forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			845 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			845 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- X86InterleavedAccess.cpp -------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
/// \file
 | 
						|
/// This file contains the X86 implementation of the interleaved accesses
 | 
						|
/// optimization generating X86-specific instructions/intrinsics for
 | 
						|
/// interleaved access groups.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86ISelLowering.h"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/VectorUtils.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/MachineValueType.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cmath>
 | 
						|
#include <cstdint>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// This class holds necessary information to represent an interleaved
 | 
						|
/// access group and supports utilities to lower the group into
 | 
						|
/// X86-specific instructions/intrinsics.
 | 
						|
///  E.g. A group of interleaving access loads (Factor = 2; accessing every
 | 
						|
///       other element)
 | 
						|
///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
 | 
						|
///        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
 | 
						|
///        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
 | 
						|
class X86InterleavedAccessGroup {
 | 
						|
  /// Reference to the wide-load instruction of an interleaved access
 | 
						|
  /// group.
 | 
						|
  Instruction *const Inst;
 | 
						|
 | 
						|
  /// Reference to the shuffle(s), consumer(s) of the (load) 'Inst'.
 | 
						|
  ArrayRef<ShuffleVectorInst *> Shuffles;
 | 
						|
 | 
						|
  /// Reference to the starting index of each user-shuffle.
 | 
						|
  ArrayRef<unsigned> Indices;
 | 
						|
 | 
						|
  /// Reference to the interleaving stride in terms of elements.
 | 
						|
  const unsigned Factor;
 | 
						|
 | 
						|
  /// Reference to the underlying target.
 | 
						|
  const X86Subtarget &Subtarget;
 | 
						|
 | 
						|
  const DataLayout &DL;
 | 
						|
 | 
						|
  IRBuilder<> &Builder;
 | 
						|
 | 
						|
  /// Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors
 | 
						|
  /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors.
 | 
						|
  void decompose(Instruction *Inst, unsigned NumSubVectors, VectorType *T,
 | 
						|
                 SmallVectorImpl<Instruction *> &DecomposedVectors);
 | 
						|
 | 
						|
  /// Performs matrix transposition on a 4x4 matrix \p InputVectors and
 | 
						|
  /// returns the transposed-vectors in \p TransposedVectors.
 | 
						|
  /// E.g.
 | 
						|
  /// InputVectors:
 | 
						|
  ///   In-V0 = p1, p2, p3, p4
 | 
						|
  ///   In-V1 = q1, q2, q3, q4
 | 
						|
  ///   In-V2 = r1, r2, r3, r4
 | 
						|
  ///   In-V3 = s1, s2, s3, s4
 | 
						|
  /// OutputVectors:
 | 
						|
  ///   Out-V0 = p1, q1, r1, s1
 | 
						|
  ///   Out-V1 = p2, q2, r2, s2
 | 
						|
  ///   Out-V2 = p3, q3, r3, s3
 | 
						|
  ///   Out-V3 = P4, q4, r4, s4
 | 
						|
  void transpose_4x4(ArrayRef<Instruction *> InputVectors,
 | 
						|
                     SmallVectorImpl<Value *> &TransposedMatrix);
 | 
						|
  void interleave8bitStride4(ArrayRef<Instruction *> InputVectors,
 | 
						|
                             SmallVectorImpl<Value *> &TransposedMatrix,
 | 
						|
                             unsigned NumSubVecElems);
 | 
						|
  void interleave8bitStride4VF8(ArrayRef<Instruction *> InputVectors,
 | 
						|
                                SmallVectorImpl<Value *> &TransposedMatrix);
 | 
						|
  void interleave8bitStride3(ArrayRef<Instruction *> InputVectors,
 | 
						|
                             SmallVectorImpl<Value *> &TransposedMatrix,
 | 
						|
                             unsigned NumSubVecElems);
 | 
						|
  void deinterleave8bitStride3(ArrayRef<Instruction *> InputVectors,
 | 
						|
                               SmallVectorImpl<Value *> &TransposedMatrix,
 | 
						|
                               unsigned NumSubVecElems);
 | 
						|
 | 
						|
public:
 | 
						|
  /// In order to form an interleaved access group X86InterleavedAccessGroup
 | 
						|
  /// requires a wide-load instruction \p 'I', a group of interleaved-vectors
 | 
						|
  /// \p Shuffs, reference to the first indices of each interleaved-vector
 | 
						|
  /// \p 'Ind' and the interleaving stride factor \p F. In order to generate
 | 
						|
  /// X86-specific instructions/intrinsics it also requires the underlying
 | 
						|
  /// target information \p STarget.
 | 
						|
  explicit X86InterleavedAccessGroup(Instruction *I,
 | 
						|
                                     ArrayRef<ShuffleVectorInst *> Shuffs,
 | 
						|
                                     ArrayRef<unsigned> Ind, const unsigned F,
 | 
						|
                                     const X86Subtarget &STarget,
 | 
						|
                                     IRBuilder<> &B)
 | 
						|
      : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget),
 | 
						|
        DL(Inst->getModule()->getDataLayout()), Builder(B) {}
 | 
						|
 | 
						|
  /// Returns true if this interleaved access group can be lowered into
 | 
						|
  /// x86-specific instructions/intrinsics, false otherwise.
 | 
						|
  bool isSupported() const;
 | 
						|
 | 
						|
  /// Lowers this interleaved access group into X86-specific
 | 
						|
  /// instructions/intrinsics.
 | 
						|
  bool lowerIntoOptimizedSequence();
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool X86InterleavedAccessGroup::isSupported() const {
 | 
						|
  VectorType *ShuffleVecTy = Shuffles[0]->getType();
 | 
						|
  Type *ShuffleEltTy = ShuffleVecTy->getVectorElementType();
 | 
						|
  unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy);
 | 
						|
  unsigned WideInstSize;
 | 
						|
 | 
						|
  // Currently, lowering is supported for the following vectors:
 | 
						|
  // Stride 4:
 | 
						|
  //    1. Store and load of 4-element vectors of 64 bits on AVX.
