just mask off everything except for the first bit (in the
 | 
						|
  // i1 case).
 | 
						|
  if (N->getOpcode() == ISD::ZERO_EXTEND)
 | 
						|
    return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
 | 
						|
                       DAG.getConstant(APInt::getLowBitsSet(
 | 
						|
                                         N->getValueSizeInBits(0), PromBits),
 | 
						|
                                       dl, N->getValueType(0)));
 | 
						|
 | 
						|
  assert(N->getOpcode() == ISD::SIGN_EXTEND &&
 | 
						|
         "Invalid extension type");
 | 
						|
  EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
 | 
						|
  SDValue ShiftCst =
 | 
						|
      DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
 | 
						|
  return DAG.getNode(
 | 
						|
      ISD::SRA, dl, N->getValueType(0),
 | 
						|
      DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
 | 
						|
      ShiftCst);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::combineSetCC(SDNode *N,
 | 
						|
                                        DAGCombinerInfo &DCI) const {
 | 
						|
  assert(N->getOpcode() == ISD::SETCC &&
 | 
						|
         "Should be called with a SETCC node");
 | 
						|
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | 
						|
  if (CC == ISD::SETNE || CC == ISD::SETEQ) {
 | 
						|
    SDValue LHS = N->getOperand(0);
 | 
						|
    SDValue RHS = N->getOperand(1);
 | 
						|
 | 
						|
    // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
 | 
						|
    if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
 | 
						|
        LHS.hasOneUse())
 | 
						|
      std::swap(LHS, RHS);
 | 
						|
 | 
						|
    // x == 0-y --> x+y == 0
 | 
						|
    // x != 0-y --> x+y != 0
 | 
						|
    if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
 | 
						|
        RHS.hasOneUse()) {
 | 
						|
      SDLoc DL(N);
 | 
						|
      SelectionDAG &DAG = DCI.DAG;
 | 
						|
      EVT VT = N->getValueType(0);
 | 
						|
      EVT OpVT = LHS.getValueType();
 | 
						|
      SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
 | 
						|
      return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return DAGCombineTruncBoolExt(N, DCI);
 | 
						|
}
 | 
						|
 | 
						|
// Is this an extending load from an f32 to an f64?
 | 
						|
static bool isFPExtLoad(SDValue Op) {
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
 | 
						|
    return LD->getExtensionType() == ISD::EXTLOAD &&
 | 
						|
      Op.getValueType() == MVT::f64;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Reduces the number of fp-to-int conversion when building a vector.
 | 
						|
///
 | 
						|
/// If this vector is built out of floating to integer conversions,
 | 
						|
/// transform it to a vector built out of floating point values followed by a
 | 
						|
/// single floating to integer conversion of the vector.
 | 
						|
/// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
 | 
						|
/// becomes (fptosi (build_vector ($A, $B, ...)))
 | 
						|
SDValue PPCTargetLowering::
 | 
						|
combineElementTruncationToVectorTruncation(SDNode *N,
 | 
						|
                                           DAGCombinerInfo &DCI) const {
 | 
						|
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | 
						|
         "Should be called with a BUILD_VECTOR node");
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  SDValue FirstInput = N->getOperand(0);
 | 
						|
  assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
 | 
						|
         "The input operand must be an fp-to-int conversion.");
 | 
						|
 | 
						|
  // This combine happens after legalization so the fp_to_[su]i nodes are
 | 
						|
  // already converted to PPCSISD nodes.
 | 
						|
  unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
 | 
						|
  if (FirstConversion == PPCISD::FCTIDZ ||
 | 
						|
      FirstConversion == PPCISD::FCTIDUZ ||
 | 
						|
      FirstConversion == PPCISD::FCTIWZ ||
 | 
						|
      FirstConversion == PPCISD::FCTIWUZ) {
 | 
						|
    bool IsSplat = true;
 | 
						|
    bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
 | 
						|
      FirstConversion == PPCISD::FCTIWUZ;
 | 
						|
    EVT SrcVT = FirstInput.getOperand(0).getValueType();
 | 
						|
    SmallVector<SDValue, 4> Ops;
 | 
						|
    EVT TargetVT = N->getValueType(0);
 | 
						|
    for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
 | 
						|
      SDValue NextOp = N->getOperand(i);
 | 
						|
      if (NextOp.getOpcode() != PPCISD::MFVSR)
 | 
						|
        return SDValue();
 | 
						|
      unsigned NextConversion = NextOp.getOperand(0).getOpcode();
 | 
						|
      if (NextConversion != FirstConversion)
 | 
						|
        return SDValue();
 | 
						|
      // If we are converting to 32-bit integers, we need to add an FP_ROUND.
 | 
						|
      // This is not valid if the input was originally double precision. It is
 | 
						|
      // also not profitable to do unless this is an extending load in which
 | 
						|
      // case doing this combine will allow us to combine consecutive loads.
 | 
						|
      if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
 | 
						|
        return SDValue();
 | 
						|
      if (N->getOperand(i) != FirstInput)
 | 
						|
        IsSplat = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a splat, we leave it as-is since there will be only a single
 | 
						|
    // fp-to-int conversion followed by a splat of the integer. This is better
 | 
						|
    // for 32-bit and smaller ints and neutral for 64-bit ints.
 | 
						|
    if (IsSplat)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Now that we know we have the right type of node, get its operands
 | 
						|
    for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
 | 
						|
      SDValue In = N->getOperand(i).getOperand(0);
 | 
						|
      if (Is32Bit) {
 | 
						|
        // For 32-bit values, we need to add an FP_ROUND node (if we made it
 | 
						|
        // here, we know that all inputs are extending loads so this is safe).
 | 
						|
        if (In.isUndef())
 | 
						|
          Ops.push_back(DAG.getUNDEF(SrcVT));
 | 
						|
        else {
 | 
						|
          SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
 | 
						|
                                      MVT::f32, In.getOperand(0),
 | 
						|
                                      DAG.getIntPtrConstant(1, dl));
 | 
						|
          Ops.push_back(Trunc);
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned Opcode;
 | 
						|
    if (FirstConversion == PPCISD::FCTIDZ ||
 | 
						|
        FirstConversion == PPCISD::FCTIWZ)
 | 
						|
      Opcode = ISD::FP_TO_SINT;
 | 
						|
    else
 | 
						|
      Opcode = ISD::FP_TO_UINT;
 | 
						|
 | 
						|
    EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
 | 
						|
    SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
 | 
						|
    return DAG.getNode(Opcode, dl, TargetVT, BV);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// Reduce the number of loads when building a vector.
 | 
						|
///
 | 
						|
/// Building a vector out of multiple loads can be converted to a load
 | 
						|
/// of the vector type if the loads are consecutive. If the loads are
 | 
						|
/// consecutive but in descending order, a shuffle is added at the end
 | 
						|
/// to reorder the vector.
 | 
						|
static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | 
						|
         "Should be called with a BUILD_VECTOR node");
 | 
						|
 | 
						|
  SDLoc dl(N);
 | 
						|
  bool InputsAreConsecutiveLoads = true;
 | 
						|
  bool InputsAreReverseConsecutive = true;
 | 
						|
  unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
 | 
						|
  SDValue FirstInput = N->getOperand(0);
 | 
						|
  bool IsRoundOfExtLoad = false;
 | 
						|
 | 
						|
  if (FirstInput.getOpcode() == ISD::FP_ROUND &&
 | 
						|
      FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
 | 
						|
    LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
 | 
						|
    IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
 | 
						|
  }
 | 
						|
  // Not a build vector of (possibly fp_rounded) loads.
 | 
						|
  if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
 | 
						|
      N->getNumOperands() == 1)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
 | 
						|
    // If any inputs are fp_round(extload), they all must be.
 | 
						|
    if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
 | 
						|
      N->getOperand(i);
 | 
						|
    if (NextInput.getOpcode() != ISD::LOAD)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    SDValue PreviousInput =
 | 
						|
      IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
 | 
						|
    LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
 | 
						|
    LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
 | 
						|
 | 
						|
    // If any inputs are fp_round(extload), they all must be.
 | 
						|
    if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
 | 
						|
      InputsAreConsecutiveLoads = false;
 | 
						|
    if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
 | 
						|
      InputsAreReverseConsecutive = false;
 | 
						|
 | 
						|
    // Exit early if the loads are neither consecutive nor reverse consecutive.
 | 
						|
    if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
 | 
						|
      return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
 | 
						|
         "The loads cannot be both consecutive and reverse consecutive.");
 | 
						|
 | 
						|
  SDValue FirstLoadOp =
 | 
						|
    IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
 | 
						|
  SDValue LastLoadOp =
 | 
						|
    IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
 | 
						|
                       N->getOperand(N->getNumOperands()-1);
 | 
						|
 | 
						|
  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
 | 
						|
  LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
 | 
						|
  if (InputsAreConsecutiveLoads) {
 | 
						|
    assert(LD1 && "Input needs to be a LoadSDNode.");
 | 
						|
    return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
 | 
						|
                       LD1->getBasePtr(), LD1->getPointerInfo(),
 | 
						|
                       LD1->getAlignment());
 | 
						|
  }
 | 
						|
  if (InputsAreReverseConsecutive) {
 | 
						|
    assert(LDL && "Input needs to be a LoadSDNode.");
 | 
						|
    SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
 | 
						|
                               LDL->getBasePtr(), LDL->getPointerInfo(),
 | 
						|
                               LDL->getAlignment());
 | 
						|
    SmallVector<int, 16> Ops;
 | 
						|
    for (int i = N->getNumOperands() - 1; i >= 0; i--)
 | 
						|
      Ops.push_back(i);
 | 
						|
 | 
						|
    return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
 | 
						|
                                DAG.getUNDEF(N->getValueType(0)), Ops);
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// This function adds the required vector_shuffle needed to get
 | 
						|
// the elements of the vector extract in the correct position
 | 
						|
// as specified by the CorrectElems encoding.
 | 
						|
static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                      SDValue Input, uint64_t Elems,
 | 
						|
                                      uint64_t CorrectElems) {
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  unsigned NumElems = Input.getValueType().getVectorNumElements();
 | 
						|
  SmallVector<int, 16> ShuffleMask(NumElems, -1);
 | 
						|
 | 
						|
  // Knowing the element indices being extracted from the original
 | 
						|
  // vector and the order in which they're being inserted, just put
 | 
						|
  // them at element indices required for the instruction.
 | 
						|
  for (unsigned i = 0; i < N->getNumOperands(); i++) {
 | 
						|
    if (DAG.getDataLayout().isLittleEndian())
 | 
						|
      ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
 | 
						|
    else
 | 
						|
      ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
 | 
						|
    CorrectElems = CorrectElems >> 8;
 | 
						|
    Elems = Elems >> 8;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Shuffle =
 | 
						|
      DAG.getVectorShuffle(Input.getValueType(), dl, Input,
 | 
						|
                           DAG.getUNDEF(Input.getValueType()), ShuffleMask);
 | 
						|
 | 
						|
  EVT Ty = N->getValueType(0);
 | 
						|
  SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
 | 
						|
  return BV;
 | 
						|
}
 | 
						|
 | 
						|
// Look for build vector patterns where input operands come from sign
 | 
						|
// extended vector_extract elements of specific indices. If the correct indices
 | 
						|
// aren't used, add a vector shuffle to fix up the indices and create a new
 | 
						|
// PPCISD:SExtVElems node which selects the vector sign extend instructions
 | 
						|
// during instruction selection.
 | 
						|
static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
 | 
						|
  // This array encodes the indices that the vector sign extend instructions
 | 
						|
  // extract from when extending from one type to another for both BE and LE.
 | 
						|
  // The right nibble of each byte corresponds to the LE incides.
 | 
						|
  // and the left nibble of each byte corresponds to the BE incides.
 | 
						|
  // For example: 0x3074B8FC  byte->word
 | 
						|
  // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
 | 
						|
  // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
 | 
						|
  // For example: 0x000070F8  byte->double word
 | 
						|
  // For LE: the allowed indices are: 0x0,0x8
 | 
						|
  // For BE: the allowed indices are: 0x7,0xF
 | 
						|
  uint64_t TargetElems[] = {
 | 
						|
      0x3074B8FC, // b->w
 | 
						|
      0x000070F8, // b->d
 | 
						|
      0x10325476, // h->w
 | 
						|
      0x00003074, // h->d
 | 
						|
      0x00001032, // w->d
 | 
						|
  };
 | 
						|
 | 
						|
  uint64_t Elems = 0;
 | 
						|
  int Index;
 | 
						|
  SDValue Input;
 | 
						|
 | 
						|
  auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
 | 
						|
    if (!Op)
 | 
						|
      return false;
 | 
						|
    if (Op.getOpcode() != ISD::SIGN_EXTEND &&
 | 
						|
        Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
 | 
						|
    // of the right width.
 | 
						|
    SDValue Extract = Op.getOperand(0);
 | 
						|
    if (Extract.getOpcode() == ISD::ANY_EXTEND)
 | 
						|
      Extract = Extract.getOperand(0);
 | 
						|
    if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
 | 
						|
      return false;
 | 
						|
 | 
						|
    ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
 | 
						|
    if (!ExtOp)
 | 
						|
      return false;
 | 
						|
 | 
						|
    Index = ExtOp->getZExtValue();
 | 
						|
    if (Input && Input != Extract.getOperand(0))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!Input)
 | 
						|
      Input = Extract.getOperand(0);
 | 
						|
 | 
						|
    Elems = Elems << 8;
 | 
						|
    Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
 | 
						|
    Elems |= Index;
 | 
						|
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  // If the build vector operands aren't sign extended vector extracts,
 | 
						|
  // of the same input vector, then return.
 | 
						|
  for (unsigned i = 0; i < N->getNumOperands(); i++) {
 | 
						|
    if (!isSExtOfVecExtract(N->getOperand(i))) {
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the vector extract indicies are not correct, add the appropriate
 | 
						|
  // vector_shuffle.
 | 
						|
  int TgtElemArrayIdx;
 | 
						|
  int InputSize = Input.getValueType().getScalarSizeInBits();
 | 
						|
  int OutputSize = N->getValueType(0).getScalarSizeInBits();
 | 
						|
  if (InputSize + OutputSize == 40)
 | 
						|
    TgtElemArrayIdx = 0;
 | 
						|
  else if (InputSize + OutputSize == 72)
 | 
						|
    TgtElemArrayIdx = 1;
 | 
						|
  else if (InputSize + OutputSize == 48)
 | 
						|
    TgtElemArrayIdx = 2;
 | 
						|
  else if (InputSize + OutputSize == 80)
 | 
						|
    TgtElemArrayIdx = 3;
 | 
						|
  else if (InputSize + OutputSize == 96)
 | 
						|
    TgtElemArrayIdx = 4;
 | 
						|
  else
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
 | 
						|
  CorrectElems = DAG.getDataLayout().isLittleEndian()
 | 
						|
                     ? CorrectElems & 0x0F0F0F0F0F0F0F0F
 | 
						|
                     : CorrectElems & 0xF0F0F0F0F0F0F0F0;
 | 
						|
  if (Elems != CorrectElems) {
 | 
						|
    return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
 | 
						|
  }
 | 
						|
 | 
						|
  // Regular lowering will catch cases where a shuffle is not needed.
