forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			280 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			280 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- X86EvexToVex.cpp ---------------------------------------------------===//
 | 
						|
// Compress EVEX instructions to VEX encoding when possible to reduce code size
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
/// \file
 | 
						|
/// This file defines the pass that goes over all AVX-512 instructions which
 | 
						|
/// are encoded using the EVEX prefix and if possible replaces them by their
 | 
						|
/// corresponding VEX encoding which is usually shorter by 2 bytes.
 | 
						|
/// EVEX instructions may be encoded via the VEX prefix when the AVX-512
 | 
						|
/// instruction has a corresponding AVX/AVX2 opcode and when it does not
 | 
						|
/// use the xmm or the mask registers or xmm/ymm registers with indexes
 | 
						|
/// higher than 15.
 | 
						|
/// The pass applies code reduction on the generated code for AVX-512 instrs.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstPrinter/X86InstComments.h"
 | 
						|
#include "MCTargetDesc/X86BaseInfo.h"
 | 
						|
#include "X86.h"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/MC/MCInstrDesc.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Including the generated EVEX2VEX tables.
 | 
						|
struct X86EvexToVexCompressTableEntry {
 | 
						|
  uint16_t EvexOpcode;
 | 
						|
  uint16_t VexOpcode;
 | 
						|
 | 
						|
  bool operator<(const X86EvexToVexCompressTableEntry &RHS) const {
 | 
						|
    return EvexOpcode < RHS.EvexOpcode;
 | 
						|
  }
 | 
						|
 | 
						|
  friend bool operator<(const X86EvexToVexCompressTableEntry &TE,
 | 
						|
                        unsigned Opc) {
 | 
						|
    return TE.EvexOpcode < Opc;
 | 
						|
  }
 | 
						|
};
 | 
						|
#include "X86GenEVEX2VEXTables.inc"
 | 
						|
 | 
						|
#define EVEX2VEX_DESC "Compressing EVEX instrs to VEX encoding when possible"
 | 
						|
#define EVEX2VEX_NAME "x86-evex-to-vex-compress"
 | 
						|
 | 
						|
#define DEBUG_TYPE EVEX2VEX_NAME
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class EvexToVexInstPass : public MachineFunctionPass {
 | 
						|
 | 
						|
  /// For EVEX instructions that can be encoded using VEX encoding, replace
 | 
						|
  /// them by the VEX encoding in order to reduce size.
 | 
						|
  bool CompressEvexToVexImpl(MachineInstr &MI) const;
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  EvexToVexInstPass() : MachineFunctionPass(ID) {
 | 
						|
    initializeEvexToVexInstPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef getPassName() const override { return EVEX2VEX_DESC; }
 | 
						|
 | 
						|
  /// Loop over all of the basic blocks, replacing EVEX instructions
 | 
						|
  /// by equivalent VEX instructions when possible for reducing code size.
 | 
						|
  bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
  // This pass runs after regalloc and doesn't support VReg operands.
 | 
						|
  MachineFunctionProperties getRequiredProperties() const override {
 | 
						|
    return MachineFunctionProperties().set(
 | 
						|
        MachineFunctionProperties::Property::NoVRegs);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  /// Machine instruction info used throughout the class.
 | 
						|
  const X86InstrInfo *TII;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char EvexToVexInstPass::ID = 0;
 | 
						|
 | 
						|
bool EvexToVexInstPass::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
 | 
						|
 | 
						|
  const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
 | 
						|
  if (!ST.hasAVX512())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  /// Go over all basic blocks in function and replace
 | 
						|
  /// EVEX encoded instrs by VEX encoding when possible.
 | 
						|
  for (MachineBasicBlock &MBB : MF) {
 | 
						|
 | 
						|
    // Traverse the basic block.
 | 
						|
    for (MachineInstr &MI : MBB)
 | 
						|
      Changed |= CompressEvexToVexImpl(MI);
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
static bool usesExtendedRegister(const MachineInstr &MI) {
 | 
						|
  auto isHiRegIdx = [](unsigned Reg) {
 | 
						|
    // Check for XMM register with indexes between 16 - 31.
