forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			264 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			264 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SystemZTargetMachine.h"
 | 
						|
#include "MCTargetDesc/SystemZMCTargetDesc.h"
 | 
						|
#include "SystemZ.h"
 | 
						|
#include "SystemZMachineScheduler.h"
 | 
						|
#include "SystemZTargetTransformInfo.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
 | 
						|
#include "llvm/CodeGen/TargetPassConfig.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/Support/CodeGen.h"
 | 
						|
#include "llvm/Support/TargetRegistry.h"
 | 
						|
#include "llvm/Target/TargetLoweringObjectFile.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include <string>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
extern "C" void LLVMInitializeSystemZTarget() {
 | 
						|
  // Register the target.
 | 
						|
  RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
 | 
						|
}
 | 
						|
 | 
						|
// Determine whether we use the vector ABI.
 | 
						|
static bool UsesVectorABI(StringRef CPU, StringRef FS) {
 | 
						|
  // We use the vector ABI whenever the vector facility is avaiable.
 | 
						|
  // This is the case by default if CPU is z13 or later, and can be
 | 
						|
  // overridden via "[+-]vector" feature string elements.
 | 
						|
  bool VectorABI = true;
 | 
						|
  if (CPU.empty() || CPU == "generic" ||
 | 
						|
      CPU == "z10" || CPU == "z196" || CPU == "zEC12")
 | 
						|
    VectorABI = false;
 | 
						|
 | 
						|
  SmallVector<StringRef, 3> Features;
 | 
						|
  FS.split(Features, ',', -1, false /* KeepEmpty */);
 | 
						|
  for (auto &Feature : Features) {
 | 
						|
    if (Feature == "vector" || Feature == "+vector")
 | 
						|
      VectorABI = true;
 | 
						|
    if (Feature == "-vector")
 | 
						|
      VectorABI = false;
 | 
						|
  }
 | 
						|
 | 
						|
  return VectorABI;
 | 
						|
}
 | 
						|
 | 
						|
static std::string computeDataLayout(const Triple &TT, StringRef CPU,
 | 
						|
                                     StringRef FS) {
 | 
						|
  bool VectorABI = UsesVectorABI(CPU, FS);
 | 
						|
  std::string Ret;
 | 
						|
 | 
						|
  // Big endian.
 | 
						|
  Ret += "E";
 | 
						|
 | 
						|
  // Data mangling.
 | 
						|
  Ret += DataLayout::getManglingComponent(TT);
 | 
						|
 | 
						|
  // Make sure that global data has at least 16 bits of alignment by
 | 
						|
  // default, so that we can refer to it using LARL.  We don't have any
 | 
						|
  // special requirements for stack variables though.
 | 
						|
  Ret += "-i1:8:16-i8:8:16";
 | 
						|
 | 
						|
  // 64-bit integers are naturally aligned.
 | 
						|
  Ret += "-i64:64";
 | 
						|
 | 
						|
  // 128-bit floats are aligned only to 64 bits.
 | 
						|
  Ret += "-f128:64";
 | 
						|
 | 
						|
  // When using the vector ABI, 128-bit vectors are also aligned to 64 bits.
 | 
						|
  if (VectorABI)
 | 
						|
    Ret += "-v128:64";
 | 
						|
 | 
						|
  // We prefer 16 bits of aligned for all globals; see above.
 | 
						|
  Ret += "-a:8:16";
 | 
						|
 | 
						|
  // Integer registers are 32 or 64 bits.
 | 
						|
  Ret += "-n32:64";
 | 
						|
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
 | 
						|
  // Static code is suitable for use in a dynamic executable; there is no
 | 
						|
  // separate DynamicNoPIC model.
 | 
						|
  if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
 | 
						|
    return Reloc::Static;
 | 
						|
  return *RM;
 | 
						|
}
 | 
						|
 | 
						|
// For SystemZ we define the models as follows:
 | 
						|
//
 | 
						|
// Small:  BRASL can call any function and will use a stub if necessary.