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
 | 
						|
                                                 DAGCombinerInfo &DCI) const {
 | 
						|
  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | 
						|
         "Should be called with a BUILD_VECTOR node");
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  if (!Subtarget.hasVSX())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // The target independent DAG combiner will leave a build_vector of
 | 
						|
  // float-to-int conversions intact. We can generate MUCH better code for
 | 
						|
  // a float-to-int conversion of a vector of floats.
 | 
						|
  SDValue FirstInput = N->getOperand(0);
 | 
						|
  if (FirstInput.getOpcode() == PPCISD::MFVSR) {
 | 
						|
    SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
 | 
						|
    if (Reduced)
 | 
						|
      return Reduced;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we're building a vector out of consecutive loads, just load that
 | 
						|
  // vector type.
 | 
						|
  SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
 | 
						|
  if (Reduced)
 | 
						|
    return Reduced;
 | 
						|
 | 
						|
  // If we're building a vector out of extended elements from another vector
 | 
						|
  // we have P9 vector integer extend instructions. The code assumes legal
 | 
						|
  // input types (i.e. it can't handle things like v4i16) so do not run before
 | 
						|
  // legalization.
 | 
						|
  if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
 | 
						|
    Reduced = combineBVOfVecSExt(N, DAG);
 | 
						|
    if (Reduced)
 | 
						|
      return Reduced;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  if (N->getValueType(0) != MVT::v2f64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Looking for:
 | 
						|
  // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
 | 
						|
  if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
 | 
						|
      FirstInput.getOpcode() != ISD::UINT_TO_FP)
 | 
						|
    return SDValue();
 | 
						|
  if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
 | 
						|
      N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
 | 
						|
    return SDValue();
 | 
						|
  if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue Ext1 = FirstInput.getOperand(0);
 | 
						|
  SDValue Ext2 = N->getOperand(1).getOperand(0);
 | 
						|
  if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
 | 
						|
     Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
 | 
						|
  ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
 | 
						|
  if (!Ext1Op || !Ext2Op)
 | 
						|
    return SDValue();
 | 
						|
  if (Ext1.getValueType() != MVT::i32 ||
 | 
						|
      Ext2.getValueType() != MVT::i32)
 | 
						|
  if (Ext1.getOperand(0) != Ext2.getOperand(0))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  int FirstElem = Ext1Op->getZExtValue();
 | 
						|
  int SecondElem = Ext2Op->getZExtValue();
 | 
						|
  int SubvecIdx;
 | 
						|
  if (FirstElem == 0 && SecondElem == 1)
 | 
						|
    SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
 | 
						|
  else if (FirstElem == 2 && SecondElem == 3)
 | 
						|
    SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
 | 
						|
  else
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue SrcVec = Ext1.getOperand(0);
 | 
						|
  auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
 | 
						|
    PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
 | 
						|
  return DAG.getNode(NodeType, dl, MVT::v2f64,
 | 
						|
                     SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
 | 
						|
                                              DAGCombinerInfo &DCI) const {
 | 
						|
  assert((N->getOpcode() == ISD::SINT_TO_FP ||
 | 
						|
          N->getOpcode() == ISD::UINT_TO_FP) &&
 | 
						|
         "Need an int -> FP conversion node here");
 | 
						|
 | 
						|
  if (useSoftFloat() || !Subtarget.has64BitSupport())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
  SDValue Op(N, 0);
 | 
						|
 | 
						|
  // Don't handle ppc_fp128 here or conversions that are out-of-range capable
 | 
						|
  // from the hardware.
 | 
						|
  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
 | 
						|
    return SDValue();
 | 
						|
  if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
 | 
						|
      Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue FirstOperand(Op.getOperand(0));
 | 
						|
  bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
 | 
						|
    (FirstOperand.getValueType() == MVT::i8 ||
 | 
						|
     FirstOperand.getValueType() == MVT::i16);
 | 
						|
  if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
 | 
						|
    bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
 | 
						|
    bool DstDouble = Op.getValueType() == MVT::f64;
 | 
						|
    unsigned ConvOp = Signed ?
 | 
						|
      (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
 | 
						|
      (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
 | 
						|
    SDValue WidthConst =
 | 
						|
      DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
 | 
						|
                            dl, false);
 | 
						|
    LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
 | 
						|
    SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
 | 
						|
    SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
 | 
						|
                                         DAG.getVTList(MVT::f64, MVT::Other),
 | 
						|
                                         Ops, MVT::i8, LDN->getMemOperand());
 | 
						|
 | 
						|
    // For signed conversion, we need to sign-extend the value in the VSR
 | 
						|
    if (Signed) {
 | 
						|
      SDValue ExtOps[] = { Ld, WidthConst };
 | 
						|
      SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
 | 
						|
      return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
 | 
						|
    } else
 | 
						|
      return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // For i32 intermediate values, unfortunately, the conversion functions
 | 
						|
  // leave the upper 32 bits of the value are undefined. Within the set of
 | 
						|
  // scalar instructions, we have no method for zero- or sign-extending the
 | 
						|
  // value. Thus, we cannot handle i32 intermediate values here.
 | 
						|
  if (Op.getOperand(0).getValueType() == MVT::i32)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
 | 
						|
         "UINT_TO_FP is supported only with FPCVT");
 | 
						|
 | 
						|
  // If we have FCFIDS, then use it when converting to single-precision.
 | 
						|
  // Otherwise, convert to double-precision and then round.
 | 
						|
  unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
 | 
						|
                       ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
 | 
						|
                                                            : PPCISD::FCFIDS)
 | 
						|
                       : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
 | 
						|
                                                            : PPCISD::FCFID);
 | 
						|
  MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
 | 
						|
                  ? MVT::f32
 | 
						|
                  : MVT::f64;
 | 
						|
 | 
						|
  // If we're converting from a float, to an int, and back to a float again,
 | 
						|
  // then we don't need the store/load pair at all.
 | 
						|
  if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
 | 
						|
       Subtarget.hasFPCVT()) ||
 | 
						|
      (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
 | 
						|
    SDValue Src = Op.getOperand(0).getOperand(0);
 | 
						|
    if (Src.getValueType() == MVT::f32) {
 | 
						|
      Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
 | 
						|
      DCI.AddToWorklist(Src.getNode());
 | 
						|
    } else if (Src.getValueType() != MVT::f64) {
 | 
						|
      // Make sure that we don't pick up a ppc_fp128 source value.
 | 
						|
      return SDValue();
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned FCTOp =
 | 
						|
      Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
 | 
						|
                                                        PPCISD::FCTIDUZ;
 | 
						|
 | 
						|
    SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
 | 
						|
    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
 | 
						|
 | 
						|
    if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
 | 
						|
      FP = DAG.getNode(ISD::FP_ROUND, dl,
 | 
						|
                       MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
 | 
						|
      DCI.AddToWorklist(FP.getNode());
 | 
						|
    }
 | 
						|
 | 
						|
    return FP;
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
 | 
						|
// builtins) into loads with swaps.
 | 
						|
SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
 | 
						|
                                              DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
  SDValue Chain;
 | 
						|
  SDValue Base;
 | 
						|
  MachineMemOperand *MMO;
 | 
						|
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected opcode for little endian VSX load");
 | 
						|
  case ISD::LOAD: {
 | 
						|
    LoadSDNode *LD = cast<LoadSDNode>(N);
 | 
						|
    Chain = LD->getChain();
 | 
						|
    Base = LD->getBasePtr();
 | 
						|
    MMO = LD->getMemOperand();
 | 
						|
    // If the MMO suggests this isn't a load of a full vector, leave
 | 
						|
    // things alone.  For a built-in, we have to make the change for
 | 
						|
    // correctness, so if there is a size problem that will be a bug.
 | 
						|
    if (MMO->getSize() < 16)
 | 
						|
      return SDValue();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_W_CHAIN: {
 | 
						|
    MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
 | 
						|
    Chain = Intrin->getChain();
 | 
						|
    // Similarly to the store case below, Intrin->getBasePtr() doesn't get
 | 
						|
    // us what we want. Get operand 2 instead.
 | 
						|
    Base = Intrin->getOperand(2);
 | 
						|
    MMO = Intrin->getMemOperand();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  MVT VecTy = N->getValueType(0).getSimpleVT();
 | 
						|
 | 
						|
  // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
 | 
						|
  // aligned and the type is a vector with elements up to 4 bytes
 | 
						|
  if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
 | 
						|
      && VecTy.getScalarSizeInBits() <= 32 ) {
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue LoadOps[] = { Chain, Base };
 | 
						|
  SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
 | 
						|
                                         DAG.getVTList(MVT::v2f64, MVT::Other),
 | 
						|
                                         LoadOps, MVT::v2f64, MMO);
 | 
						|
 | 
						|
  DCI.AddToWorklist(Load.getNode());
 | 
						|
  Chain = Load.getValue(1);
 | 
						|
  SDValue Swap = DAG.getNode(
 | 
						|
      PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
 | 
						|
  DCI.AddToWorklist(Swap.getNode());
 | 
						|
 | 
						|
  // Add a bitcast if the resulting load type doesn't match v2f64.
 | 
						|
  if (VecTy != MVT::v2f64) {
 | 
						|
    SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
 | 
						|
    DCI.AddToWorklist(N.getNode());
 | 
						|
    // Package {bitcast value, swap's chain} to match Load's shape.
 | 
						|
    return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
 | 
						|
                       N, Swap.getValue(1));
 | 
						|
  }
 | 
						|
 | 
						|
  return Swap;
 | 
						|
}
 | 
						|
 | 
						|
// expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
 | 
						|
// builtins) into stores with swaps.
 | 
						|
SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
 | 
						|
                                               DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
  SDValue Chain;
 | 
						|
  SDValue Base;
 | 
						|
  unsigned SrcOpnd;
 | 
						|
  MachineMemOperand *MMO;
 | 
						|
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected opcode for little endian VSX store");
 | 
						|
  case ISD::STORE: {
 | 
						|
    StoreSDNode *ST = cast<StoreSDNode>(N);
 | 
						|
    Chain = ST->getChain();
 | 
						|
    Base = ST->getBasePtr();
 | 
						|
    MMO = ST->getMemOperand();
 | 
						|
    SrcOpnd = 1;
 | 
						|
    // If the MMO suggests this isn't a store of a full vector, leave
 | 
						|
    // things alone.  For a built-in, we have to make the change for
 | 
						|
    // correctness, so if there is a size problem that will be a bug.
 | 
						|
    if (MMO->getSize() < 16)
 | 
						|
      return SDValue();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_VOID: {
 | 
						|
    MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
 | 
						|
    Chain = Intrin->getChain();
 | 
						|
    // Intrin->getBasePtr() oddly does not get what we want.
 | 
						|
    Base = Intrin->getOperand(3);
 | 
						|
    MMO = Intrin->getMemOperand();
 | 
						|
    SrcOpnd = 2;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Src = N->getOperand(SrcOpnd);
 | 
						|
  MVT VecTy = Src.getValueType().getSimpleVT();
 | 
						|
 | 
						|
  // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
 | 
						|
  // aligned and the type is a vector with elements up to 4 bytes
 | 
						|
  if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
 | 
						|
      && VecTy.getScalarSizeInBits() <= 32 ) {
 | 
						|
    return SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // All stores are done as v2f64 and possible bit cast.