 | 
						|
  //    2. Store of 16/32-element vectors of 8 bits on AVX.
 | 
						|
  // Stride 3:
 | 
						|
  //    1. Load of 16/32-element vectors of 8 bits on AVX.
 | 
						|
  if (!Subtarget.hasAVX() || (Factor != 4 && Factor != 3))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isa<LoadInst>(Inst)) {
 | 
						|
    WideInstSize = DL.getTypeSizeInBits(Inst->getType());
 | 
						|
    if (cast<LoadInst>(Inst)->getPointerAddressSpace())
 | 
						|
      return false;
 | 
						|
  } else
 | 
						|
    WideInstSize = DL.getTypeSizeInBits(Shuffles[0]->getType());
 | 
						|
 | 
						|
  // We support shuffle represents stride 4 for byte type with size of
 | 
						|
  // WideInstSize.
 | 
						|
  if (ShuffleElemSize == 64 && WideInstSize == 1024 && Factor == 4)
 | 
						|
     return true;
 | 
						|
 | 
						|
  if (ShuffleElemSize == 8 && isa<StoreInst>(Inst) && Factor == 4 &&
 | 
						|
      (WideInstSize == 256 || WideInstSize == 512 || WideInstSize == 1024 ||
 | 
						|
       WideInstSize == 2048))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (ShuffleElemSize == 8 && Factor == 3 &&
 | 
						|
      (WideInstSize == 384 || WideInstSize == 768 || WideInstSize == 1536))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void X86InterleavedAccessGroup::decompose(
 | 
						|
    Instruction *VecInst, unsigned NumSubVectors, VectorType *SubVecTy,
 | 
						|
    SmallVectorImpl<Instruction *> &DecomposedVectors) {
 | 
						|
  assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) &&
 | 
						|
         "Expected Load or Shuffle");
 | 
						|
 | 
						|
  Type *VecWidth = VecInst->getType();
 | 
						|
  (void)VecWidth;
 | 
						|
  assert(VecWidth->isVectorTy() &&
 | 
						|
         DL.getTypeSizeInBits(VecWidth) >=
 | 
						|
             DL.getTypeSizeInBits(SubVecTy) * NumSubVectors &&
 | 
						|
         "Invalid Inst-size!!!");
 | 
						|
 | 
						|
  if (auto *SVI = dyn_cast<ShuffleVectorInst>(VecInst)) {
 | 
						|
    Value *Op0 = SVI->getOperand(0);
 | 
						|
    Value *Op1 = SVI->getOperand(1);
 | 
						|
 | 
						|
    // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type.
 | 
						|
    for (unsigned i = 0; i < NumSubVectors; ++i)
 | 
						|
      DecomposedVectors.push_back(
 | 
						|
          cast<ShuffleVectorInst>(Builder.CreateShuffleVector(
 | 
						|
              Op0, Op1,
 | 
						|
              createSequentialMask(Builder, Indices[i],
 | 
						|
                                   SubVecTy->getVectorNumElements(), 0))));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Decompose the load instruction.
 | 
						|
  LoadInst *LI = cast<LoadInst>(VecInst);
 | 
						|
  Type *VecBasePtrTy = SubVecTy->getPointerTo(LI->getPointerAddressSpace());
 | 
						|
  Value *VecBasePtr;
 | 
						|
  unsigned int NumLoads = NumSubVectors;
 | 
						|
  // In the case of stride 3 with a vector of 32 elements load the information
 | 
						|
  // in the following way:
 | 
						|
  // [0,1...,VF/2-1,VF/2+VF,VF/2+VF+1,...,2VF-1]
 | 
						|
  unsigned VecLength = DL.getTypeSizeInBits(VecWidth);
 | 
						|
  if (VecLength == 768 || VecLength == 1536) {
 | 
						|
    Type *VecTran =
 | 
						|
        VectorType::get(Type::getInt8Ty(LI->getContext()), 16)->getPointerTo();
 | 
						|
    VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecTran);
 | 
						|
    NumLoads = NumSubVectors * (VecLength / 384);
 | 
						|
  } else
 | 
						|
    VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy);
 | 
						|
  // Generate N loads of T type.
 | 
						|
  for (unsigned i = 0; i < NumLoads; i++) {
 | 
						|
    // TODO: Support inbounds GEP.
 | 
						|
    Value *NewBasePtr = Builder.CreateGEP(VecBasePtr, Builder.getInt32(i));
 | 
						|
    Instruction *NewLoad =
 | 
						|
        Builder.CreateAlignedLoad(NewBasePtr, LI->getAlignment());
 | 
						|
    DecomposedVectors.push_back(NewLoad);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Changing the scale of the vector type by reducing the number of elements and
 | 
						|
// doubling the scalar size.
 | 
						|
static MVT scaleVectorType(MVT VT) {
 | 
						|
  unsigned ScalarSize = VT.getVectorElementType().getScalarSizeInBits() * 2;
 | 
						|
  return MVT::getVectorVT(MVT::getIntegerVT(ScalarSize),
 | 
						|
                          VT.getVectorNumElements() / 2);
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t Concat[] = {
 | 
						|
  0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, 12, 13, 14, 15,
 | 
						|
  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
 | 
						|
  32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
 | 
						|
  48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 };
 | 
						|
 | 
						|
// genShuffleBland - Creates shuffle according to two vectors.This function is
 | 
						|
// only works on instructions with lane inside 256 registers. According to
 | 
						|
// the mask 'Mask' creates a new Mask 'Out' by the offset of the mask. The
 | 
						|
// offset amount depends on the two integer, 'LowOffset' and 'HighOffset'.
 | 
						|
// Where the 'LowOffset' refers to the first vector and the highOffset refers to
 | 
						|
// the second vector.
 | 
						|
// |a0....a5,b0....b4,c0....c4|a16..a21,b16..b20,c16..c20|
 | 
						|
// |c5...c10,a5....a9,b5....b9|c21..c26,a22..a26,b21..b25|
 | 
						|
// |b10..b15,c11..c15,a10..a15|b26..b31,c27..c31,a27..a31|
 | 
						|
// For the sequence to work as a mirror to the load.