 | 
						|
    if (Reg >= X86::XMM16 && Reg <= X86::XMM31)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Check for YMM register with indexes between 16 - 31.
 | 
						|
    if (Reg >= X86::YMM16 && Reg <= X86::YMM31)
 | 
						|
      return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // Check that operands are not ZMM regs or
 | 
						|
  // XMM/YMM regs with hi indexes between 16 - 31.
 | 
						|
  for (const MachineOperand &MO : MI.explicit_operands()) {
 | 
						|
    if (!MO.isReg())
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
 | 
						|
    assert(!(Reg >= X86::ZMM0 && Reg <= X86::ZMM31) &&
 | 
						|
           "ZMM instructions should not be in the EVEX->VEX tables");
 | 
						|
 | 
						|
    if (isHiRegIdx(Reg))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Do any custom cleanup needed to finalize the conversion.
 | 
						|
static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) {
 | 
						|
  (void)NewOpc;
 | 
						|
  unsigned Opc = MI.getOpcode();
 | 
						|
  switch (Opc) {
 | 
						|
  case X86::VALIGNDZ128rri:
 | 
						|
  case X86::VALIGNDZ128rmi:
 | 
						|
  case X86::VALIGNQZ128rri:
 | 
						|
  case X86::VALIGNQZ128rmi: {
 | 
						|
    assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) &&
 | 
						|
           "Unexpected new opcode!");
 | 
						|
    unsigned Scale = (Opc == X86::VALIGNQZ128rri ||
 | 
						|
                      Opc == X86::VALIGNQZ128rmi) ? 8 : 4;
 | 
						|
    MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1);
 | 
						|
    Imm.setImm(Imm.getImm() * Scale);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86::VSHUFF32X4Z256rmi:
 | 
						|
  case X86::VSHUFF32X4Z256rri:
 | 
						|
  case X86::VSHUFF64X2Z256rmi:
 | 
						|
  case X86::VSHUFF64X2Z256rri:
 | 
						|
  case X86::VSHUFI32X4Z256rmi:
 | 
						|
  case X86::VSHUFI32X4Z256rri:
 | 
						|
  case X86::VSHUFI64X2Z256rmi:
 | 
						|
  case X86::VSHUFI64X2Z256rri: {
 | 
						|
    assert((NewOpc == X86::VPERM2F128rr || NewOpc == X86::VPERM2I128rr ||
 | 
						|
            NewOpc == X86::VPERM2F128rm || NewOpc == X86::VPERM2I128rm) &&
 | 
						|
           "Unexpected new opcode!");
 | 
						|
    MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1);
 | 
						|
    int64_t ImmVal = Imm.getImm();
 | 
						|
    // Set bit 5, move bit 1 to bit 4, copy bit 0.
 | 
						|
    Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case X86::VRNDSCALEPDZ128rri:
 | 
						|
  case X86::VRNDSCALEPDZ128rmi:
 | 
						|
  case X86::VRNDSCALEPSZ128rri:
 | 
						|
  case X86::VRNDSCALEPSZ128rmi:
 | 
						|
  case X86::VRNDSCALEPDZ256rri:
 | 
						|
  case X86::VRNDSCALEPDZ256rmi:
 | 
						|
  case X86::VRNDSCALEPSZ256rri:
 | 
						|
  case X86::VRNDSCALEPSZ256rmi:
 | 
						|
  case X86::VRNDSCALESDZr:
 | 
						|
  case X86::VRNDSCALESDZm:
 | 
						|
  case X86::VRNDSCALESSZr:
 | 
						|
  case X86::VRNDSCALESSZm:
 | 
						|
  case X86::VRNDSCALESDZr_Int:
 | 
						|
  case X86::VRNDSCALESDZm_Int:
 | 
						|
  case X86::VRNDSCALESSZr_Int:
 | 
						|
  case X86::VRNDSCALESSZm_Int:
 | 
						|
    const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1);
 | 
						|
    int64_t ImmVal = Imm.getImm();
 | 
						|
    // Ensure that only bits 3:0 of the immediate are used.
