forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1630 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1630 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains logic for simplifying instructions based on information
 | 
						|
// about how they are used.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstCombineInternal.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "instcombine"
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct AMDGPUImageDMaskIntrinsic {
 | 
						|
  unsigned Intr;
 | 
						|
};
 | 
						|
 | 
						|
#define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
 | 
						|
#include "InstCombineTables.inc"
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Check to see if the specified operand of the specified instruction is a
 | 
						|
/// constant integer. If so, check to see if there are any bits set in the
 | 
						|
/// constant that are not demanded. If so, shrink the constant and return true.
 | 
						|
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
 | 
						|
                                   const APInt &Demanded) {
 | 
						|
  assert(I && "No instruction?");
 | 
						|
  assert(OpNo < I->getNumOperands() && "Operand index too large");
 | 
						|
 | 
						|
  // The operand must be a constant integer or splat integer.
 | 
						|
  Value *Op = I->getOperand(OpNo);
 | 
						|
  const APInt *C;
 | 
						|
  if (!match(Op, m_APInt(C)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If there are no bits set that aren't demanded, nothing to do.
 | 
						|
  if (C->isSubsetOf(Demanded))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This instruction is producing bits that are not demanded. Shrink the RHS.
 | 
						|
  I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
 | 
						|
/// the instruction has any properties that allow us to simplify its operands.
 | 
						|
bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
 | 
						|
  unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
 | 
						|
  KnownBits Known(BitWidth);
 | 
						|
  APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
 | 
						|
 | 
						|
  Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
 | 
						|
                                     0, &Inst);
 | 
						|
  if (!V) return false;
 | 
						|
  if (V == &Inst) return true;
 | 
						|
  replaceInstUsesWith(Inst, V);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// This form of SimplifyDemandedBits simplifies the specified instruction
 | 
						|
/// operand if possible, updating it in place. It returns true if it made any
 | 
						|
/// change and false otherwise.
 | 
						|
bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
 | 
						|
                                        const APInt &DemandedMask,
 | 
						|
                                        KnownBits &Known,
 | 
						|
                                        unsigned Depth) {
 | 
						|
  Use &U = I->getOperandUse(OpNo);
 | 
						|
  Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
 | 
						|
                                          Depth, I);
 | 
						|
  if (!NewVal) return false;
 | 
						|
  U = NewVal;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// This function attempts to replace V with a simpler value based on the
 | 
						|
/// demanded bits. When this function is called, it is known that only the bits
 | 
						|
/// set in DemandedMask of the result of V are ever used downstream.
 | 
						|
/// Consequently, depending on the mask and V, it may be possible to replace V
 | 
						|
/// with a constant or one of its operands. In such cases, this function does
 | 
						|
/// the replacement and returns true. In all other cases, it returns false after
 | 
						|
/// analyzing the expression and setting KnownOne and known to be one in the
 | 
						|
/// expression. Known.Zero contains all the bits that are known to be zero in
 | 
						|
/// the expression. These are provided to potentially allow the caller (which
 | 
						|
/// might recursively be SimplifyDemandedBits itself) to simplify the
 | 
						|
/// expression.
 | 
						|
/// Known.One and Known.Zero always follow the invariant that:
 | 
						|
///   Known.One & Known.Zero == 0.
 | 
						|
/// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
 | 
						|
/// Known.Zero may only be accurate for those bits set in DemandedMask. Note
 | 
						|
/// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
 | 
						|
/// be the same.
 | 
						|
///
 | 
						|
/// This returns null if it did not change anything and it permits no
 | 
						|
/// simplification.  This returns V itself if it did some simplification of V's
 | 
						|
/// operands based on the information about what bits are demanded. This returns
 | 
						|
/// some other non-null value if it found out that V is equal to another value
 | 
						|
/// in the context where the specified bits are demanded, but not for all users.