 | 
						|
// We must consider the elements order as above.
 | 
						|
// In this function we are combining two types of shuffles.
 | 
						|
// The first one is vpshufed and the second is a type of "blend" shuffle.
 | 
						|
// By computing the shuffle on a sequence of 16 elements(one lane) and add the
 | 
						|
// correct offset. We are creating a vpsuffed + blend sequence between two
 | 
						|
// shuffles.
 | 
						|
static void genShuffleBland(MVT VT, ArrayRef<uint32_t> Mask,
 | 
						|
  SmallVectorImpl<uint32_t> &Out, int LowOffset,
 | 
						|
  int HighOffset) {
 | 
						|
  assert(VT.getSizeInBits() >= 256 &&
 | 
						|
    "This function doesn't accept width smaller then 256");
 | 
						|
  unsigned NumOfElm = VT.getVectorNumElements();
 | 
						|
  for (unsigned i = 0; i < Mask.size(); i++)
 | 
						|
    Out.push_back(Mask[i] + LowOffset);
 | 
						|
  for (unsigned i = 0; i < Mask.size(); i++)
 | 
						|
    Out.push_back(Mask[i] + HighOffset + NumOfElm);
 | 
						|
}
 | 
						|
 | 
						|
// reorderSubVector returns the data to is the original state. And de-facto is
 | 
						|
// the opposite of  the function concatSubVector.
 | 
						|
 | 
						|
// For VecElems = 16
 | 
						|
// Invec[0] -  |0|      TransposedMatrix[0] - |0|
 | 
						|
// Invec[1] -  |1|  =>  TransposedMatrix[1] - |1|
 | 
						|
// Invec[2] -  |2|      TransposedMatrix[2] - |2|
 | 
						|
 | 
						|
// For VecElems = 32
 | 
						|
// Invec[0] -  |0|3|      TransposedMatrix[0] - |0|1|
 | 
						|
// Invec[1] -  |1|4|  =>  TransposedMatrix[1] - |2|3|
 | 
						|
// Invec[2] -  |2|5|      TransposedMatrix[2] - |4|5|
 | 
						|
 | 
						|
// For VecElems = 64
 | 
						|
// Invec[0] -  |0|3|6|9 |     TransposedMatrix[0] - |0|1|2 |3 |
 | 
						|
// Invec[1] -  |1|4|7|10| =>  TransposedMatrix[1] - |4|5|6 |7 |
 | 
						|
// Invec[2] -  |2|5|8|11|     TransposedMatrix[2] - |8|9|10|11|
 | 
						|
 | 
						|
static void reorderSubVector(MVT VT, SmallVectorImpl<Value *> &TransposedMatrix,
 | 
						|
  ArrayRef<Value *> Vec, ArrayRef<uint32_t> VPShuf,
 | 
						|
  unsigned VecElems, unsigned Stride,
 | 
						|
  IRBuilder<> Builder) {
 | 
						|
 | 
						|
  if (VecElems == 16) {
 | 
						|
    for (unsigned i = 0; i < Stride; i++)
 | 
						|
      TransposedMatrix[i] = Builder.CreateShuffleVector(
 | 
						|
        Vec[i], UndefValue::get(Vec[i]->getType()), VPShuf);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<uint32_t, 32> OptimizeShuf;
 | 
						|
  Value *Temp[8];
 | 
						|
 | 
						|
  for (unsigned i = 0; i < (VecElems / 16) * Stride; i += 2) {
 | 
						|
    genShuffleBland(VT, VPShuf, OptimizeShuf, (i / Stride) * 16,
 | 
						|
      (i + 1) / Stride * 16);
 | 
						|
    Temp[i / 2] = Builder.CreateShuffleVector(
 | 
						|
      Vec[i % Stride], Vec[(i + 1) % Stride], OptimizeShuf);
 | 
						|
    OptimizeShuf.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  if (VecElems == 32) {
 | 
						|
    std::copy(Temp, Temp + Stride, TransposedMatrix.begin());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    for (unsigned i = 0; i < Stride; i++)
 | 
						|
      TransposedMatrix[i] =
 | 
						|
      Builder.CreateShuffleVector(Temp[2 * i], Temp[2 * i + 1], Concat);
 | 
						|
}
 | 
						|
 | 
						|
void X86InterleavedAccessGroup::interleave8bitStride4VF8(
 | 
						|
    ArrayRef<Instruction *> Matrix,
 | 
						|
    SmallVectorImpl<Value *> &TransposedMatrix) {
 | 
						|
  // Assuming we start from the following vectors:
 | 
						|
  // Matrix[0]= c0 c1 c2 c3 c4 ... c7
 | 
						|
  // Matrix[1]= m0 m1 m2 m3 m4 ... m7
 | 
						|
  // Matrix[2]= y0 y1 y2 y3 y4 ... y7
 | 
						|
  // Matrix[3]= k0 k1 k2 k3 k4 ... k7
 | 
						|
 | 
						|
  MVT VT = MVT::v8i16;
 | 
						|
  TransposedMatrix.resize(2);
 | 
						|
  SmallVector<uint32_t, 16> MaskLow;
 | 
						|
  SmallVector<uint32_t, 32> MaskLowTemp1, MaskLowWord;
 | 
						|
  SmallVector<uint32_t, 32> MaskHighTemp1, MaskHighWord;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < 8; ++i) {
 | 
						|
    MaskLow.push_back(i);
 | 
						|
    MaskLow.push_back(i + 8);
 | 
						|
  }
 | 
						|
 | 
						|
  createUnpackShuffleMask<uint32_t>(VT, MaskLowTemp1, true, false);
 | 
						|
  createUnpackShuffleMask<uint32_t>(VT, MaskHighTemp1, false, false);
 | 
						|
  scaleShuffleMask<uint32_t>(2, MaskHighTemp1, MaskHighWord);
 | 
						|
  scaleShuffleMask<uint32_t>(2, MaskLowTemp1, MaskLowWord);
 | 
						|