 | 
						|
  if (VecTy != MVT::v2f64) {
 | 
						|
    Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
 | 
						|
    DCI.AddToWorklist(Src.getNode());
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
 | 
						|
                             DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
 | 
						|
  DCI.AddToWorklist(Swap.getNode());
 | 
						|
  Chain = Swap.getValue(1);
 | 
						|
  SDValue StoreOps[] = { Chain, Swap, Base };
 | 
						|
  SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
 | 
						|
                                          DAG.getVTList(MVT::Other),
 | 
						|
                                          StoreOps, VecTy, MMO);
 | 
						|
  DCI.AddToWorklist(Store.getNode());
 | 
						|
  return Store;
 | 
						|
}
 | 
						|
 | 
						|
// Handle DAG combine for STORE (FP_TO_INT F).
 | 
						|
SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
 | 
						|
                                               DAGCombinerInfo &DCI) const {
 | 
						|
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
  unsigned Opcode = N->getOperand(1).getOpcode();
 | 
						|
 | 
						|
  assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
 | 
						|
         && "Not a FP_TO_INT Instruction!");
 | 
						|
 | 
						|
  SDValue Val = N->getOperand(1).getOperand(0);
 | 
						|
  EVT Op1VT = N->getOperand(1).getValueType();
 | 
						|
  EVT ResVT = Val.getValueType();
 | 
						|
 | 
						|
  // Floating point types smaller than 32 bits are not legal on Power.
 | 
						|
  if (ResVT.getScalarSizeInBits() < 32)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Only perform combine for conversion to i64/i32 or power9 i16/i8.
 | 
						|
  bool ValidTypeForStoreFltAsInt =
 | 
						|
        (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
 | 
						|
         (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
 | 
						|
 | 
						|
  if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
 | 
						|
      cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // Extend f32 values to f64
 | 
						|
  if (ResVT.getScalarSizeInBits() == 32) {
 | 
						|
    Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
 | 
						|
    DCI.AddToWorklist(Val.getNode());
 | 
						|
  }
 | 
						|
 | 
						|
  // Set signed or unsigned conversion opcode.
 | 
						|
  unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
 | 
						|
                          PPCISD::FP_TO_SINT_IN_VSR :
 | 
						|
                          PPCISD::FP_TO_UINT_IN_VSR;
 | 
						|
 | 
						|
  Val = DAG.getNode(ConvOpcode,
 | 
						|
                    dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
 | 
						|
  DCI.AddToWorklist(Val.getNode());
 | 
						|
 | 
						|
  // Set number of bytes being converted.
 | 
						|
  unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
 | 
						|
  SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
 | 
						|
                    DAG.getIntPtrConstant(ByteSize, dl, false),
 | 
						|
                    DAG.getValueType(Op1VT) };
 | 
						|
 | 
						|
  Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
 | 
						|
          DAG.getVTList(MVT::Other), Ops,
 | 
						|
          cast<StoreSDNode>(N)->getMemoryVT(),
 | 
						|
          cast<StoreSDNode>(N)->getMemOperand());
 | 
						|
 | 
						|
  DCI.AddToWorklist(Val.getNode());
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
 | 
						|
                                             DAGCombinerInfo &DCI) const {
 | 
						|
  SelectionDAG &DAG = DCI.DAG;
 | 
						|
  SDLoc dl(N);
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case ISD::ADD:
 | 
						|
    return combineADD(N, DCI);
 | 
						|
  case ISD::SHL:
 | 
						|
    return combineSHL(N, DCI);
 | 
						|
  case ISD::SRA:
 | 
						|
    return combineSRA(N, DCI);
 | 
						|
  case ISD::SRL:
 | 
						|
    return combineSRL(N, DCI);
 | 
						|
  case PPCISD::SHL:
 | 
						|
    if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
 | 
						|
        return N->getOperand(0);
 | 
						|
    break;
 | 
						|
  case PPCISD::SRL:
 | 
						|
    if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
 | 
						|
        return N->getOperand(0);
 | 
						|
    break;
 | 
						|
  case PPCISD::SRA:
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
 | 
						|
      if (C->isNullValue() ||   //  0 >>s V -> 0.
 | 
						|
          C->isAllOnesValue())    // -1 >>s V -> -1.
 | 
						|
        return N->getOperand(0);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::SIGN_EXTEND:
 | 
						|
  case ISD::ZERO_EXTEND:
 | 
						|
  case ISD::ANY_EXTEND:
 | 
						|
    return DAGCombineExtBoolTrunc(N, DCI);
 | 
						|
  case ISD::TRUNCATE:
 | 
						|
    return combineTRUNCATE(N, DCI);
 | 
						|
  case ISD::SETCC:
 | 
						|
    if (SDValue CSCC = combineSetCC(N, DCI))
 | 
						|
      return CSCC;
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case ISD::SELECT_CC:
 | 
						|
    return DAGCombineTruncBoolExt(N, DCI);
 | 
						|
  case ISD::SINT_TO_FP:
 | 
						|
  case ISD::UINT_TO_FP:
 | 
						|
    return combineFPToIntToFP(N, DCI);
 | 
						|
  case ISD::STORE: {
 | 
						|
 | 
						|
    EVT Op1VT = N->getOperand(1).getValueType();
 | 
						|
    unsigned Opcode = N->getOperand(1).getOpcode();
 | 
						|
 | 
						|
    if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
 | 
						|
      SDValue Val= combineStoreFPToInt(N, DCI);
 | 
						|
      if (Val)
 | 
						|
        return Val;
 | 
						|
    }
 | 
						|
 | 
						|
    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
 | 
						|
    if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
 | 
						|
        N->getOperand(1).getNode()->hasOneUse() &&
 | 
						|
        (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
 | 
						|
         (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
 | 
						|
 | 
						|
      // STBRX can only handle simple types.
 | 
						|
      EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
 | 
						|
      if (mVT.isExtended())
 | 
						|
        break;
 | 
						|
 | 
						|
      SDValue BSwapOp = N->getOperand(1).getOperand(0);
 | 
						|
      // Do an any-extend to 32-bits if this is a half-word input.
 | 
						|
      if (BSwapOp.getValueType() == MVT::i16)
 | 
						|
        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
 | 
						|
 | 
						|
      // If the type of BSWAP operand is wider than stored memory width
 | 
						|
      // it need to be shifted to the right side before STBRX.
 | 
						|
      if (Op1VT.bitsGT(mVT)) {
 | 
						|
        int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
 | 
						|
        BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
 | 
						|
                              DAG.getConstant(Shift, dl, MVT::i32));
 | 
						|
        // Need to truncate if this is a bswap of i64 stored as i32/i16.
 | 
						|
        if (Op1VT == MVT::i64)
 | 
						|
          BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue Ops[] = {
 | 
						|
        N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
 | 
						|
      };
 | 
						|
      return
 | 
						|
        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
 | 
						|
                                Ops, cast<StoreSDNode>(N)->getMemoryVT(),
 | 
						|
                                cast<StoreSDNode>(N)->getMemOperand());
 | 
						|
    }
 | 
						|
 | 
						|
    // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
 | 
						|
    // So it can increase the chance of CSE constant construction.
 | 
						|
    if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
 | 
						|
        isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
 | 
						|
      // Need to sign-extended to 64-bits to handle negative values.
 | 
						|
      EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
 | 
						|
      uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
 | 
						|
                                    MemVT.getSizeInBits());
 | 
						|
      SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
 | 
						|
 | 
						|
      // DAG.getTruncStore() can't be used here because it doesn't accept
 | 
						|
      // the general (base + offset) addressing mode.
 | 
						|
      // So we use UpdateNodeOperands and setTruncatingStore instead.
 | 
						|
      DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
 | 
						|
                             N->getOperand(3));
 | 
						|
      cast<StoreSDNode>(N)->setTruncatingStore(true);
 | 
						|
      return SDValue(N, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    // For little endian, VSX stores require generating xxswapd/lxvd2x.
 | 
						|
    // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
 | 
						|
    if (Op1VT.isSimple()) {
 | 
						|
      MVT StoreVT = Op1VT.getSimpleVT();
 | 
						|
      if (Subtarget.needsSwapsForVSXMemOps() &&
 | 
						|
          (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
 | 
						|
           StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
 | 
						|
        return expandVSXStoreForLE(N, DCI);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::LOAD: {
 | 
						|
    LoadSDNode *LD = cast<LoadSDNode>(N);
 | 
						|
    EVT VT = LD->getValueType(0);
 | 
						|
 | 
						|
    // For little endian, VSX loads require generating lxvd2x/xxswapd.
 | 
						|
    // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
 | 
						|
    if (VT.isSimple()) {
 | 
						|
      MVT LoadVT = VT.getSimpleVT();
 | 
						|
      if (Subtarget.needsSwapsForVSXMemOps() &&
 | 
						|
          (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
 | 
						|
           LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
 | 
						|
        return expandVSXLoadForLE(N, DCI);
 | 
						|
    }
 | 
						|
 | 
						|
    // We sometimes end up with a 64-bit integer load, from which we extract
 | 
						|
    // two single-precision floating-point numbers. This happens with
 | 
						|
    // std::complex<float>, and other similar structures, because of the way we
 | 
						|
    // canonicalize structure copies. However, if we lack direct moves,
 | 
						|
    // then the final bitcasts from the extracted integer values to the
 | 
						|
    // floating-point numbers turn into store/load pairs. Even with direct moves,
 | 
						|
    // just loading the two floating-point numbers is likely better.
 | 
						|
    auto ReplaceTwoFloatLoad = [&]() {
 | 
						|
      if (VT != MVT::i64)
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
 | 
						|
          LD->isVolatile())
 | 
						|
        return false;
 | 
						|
 | 
						|
      //  We're looking for a sequence like this:
 | 
						|
      //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
 | 
						|
      //      t16: i64 = srl t13, Constant:i32<32>
 | 
						|
      //    t17: i32 = truncate t16
 | 
						|
      //  t18: f32 = bitcast t17
 | 
						|
      //    t19: i32 = truncate t13
 | 
						|
      //  t20: f32 = bitcast t19
 | 
						|
 | 
						|
      if (!LD->hasNUsesOfValue(2, 0))
 | 
						|
        return false;
 | 
						|
 | 
						|
      auto UI = LD->use_begin();
 | 
						|
      while (UI.getUse().getResNo() != 0) ++UI;
 | 
						|
      SDNode *Trunc = *UI++;
 | 
						|
      while (UI.getUse().getResNo() != 0) ++UI;
 | 
						|
      SDNode *RightShift = *UI;
 | 
						|
      if (Trunc->getOpcode() != ISD::TRUNCATE)
 | 
						|
        std::swap(Trunc, RightShift);
 | 
						|
 | 
						|
      if (Trunc->getOpcode() != ISD::TRUNCATE ||
 | 
						|
          Trunc->getValueType(0) != MVT::i32 ||
 | 
						|
          !Trunc->hasOneUse())
 | 
						|
        return false;
 | 
						|
      if (RightShift->getOpcode() != ISD::SRL ||
 | 
						|
          !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
 | 
						|
          RightShift->getConstantOperandVal(1) != 32 ||
 | 
						|
          !RightShift->hasOneUse())
 | 
						|
        return false;
 | 
						|
 | 
						|
      SDNode *Trunc2 = *RightShift->use_begin();
 | 
						|
      if (Trunc2->getOpcode() != ISD::TRUNCATE ||
 | 
						|
          Trunc2->getValueType(0) != MVT::i32 ||
 | 
						|
          !Trunc2->hasOneUse())
 | 
						|
        return false;
 | 
						|
 | 
						|
      SDNode *Bitcast = *Trunc->use_begin();
 | 
						|
      SDNode *Bitcast2 = *Trunc2->use_begin();
 | 
						|
 | 
						|
      if (Bitcast->getOpcode() != ISD::BITCAST ||
 | 
						|
          Bitcast->getValueType(0) != MVT::f32)
 | 
						|
        return false;
 | 
						|
      if (Bitcast2->getOpcode() != ISD::BITCAST ||
 | 
						|
          Bitcast2->getValueType(0) != MVT::f32)
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (Subtarget.isLittleEndian())
 | 
						|
        std::swap(Bitcast, Bitcast2);
 | 
						|
 | 
						|
      // Bitcast has the second float (in memory-layout order) and Bitcast2
 | 
						|
      // has the first one.
 | 
						|
 | 
						|
      SDValue BasePtr = LD->getBasePtr();
 | 
						|
      if (LD->isIndexed()) {
 | 
						|
        assert(LD->getAddressingMode() == ISD::PRE_INC &&
 | 
						|
               "Non-pre-inc AM on PPC?");
 | 
						|
        BasePtr =
 | 
						|
          DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
 | 
						|
                      LD->getOffset());
 | 
						|
      }
 | 
						|
 | 
						|
      auto MMOFlags =
 | 
						|
          LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
 | 
						|
      SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
 | 
						|
                                      LD->getPointerInfo(), LD->getAlignment(),
 | 
						|
                                      MMOFlags, LD->getAAInfo());
 | 
						|
      SDValue AddPtr =
 | 
						|
        DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
 | 
						|
                    BasePtr, DAG.getIntPtrConstant(4, dl));
 | 
						|
      SDValue FloatLoad2 = DAG.getLoad(
 | 
						|
          MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
 | 
						|
          LD->getPointerInfo().getWithOffset(4),
 | 
						|
          MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
 | 
						|
 | 
						|
      if (LD->isIndexed()) {
 | 
						|
        // Note that DAGCombine should re-form any pre-increment load(s) from
 | 
						|
        // what is produced here if that makes sense.