 | 
						|
    if ((ImmVal & 0xf) != ImmVal)
 | 
						|
      return false;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// For EVEX instructions that can be encoded using VEX encoding
 | 
						|
// replace them by the VEX encoding in order to reduce size.
 | 
						|
bool EvexToVexInstPass::CompressEvexToVexImpl(MachineInstr &MI) const {
 | 
						|
  // VEX format.
 | 
						|
  // # of bytes: 0,2,3  1      1      0,1   0,1,2,4  0,1
 | 
						|
  //  [Prefixes] [VEX]  OPCODE ModR/M [SIB] [DISP]  [IMM]
 | 
						|
  //
 | 
						|
  // EVEX format.
 | 
						|
  //  # of bytes: 4    1      1      1      4       / 1         1
 | 
						|
  //  [Prefixes]  EVEX Opcode ModR/M [SIB] [Disp32] / [Disp8*N] [Immediate]
 | 
						|
 | 
						|
  const MCInstrDesc &Desc = MI.getDesc();
 | 
						|
 | 
						|
  // Check for EVEX instructions only.
 | 
						|
  if ((Desc.TSFlags & X86II::EncodingMask) != X86II::EVEX)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check for EVEX instructions with mask or broadcast as in these cases
 | 
						|
  // the EVEX prefix is needed in order to carry this information
 | 
						|
  // thus preventing the transformation to VEX encoding.
 | 
						|
  if (Desc.TSFlags & (X86II::EVEX_K | X86II::EVEX_B))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check for EVEX instructions with L2 set. These instructions are 512-bits
 | 
						|
  // and can't be converted to VEX.
 | 
						|
  if (Desc.TSFlags & X86II::EVEX_L2)
 | 
						|
    return false;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Make sure the tables are sorted.
 | 
						|
  static std::atomic<bool> TableChecked(false);
 | 
						|
  if (!TableChecked.load(std::memory_order_relaxed)) {
 | 
						|
    assert(std::is_sorted(std::begin(X86EvexToVex128CompressTable),
 | 
						|
                          std::end(X86EvexToVex128CompressTable)) &&
 | 
						|
           "X86EvexToVex128CompressTable is not sorted!");
 | 
						|
    assert(std::is_sorted(std::begin(X86EvexToVex256CompressTable),
 | 
						|
                          std::end(X86EvexToVex256CompressTable)) &&
 | 
						|
           "X86EvexToVex256CompressTable is not sorted!");
 | 
						|
    TableChecked.store(true, std::memory_order_relaxed);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // Use the VEX.L bit to select the 128 or 256-bit table.
 | 
						|
  ArrayRef<X86EvexToVexCompressTableEntry> Table =
 | 
						|
    (Desc.TSFlags & X86II::VEX_L) ? makeArrayRef(X86EvexToVex256CompressTable)
 | 
						|
                                  : makeArrayRef(X86EvexToVex128CompressTable);
 | 
						|
 | 
						|
  auto I = std::lower_bound(Table.begin(), Table.end(), MI.getOpcode());
 | 
						|
  if (I == Table.end() || I->EvexOpcode != MI.getOpcode())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned NewOpc = I->VexOpcode;
 | 
						|
 | 
						|
  if (usesExtendedRegister(MI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!performCustomAdjustments(MI, NewOpc))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MI.setDesc(TII->get(NewOpc));
 | 
						|
  MI.setAsmPrinterFlag(X86::AC_EVEX_2_VEX);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
INITIALIZE_PASS(EvexToVexInstPass, EVEX2VEX_NAME, EVEX2VEX_DESC, false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createX86EvexToVexInsts() {
 | 
						|
  return new EvexToVexInstPass();
 | 
						|
}
 |