  // IntrVec1Low = c0 m0 c1 m1 c2 m2 c3 m3 c4 m4 c5 m5 c6 m6 c7 m7
 | 
						|
  // IntrVec2Low = y0 k0 y1 k1 y2 k2 y3 k3 y4 k4 y5 k5 y6 k6 y7 k7
 | 
						|
  Value *IntrVec1Low =
 | 
						|
      Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow);
 | 
						|
  Value *IntrVec2Low =
 | 
						|
      Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow);
 | 
						|
 | 
						|
  // TransposedMatrix[0] = c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3
 | 
						|
  // TransposedMatrix[1] = c4 m4 y4 k4 c5 m5 y5 k5 c6 m6 y6 k6 c7 m7 y7 k7
 | 
						|
 | 
						|
  TransposedMatrix[0] =
 | 
						|
      Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskLowWord);
 | 
						|
  TransposedMatrix[1] =
 | 
						|
      Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskHighWord);
 | 
						|
}
 | 
						|
 | 
						|
void X86InterleavedAccessGroup::interleave8bitStride4(
 | 
						|
    ArrayRef<Instruction *> Matrix, SmallVectorImpl<Value *> &TransposedMatrix,
 | 
						|
    unsigned NumOfElm) {
 | 
						|
  // Example: Assuming we start from the following vectors:
 | 
						|
  // Matrix[0]= c0 c1 c2 c3 c4 ... c31
 | 
						|
  // Matrix[1]= m0 m1 m2 m3 m4 ... m31
 | 
						|
  // Matrix[2]= y0 y1 y2 y3 y4 ... y31
 | 
						|
  // Matrix[3]= k0 k1 k2 k3 k4 ... k31
 | 
						|
 | 
						|
  MVT VT = MVT::getVectorVT(MVT::i8, NumOfElm);
 | 
						|
  MVT HalfVT = scaleVectorType(VT);
 | 
						|
 | 
						|
  TransposedMatrix.resize(4);
 | 
						|
  SmallVector<uint32_t, 32> MaskHigh;
 | 
						|
  SmallVector<uint32_t, 32> MaskLow;
 | 
						|
  SmallVector<uint32_t, 32> LowHighMask[2];
 | 
						|
  SmallVector<uint32_t, 32> MaskHighTemp;
 | 
						|
  SmallVector<uint32_t, 32> MaskLowTemp;
 | 
						|
 | 
						|
  // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86
 | 
						|
  // shuffle pattern.
 | 
						|
 | 
						|
  createUnpackShuffleMask<uint32_t>(VT, MaskLow, true, false);
 | 
						|
  createUnpackShuffleMask<uint32_t>(VT, MaskHigh, false, false);
 | 
						|
 | 
						|
  // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86
 | 
						|
  // shuffle pattern.
 | 
						|
 | 
						|
  createUnpackShuffleMask<uint32_t>(HalfVT, MaskLowTemp, true, false);
 | 
						|
  createUnpackShuffleMask<uint32_t>(HalfVT, MaskHighTemp, false, false);
 | 
						|
  scaleShuffleMask<uint32_t>(2, MaskLowTemp, LowHighMask[0]);
 | 
						|
  scaleShuffleMask<uint32_t>(2, MaskHighTemp, LowHighMask[1]);
 | 
						|
 | 
						|
  // IntrVec1Low  = c0  m0  c1  m1 ... c7  m7  | c16 m16 c17 m17 ... c23 m23
 | 
						|
  // IntrVec1High = c8  m8  c9  m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31
 | 
						|
  // IntrVec2Low  = y0  k0  y1  k1 ... y7  k7  | y16 k16 y17 k17 ... y23 k23
 | 
						|
  // IntrVec2High = y8  k8  y9  k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31
 | 
						|
  Value *IntrVec[4];
 | 
						|
 | 
						|
  IntrVec[0] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow);
 | 
						|
  IntrVec[1] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskHigh);
 | 
						|
  IntrVec[2] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow);
 | 
						|
  IntrVec[3] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskHigh);
 | 
						|
 | 
						|
  // cmyk4  cmyk5  cmyk6   cmyk7  | cmyk20 cmyk21 cmyk22 cmyk23
 | 
						|
  // cmyk12 cmyk13 cmyk14  cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31
 | 
						|
  // cmyk0  cmyk1  cmyk2   cmyk3  | cmyk16 cmyk17 cmyk18 cmyk19
 | 
						|
  // cmyk8  cmyk9  cmyk10  cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27
 | 
						|
 | 
						|
  Value *VecOut[4];
 | 
						|
  for (int i = 0; i < 4; i++)
 | 
						|
    VecOut[i] = Builder.CreateShuffleVector(IntrVec[i / 2], IntrVec[i / 2 + 2],
 | 
						|
                                            LowHighMask[i % 2]);
 | 
						|
 | 
						|
  // cmyk0  cmyk1  cmyk2  cmyk3   | cmyk4  cmyk5  cmyk6  cmyk7
 | 
						|
  // cmyk8  cmyk9  cmyk10 cmyk11  | cmyk12 cmyk13 cmyk14 cmyk15
 | 
						|
  // cmyk16 cmyk17 cmyk18 cmyk19  | cmyk20 cmyk21 cmyk22 cmyk23
 | 
						|
  // cmyk24 cmyk25 cmyk26 cmyk27  | cmyk28 cmyk29 cmyk30 cmyk31
 | 
						|
 | 
						|
  if (VT == MVT::v16i8) {
 | 
						|
    std::copy(VecOut, VecOut + 4, TransposedMatrix.begin());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  reorderSubVector(VT, TransposedMatrix, VecOut, makeArrayRef(Concat, 16),
 | 
						|
		   NumOfElm, 4, Builder);
 | 
						|
}
 | 
						|
 | 
						|
//  createShuffleStride returns shuffle mask of size N.