 | 
						|
Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
 | 
						|
                                             KnownBits &Known, unsigned Depth,
 | 
						|
                                             Instruction *CxtI) {
 | 
						|
  assert(V != nullptr && "Null pointer of Value???");
 | 
						|
  assert(Depth <= 6 && "Limit Search Depth");
 | 
						|
  uint32_t BitWidth = DemandedMask.getBitWidth();
 | 
						|
  Type *VTy = V->getType();
 | 
						|
  assert(
 | 
						|
      (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
 | 
						|
      Known.getBitWidth() == BitWidth &&
 | 
						|
      "Value *V, DemandedMask and Known must have same BitWidth");
 | 
						|
 | 
						|
  if (isa<Constant>(V)) {
 | 
						|
    computeKnownBits(V, Known, Depth, CxtI);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  Known.resetAll();
 | 
						|
  if (DemandedMask.isNullValue())     // Not demanding any bits from V.
 | 
						|
    return UndefValue::get(VTy);
 | 
						|
 | 
						|
  if (Depth == 6)        // Limit search depth.
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) {
 | 
						|
    computeKnownBits(V, Known, Depth, CxtI);
 | 
						|
    return nullptr;        // Only analyze instructions.
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are multiple uses of this value and we aren't at the root, then
 | 
						|
  // we can't do any simplifications of the operands, because DemandedMask
 | 
						|
  // only reflects the bits demanded by *one* of the users.
 | 
						|
  if (Depth != 0 && !I->hasOneUse())
 | 
						|
    return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
 | 
						|
 | 
						|
  KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
 | 
						|
 | 
						|
  // If this is the root being simplified, allow it to have multiple uses,
 | 
						|
  // just set the DemandedMask to all bits so that we can try to simplify the
 | 
						|
  // operands.  This allows visitTruncInst (for example) to simplify the
 | 
						|
  // operand of a trunc without duplicating all the logic below.
 | 
						|
  if (Depth == 0 && !V->hasOneUse())
 | 
						|
    DemandedMask.setAllBits();
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default:
 | 
						|
    computeKnownBits(I, Known, Depth, CxtI);
 | 
						|
    break;
 | 
						|
  case Instruction::And: {
 | 
						|
    // If either the LHS or the RHS are Zero, the result is zero.
 | 
						|
    if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
 | 
						|
        SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
 | 
						|
                             Depth + 1))
 | 
						|
      return I;
 | 
						|
    assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
 | 
						|
    assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
 | 
						|
 | 
						|
    // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | 
						|
    APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
 | 
						|
    // Output known-1 bits are only known if set in both the LHS & RHS.
 | 
						|
    APInt IKnownOne = RHSKnown.One & LHSKnown.One;
 | 
						|
 | 
						|
    // If the client is only demanding bits that we know, return the known
 | 
						|
    // constant.
 | 
						|
    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
 | 
						|
      return Constant::getIntegerValue(VTy, IKnownOne);
 | 
						|
 | 
						|
    // If all of the demanded bits are known 1 on one side, return the other.
 | 
						|
    // These bits cannot contribute to the result of the 'and'.
 | 
						|
    if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
 | 
						|
      return I->getOperand(0);
 | 
						|
    if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
 | 
						|
      return I->getOperand(1);
 | 
						|
 | 
						|
    // If the RHS is a constant, see if we can simplify it.
 | 
						|
    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
 | 
						|
      return I;
 | 
						|
 | 
						|
    Known.Zero = std::move(IKnownZero);
 | 
						|
    Known.One  = std::move(IKnownOne);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Or: {
 | 
						|
    // If either the LHS or the RHS are One, the result is One.
 | 
						|
    if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
 | 
						|
        SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
 | 
						|
                             Depth + 1))
 | 
						|
      return I;
 | 
						|
    assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
 | 
						|
    assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
 | 
						|
 | 
						|
    // Output known-0 bits are only known if clear in both the LHS & RHS.
 | 
						|
    APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
 | 
						|
    // Output known-1 are known. to be set if s.et in either the LHS | RHS.
 | 
						|
    APInt IKnownOne = RHSKnown.One | LHSKnown.One;
 | 
						|
 | 
						|
    // If the client is only demanding bits that we know, return the known
 | 
						|
    // constant.