 | 
						|
        DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
 | 
						|
      }
 | 
						|
 | 
						|
      DCI.CombineTo(Bitcast2, FloatLoad);
 | 
						|
      DCI.CombineTo(Bitcast, FloatLoad2);
 | 
						|
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
 | 
						|
                                    SDValue(FloatLoad2.getNode(), 1));
 | 
						|
      return true;
 | 
						|
    };
 | 
						|
 | 
						|
    if (ReplaceTwoFloatLoad())
 | 
						|
      return SDValue(N, 0);
 | 
						|
 | 
						|
    EVT MemVT = LD->getMemoryVT();
 | 
						|
    Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
 | 
						|
    unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
 | 
						|
    Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
 | 
						|
    unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
 | 
						|
    if (LD->isUnindexed() && VT.isVector() &&
 | 
						|
        ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
 | 
						|
          // P8 and later hardware should just use LOAD.
 | 
						|
          !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
 | 
						|
                                       VT == MVT::v4i32 || VT == MVT::v4f32)) ||
 | 
						|
         (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
 | 
						|
          LD->getAlignment() >= ScalarABIAlignment)) &&
 | 
						|
        LD->getAlignment() < ABIAlignment) {
 | 
						|
      // This is a type-legal unaligned Altivec or QPX load.
 | 
						|
      SDValue Chain = LD->getChain();
 | 
						|
      SDValue Ptr = LD->getBasePtr();
 | 
						|
      bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
 | 
						|
      // This implements the loading of unaligned vectors as described in
 | 
						|
      // the venerable Apple Velocity Engine overview. Specifically:
 | 
						|
      // https://developer.apple.com/hardwaredrivers/ve/alignment.html
 | 
						|
      // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
 | 
						|
      //
 | 
						|
      // The general idea is to expand a sequence of one or more unaligned
 | 
						|
      // loads into an alignment-based permutation-control instruction (lvsl
 | 
						|
      // or lvsr), a series of regular vector loads (which always truncate
 | 
						|
      // their input address to an aligned address), and a series of
 | 
						|
      // permutations.  The results of these permutations are the requested
 | 
						|
      // loaded values.  The trick is that the last "extra" load is not taken
 | 
						|
      // from the address you might suspect (sizeof(vector) bytes after the
 | 
						|
      // last requested load), but rather sizeof(vector) - 1 bytes after the
 | 
						|
      // last requested vector. The point of this is to avoid a page fault if
 | 
						|
      // the base address happened to be aligned. This works because if the
 | 
						|
      // base address is aligned, then adding less than a full vector length
 | 
						|
      // will cause the last vector in the sequence to be (re)loaded.
 | 
						|
      // Otherwise, the next vector will be fetched as you might suspect was
 | 
						|
      // necessary.
 | 
						|
 | 
						|
      // We might be able to reuse the permutation generation from
 | 
						|
      // a different base address offset from this one by an aligned amount.
 | 
						|
      // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
 | 
						|
      // optimization later.
 | 
						|
      Intrinsic::ID Intr, IntrLD, IntrPerm;
 | 
						|
      MVT PermCntlTy, PermTy, LDTy;
 | 
						|
      if (Subtarget.hasAltivec()) {
 | 
						|
        Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
 | 
						|
                                 Intrinsic::ppc_altivec_lvsl;
 | 
						|
        IntrLD = Intrinsic::ppc_altivec_lvx;
 | 
						|
        IntrPerm = Intrinsic::ppc_altivec_vperm;
 | 
						|
        PermCntlTy = MVT::v16i8;
 | 
						|
        PermTy = MVT::v4i32;
 | 
						|
        LDTy = MVT::v4i32;
 | 
						|
      } else {
 | 
						|
        Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
 | 
						|
                                       Intrinsic::ppc_qpx_qvlpcls;
 | 
						|
        IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
 | 
						|
                                       Intrinsic::ppc_qpx_qvlfs;
 | 
						|
        IntrPerm = Intrinsic::ppc_qpx_qvfperm;
 | 
						|
        PermCntlTy = MVT::v4f64;
 | 
						|
        PermTy = MVT::v4f64;
 | 
						|
        LDTy = MemVT.getSimpleVT();
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
 | 
						|
 | 
						|
      // Create the new MMO for the new base load. It is like the original MMO,
 | 
						|
      // but represents an area in memory almost twice the vector size centered
 | 
						|
      // on the original address. If the address is unaligned, we might start
 | 
						|
      // reading up to (sizeof(vector)-1) bytes below the address of the
 | 
						|
      // original unaligned load.
 | 
						|
      MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
      MachineMemOperand *BaseMMO =
 | 
						|
        MF.getMachineMemOperand(LD->getMemOperand(),
 | 
						|
                                -(long)MemVT.getStoreSize()+1,
 | 
						|
                                2*MemVT.getStoreSize()-1);
 | 
						|
 | 
						|
      // Create the new base load.
 | 
						|
      SDValue LDXIntID =
 | 
						|
          DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
 | 
						|
      SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
 | 
						|
      SDValue BaseLoad =
 | 
						|
        DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
 | 
						|
                                DAG.getVTList(PermTy, MVT::Other),
 | 
						|
                                BaseLoadOps, LDTy, BaseMMO);
 | 
						|
 | 
						|
      // Note that the value of IncOffset (which is provided to the next
 | 
						|
      // load's pointer info offset value, and thus used to calculate the
 | 
						|
      // alignment), and the value of IncValue (which is actually used to
 | 
						|
      // increment the pointer value) are different! This is because we
 | 
						|
      // require the next load to appear to be aligned, even though it
 | 
						|
      // is actually offset from the base pointer by a lesser amount.
 | 
						|
      int IncOffset = VT.getSizeInBits() / 8;
 | 
						|
      int IncValue = IncOffset;
 | 
						|
 | 
						|
      // Walk (both up and down) the chain looking for another load at the real
 | 
						|
      // (aligned) offset (the alignment of the other load does not matter in
 | 
						|
      // this case). If found, then do not use the offset reduction trick, as
 | 
						|
      // that will prevent the loads from being later combined (as they would
 | 
						|
      // otherwise be duplicates).
 | 
						|
      if (!findConsecutiveLoad(LD, DAG))
 | 
						|
        --IncValue;
 | 
						|
 | 
						|
      SDValue Increment =
 | 
						|
          DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
 | 
						|
      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
 | 
						|
 | 
						|
      MachineMemOperand *ExtraMMO =
 | 
						|
        MF.getMachineMemOperand(LD->getMemOperand(),
 | 
						|
                                1, 2*MemVT.getStoreSize()-1);
 | 
						|
      SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
 | 
						|
      SDValue ExtraLoad =
 | 
						|
        DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
 | 
						|
                                DAG.getVTList(PermTy, MVT::Other),
 | 
						|
                                ExtraLoadOps, LDTy, ExtraMMO);
 | 
						|
 | 
						|
      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | 
						|
        BaseLoad.getValue(1), ExtraLoad.getValue(1));
 | 
						|
 | 
						|
      // Because vperm has a big-endian bias, we must reverse the order
 | 
						|
      // of the input vectors and complement the permute control vector
 | 
						|
      // when generating little endian code.  We have already handled the
 | 
						|
      // latter by using lvsr instead of lvsl, so just reverse BaseLoad
 | 
						|
      // and ExtraLoad here.
 | 
						|
      SDValue Perm;
 | 
						|
      if (isLittleEndian)
 | 
						|
        Perm = BuildIntrinsicOp(IntrPerm,
 | 
						|
                                ExtraLoad, BaseLoad, PermCntl, DAG, dl);
 | 
						|
      else
 | 
						|
        Perm = BuildIntrinsicOp(IntrPerm,
 | 
						|
                                BaseLoad, ExtraLoad, PermCntl, DAG, dl);
 | 
						|
 | 
						|
      if (VT != PermTy)
 | 
						|
        Perm = Subtarget.hasAltivec() ?
 | 
						|
                 DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
 | 
						|
                 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
 | 
						|
                               DAG.getTargetConstant(1, dl, MVT::i64));
 | 
						|
                               // second argument is 1 because this rounding
 | 
						|
                               // is always exact.
 | 
						|
 | 
						|
      // The output of the permutation is our loaded result, the TokenFactor is
 | 
						|
      // our new chain.
 | 
						|
      DCI.CombineTo(N, Perm, TF);
 | 
						|
      return SDValue(N, 0);
 | 
						|
    }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
    case ISD::INTRINSIC_WO_CHAIN: {
 | 
						|
      bool isLittleEndian = Subtarget.isLittleEndian();
 | 
						|
      unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
 | 
						|
      Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
 | 
						|
                                           : Intrinsic::ppc_altivec_lvsl);
 | 
						|
      if ((IID == Intr ||
 | 
						|
           IID == Intrinsic::ppc_qpx_qvlpcld  ||
 | 
						|
           IID == Intrinsic::ppc_qpx_qvlpcls) &&
 | 
						|
        N->getOperand(1)->getOpcode() == ISD::ADD) {
 | 
						|
        SDValue Add = N->getOperand(1);
 | 
						|
 | 
						|
        int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
 | 
						|
                   5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
 | 
						|
 | 
						|
        if (DAG.MaskedValueIsZero(Add->getOperand(1),
 | 
						|
                                  APInt::getAllOnesValue(Bits /* alignment */)
 | 
						|
                                      .zext(Add.getScalarValueSizeInBits()))) {
 | 
						|
          SDNode *BasePtr = Add->getOperand(0).getNode();
 | 
						|
          for (SDNode::use_iterator UI = BasePtr->use_begin(),
 | 
						|
                                    UE = BasePtr->use_end();
 | 
						|
               UI != UE; ++UI) {
 | 
						|
            if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
 | 
						|
                cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
 | 
						|
              // We've found another LVSL/LVSR, and this address is an aligned
 | 
						|
              // multiple of that one. The results will be the same, so use the
 | 
						|
              // one we've just found instead.
 | 
						|
 | 
						|
              return SDValue(*UI, 0);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (isa<ConstantSDNode>(Add->getOperand(1))) {
 | 
						|
          SDNode *BasePtr = Add->getOperand(0).getNode();
 | 
						|
          for (SDNode::use_iterator UI = BasePtr->use_begin(),
 | 
						|
               UE = BasePtr->use_end(); UI != UE; ++UI) {
 | 
						|
            if (UI->getOpcode() == ISD::ADD &&
 | 
						|
                isa<ConstantSDNode>(UI->getOperand(1)) &&
 | 
						|
                (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
 | 
						|
                 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
 | 
						|
                (1ULL << Bits) == 0) {
 | 
						|
              SDNode *OtherAdd = *UI;
 | 
						|
              for (SDNode::use_iterator VI = OtherAdd->use_begin(),
 | 
						|
                   VE = OtherAdd->use_end(); VI != VE; ++VI) {
 | 
						|
                if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
 | 
						|
                    cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
 | 
						|
                  return SDValue(*VI, 0);
 | 
						|
                }
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  case ISD::INTRINSIC_W_CHAIN:
 | 
						|
    // For little endian, VSX loads require generating lxvd2x/xxswapd.
 | 
						|
    // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
 | 
						|
    if (Subtarget.needsSwapsForVSXMemOps()) {
 | 
						|
      switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_vsx_lxvw4x:
 | 
						|
      case Intrinsic::ppc_vsx_lxvd2x:
 | 
						|
        return expandVSXLoadForLE(N, DCI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::INTRINSIC_VOID:
 | 
						|
    // For little endian, VSX stores require generating xxswapd/stxvd2x.
 | 
						|
    // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
 | 
						|
    if (Subtarget.needsSwapsForVSXMemOps()) {
 | 
						|
      switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case Intrinsic::ppc_vsx_stxvw4x:
 | 
						|
      case Intrinsic::ppc_vsx_stxvd2x:
 | 
						|
        return expandVSXStoreForLE(N, DCI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::BSWAP:
 | 
						|
    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
 | 
						|
    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
 | 
						|
        N->getOperand(0).hasOneUse() &&
 | 
						|
        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
 | 
						|
         (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
 | 
						|
          N->getValueType(0) == MVT::i64))) {
 | 
						|
      SDValue Load = N->getOperand(0);
 | 
						|
      LoadSDNode *LD = cast<LoadSDNode>(Load);
 | 
						|
      // Create the byte-swapping load.
 | 
						|
      SDValue Ops[] = {
 | 
						|
        LD->getChain(),    // Chain
 | 
						|
        LD->getBasePtr(),  // Ptr
 | 
						|
        DAG.getValueType(N->getValueType(0)) // VT
 | 
						|
      };
 | 
						|
      SDValue BSLoad =
 | 
						|
        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
 | 
						|
                                DAG.getVTList(N->getValueType(0) == MVT::i64 ?
 | 
						|
                                              MVT::i64 : MVT::i32, MVT::Other),
 | 
						|
                                Ops, LD->getMemoryVT(), LD->getMemOperand());
 | 
						|
 | 
						|
      // If this is an i16 load, insert the truncate.
 | 
						|
      SDValue ResVal = BSLoad;
 | 
						|
      if (N->getValueType(0) == MVT::i16)
 | 
						|
        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
 | 
						|
 | 
						|
      // First, combine the bswap away.  This makes the value produced by the
 | 
						|
      // load dead.
 | 
						|
      DCI.CombineTo(N, ResVal);
 | 
						|
 | 
						|
      // Next, combine the load away, we give it a bogus result value but a real
 | 
						|
      // chain result.  The result value is dead because the bswap is dead.
 | 
						|
      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
 | 
						|
 | 
						|
      // Return N so it doesn't get rechecked!