 | 
						|
//  The shuffle pattern is as following :
 | 
						|
//  {0, Stride%(VF/Lane), (2*Stride%(VF/Lane))...(VF*Stride/Lane)%(VF/Lane),
 | 
						|
//  (VF/ Lane) ,(VF / Lane)+Stride%(VF/Lane),...,
 | 
						|
//  (VF / Lane)+(VF*Stride/Lane)%(VF/Lane)}
 | 
						|
//  Where Lane is the # of lanes in a register:
 | 
						|
//  VectorSize = 128 => Lane = 1
 | 
						|
//  VectorSize = 256 => Lane = 2
 | 
						|
//  For example shuffle pattern for VF 16 register size 256 -> lanes = 2
 | 
						|
//  {<[0|3|6|1|4|7|2|5]-[8|11|14|9|12|15|10|13]>}
 | 
						|
static void createShuffleStride(MVT VT, int Stride,
 | 
						|
                                SmallVectorImpl<uint32_t> &Mask) {
 | 
						|
  int VectorSize = VT.getSizeInBits();
 | 
						|
  int VF = VT.getVectorNumElements();
 | 
						|
  int LaneCount = std::max(VectorSize / 128, 1);
 | 
						|
  for (int Lane = 0; Lane < LaneCount; Lane++)
 | 
						|
    for (int i = 0, LaneSize = VF / LaneCount; i != LaneSize; ++i)
 | 
						|
      Mask.push_back((i * Stride) % LaneSize + LaneSize * Lane);
 | 
						|
}
 | 
						|
 | 
						|
//  setGroupSize sets 'SizeInfo' to the size(number of elements) of group
 | 
						|
//  inside mask a shuffleMask. A mask contains exactly 3 groups, where
 | 
						|
//  each group is a monotonically increasing sequence with stride 3.
 | 
						|
//  For example shuffleMask {0,3,6,1,4,7,2,5} => {3,3,2}
 | 
						|
static void setGroupSize(MVT VT, SmallVectorImpl<uint32_t> &SizeInfo) {
 | 
						|
  int VectorSize = VT.getSizeInBits();
 | 
						|
  int VF = VT.getVectorNumElements() / std::max(VectorSize / 128, 1);
 | 
						|
  for (int i = 0, FirstGroupElement = 0; i < 3; i++) {
 | 
						|
    int GroupSize = std::ceil((VF - FirstGroupElement) / 3.0);
 | 
						|
    SizeInfo.push_back(GroupSize);
 | 
						|
    FirstGroupElement = ((GroupSize)*3 + FirstGroupElement) % VF;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//  DecodePALIGNRMask returns the shuffle mask of vpalign instruction.
 | 
						|
//  vpalign works according to lanes
 | 
						|
//  Where Lane is the # of lanes in a register:
 | 
						|
//  VectorWide = 128 => Lane = 1
 | 
						|
//  VectorWide = 256 => Lane = 2
 | 
						|
//  For Lane = 1 shuffle pattern is: {DiffToJump,...,DiffToJump+VF-1}.
 | 
						|
//  For Lane = 2 shuffle pattern is:
 | 
						|
//  {DiffToJump,...,VF/2-1,VF,...,DiffToJump+VF-1}.
 | 
						|
//  Imm variable sets the offset amount. The result of the
 | 
						|
//  function is stored inside ShuffleMask vector and it built as described in
 | 
						|
//  the begin of the description. AlignDirection is a boolean that indicates the
 | 
						|
//  direction of the alignment. (false - align to the "right" side while true -
 | 
						|
//  align to the "left" side)
 | 
						|
static void DecodePALIGNRMask(MVT VT, unsigned Imm,
 | 
						|
                              SmallVectorImpl<uint32_t> &ShuffleMask,
 | 
						|
                              bool AlignDirection = true, bool Unary = false) {
 | 
						|
  unsigned NumElts = VT.getVectorNumElements();
 | 
						|
  unsigned NumLanes = std::max((int)VT.getSizeInBits() / 128, 1);
 | 
						|
  unsigned NumLaneElts = NumElts / NumLanes;
 | 
						|
 | 
						|
  Imm = AlignDirection ? Imm : (NumLaneElts - Imm);
 | 
						|
  unsigned Offset = Imm * (VT.getScalarSizeInBits() / 8);
 | 
						|
 | 
						|
  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
 | 
						|
    for (unsigned i = 0; i != NumLaneElts; ++i) {
 | 
						|
      unsigned Base = i + Offset;
 | 
						|
      // if i+offset is out of this lane then we actually need the other source
 | 
						|
      // If Unary the other source is the first source.
 | 
						|
      if (Base >= NumLaneElts)
 | 
						|
        Base = Unary ? Base % NumLaneElts : Base + NumElts - NumLaneElts;
 | 
						|
      ShuffleMask.push_back(Base + l);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// concatSubVector - The function rebuilds the data to a correct expected
 | 
						|
// order. An assumption(The shape of the matrix) was taken for the
 | 
						|
// deinterleaved to work with lane's instructions like 'vpalign' or 'vphuf'.
 | 
						|
// This function ensures that the data is built in correct way for the lane
 | 
						|
// instructions. Each lane inside the vector is a 128-bit length.
 | 
						|
//
 | 
						|
// The 'InVec' argument contains the data in increasing order. In InVec[0] You
 | 
						|
// can find the first 128 bit data. The number of different lanes inside a
 | 
						|
// vector depends on the 'VecElems'.In general, the formula is
 | 
						|
// VecElems * type / 128. The size of the array 'InVec' depends and equal to
 | 
						|
// 'VecElems'.