 | 
						|
//         Locally-binding symbols will always be in range of LARL.
 | 
						|
//
 | 
						|
// Medium: BRASL can call any function and will use a stub if necessary.
 | 
						|
//         GOT slots and locally-defined text will always be in range
 | 
						|
//         of LARL, but other symbols might not be.
 | 
						|
//
 | 
						|
// Large:  Equivalent to Medium for now.
 | 
						|
//
 | 
						|
// Kernel: Equivalent to Medium for now.
 | 
						|
//
 | 
						|
// This means that any PIC module smaller than 4GB meets the
 | 
						|
// requirements of Small, so Small seems like the best default there.
 | 
						|
//
 | 
						|
// All symbols bind locally in a non-PIC module, so the choice is less
 | 
						|
// obvious.  There are two cases:
 | 
						|
//
 | 
						|
// - When creating an executable, PLTs and copy relocations allow
 | 
						|
//   us to treat external symbols as part of the executable.
 | 
						|
//   Any executable smaller than 4GB meets the requirements of Small,
 | 
						|
//   so that seems like the best default.
 | 
						|
//
 | 
						|
// - When creating JIT code, stubs will be in range of BRASL if the
 | 
						|
//   image is less than 4GB in size.  GOT entries will likewise be
 | 
						|
//   in range of LARL.  However, the JIT environment has no equivalent
 | 
						|
//   of copy relocs, so locally-binding data symbols might not be in
 | 
						|
//   the range of LARL.  We need the Medium model in that case.
 | 
						|
static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM,
 | 
						|
                                              Reloc::Model RM, bool JIT) {
 | 
						|
  if (CM)
 | 
						|
    return *CM;
 | 
						|
  if (JIT)
 | 
						|
    return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
 | 
						|
  return CodeModel::Small;
 | 
						|
}
 | 
						|
 | 
						|
SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
 | 
						|
                                           StringRef CPU, StringRef FS,
 | 
						|
                                           const TargetOptions &Options,
 | 
						|
                                           Optional<Reloc::Model> RM,
 | 
						|
                                           Optional<CodeModel::Model> CM,
 | 
						|
                                           CodeGenOpt::Level OL, bool JIT)
 | 
						|
    : LLVMTargetMachine(
 | 
						|
          T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
 | 
						|
          getEffectiveRelocModel(RM),
 | 
						|
          getEffectiveCodeModel(CM, getEffectiveRelocModel(RM), JIT), OL),
 | 
						|
      TLOF(llvm::make_unique<TargetLoweringObjectFileELF>()),
 | 
						|
      Subtarget(TT, CPU, FS, *this) {
 | 
						|
  initAsmInfo();
 | 
						|
}
 | 
						|
 | 
						|
SystemZTargetMachine::~SystemZTargetMachine() = default;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// SystemZ Code Generator Pass Configuration Options.