 | 
						|
    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
 | 
						|
      return Constant::getIntegerValue(VTy, IKnownOne);
 | 
						|
 | 
						|
    // If all of the demanded bits are known zero on one side, return the other.
 | 
						|
    // These bits cannot contribute to the result of the 'or'.
 | 
						|
    if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
 | 
						|
      return I->getOperand(0);
 | 
						|
    if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
 | 
						|
      return I->getOperand(1);
 | 
						|
 | 
						|
    // If the RHS is a constant, see if we can simplify it.
 | 
						|
    if (ShrinkDemandedConstant(I, 1, DemandedMask))
 | 
						|
      return I;
 | 
						|
 | 
						|
    Known.Zero = std::move(IKnownZero);
 | 
						|
    Known.One  = std::move(IKnownOne);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Xor: {
 | 
						|
    if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
 | 
						|
        SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
 | 
						|
      return I;
 | 
						|
    assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
 | 
						|
    assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
 | 
						|
 | 
						|
    // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | 
						|
    APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
 | 
						|
                       (RHSKnown.One & LHSKnown.One);
 | 
						|
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | 
						|
    APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
 | 
						|
                       (RHSKnown.One & LHSKnown.Zero);
 | 
						|
 | 
						|
    // If the client is only demanding bits that we know, return the known
 | 
						|
    // constant.
 | 
						|
    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
 | 
						|
      return Constant::getIntegerValue(VTy, IKnownOne);
 | 
						|
 | 
						|
    // If all of the demanded bits are known zero on one side, return the other.
 | 
						|
    // These bits cannot contribute to the result of the 'xor'.
 | 
						|
    if (DemandedMask.isSubsetOf(RHSKnown.Zero))
 | 
						|
      return I->getOperand(0);
 | 
						|
    if (DemandedMask.isSubsetOf(LHSKnown.Zero))
 | 
						|
      return I->getOperand(1);
 | 
						|
 | 
						|
    // If all of the demanded bits are known to be zero on one side or the
 | 
						|
    // other, turn this into an *inclusive* or.
 | 
						|
    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
 | 
						|
    if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
 | 
						|
      Instruction *Or =
 | 
						|
        BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
 | 
						|
                                 I->getName());
 | 
						|
      return InsertNewInstWith(Or, *I);
 | 
						|
    }
 | 
						|
 | 
						|
    // If all of the demanded bits on one side are known, and all of the set
 | 
						|
    // bits on that side are also known to be set on the other side, turn this
 | 
						|
    // into an AND, as we know the bits will be cleared.
 | 
						|
    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | 
						|
    if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
 | 
						|
        RHSKnown.One.isSubsetOf(LHSKnown.One)) {
 | 
						|
      Constant *AndC = Constant::getIntegerValue(VTy,
 | 
						|
                                                 ~RHSKnown.One & DemandedMask);
 | 
						|
      Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
 | 
						|
      return InsertNewInstWith(And, *I);
 | 
						|
    }
 | 
						|
 | 
						|
    // If the RHS is a constant, see if we can simplify it.
 | 
						|
    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
 | 
						|
    if (ShrinkDemandedConstant(I, 1, DemandedMask))
 | 
						|
      return I;
 | 
						|
 | 
						|
    // If our LHS is an 'and' and if it has one use, and if any of the bits we
 | 
						|
    // are flipping are known to be set, then the xor is just resetting those
 | 
						|
    // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
 | 
						|
    // simplifying both of them.
 | 
						|
    if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
 | 
						|
      if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
 | 
						|
          isa<ConstantInt>(I->getOperand(1)) &&
 | 
						|
          isa<ConstantInt>(LHSInst->getOperand(1)) &&
 | 
						|
          (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
 | 
						|
        ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
 | 
						|
        ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
 | 
						|
        APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
 | 
						|
 | 
						|
        Constant *AndC =
 | 
						|
          ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
 | 
						|
        Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
 | 
						|
        InsertNewInstWith(NewAnd, *I);
 | 
						|
 | 
						|
        Constant *XorC =
 | 
						|
          ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
 | 
						|
        Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
 | 
						|
        return InsertNewInstWith(NewXor, *I);
 | 
						|
      }
 | 
						|
 | 
						|
    // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | 
						|
    Known.Zero = std::move(IKnownZero);
 | 
						|
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | 
						|
    Known.One  = std::move(IKnownOne);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Select: {
 | 
						|
    Value *LHS, *RHS;
 | 
						|
    SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
 | 
						|
    if (SPF == SPF_UMAX) {
 | 
						|
      // UMax(A, C) == A if ...