 | 
						|
 | 
						|
// For VecElems = 16
 | 
						|
// Invec[0] - |0|      Vec[0] - |0|
 | 
						|
// Invec[1] - |1|  =>  Vec[1] - |1|
 | 
						|
// Invec[2] - |2|      Vec[2] - |2|
 | 
						|
 | 
						|
// For VecElems = 32
 | 
						|
// Invec[0] - |0|1|      Vec[0] - |0|3|
 | 
						|
// Invec[1] - |2|3|  =>  Vec[1] - |1|4|
 | 
						|
// Invec[2] - |4|5|      Vec[2] - |2|5|
 | 
						|
 | 
						|
// For VecElems = 64
 | 
						|
// Invec[0] - |0|1|2 |3 |      Vec[0] - |0|3|6|9 |
 | 
						|
// Invec[1] - |4|5|6 |7 |  =>  Vec[1] - |1|4|7|10|
 | 
						|
// Invec[2] - |8|9|10|11|      Vec[2] - |2|5|8|11|
 | 
						|
 | 
						|
static void concatSubVector(Value **Vec, ArrayRef<Instruction *> InVec,
 | 
						|
                            unsigned VecElems, IRBuilder<> Builder) {
 | 
						|
  if (VecElems == 16) {
 | 
						|
    for (int i = 0; i < 3; i++)
 | 
						|
      Vec[i] = InVec[i];
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned j = 0; j < VecElems / 32; j++)
 | 
						|
    for (int i = 0; i < 3; i++)
 | 
						|
      Vec[i + j * 3] = Builder.CreateShuffleVector(
 | 
						|
          InVec[j * 6 + i], InVec[j * 6 + i + 3], makeArrayRef(Concat, 32));
 | 
						|
 | 
						|
  if (VecElems == 32)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (int i = 0; i < 3; i++)
 | 
						|
    Vec[i] = Builder.CreateShuffleVector(Vec[i], Vec[i + 3], Concat);
 | 
						|
}
 | 
						|
 | 
						|
void X86InterleavedAccessGroup::deinterleave8bitStride3(
 | 
						|
    ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix,
 | 
						|
    unsigned VecElems) {
 | 
						|
  // Example: Assuming we start from the following vectors:
 | 
						|
  // Matrix[0]= a0 b0 c0 a1 b1 c1 a2 b2
 | 
						|
  // Matrix[1]= c2 a3 b3 c3 a4 b4 c4 a5
 | 
						|
  // Matrix[2]= b5 c5 a6 b6 c6 a7 b7 c7
 | 
						|
 | 
						|
  TransposedMatrix.resize(3);
 | 
						|
  SmallVector<uint32_t, 32> VPShuf;
 | 
						|
  SmallVector<uint32_t, 32> VPAlign[2];
 | 
						|
  SmallVector<uint32_t, 32> VPAlign2;
 | 
						|
  SmallVector<uint32_t, 32> VPAlign3;
 | 
						|
  SmallVector<uint32_t, 3> GroupSize;
 | 
						|
  Value *Vec[6], *TempVector[3];
 | 
						|
 | 
						|
  MVT VT = MVT::getVT(Shuffles[0]->getType());
 | 
						|
 | 
						|
  createShuffleStride(VT, 3, VPShuf);
 | 
						|
  setGroupSize(VT, GroupSize);
 | 
						|
 | 
						|
  for (int i = 0; i < 2; i++)
 | 
						|
    DecodePALIGNRMask(VT, GroupSize[2 - i], VPAlign[i], false);
 | 
						|
 | 
						|
  DecodePALIGNRMask(VT, GroupSize[2] + GroupSize[1], VPAlign2, true, true);
 | 
						|
  DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, true, true);
 | 
						|
 | 
						|
  concatSubVector(Vec, InVec, VecElems, Builder);
 | 
						|
  // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1
 | 
						|
  // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4
 | 
						|
  // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7
 | 
						|
 | 
						|
  for (int i = 0; i < 3; i++)
 | 
						|
    Vec[i] = Builder.CreateShuffleVector(
 | 
						|
        Vec[i], UndefValue::get(Vec[0]->getType()), VPShuf);
 | 
						|
 | 
						|
  // TempVector[0]= a6 a7 a0 a1 a2 b0 b1 b2
 | 
						|
  // TempVector[1]= c0 c1 c2 c3 c4 a3 a4 a5
 | 
						|
  // TempVector[2]= b3 b4 b5 b6 b7 c5 c6 c7
 | 
						|
 | 
						|
  for (int i = 0; i < 3; i++)
 | 
						|
    TempVector[i] =
 | 
						|
        Builder.CreateShuffleVector(Vec[(i + 2) % 3], Vec[i], VPAlign[0]);
 | 
						|
 | 
						|
  // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2
 | 
						|
  // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4
 | 
						|
  // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7
 | 
						|
 | 
						|
  for (int i = 0; i < 3; i++)
 | 
						|
    Vec[i] = Builder.CreateShuffleVector(TempVector[(i + 1) % 3], TempVector[i],
 | 
						|
                                         VPAlign[1]);
 | 
						|
 | 
						|
  // TransposedMatrix[0]= a0 a1 a2 a3 a4 a5 a6 a7
 | 
						|
  // TransposedMatrix[1]= b0 b1 b2 b3 b4 b5 b6 b7
 | 
						|
  // TransposedMatrix[2]= c0 c1 c2 c3 c4 c5 c6 c7
 | 
						|
 | 
						|
  Value *TempVec = Builder.CreateShuffleVector(
 | 
						|
      Vec[1], UndefValue::get(Vec[1]->getType()), VPAlign3);
 | 
						|
  TransposedMatrix[0] = Builder.CreateShuffleVector(
 | 
						|
      Vec[0], UndefValue::get(Vec[1]->getType()), VPAlign2);
 | 
						|
  TransposedMatrix[1] = VecElems == 8 ? Vec[2] : TempVec;
 | 
						|
  TransposedMatrix[2] = VecElems == 8 ? TempVec : Vec[2];
 | 
						|
}
 | 
						|
 | 
						|
// group2Shuffle reorder the shuffle stride back into continuous order.
 | 
						|
// For example For VF16 with Mask1 = {0,3,6,9,12,15,2,5,8,11,14,1,4,7,10,13} =>
 | 
						|
// MaskResult = {0,11,6,1,12,7,2,13,8,3,14,9,4,15,10,5}.
 | 
						|
static void group2Shuffle(MVT VT, SmallVectorImpl<uint32_t> &Mask,
 | 
						|
                          SmallVectorImpl<uint32_t> &Output) {
 | 
						|
  int IndexGroup[3] = {0, 0, 0};
 | 
						|
  int Index = 0;
 | 
						|
  int VectorWidth = VT.getSizeInBits();
 | 
						|
  int VF = VT.getVectorNumElements();
 | 
						|
  // Find the index of the different groups.