 | 
						|
      return SDValue(N, 0);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case PPCISD::VCMP:
 | 
						|
    // If a VCMPo node already exists with exactly the same operands as this
 | 
						|
    // node, use its result instead of this node (VCMPo computes both a CR6 and
 | 
						|
    // a normal output).
 | 
						|
    //
 | 
						|
    if (!N->getOperand(0).hasOneUse() &&
 | 
						|
        !N->getOperand(1).hasOneUse() &&
 | 
						|
        !N->getOperand(2).hasOneUse()) {
 | 
						|
 | 
						|
      // Scan all of the users of the LHS, looking for VCMPo's that match.
 | 
						|
      SDNode *VCMPoNode = nullptr;
 | 
						|
 | 
						|
      SDNode *LHSN = N->getOperand(0).getNode();
 | 
						|
      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
 | 
						|
           UI != E; ++UI)
 | 
						|
        if (UI->getOpcode() == PPCISD::VCMPo &&
 | 
						|
            UI->getOperand(1) == N->getOperand(1) &&
 | 
						|
            UI->getOperand(2) == N->getOperand(2) &&
 | 
						|
            UI->getOperand(0) == N->getOperand(0)) {
 | 
						|
          VCMPoNode = *UI;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      // If there is no VCMPo node, or if the flag value has a single use, don't
 | 
						|
      // transform this.
 | 
						|
      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
 | 
						|
        break;
 | 
						|
 | 
						|
      // Look at the (necessarily single) use of the flag value.  If it has a
 | 
						|
      // chain, this transformation is more complex.  Note that multiple things
 | 
						|
      // could use the value result, which we should ignore.
 | 
						|
      SDNode *FlagUser = nullptr;
 | 
						|
      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
 | 
						|
           FlagUser == nullptr; ++UI) {
 | 
						|
        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
 | 
						|
        SDNode *User = *UI;
 | 
						|
        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
 | 
						|
          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
 | 
						|
            FlagUser = User;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If the user is a MFOCRF instruction, we know this is safe.
 | 
						|
      // Otherwise we give up for right now.
 | 
						|
      if (FlagUser->getOpcode() == PPCISD::MFOCRF)
 | 
						|
        return SDValue(VCMPoNode, 0);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::BRCOND: {
 | 
						|
    SDValue Cond = N->getOperand(1);
 | 
						|
    SDValue Target = N->getOperand(2);
 | 
						|
 | 
						|
    if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
 | 
						|
        cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
 | 
						|
          Intrinsic::ppc_is_decremented_ctr_nonzero) {
 | 
						|
 | 
						|
      // We now need to make the intrinsic dead (it cannot be instruction
 | 
						|
      // selected).
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
 | 
						|
      assert(Cond.getNode()->hasOneUse() &&
 | 
						|
             "Counter decrement has more than one use");
 | 
						|
 | 
						|
      return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
 | 
						|
                         N->getOperand(0), Target);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  break;
 | 
						|
  case ISD::BR_CC: {
 | 
						|
    // If this is a branch on an altivec predicate comparison, lower this so
 | 
						|
    // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
 | 
						|
    // lowering is done pre-legalize, because the legalizer lowers the predicate
 | 
						|
    // compare down to code that is difficult to reassemble.
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
 | 
						|
    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
 | 
						|
 | 
						|
    // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
 | 
						|
    // value. If so, pass-through the AND to get to the intrinsic.
 | 
						|
    if (LHS.getOpcode() == ISD::AND &&
 | 
						|
        LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
 | 
						|
        cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
 | 
						|
          Intrinsic::ppc_is_decremented_ctr_nonzero &&
 | 
						|
        isa<ConstantSDNode>(LHS.getOperand(1)) &&
 | 
						|
        !isNullConstant(LHS.getOperand(1)))
 | 
						|
      LHS = LHS.getOperand(0);
 | 
						|
 | 
						|
    if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
 | 
						|
        cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
 | 
						|
          Intrinsic::ppc_is_decremented_ctr_nonzero &&
 | 
						|
        isa<ConstantSDNode>(RHS)) {
 | 
						|
      assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
 | 
						|
             "Counter decrement comparison is not EQ or NE");
 | 
						|
 | 
						|
      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
 | 
						|
      bool isBDNZ = (CC == ISD::SETEQ && Val) ||
 | 
						|
                    (CC == ISD::SETNE && !Val);
 | 
						|
 | 
						|
      // We now need to make the intrinsic dead (it cannot be instruction
 | 
						|
      // selected).
 | 
						|
      DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
 | 
						|
      assert(LHS.getNode()->hasOneUse() &&
 | 
						|
             "Counter decrement has more than one use");
 | 
						|
 | 
						|
      return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
 | 
						|
                         N->getOperand(0), N->getOperand(4));
 | 
						|
    }
 | 
						|
 | 
						|
    int CompareOpc;
 | 
						|
    bool isDot;
 | 
						|
 | 
						|
    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
 | 
						|
        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
 | 
						|
        getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
 | 
						|
      assert(isDot && "Can't compare against a vector result!");
 | 
						|
 | 
						|
      // If this is a comparison against something other than 0/1, then we know
 | 
						|
      // that the condition is never/always true.
 | 
						|
      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
 | 
						|
      if (Val != 0 && Val != 1) {
 | 
						|
        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
 | 
						|
          return N->getOperand(0);
 | 
						|
        // Always !=, turn it into an unconditional branch.
 | 
						|
        return DAG.getNode(ISD::BR, dl, MVT::Other,
 | 
						|
                           N->getOperand(0), N->getOperand(4));
 | 
						|
      }
 | 
						|
 | 
						|
      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
 | 
						|
 | 
						|
      // Create the PPCISD altivec 'dot' comparison node.
 | 
						|
      SDValue Ops[] = {
 | 
						|
        LHS.getOperand(2),  // LHS of compare
 | 
						|
        LHS.getOperand(3),  // RHS of compare
 | 
						|
        DAG.getConstant(CompareOpc, dl, MVT::i32)
 | 
						|
      };
 | 
						|
      EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
 | 
						|
      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
 | 
						|
 | 
						|
      // Unpack the result based on how the target uses it.
 | 
						|
      PPC::Predicate CompOpc;
 | 
						|
      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
 | 
						|
      default:  // Can't happen, don't crash on invalid number though.
 | 
						|
      case 0:   // Branch on the value of the EQ bit of CR6.
 | 
						|
        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
 | 
						|
        break;
 | 
						|
      case 1:   // Branch on the inverted value of the EQ bit of CR6.
 | 
						|
        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
 | 
						|
        break;
 | 
						|
      case 2:   // Branch on the value of the LT bit of CR6.
 | 
						|
        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
 | 
						|
        break;
 | 
						|
      case 3:   // Branch on the inverted value of the LT bit of CR6.
 | 
						|
        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
 | 
						|
                         DAG.getConstant(CompOpc, dl, MVT::i32),
 | 
						|
                         DAG.getRegister(PPC::CR6, MVT::i32),
 | 
						|
                         N->getOperand(4), CompNode.getValue(1));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::BUILD_VECTOR:
 | 
						|
    return DAGCombineBuildVector(N, DCI);
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
 | 
						|
                                 SelectionDAG &DAG,
 | 
						|
                                 SmallVectorImpl<SDNode *> &Created) const {
 | 
						|
  // fold (sdiv X, pow2)
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  if (VT == MVT::i64 && !Subtarget.isPPC64())
 | 
						|
    return SDValue();
 | 
						|
  if ((VT != MVT::i32 && VT != MVT::i64) ||
 | 
						|
      !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
 | 
						|
  bool IsNegPow2 = (-Divisor).isPowerOf2();
 | 
						|
  unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
 | 
						|
  SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
 | 
						|
 | 
						|
  SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
 | 
						|
  Created.push_back(Op.getNode());
 | 
						|
 | 
						|
  if (IsNegPow2) {
 | 
						|
    Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
 | 
						|
    Created.push_back(Op.getNode());
 | 
						|
  }
 | 
						|
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Inline Assembly Support
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
 | 
						|
                                                      KnownBits &Known,
 | 
						|
                                                      const APInt &DemandedElts,
 | 
						|
                                                      const SelectionDAG &DAG,
 | 
						|
                                                      unsigned Depth) const {
 | 
						|
  Known.resetAll();
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case PPCISD::LBRX: {
 | 
						|
    // lhbrx is known to have the top bits cleared out.
 | 
						|
    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
 | 
						|
      Known.Zero = 0xFFFF0000;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: {
 | 
						|
    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
 | 
						|
    default: break;
 | 
						|
    case Intrinsic::ppc_altivec_vcmpbfp_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpeqfp_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequb_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequh_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequw_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpequd_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgefp_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtfp_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsb_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsh_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsw_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtsd_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtub_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtuh_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtuw_p:
 | 
						|
    case Intrinsic::ppc_altivec_vcmpgtud_p:
 | 
						|
      Known.Zero = ~1U;  // All bits but the low one are known to be zero.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
 | 
						|
  switch (Subtarget.getDarwinDirective()) {
 | 
						|
  default: break;
 | 
						|
  case PPC::DIR_970:
 | 
						|
  case PPC::DIR_PWR4:
 | 
						|
  case PPC::DIR_PWR5:
 | 
						|
  case PPC::DIR_PWR5X:
 | 
						|
  case PPC::DIR_PWR6:
 | 
						|
  case PPC::DIR_PWR6X:
 | 
						|
  case PPC::DIR_PWR7:
 | 
						|
  case PPC::DIR_PWR8:
 | 
						|
  case PPC::DIR_PWR9: {
 | 
						|
    if (!ML)
 | 
						|
      break;
 | 
						|
 | 
						|
    const PPCInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
 | 
						|
    // For small loops (between 5 and 8 instructions), align to a 32-byte
 | 
						|
    // boundary so that the entire loop fits in one instruction-cache line.
 | 
						|
    uint64_t LoopSize = 0;
 | 
						|
    for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
 | 
						|
      for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
 | 
						|
        LoopSize += TII->getInstSizeInBytes(*J);
 | 
						|
        if (LoopSize > 32)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
 | 
						|
    if (LoopSize > 16 && LoopSize <= 32)
 | 
						|
      return 5;
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetLowering::getPrefLoopAlignment(ML);
 | 
						|
}
 | 
						|
 | 
						|
/// getConstraintType - Given a constraint, return the type of
 | 
						|
/// constraint it is for this target.
 | 
						|
PPCTargetLowering::ConstraintType
 | 
						|
PPCTargetLowering::getConstraintType(StringRef Constraint) const {
 | 
						|
  if (Constraint.size() == 1) {
 | 
						|
    switch (Constraint[0]) {
 | 
						|
    default: break;
 | 
						|
    case 'b':
 | 
						|
    case 'r':
 | 
						|
    case 'f':
 | 
						|
    case 'd':
 | 
						|
    case 'v':
 | 
						|
    case 'y':
 | 
						|
      return C_RegisterClass;
 | 
						|
    case 'Z':
 | 
						|
      // FIXME: While Z does indicate a memory constraint, it specifically
 | 
						|
      // indicates an r+r address (used in conjunction with the 'y' modifier
 | 
						|
      // in the replacement string). Currently, we're forcing the base
 | 
						|
      // register to be r0 in the asm printer (which is interpreted as zero)
 | 
						|
      // and forming the complete address in the second register. This is
 | 
						|
      // suboptimal.
 | 
						|
      return C_Memory;
 | 
						|
    }
 | 
						|
  } else if (Constraint == "wc") { // individual CR bits.
 | 
						|
    return C_RegisterClass;
 | 
						|
  } else if (Constraint == "wa" || Constraint == "wd" ||
 | 
						|
             Constraint == "wf" || Constraint == "ws" ||
 | 
						|
             Constraint == "wi") {
 | 
						|
    return C_RegisterClass; // VSX registers.
 | 
						|
  }
 | 
						|
  return TargetLowering::getConstraintType(Constraint);
 | 
						|
}
 | 
						|
 | 
						|
/// Examine constraint type and operand type and determine a weight value.
 | 
						|
/// This object must already have been set up with the operand type
 | 
						|
/// and the current alternative constraint selected.
 | 
						|
TargetLowering::ConstraintWeight
 | 
						|
PPCTargetLowering::getSingleConstraintMatchWeight(
 | 
						|
    AsmOperandInfo &info, const char *constraint) const {
 | 
						|
  ConstraintWeight weight = CW_Invalid;
 | 
						|
  Value *CallOperandVal = info.CallOperandVal;
 | 
						|
    // If we don't have a value, we can't do a match,
 | 
						|
    // but allow it at the lowest weight.
 | 
						|
  if (!CallOperandVal)
 | 
						|
    return CW_Default;
 | 
						|
  Type *type = CallOperandVal->getType();
 | 
						|
 | 
						|
  // Look at the constraint type.
 | 
						|
  if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
 | 
						|
    return CW_Register; // an individual CR bit.
 | 
						|
  else if ((StringRef(constraint) == "wa" ||
 | 
						|
            StringRef(constraint) == "wd" ||
 | 
						|
            StringRef(constraint) == "wf") &&
 | 
						|
           type->isVectorTy())
 | 
						|
    return CW_Register;
 | 
						|
  else if (StringRef(constraint) == "ws" && type->isDoubleTy())
 | 
						|
    return CW_Register;
 | 
						|
  else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
 | 
						|
    return CW_Register; // just hold 64-bit integers data.