 | 
						|
class SystemZPassConfig : public TargetPassConfig {
 | 
						|
public:
 | 
						|
  SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
 | 
						|
    : TargetPassConfig(TM, PM) {}
 | 
						|
 | 
						|
  SystemZTargetMachine &getSystemZTargetMachine() const {
 | 
						|
    return getTM<SystemZTargetMachine>();
 | 
						|
  }
 | 
						|
 | 
						|
  ScheduleDAGInstrs *
 | 
						|
  createPostMachineScheduler(MachineSchedContext *C) const override {
 | 
						|
    return new ScheduleDAGMI(C,
 | 
						|
                             llvm::make_unique<SystemZPostRASchedStrategy>(C),
 | 
						|
                             /*RemoveKillFlags=*/true);
 | 
						|
  }
 | 
						|
 | 
						|
  void addIRPasses() override;
 | 
						|
  bool addInstSelector() override;
 | 
						|
  bool addILPOpts() override;
 | 
						|
  void addPreSched2() override;
 | 
						|
  void addPreEmitPass() override;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void SystemZPassConfig::addIRPasses() {
 | 
						|
  if (getOptLevel() != CodeGenOpt::None) {
 | 
						|
    addPass(createSystemZTDCPass());
 | 
						|
    addPass(createLoopDataPrefetchPass());
 | 
						|
  }
 | 
						|
 | 
						|
  TargetPassConfig::addIRPasses();
 | 
						|
}
 | 
						|
 | 
						|
bool SystemZPassConfig::addInstSelector() {
 | 
						|
  addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
 | 
						|
 | 
						|
 if (getOptLevel() != CodeGenOpt::None)
 | 
						|
    addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool SystemZPassConfig::addILPOpts() {
 | 
						|
  addPass(&EarlyIfConverterID);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void SystemZPassConfig::addPreSched2() {
 | 
						|
  addPass(createSystemZExpandPseudoPass(getSystemZTargetMachine()));
 | 
						|
 | 
						|
  if (getOptLevel() != CodeGenOpt::None)
 | 
						|
    addPass(&IfConverterID);
 | 
						|
}
 | 
						|
 | 
						|
void SystemZPassConfig::addPreEmitPass() {
 | 
						|
  // Do instruction shortening before compare elimination because some
 | 
						|
  // vector instructions will be shortened into opcodes that compare
 | 
						|
  // elimination recognizes.
 | 
						|
  if (getOptLevel() != CodeGenOpt::None)
 | 
						|
    addPass(createSystemZShortenInstPass(getSystemZTargetMachine()), false);
 | 
						|
 | 
						|
  // We eliminate comparisons here rather than earlier because some
 | 
						|
  // transformations can change the set of available CC values and we
 | 
						|
  // generally want those transformations to have priority.  This is
 | 
						|
  // especially true in the commonest case where the result of the comparison
 | 
						|
  // is used by a single in-range branch instruction, since we will then
 | 
						|
  // be able to fuse the compare and the branch instead.
 | 
						|
  //
 | 
						|
  // For example, two-address NILF can sometimes be converted into
 | 
						|
  // three-address RISBLG.  NILF produces a CC value that indicates whether
 | 
						|
  // the low word is zero, but RISBLG does not modify CC at all.  On the
 | 
						|
  // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
 | 
						|
  // The CC value produced by NILL isn't useful for our purposes, but the
 | 
						|
  // value produced by RISBG can be used for any comparison with zero
 | 
						|
  // (not just equality).  So there are some transformations that lose
 | 
						|
  // CC values (while still being worthwhile) and others that happen to make
 | 
						|
  // the CC result more useful than it was originally.
 | 
						|
  //
 | 
						|
  // Another reason is that we only want to use BRANCH ON COUNT in cases
 | 
						|
  // where we know that the count register is not going to be spilled.
 | 
						|
  //
 | 
						|
  // Doing it so late makes it more likely that a register will be reused
 | 
						|
  // between the comparison and the branch, but it isn't clear whether
 | 
						|
  // preventing that would be a win or not.
 | 
						|
  if (getOptLevel() != CodeGenOpt::None)
 | 
						|
    addPass(createSystemZElimComparePass(getSystemZTargetMachine()), false);
 | 
						|
  addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
 | 
						|
 | 
						|
  // Do final scheduling after all other optimizations, to get an
 | 
						|
  // optimal input for the decoder (branch relaxation must happen
 | 
						|
  // after block placement).
 | 
						|
  if (getOptLevel() != CodeGenOpt::None)
 | 
						|
    addPass(&PostMachineSchedulerID);
 | 
						|
}
 | 
						|
 | 
						|
TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
 | 
						|
  return new SystemZPassConfig(*this, PM);
 | 
						|
}
 | 
						|
 | 
						|
TargetTransformInfo
 | 
						|
SystemZTargetMachine::getTargetTransformInfo(const Function &F) {
 | 
						|
  return TargetTransformInfo(SystemZTTIImpl(this, F));
 | 
						|
}
 |