 | 
						|
  int Lane = (VectorWidth / 128 > 0) ? VectorWidth / 128 : 1;
 | 
						|
  for (int i = 0; i < 3; i++) {
 | 
						|
    IndexGroup[(Index * 3) % (VF / Lane)] = Index;
 | 
						|
    Index += Mask[i];
 | 
						|
  }
 | 
						|
  // According to the index compute the convert mask.
 | 
						|
  for (int i = 0; i < VF / Lane; i++) {
 | 
						|
    Output.push_back(IndexGroup[i % 3]);
 | 
						|
    IndexGroup[i % 3]++;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void X86InterleavedAccessGroup::interleave8bitStride3(
 | 
						|
    ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix,
 | 
						|
    unsigned VecElems) {
 | 
						|
  // Example: Assuming we start from the following vectors:
 | 
						|
  // Matrix[0]= a0 a1 a2 a3 a4 a5 a6 a7
 | 
						|
  // Matrix[1]= b0 b1 b2 b3 b4 b5 b6 b7
 | 
						|
  // Matrix[2]= c0 c1 c2 c3 c3 a7 b7 c7
 | 
						|
 | 
						|
  TransposedMatrix.resize(3);
 | 
						|
  SmallVector<uint32_t, 3> GroupSize;
 | 
						|
  SmallVector<uint32_t, 32> VPShuf;
 | 
						|
  SmallVector<uint32_t, 32> VPAlign[3];
 | 
						|
  SmallVector<uint32_t, 32> VPAlign2;
 | 
						|
  SmallVector<uint32_t, 32> VPAlign3;
 | 
						|
 | 
						|
  Value *Vec[3], *TempVector[3];
 | 
						|
  MVT VT = MVT::getVectorVT(MVT::i8, VecElems);
 | 
						|
 | 
						|
  setGroupSize(VT, GroupSize);
 | 
						|
 | 
						|
  for (int i = 0; i < 3; i++)
 | 
						|
    DecodePALIGNRMask(VT, GroupSize[i], VPAlign[i]);
 | 
						|
 | 
						|
  DecodePALIGNRMask(VT, GroupSize[1] + GroupSize[2], VPAlign2, false, true);
 | 
						|
  DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, false, true);
 | 
						|
 | 
						|
  // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2
 | 
						|
  // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4
 | 
						|
  // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7
 | 
						|
 | 
						|
  Vec[0] = Builder.CreateShuffleVector(
 | 
						|
      InVec[0], UndefValue::get(InVec[0]->getType()), VPAlign2);
 | 
						|
  Vec[1] = Builder.CreateShuffleVector(
 | 
						|
      InVec[1], UndefValue::get(InVec[1]->getType()), VPAlign3);
 | 
						|
  Vec[2] = InVec[2];
 | 
						|
 | 
						|
  // Vec[0]= a6 a7 a0 a1 a2 b0 b1 b2
 | 
						|
  // Vec[1]= c0 c1 c2 c3 c4 a3 a4 a5
 | 
						|
  // Vec[2]= b3 b4 b5 b6 b7 c5 c6 c7
 | 
						|
 | 
						|
  for (int i = 0; i < 3; i++)
 | 
						|
    TempVector[i] =
 | 
						|
        Builder.CreateShuffleVector(Vec[i], Vec[(i + 2) % 3], VPAlign[1]);
 | 
						|
 | 
						|
  // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1
 | 
						|
  // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4
 | 
						|
  // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7
 | 
						|
 | 
						|
  for (int i = 0; i < 3; i++)
 | 
						|
    Vec[i] = Builder.CreateShuffleVector(TempVector[i], TempVector[(i + 1) % 3],
 | 
						|
                                         VPAlign[2]);
 | 
						|
 | 
						|
  // TransposedMatrix[0] = a0 b0 c0 a1 b1 c1 a2 b2
 | 
						|
  // TransposedMatrix[1] = c2 a3 b3 c3 a4 b4 c4 a5
 | 
						|
  // TransposedMatrix[2] = b5 c5 a6 b6 c6 a7 b7 c7
 | 
						|
 | 
						|
  unsigned NumOfElm = VT.getVectorNumElements();
 | 
						|
  group2Shuffle(VT, GroupSize, VPShuf);
 | 
						|
  reorderSubVector(VT, TransposedMatrix, Vec, VPShuf, NumOfElm,3, Builder);
 | 
						|
}
 | 
						|
 | 
						|
void X86InterleavedAccessGroup::transpose_4x4(
 | 
						|
    ArrayRef<Instruction *> Matrix,
 | 
						|
    SmallVectorImpl<Value *> &TransposedMatrix) {
 | 
						|
  assert(Matrix.size() == 4 && "Invalid matrix size");
 | 
						|
  TransposedMatrix.resize(4);
 | 
						|
 | 
						|
  // dst = src1[0,1],src2[0,1]
 | 
						|
  uint32_t IntMask1[] = {0, 1, 4, 5};
 | 
						|
  ArrayRef<uint32_t> Mask = makeArrayRef(IntMask1, 4);
 | 
						|
  Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
 | 
						|
  Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);
 | 
						|
 | 
						|
  // dst = src1[2,3],src2[2,3]
 | 
						|
  uint32_t IntMask2[] = {2, 3, 6, 7};
 | 
						|
  Mask = makeArrayRef(IntMask2, 4);
 | 
						|
  Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
 | 
						|
  Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);
 | 
						|
 | 
						|
  // dst = src1[0],src2[0],src1[2],src2[2]
 | 
						|
  uint32_t IntMask3[] = {0, 4, 2, 6};
 | 
						|
  Mask = makeArrayRef(IntMask3, 4);
 | 
						|
  TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
 | 
						|
  TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);
 | 
						|
 | 
						|
  // dst = src1[1],src2[1],src1[3],src2[3]
 | 
						|
  uint32_t IntMask4[] = {1, 5, 3, 7};
 | 
						|
  Mask = makeArrayRef(IntMask4, 4);
 | 
						|
  TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
 | 
						|
  TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);
 | 
						|
}
 | 
						|
 | 
						|
// Lowers this interleaved access group into X86-specific
 | 
						|
// instructions/intrinsics.