 | 
						|
 | 
						|
  switch (*constraint) {
 | 
						|
  default:
 | 
						|
    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
 | 
						|
    break;
 | 
						|
  case 'b':
 | 
						|
    if (type->isIntegerTy())
 | 
						|
      weight = CW_Register;
 | 
						|
    break;
 | 
						|
  case 'f':
 | 
						|
    if (type->isFloatTy())
 | 
						|
      weight = CW_Register;
 | 
						|
    break;
 | 
						|
  case 'd':
 | 
						|
    if (type->isDoubleTy())
 | 
						|
      weight = CW_Register;
 | 
						|
    break;
 | 
						|
  case 'v':
 | 
						|
    if (type->isVectorTy())
 | 
						|
      weight = CW_Register;
 | 
						|
    break;
 | 
						|
  case 'y':
 | 
						|
    weight = CW_Register;
 | 
						|
    break;
 | 
						|
  case 'Z':
 | 
						|
    weight = CW_Memory;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return weight;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<unsigned, const TargetRegisterClass *>
 | 
						|
PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
 | 
						|
                                                StringRef Constraint,
 | 
						|
                                                MVT VT) const {
 | 
						|
  if (Constraint.size() == 1) {
 | 
						|
    // GCC RS6000 Constraint Letters
 | 
						|
    switch (Constraint[0]) {
 | 
						|
    case 'b':   // R1-R31
 | 
						|
      if (VT == MVT::i64 && Subtarget.isPPC64())
 | 
						|
        return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
 | 
						|
      return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
 | 
						|
    case 'r':   // R0-R31
 | 
						|
      if (VT == MVT::i64 && Subtarget.isPPC64())
 | 
						|
        return std::make_pair(0U, &PPC::G8RCRegClass);
 | 
						|
      return std::make_pair(0U, &PPC::GPRCRegClass);
 | 
						|
    // 'd' and 'f' constraints are both defined to be "the floating point
 | 
						|
    // registers", where one is for 32-bit and the other for 64-bit. We don't
 | 
						|
    // really care overly much here so just give them all the same reg classes.
 | 
						|
    case 'd':
 | 
						|
    case 'f':
 | 
						|
      if (Subtarget.hasSPE()) {
 | 
						|
        if (VT == MVT::f32 || VT == MVT::i32)
 | 
						|
          return std::make_pair(0U, &PPC::SPE4RCRegClass);
 | 
						|
        if (VT == MVT::f64 || VT == MVT::i64)
 | 
						|
          return std::make_pair(0U, &PPC::SPERCRegClass);
 | 
						|
      } else {
 | 
						|
        if (VT == MVT::f32 || VT == MVT::i32)
 | 
						|
          return std::make_pair(0U, &PPC::F4RCRegClass);
 | 
						|
        if (VT == MVT::f64 || VT == MVT::i64)
 | 
						|
          return std::make_pair(0U, &PPC::F8RCRegClass);
 | 
						|
        if (VT == MVT::v4f64 && Subtarget.hasQPX())
 | 
						|
          return std::make_pair(0U, &PPC::QFRCRegClass);
 | 
						|
        if (VT == MVT::v4f32 && Subtarget.hasQPX())
 | 
						|
          return std::make_pair(0U, &PPC::QSRCRegClass);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case 'v':
 | 
						|
      if (VT == MVT::v4f64 && Subtarget.hasQPX())
 | 
						|
        return std::make_pair(0U, &PPC::QFRCRegClass);
 | 
						|
      if (VT == MVT::v4f32 && Subtarget.hasQPX())
 | 
						|
        return std::make_pair(0U, &PPC::QSRCRegClass);
 | 
						|
      if (Subtarget.hasAltivec())
 | 
						|
        return std::make_pair(0U, &PPC::VRRCRegClass);
 | 
						|
      break;
 | 
						|
    case 'y':   // crrc
 | 
						|
      return std::make_pair(0U, &PPC::CRRCRegClass);
 | 
						|
    }
 | 
						|
  } else if (Constraint == "wc" && Subtarget.useCRBits()) {
 | 
						|
    // An individual CR bit.
 | 
						|
    return std::make_pair(0U, &PPC::CRBITRCRegClass);
 | 
						|
  } else if ((Constraint == "wa" || Constraint == "wd" ||
 | 
						|
             Constraint == "wf" || Constraint == "wi") &&
 | 
						|
             Subtarget.hasVSX()) {
 | 
						|
    return std::make_pair(0U, &PPC::VSRCRegClass);
 | 
						|
  } else if (Constraint == "ws" && Subtarget.hasVSX()) {
 | 
						|
    if (VT == MVT::f32 && Subtarget.hasP8Vector())
 | 
						|
      return std::make_pair(0U, &PPC::VSSRCRegClass);
 | 
						|
    else
 | 
						|
      return std::make_pair(0U, &PPC::VSFRCRegClass);
 | 
						|
  }
 | 
						|
 | 
						|
  std::pair<unsigned, const TargetRegisterClass *> R =
 | 
						|
      TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
 | 
						|
 | 
						|
  // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
 | 
						|
  // (which we call X[0-9]+). If a 64-bit value has been requested, and a
 | 
						|
  // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
 | 
						|
  // register.
 | 
						|
  // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
 | 
						|
  // the AsmName field from *RegisterInfo.td, then this would not be necessary.
 | 
						|
  if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
 | 
						|
      PPC::GPRCRegClass.contains(R.first))
 | 
						|
    return std::make_pair(TRI->getMatchingSuperReg(R.first,
 | 
						|
                            PPC::sub_32, &PPC::G8RCRegClass),
 | 
						|
                          &PPC::G8RCRegClass);
 | 
						|
 | 
						|
  // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
 | 
						|
  if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
 | 
						|
    R.first = PPC::CR0;
 | 
						|
    R.second = &PPC::CRRCRegClass;
 | 
						|
  }
 | 
						|
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | 
						|
/// vector.  If it is invalid, don't add anything to Ops.
 | 
						|
void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | 
						|
                                                     std::string &Constraint,
 | 
						|
                                                     std::vector<SDValue>&Ops,
 | 
						|
                                                     SelectionDAG &DAG) const {
 | 
						|
  SDValue Result;
 | 
						|
 | 
						|
  // Only support length 1 constraints.
 | 
						|
  if (Constraint.length() > 1) return;
 | 
						|
 | 
						|
  char Letter = Constraint[0];
 | 
						|
  switch (Letter) {
 | 
						|
  default: break;
 | 
						|
  case 'I':
 | 
						|
  case 'J':
 | 
						|
  case 'K':
 | 
						|
  case 'L':
 | 
						|
  case 'M':
 | 
						|
  case 'N':
 | 
						|
  case 'O':
 | 
						|
  case 'P': {
 | 
						|
    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
 | 
						|
    if (!CST) return; // Must be an immediate to match.
 | 
						|
    SDLoc dl(Op);
 | 
						|
    int64_t Value = CST->getSExtValue();
 | 
						|
    EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
 | 
						|
                         // numbers are printed as such.
 | 
						|
    switch (Letter) {
 | 
						|
    default: llvm_unreachable("Unknown constraint letter!");
 | 
						|
    case 'I':  // "I" is a signed 16-bit constant.
 | 
						|
      if (isInt<16>(Value))
 | 
						|
        Result = DAG.getTargetConstant(Value, dl, TCVT);
 | 
						|
      break;
 | 
						|
    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
 | 
						|
      if (isShiftedUInt<16, 16>(Value))
 | 
						|
        Result = DAG.getTargetConstant(Value, dl, TCVT);
 | 
						|
      break;
 | 
						|
    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
 | 
						|
      if (isShiftedInt<16, 16>(Value))
 | 
						|
        Result = DAG.getTargetConstant(Value, dl, TCVT);
 | 
						|
      break;
 | 
						|
    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
 | 
						|
      if (isUInt<16>(Value))
 | 
						|
        Result = DAG.getTargetConstant(Value, dl, TCVT);
 | 
						|
      break;
 | 
						|
    case 'M':  // "M" is a constant that is greater than 31.
 | 
						|
      if (Value > 31)
 | 
						|
        Result = DAG.getTargetConstant(Value, dl, TCVT);
 | 
						|
      break;
 | 
						|
    case 'N':  // "N" is a positive constant that is an exact power of two.
 | 
						|
      if (Value > 0 && isPowerOf2_64(Value))
 | 
						|
        Result = DAG.getTargetConstant(Value, dl, TCVT);
 | 
						|
      break;
 | 
						|
    case 'O':  // "O" is the constant zero.
 | 
						|
      if (Value == 0)
 | 
						|
        Result = DAG.getTargetConstant(Value, dl, TCVT);
 | 
						|
      break;
 | 
						|
    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
 | 
						|
      if (isInt<16>(-Value))
 | 
						|
        Result = DAG.getTargetConstant(Value, dl, TCVT);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Result.getNode()) {
 | 
						|
    Ops.push_back(Result);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle standard constraint letters.
 | 
						|
  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
 | 
						|
}
 | 
						|
 | 
						|
// isLegalAddressingMode - Return true if the addressing mode represented
 | 
						|
// by AM is legal for this target, for a load/store of the specified type.
 | 
						|
bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
 | 
						|
                                              const AddrMode &AM, Type *Ty,
 | 
						|
                                              unsigned AS, Instruction *I) const {
 | 
						|
  // PPC does not allow r+i addressing modes for vectors!
 | 
						|
  if (Ty->isVectorTy() && AM.BaseOffs != 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // PPC allows a sign-extended 16-bit immediate field.
 | 
						|
  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // No global is ever allowed as a base.
 | 
						|
  if (AM.BaseGV)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // PPC only support r+r,
 | 
						|
  switch (AM.Scale) {
 | 
						|
  case 0:  // "r+i" or just "i", depending on HasBaseReg.
 | 
						|
    break;
 | 
						|
  case 1:
 | 
						|
    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
 | 
						|
      return false;
 | 
						|
    // Otherwise we have r+r or r+i.
 | 
						|
    break;
 | 
						|
  case 2:
 | 
						|
    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
 | 
						|
      return false;
 | 
						|
    // Allow 2*r as r+r.
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    // No other scales are supported.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
 | 
						|
                                           SelectionDAG &DAG) const {
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  MFI.setReturnAddressIsTaken(true);
 | 
						|
 | 
						|
  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc dl(Op);
 | 
						|
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
 | 
						|
  // Make sure the function does not optimize away the store of the RA to
 | 
						|
  // the stack.
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  FuncInfo->setLRStoreRequired();
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
  auto PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
 | 
						|
  if (Depth > 0) {
 | 
						|
    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
 | 
						|
    SDValue Offset =
 | 
						|
        DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
 | 
						|
                        isPPC64 ? MVT::i64 : MVT::i32);
 | 
						|
    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
 | 
						|
                       DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
 | 
						|
                       MachinePointerInfo());
 | 
						|
  }
 | 
						|
 | 
						|
  // Just load the return address off the stack.
 | 
						|
  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
 | 
						|
  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
 | 
						|
                     MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
 | 
						|
                                          SelectionDAG &DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  MFI.setFrameAddressIsTaken(true);
 | 
						|
 | 
						|
  EVT PtrVT = getPointerTy(MF.getDataLayout());
 | 
						|
  bool isPPC64 = PtrVT == MVT::i64;
 | 
						|
 | 
						|
  // Naked functions never have a frame pointer, and so we use r1. For all
 | 
						|
  // other functions, this decision must be delayed until during PEI.
 | 
						|
  unsigned FrameReg;
 | 
						|
  if (MF.getFunction().hasFnAttribute(Attribute::Naked))
 | 
						|
    FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
 | 
						|
  else
 | 
						|
    FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
 | 
						|
 | 
						|
  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
 | 
						|
                                         PtrVT);
 | 
						|
  while (Depth--)
 | 
						|
    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
 | 
						|
                            FrameAddr, MachinePointerInfo());
 | 
						|
  return FrameAddr;
 | 
						|
}
 | 
						|
 | 
						|
// FIXME? Maybe this could be a TableGen attribute on some registers and
 | 
						|
// this table could be generated automatically from RegInfo.
 | 
						|
unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
  bool isDarwinABI = Subtarget.isDarwinABI();
 | 
						|
 | 
						|
  if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
 | 
						|
      (!isPPC64 && VT != MVT::i32))
 | 
						|
    report_fatal_error("Invalid register global variable type");
 | 
						|
 | 
						|
  bool is64Bit = isPPC64 && VT == MVT::i64;
 | 
						|
  unsigned Reg = StringSwitch<unsigned>(RegName)
 | 
						|
                   .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
 | 
						|
                   .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
 | 
						|
                   .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
 | 
						|
                                  (is64Bit ? PPC::X13 : PPC::R13))
 | 
						|
                   .Default(0);
 | 
						|
 | 
						|
  if (Reg)
 | 
						|
    return Reg;
 | 
						|
  report_fatal_error("Invalid register name global variable");
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
 | 
						|
  // The PowerPC target isn't yet aware of offsets.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
 | 
						|
                                           const CallInst &I,
 | 
						|
                                           MachineFunction &MF,
 | 
						|
                                           unsigned Intrinsic) const {
 | 
						|
  switch (Intrinsic) {
 | 
						|
  case Intrinsic::ppc_qpx_qvlfd:
 | 
						|
  case Intrinsic::ppc_qpx_qvlfs:
 | 
						|
  case Intrinsic::ppc_qpx_qvlfcd:
 | 
						|
  case Intrinsic::ppc_qpx_qvlfcs:
 | 
						|
  case Intrinsic::ppc_qpx_qvlfiwa:
 | 
						|
  case Intrinsic::ppc_qpx_qvlfiwz:
 | 
						|
  case Intrinsic::ppc_altivec_lvx:
 | 
						|
  case Intrinsic::ppc_altivec_lvxl:
 | 
						|
  case Intrinsic::ppc_altivec_lvebx:
 | 
						|
  case Intrinsic::ppc_altivec_lvehx:
 | 
						|
  case Intrinsic::ppc_altivec_lvewx:
 | 
						|
  case Intrinsic::ppc_vsx_lxvd2x:
 | 
						|
  case Intrinsic::ppc_vsx_lxvw4x: {
 | 
						|
    EVT VT;
 | 
						|
    switch (Intrinsic) {
 | 
						|
    case Intrinsic::ppc_altivec_lvebx:
 | 
						|
      VT = MVT::i8;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_lvehx:
 | 
						|
      VT = MVT::i16;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_lvewx:
 | 
						|
      VT = MVT::i32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_vsx_lxvd2x:
 | 
						|
      VT = MVT::v2f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvlfd:
 | 
						|
      VT = MVT::v4f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvlfs:
 | 
						|
      VT = MVT::v4f32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvlfcd:
 | 
						|
      VT = MVT::v2f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvlfcs:
 | 
						|
      VT = MVT::v2f32;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      VT = MVT::v4i32;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    Info.opc = ISD::INTRINSIC_W_CHAIN;
 | 
						|
    Info.memVT = VT;
 | 
						|
    Info.ptrVal = I.getArgOperand(0);
 | 
						|
    Info.offset = -VT.getStoreSize()+1;
 | 
						|
    Info.size = 2*VT.getStoreSize()-1;
 | 
						|
    Info.align = 1;
 | 
						|
    Info.flags = MachineMemOperand::MOLoad;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::ppc_qpx_qvlfda:
 | 
						|
  case Intrinsic::ppc_qpx_qvlfsa:
 | 
						|
  case Intrinsic::ppc_qpx_qvlfcda:
 | 
						|
  case Intrinsic::ppc_qpx_qvlfcsa:
 | 
						|
  case Intrinsic::ppc_qpx_qvlfiwaa:
 | 
						|
  case Intrinsic::ppc_qpx_qvlfiwza: {
 | 
						|
    EVT VT;
 | 
						|
    switch (Intrinsic) {
 | 
						|
    case Intrinsic::ppc_qpx_qvlfda:
 | 
						|
      VT = MVT::v4f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvlfsa:
 | 
						|
      VT = MVT::v4f32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvlfcda:
 | 
						|
      VT = MVT::v2f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvlfcsa:
 | 
						|
      VT = MVT::v2f32;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      VT = MVT::v4i32;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    Info.opc = ISD::INTRINSIC_W_CHAIN;
 | 
						|
    Info.memVT = VT;
 | 
						|
    Info.ptrVal = I.getArgOperand(0);
 | 
						|
    Info.offset = 0;
 | 
						|
    Info.size = VT.getStoreSize();
 | 
						|
    Info.align = 1;
 | 
						|
    Info.flags = MachineMemOperand::MOLoad;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::ppc_qpx_qvstfd:
 | 
						|
  case Intrinsic::ppc_qpx_qvstfs:
 | 
						|
  case Intrinsic::ppc_qpx_qvstfcd:
 | 
						|
  case Intrinsic::ppc_qpx_qvstfcs:
 | 
						|
  case Intrinsic::ppc_qpx_qvstfiw:
 | 
						|
  case Intrinsic::ppc_altivec_stvx:
 | 
						|
  case Intrinsic::ppc_altivec_stvxl:
 | 
						|
  case Intrinsic::ppc_altivec_stvebx:
 | 
						|
  case Intrinsic::ppc_altivec_stvehx:
 | 
						|
  case Intrinsic::ppc_altivec_stvewx:
 | 
						|
  case Intrinsic::ppc_vsx_stxvd2x:
 | 
						|
  case Intrinsic::ppc_vsx_stxvw4x: {
 | 
						|
    EVT VT;
 | 
						|
    switch (Intrinsic) {
 | 
						|
    case Intrinsic::ppc_altivec_stvebx:
 | 
						|
      VT = MVT::i8;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_stvehx:
 | 
						|
      VT = MVT::i16;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_altivec_stvewx:
 | 
						|
      VT = MVT::i32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_vsx_stxvd2x:
 | 
						|
      VT = MVT::v2f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvstfd:
 | 
						|
      VT = MVT::v4f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvstfs:
 | 
						|
      VT = MVT::v4f32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvstfcd:
 | 
						|
      VT = MVT::v2f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvstfcs:
 | 
						|
      VT = MVT::v2f32;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      VT = MVT::v4i32;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    Info.opc = ISD::INTRINSIC_VOID;
 | 
						|
    Info.memVT = VT;
 | 
						|
    Info.ptrVal = I.getArgOperand(1);
 | 
						|
    Info.offset = -VT.getStoreSize()+1;
 | 
						|
    Info.size = 2*VT.getStoreSize()-1;
 | 
						|
    Info.align = 1;
 | 
						|
    Info.flags = MachineMemOperand::MOStore;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::ppc_qpx_qvstfda:
 | 
						|
  case Intrinsic::ppc_qpx_qvstfsa:
 | 
						|
  case Intrinsic::ppc_qpx_qvstfcda:
 | 
						|
  case Intrinsic::ppc_qpx_qvstfcsa:
 | 
						|
  case Intrinsic::ppc_qpx_qvstfiwa: {
 | 
						|
    EVT VT;
 | 
						|
    switch (Intrinsic) {
 | 
						|
    case Intrinsic::ppc_qpx_qvstfda:
 | 
						|
      VT = MVT::v4f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvstfsa:
 | 
						|
      VT = MVT::v4f32;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvstfcda:
 | 
						|
      VT = MVT::v2f64;
 | 
						|
      break;
 | 
						|
    case Intrinsic::ppc_qpx_qvstfcsa:
 | 
						|
      VT = MVT::v2f32;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      VT = MVT::v4i32;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    Info.opc = ISD::INTRINSIC_VOID;
 | 
						|
    Info.memVT = VT;
 | 
						|
    Info.ptrVal = I.getArgOperand(1);
 | 
						|
    Info.offset = 0;
 | 
						|
    Info.size = VT.getStoreSize();
 | 
						|
    Info.align = 1;
 | 
						|
    Info.flags = MachineMemOperand::MOStore;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getOptimalMemOpType - Returns the target specific optimal type for load
 | 
						|
/// and store operations as a result of memset, memcpy, and memmove
 | 
						|
/// lowering. If DstAlign is zero that means it's safe to destination
 | 
						|
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
 | 
						|
/// means there isn't a need to check it against alignment requirement,
 | 
						|
/// probably because the source does not need to be loaded. If 'IsMemset' is
 | 
						|
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
 | 
						|
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
 | 
						|
/// source is constant so it does not need to be loaded.
 | 
						|
/// It returns EVT::Other if the type should be determined using generic
 | 
						|
/// target-independent logic.
 | 
						|
EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
 | 
						|
                                           unsigned DstAlign, unsigned SrcAlign,
 | 
						|
                                           bool IsMemset, bool ZeroMemset,
 | 
						|
                                           bool MemcpyStrSrc,
 | 
						|
                                           MachineFunction &MF) const {
 | 
						|
  if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
 | 
						|
    const Function &F = MF.getFunction();
 | 
						|
    // When expanding a memset, require at least two QPX instructions to cover
 | 
						|
    // the cost of loading the value to be stored from the constant pool.
 | 
						|
    if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
 | 
						|
       (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
 | 
						|
        !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
 | 
						|
      return MVT::v4f64;
 | 
						|
    }
 | 
						|
 | 
						|
    // We should use Altivec/VSX loads and stores when available. For unaligned
 | 
						|
    // addresses, unaligned VSX loads are only fast starting with the P8.
 | 
						|
    if (Subtarget.hasAltivec() && Size >= 16 &&
 | 
						|
        (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
 | 
						|
         ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
 | 
						|
      return MVT::v4i32;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Subtarget.isPPC64()) {
 | 
						|
    return MVT::i64;
 | 
						|
  }
 | 
						|
 | 
						|
  return MVT::i32;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if it is beneficial to convert a load of a constant
 | 
						|
/// to just the constant itself.
 | 
						|
bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
 | 
						|
                                                          Type *Ty) const {
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  return !(BitSize == 0 || BitSize > 64);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
 | 
						|
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
 | 
						|
    return false;
 | 
						|
  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
 | 
						|
  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
 | 
						|
  return NumBits1 == 64 && NumBits2 == 32;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
 | 
						|
  if (!VT1.isInteger() || !VT2.isInteger())
 | 
						|
    return false;
 | 
						|
  unsigned NumBits1 = VT1.getSizeInBits();
 | 
						|
  unsigned NumBits2 = VT2.getSizeInBits();
 | 
						|
  return NumBits1 == 64 && NumBits2 == 32;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
 | 
						|
  // Generally speaking, zexts are not free, but they are free when they can be
 | 
						|
  // folded with other operations.
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
 | 
						|
    EVT MemVT = LD->getMemoryVT();
 | 
						|
    if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
 | 
						|
         (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
 | 
						|
        (LD->getExtensionType() == ISD::NON_EXTLOAD ||
 | 
						|
         LD->getExtensionType() == ISD::ZEXTLOAD))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Add other cases...
 | 
						|
  //  - 32-bit shifts with a zext to i64
 | 
						|
  //  - zext after ctlz, bswap, etc.
 | 
						|
  //  - zext after and by a constant mask
 | 
						|
 | 
						|
  return TargetLowering::isZExtFree(Val, VT2);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
 | 
						|
  assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
 | 
						|
         "invalid fpext types");
 | 
						|
  // Extending to float128 is not free.
 | 
						|
  if (DestVT == MVT::f128)
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
 | 
						|
  return isInt<16>(Imm) || isUInt<16>(Imm);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
 | 
						|
  return isInt<16>(Imm) || isUInt<16>(Imm);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
 | 
						|
                                                       unsigned,
 | 
						|
                                                       unsigned,
 | 
						|
                                                       bool *Fast) const {
 | 
						|
  if (DisablePPCUnaligned)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // PowerPC supports unaligned memory access for simple non-vector types.
 | 
						|
  // Although accessing unaligned addresses is not as efficient as accessing
 | 
						|
  // aligned addresses, it is generally more efficient than manual expansion,
 | 
						|
  // and generally only traps for software emulation when crossing page
 | 
						|
  // boundaries.
 | 
						|
 | 
						|
  if (!VT.isSimple())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (VT.getSimpleVT().isVector()) {
 | 
						|
    if (Subtarget.hasVSX()) {
 | 
						|
      if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
 | 
						|
          VT != MVT::v4f32 && VT != MVT::v4i32)
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT == MVT::ppcf128)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Fast)
 | 
						|
    *Fast = true;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
 | 
						|
  VT = VT.getScalarType();
 | 
						|
 | 
						|
  if (!VT.isSimple())
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  case MVT::f32:
 | 
						|
  case MVT::f64:
 | 
						|
    return true;
 | 
						|
  case MVT::f128:
 | 
						|
    return (EnableQuadPrecision && Subtarget.hasP9Vector());
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
const MCPhysReg *
 | 
						|
PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
 | 
						|
  // LR is a callee-save register, but we must treat it as clobbered by any call
 | 
						|
  // site. Hence we include LR in the scratch registers, which are in turn added
 | 
						|
  // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
 | 
						|
  // to CTR, which is used by any indirect call.
 | 
						|
  static const MCPhysReg ScratchRegs[] = {
 | 
						|
    PPC::X12, PPC::LR8, PPC::CTR8, 0
 | 
						|
  };
 | 
						|
 | 
						|
  return ScratchRegs;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTargetLowering::getExceptionPointerRegister(
 | 
						|
    const Constant *PersonalityFn) const {
 | 
						|
  return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCTargetLowering::getExceptionSelectorRegister(
 | 
						|
    const Constant *PersonalityFn) const {
 | 
						|
  return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
 | 
						|
                     EVT VT , unsigned DefinedValues) const {
 | 
						|
  if (VT == MVT::v2i64)
 | 
						|
    return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
 | 
						|
 | 
						|
  if (Subtarget.hasVSX() || Subtarget.hasQPX())
 | 
						|
    return true;
 | 
						|
 | 
						|
  return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
 | 
						|
}
 | 
						|
 | 
						|
Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
 | 
						|
  if (DisableILPPref || Subtarget.enableMachineScheduler())
 | 
						|
    return TargetLowering::getSchedulingPreference(N);
 | 
						|
 | 
						|
  return Sched::ILP;
 | 
						|
}
 | 
						|
 | 
						|
// Create a fast isel object.