 | 
						|
bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() {
 | 
						|
  SmallVector<Instruction *, 4> DecomposedVectors;
 | 
						|
  SmallVector<Value *, 4> TransposedVectors;
 | 
						|
  VectorType *ShuffleTy = Shuffles[0]->getType();
 | 
						|
 | 
						|
  if (isa<LoadInst>(Inst)) {
 | 
						|
    // Try to generate target-sized register(/instruction).
 | 
						|
    decompose(Inst, Factor, ShuffleTy, DecomposedVectors);
 | 
						|
 | 
						|
    Type *ShuffleEltTy = Inst->getType();
 | 
						|
    unsigned NumSubVecElems = ShuffleEltTy->getVectorNumElements() / Factor;
 | 
						|
    // Perform matrix-transposition in order to compute interleaved
 | 
						|
    // results by generating some sort of (optimized) target-specific
 | 
						|
    // instructions.
 | 
						|
 | 
						|
    switch (NumSubVecElems) {
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    case 4:
 | 
						|
      transpose_4x4(DecomposedVectors, TransposedVectors);
 | 
						|
      break;
 | 
						|
    case 8:
 | 
						|
    case 16:
 | 
						|
    case 32:
 | 
						|
    case 64:
 | 
						|
      deinterleave8bitStride3(DecomposedVectors, TransposedVectors,
 | 
						|
                              NumSubVecElems);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Now replace the unoptimized-interleaved-vectors with the
 | 
						|
    // transposed-interleaved vectors.
 | 
						|
    for (unsigned i = 0, e = Shuffles.size(); i < e; ++i)
 | 
						|
      Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]);
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Type *ShuffleEltTy = ShuffleTy->getVectorElementType();
 | 
						|
  unsigned NumSubVecElems = ShuffleTy->getVectorNumElements() / Factor;
 | 
						|
 | 
						|
  // Lower the interleaved stores:
 | 
						|
  //   1. Decompose the interleaved wide shuffle into individual shuffle
 | 
						|
  //   vectors.
 | 
						|
  decompose(Shuffles[0], Factor, VectorType::get(ShuffleEltTy, NumSubVecElems),
 | 
						|
            DecomposedVectors);
 | 
						|
 | 
						|
  //   2. Transpose the interleaved-vectors into vectors of contiguous
 | 
						|
  //      elements.
 | 
						|
  switch (NumSubVecElems) {
 | 
						|
  case 4:
 | 
						|
    transpose_4x4(DecomposedVectors, TransposedVectors);
 | 
						|
    break;
 | 
						|
  case 8:
 | 
						|
    interleave8bitStride4VF8(DecomposedVectors, TransposedVectors);
 | 
						|
    break;
 | 
						|
  case 16:
 | 
						|
  case 32:
 | 
						|
  case 64:
 | 
						|
    if (Factor == 4)
 | 
						|
      interleave8bitStride4(DecomposedVectors, TransposedVectors,
 | 
						|
                            NumSubVecElems);
 | 
						|
    if (Factor == 3)
 | 
						|
      interleave8bitStride3(DecomposedVectors, TransposedVectors,
 | 
						|
                            NumSubVecElems);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  //   3. Concatenate the contiguous-vectors back into a wide vector.
 | 
						|
  Value *WideVec = concatenateVectors(Builder, TransposedVectors);
 | 
						|
 | 
						|
  //   4. Generate a store instruction for wide-vec.
 | 
						|
  StoreInst *SI = cast<StoreInst>(Inst);
 | 
						|
  Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(),
 | 
						|
                             SI->getAlignment());
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Lower interleaved load(s) into target specific instructions/
 | 
						|
// intrinsics. Lowering sequence varies depending on the vector-types, factor,
 | 
						|
// number of shuffles and ISA.
 | 
						|
// Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX.
 | 
						|
bool X86TargetLowering::lowerInterleavedLoad(
 | 
						|
    LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
 | 
						|
    ArrayRef<unsigned> Indices, unsigned Factor) const {
 | 
						|
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
 | 
						|
         "Invalid interleave factor");
 | 
						|
  assert(!Shuffles.empty() && "Empty shufflevector input");
 | 
						|
  assert(Shuffles.size() == Indices.size() &&
 | 
						|
         "Unmatched number of shufflevectors and indices");
 | 
						|
 | 
						|
  // Create an interleaved access group.
 | 
						|
  IRBuilder<> Builder(LI);
 | 
						|
  X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget,
 | 
						|
                                Builder);
 | 
						|
 | 
						|
  return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
 | 
						|
}
 | 
						|
 | 
						|
bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI,
 | 
						|
                                              ShuffleVectorInst *SVI,
 | 
						|
                                              unsigned Factor) const {
 | 
						|
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
 | 
						|
         "Invalid interleave factor");
 | 
						|
 | 
						|
  assert(SVI->getType()->getVectorNumElements() % Factor == 0 &&
 | 
						|
         "Invalid interleaved store");
 | 
						|
 | 
						|
  // Holds the indices of SVI that correspond to the starting index of each
 | 
						|
  // interleaved shuffle.
 | 
						|
  SmallVector<unsigned, 4> Indices;
 | 
						|
  auto Mask = SVI->getShuffleMask();
 | 
						|
  for (unsigned i = 0; i < Factor; i++)
 | 
						|
    Indices.push_back(Mask[i]);
 | 
						|
 | 
						|
  ArrayRef<ShuffleVectorInst *> Shuffles = makeArrayRef(SVI);
 | 
						|
 | 
						|
  // Create an interleaved access group.
 | 
						|
  IRBuilder<> Builder(SI);
 | 
						|
  X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget,
 | 
						|
                                Builder);
 | 
						|
 | 
						|
  return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
 | 
						|
}
 |