 | 
						|
FastISel *
 | 
						|
PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
 | 
						|
                                  const TargetLibraryInfo *LibInfo) const {
 | 
						|
  return PPC::createFastISel(FuncInfo, LibInfo);
 | 
						|
}
 | 
						|
 | 
						|
void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
 | 
						|
  if (Subtarget.isDarwinABI()) return;
 | 
						|
  if (!Subtarget.isPPC64()) return;
 | 
						|
 | 
						|
  // Update IsSplitCSR in PPCFunctionInfo
 | 
						|
  PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
 | 
						|
  PFI->setIsSplitCSR(true);
 | 
						|
}
 | 
						|
 | 
						|
void PPCTargetLowering::insertCopiesSplitCSR(
 | 
						|
  MachineBasicBlock *Entry,
 | 
						|
  const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
 | 
						|
  const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
 | 
						|
  const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
 | 
						|
  if (!IStart)
 | 
						|
    return;
 | 
						|
 | 
						|
  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
 | 
						|
  MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
 | 
						|
  MachineBasicBlock::iterator MBBI = Entry->begin();
 | 
						|
  for (const MCPhysReg *I = IStart; *I; ++I) {
 | 
						|
    const TargetRegisterClass *RC = nullptr;
 | 
						|
    if (PPC::G8RCRegClass.contains(*I))
 | 
						|
      RC = &PPC::G8RCRegClass;
 | 
						|
    else if (PPC::F8RCRegClass.contains(*I))
 | 
						|
      RC = &PPC::F8RCRegClass;
 | 
						|
    else if (PPC::CRRCRegClass.contains(*I))
 | 
						|
      RC = &PPC::CRRCRegClass;
 | 
						|
    else if (PPC::VRRCRegClass.contains(*I))
 | 
						|
      RC = &PPC::VRRCRegClass;
 | 
						|
    else
 | 
						|
      llvm_unreachable("Unexpected register class in CSRsViaCopy!");
 | 
						|
 | 
						|
    unsigned NewVR = MRI->createVirtualRegister(RC);
 | 
						|
    // Create copy from CSR to a virtual register.
 | 
						|
    // FIXME: this currently does not emit CFI pseudo-instructions, it works
 | 
						|
    // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
 | 
						|
    // nounwind. If we want to generalize this later, we may need to emit
 | 
						|
    // CFI pseudo-instructions.
 | 
						|
    assert(Entry->getParent()->getFunction().hasFnAttribute(
 | 
						|
             Attribute::NoUnwind) &&
 | 
						|
           "Function should be nounwind in insertCopiesSplitCSR!");
 | 
						|
    Entry->addLiveIn(*I);
 | 
						|
    BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
 | 
						|
      .addReg(*I);
 | 
						|
 | 
						|
    // Insert the copy-back instructions right before the terminator
 | 
						|
    for (auto *Exit : Exits)
 | 
						|
      BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
 | 
						|
              TII->get(TargetOpcode::COPY), *I)
 | 
						|
        .addReg(NewVR);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Override to enable LOAD_STACK_GUARD lowering on Linux.
 | 
						|
bool PPCTargetLowering::useLoadStackGuardNode() const {
 | 
						|
  if (!Subtarget.isTargetLinux())
 | 
						|
    return TargetLowering::useLoadStackGuardNode();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Override to disable global variable loading on Linux.
 | 
						|
void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
 | 
						|
  if (!Subtarget.isTargetLinux())
 | 
						|
    return TargetLowering::insertSSPDeclarations(M);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
 | 
						|
  if (!VT.isSimple() || !Subtarget.hasVSX())
 | 
						|
    return false;
 | 
						|
 | 
						|
  switch(VT.getSimpleVT().SimpleTy) {
 | 
						|
  default:
 | 
						|
    // For FP types that are currently not supported by PPC backend, return
 | 
						|
    // false. Examples: f16, f80.
 | 
						|
    return false;
 | 
						|
  case MVT::f32:
 | 
						|
  case MVT::f64:
 | 
						|
  case MVT::ppcf128:
 | 
						|
    return Imm.isPosZero();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// For vector shift operation op, fold
 | 
						|
// (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
 | 
						|
static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
 | 
						|
                                  SelectionDAG &DAG) {
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  SDValue N1 = N->getOperand(1);
 | 
						|
  EVT VT = N0.getValueType();
 | 
						|
  unsigned OpSizeInBits = VT.getScalarSizeInBits();
 | 
						|
  unsigned Opcode = N->getOpcode();
 | 
						|
  unsigned TargetOpcode;
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected shift operation");
 | 
						|
  case ISD::SHL:
 | 
						|
    TargetOpcode = PPCISD::SHL;
 | 
						|
    break;
 | 
						|
  case ISD::SRL:
 | 
						|
    TargetOpcode = PPCISD::SRL;
 | 
						|
    break;
 | 
						|
  case ISD::SRA:
 | 
						|
    TargetOpcode = PPCISD::SRA;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
 | 
						|
      N1->getOpcode() == ISD::AND)
 | 
						|
    if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
 | 
						|
      if (Mask->getZExtValue() == OpSizeInBits - 1)
 | 
						|
        return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
 | 
						|
  if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
 | 
						|
    return Value;
 | 
						|
 | 
						|
  SDValue N0 = N->getOperand(0);
 | 
						|
  ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | 
						|
  if (!Subtarget.isISA3_0() ||
 | 
						|
      N0.getOpcode() != ISD::SIGN_EXTEND ||
 | 
						|
      N0.getOperand(0).getValueType() != MVT::i32 ||
 | 
						|
      CN1 == nullptr || N->getValueType(0) != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  // We can't save an operation here if the value is already extended, and
 | 
						|
  // the existing shift is easier to combine.
 | 
						|
  SDValue ExtsSrc = N0.getOperand(0);
 | 
						|
  if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
 | 
						|
      ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(N0);
 | 
						|
  SDValue ShiftBy = SDValue(CN1, 0);
 | 
						|
  // We want the shift amount to be i32 on the extswli, but the shift could
 | 
						|
  // have an i64.
 | 
						|
  if (ShiftBy.getValueType() == MVT::i64)
 | 
						|
    ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
 | 
						|
 | 
						|
  return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
 | 
						|
                         ShiftBy);
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
 | 
						|
  if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
 | 
						|
    return Value;
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
 | 
						|
  if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
 | 
						|
    return Value;
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
 | 
						|
// Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
 | 
						|
// When C is zero, the equation (addi Z, -C) can be simplified to Z
 | 
						|
// Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
 | 
						|
static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
 | 
						|
                                 const PPCSubtarget &Subtarget) {
 | 
						|
  if (!Subtarget.isPPC64())
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDValue LHS = N->getOperand(0);
 | 
						|
  SDValue RHS = N->getOperand(1);
 | 
						|
 | 
						|
  auto isZextOfCompareWithConstant = [](SDValue Op) {
 | 
						|
    if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
 | 
						|
        Op.getValueType() != MVT::i64)
 | 
						|
      return false;
 | 
						|
 | 
						|
    SDValue Cmp = Op.getOperand(0);
 | 
						|
    if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
 | 
						|
        Cmp.getOperand(0).getValueType() != MVT::i64)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
 | 
						|
      int64_t NegConstant = 0 - Constant->getSExtValue();
 | 
						|
      // Due to the limitations of the addi instruction,
 | 
						|
      // -C is required to be [-32768, 32767].
 | 
						|
      return isInt<16>(NegConstant);
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
 | 
						|
  bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
 | 
						|
 | 
						|
  // If there is a pattern, canonicalize a zext operand to the RHS.
 | 
						|
  if (LHSHasPattern && !RHSHasPattern)
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
  else if (!LHSHasPattern && !RHSHasPattern)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  SDLoc DL(N);
 | 
						|
  SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i64);
 | 
						|
  SDValue Cmp = RHS.getOperand(0);
 | 
						|
  SDValue Z = Cmp.getOperand(0);
 | 
						|
  auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
 | 
						|
 | 
						|
  assert(Constant && "Constant Should not be a null pointer.");
 | 
						|
  int64_t NegConstant = 0 - Constant->getSExtValue();
 | 
						|
 | 
						|
  switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
 | 
						|
  default: break;
 | 
						|
  case ISD::SETNE: {
 | 
						|
    //                                 when C == 0
 | 
						|
    //                             --> addze X, (addic Z, -1).carry
 | 
						|
    //                            /
 | 
						|
    // add X, (zext(setne Z, C))--
 | 
						|
    //                            \    when -32768 <= -C <= 32767 && C != 0
 | 
						|
    //                             --> addze X, (addic (addi Z, -C), -1).carry
 | 
						|
    SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
 | 
						|
                              DAG.getConstant(NegConstant, DL, MVT::i64));
 | 
						|
    SDValue AddOrZ = NegConstant != 0 ? Add : Z;
 | 
						|
    SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
 | 
						|
                               AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
 | 
						|
    return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
 | 
						|
                       SDValue(Addc.getNode(), 1));
 | 
						|
    }
 | 
						|
  case ISD::SETEQ: {
 | 
						|
    //                                 when C == 0
 | 
						|
    //                             --> addze X, (subfic Z, 0).carry
 | 
						|
    //                            /
 | 
						|
    // add X, (zext(sete  Z, C))--
 | 
						|
    //                            \    when -32768 <= -C <= 32767 && C != 0
 | 
						|
    //                             --> addze X, (subfic (addi Z, -C), 0).carry
 | 
						|
    SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
 | 
						|
                              DAG.getConstant(NegConstant, DL, MVT::i64));
 | 
						|
    SDValue AddOrZ = NegConstant != 0 ? Add : Z;
 | 
						|
    SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
 | 
						|
                               DAG.getConstant(0, DL, MVT::i64), AddOrZ);
 | 
						|
    return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
 | 
						|
                       SDValue(Subc.getNode(), 1));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
 | 
						|
  if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
 | 
						|
    return Value;
 | 
						|
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
// Detect TRUNCATE operations on bitcasts of float128 values.
 | 
						|
// What we are looking for here is the situtation where we extract a subset
 | 
						|
// of bits from a 128 bit float.
 | 
						|
// This can be of two forms:
 | 
						|
// 1) BITCAST of f128 feeding TRUNCATE
 | 
						|
// 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
 | 
						|
// The reason this is required is because we do not have a legal i128 type
 | 
						|
// and so we want to prevent having to store the f128 and then reload part
 | 
						|
// of it.
 | 
						|
SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
 | 
						|
                                           DAGCombinerInfo &DCI) const {
 | 
						|
  // If we are using CRBits then try that first.
 | 
						|
  if (Subtarget.useCRBits()) {
 | 
						|
    // Check if CRBits did anything and return that if it did.
 | 
						|
    if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
 | 
						|
      return CRTruncValue;
 | 
						|
  }
 | 
						|
 | 
						|
  SDLoc dl(N);
 | 
						|
  SDValue Op0 = N->getOperand(0);
 | 
						|
 | 
						|
  // Looking for a truncate of i128 to i64.
 | 
						|
  if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
 | 
						|
 | 
						|
  // SRL feeding TRUNCATE.
 | 
						|
  if (Op0.getOpcode() == ISD::SRL) {
 | 
						|
    ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
 | 
						|
    // The right shift has to be by 64 bits.
 | 
						|
    if (!ConstNode || ConstNode->getZExtValue() != 64)
 | 
						|
      return SDValue();
 | 
						|
 | 
						|
    // Switch the element number to extract.
 | 
						|
    EltToExtract = EltToExtract ? 0 : 1;
 | 
						|
    // Update Op0 past the SRL.
 | 
						|
    Op0 = Op0.getOperand(0);
 | 
						|
  }
 | 
						|
 | 
						|
  // BITCAST feeding a TRUNCATE possibly via SRL.
 | 
						|
  if (Op0.getOpcode() == ISD::BITCAST &&
 | 
						|
      Op0.getValueType() == MVT::i128 &&
 | 
						|
      Op0.getOperand(0).getValueType() == MVT::f128) {
 | 
						|
    SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
 | 
						|
    return DCI.DAG.getNode(
 | 
						|
        ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
 | 
						|
        DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
 | 
						|
  }
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
 | 
						|
  // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
 | 
						|
  if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If not a tail call then no need to proceed.
 | 
						|
  if (!CI->isTailCall())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If tail calls are disabled for the caller then we are done.
 | 
						|
  const Function *Caller = CI->getParent()->getParent();
 | 
						|
  auto Attr = Caller->getFnAttribute("disable-tail-calls");
 | 
						|
  if (Attr.getValueAsString() == "true")
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If sibling calls have been disabled and tail-calls aren't guaranteed
 | 
						|
  // there is no reason to duplicate.
 | 
						|
  auto &TM = getTargetMachine();
 | 
						|
  if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Can't tail call a function called indirectly, or if it has variadic args.
 | 
						|
  const Function *Callee = CI->getCalledFunction();
 | 
						|
  if (!Callee || Callee->isVarArg())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure the callee and caller calling conventions are eligible for tco.
 | 
						|
  if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
 | 
						|
                                           CI->getCallingConv()))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // If the function is local then we have a good chance at tail-calling it
 | 
						|
  return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
 | 
						|
  if (!Subtarget.hasVSX())
 | 
						|
    return false;
 | 
						|
  if (Subtarget.hasP9Vector() && VT == MVT::f128)
 | 
						|
    return true;
 | 
						|
  return VT == MVT::f32 || VT == MVT::f64 ||
 | 
						|
    VT == MVT::v4f32 || VT == MVT::v2f64;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCTargetLowering::
 | 
						|
isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
 | 
						|
  const Value *Mask = AndI.getOperand(1);
 | 
						|
  // If the mask is suitable for andi. or andis. we should sink the and.
 | 
						|
  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
 | 
						|
    // Can't handle constants wider than 64-bits.
 | 
						|
    if (CI->getBitWidth() > 64)
 | 
						|
      return false;
 | 
						|
    int64_t ConstVal = CI->getZExtValue();
 | 
						|
    return isUInt<16>(ConstVal) ||
 | 
						|
      (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
 | 
						|
  }
 | 
						|
 | 
						|
  // For non-constant masks, we can always use the record-form and.
 | 
						|
  return true;
 | 
						|
}
 |