 | 
						|
      // The lowest non-zero bit of DemandMask is higher than the highest
 | 
						|
      // non-zero bit of C.
 | 
						|
      const APInt *C;
 | 
						|
      unsigned CTZ = DemandedMask.countTrailingZeros();
 | 
						|
      if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
 | 
						|
        return LHS;
 | 
						|
    } else if (SPF == SPF_UMIN) {
 | 
						|
      // UMin(A, C) == A if ...
 | 
						|
      // The lowest non-zero bit of DemandMask is higher than the highest
 | 
						|
      // non-one bit of C.
 | 
						|
      // This comes from using DeMorgans on the above umax example.
 | 
						|
      const APInt *C;
 | 
						|
      unsigned CTZ = DemandedMask.countTrailingZeros();
 | 
						|
      if (match(RHS, m_APInt(C)) &&
 | 
						|
          CTZ >= C->getBitWidth() - C->countLeadingOnes())
 | 
						|
        return LHS;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a select as part of any other min/max pattern, don't simplify
 | 
						|
    // any further in case we break the structure.
 | 
						|
    if (SPF != SPF_UNKNOWN)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
 | 
						|
        SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
 | 
						|
      return I;
 | 
						|
    assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
 | 
						|
    assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
 | 
						|
 | 
						|
    // If the operands are constants, see if we can simplify them.
 | 
						|
    if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
 | 
						|
        ShrinkDemandedConstant(I, 2, DemandedMask))
 | 
						|
      return I;
 | 
						|
 | 
						|
    // Only known if known in both the LHS and RHS.
 | 
						|
    Known.One = RHSKnown.One & LHSKnown.One;
 | 
						|
    Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::Trunc: {
 | 
						|
    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
 | 
						|
 | 
						|
    APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
 | 
						|
    KnownBits InputKnown(SrcBitWidth);
 | 
						|
    if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
 | 
						|
      return I;
 | 
						|
    Known = InputKnown.zextOrTrunc(BitWidth);
 | 
						|
    // Any top bits are known to be zero.
 | 
						|
    if (BitWidth > SrcBitWidth)
 | 
						|
      Known.Zero.setBitsFrom(SrcBitWidth);
 | 
						|
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::BitCast:
 | 
						|
    if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
 | 
						|
      return nullptr;  // vector->int or fp->int?
 | 
						|
 | 
						|
    if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
 | 
						|
      if (VectorType *SrcVTy =
 | 
						|
            dyn_cast<VectorType>(I->getOperand(0)->getType())) {
 | 
						|
        if (DstVTy->getNumElements() != SrcVTy->getNumElements())
 | 
						|
          // Don't touch a bitcast between vectors of different element counts.
 | 
						|
          return nullptr;
 | 
						|
      } else
 | 
						|
        // Don't touch a scalar-to-vector bitcast.
 | 
						|
        return nullptr;
 | 
						|
    } else if (I->getOperand(0)->getType()->isVectorTy())
 | 
						|
      // Don't touch a vector-to-scalar bitcast.
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
 | 
						|
      return I;
 | 
						|
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						|
    break;
 | 
						|
  case Instruction::SExt: {
 | 
						|
    // Compute the bits in the result that are not present in the input.
 | 
						|
    unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
 | 
						|
 | 
						|
    APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
 | 
						|
 | 
						|
    // If any of the sign extended bits are demanded, we know that the sign
 | 
						|
    // bit is demanded.
 | 
						|
    if (DemandedMask.getActiveBits() > SrcBitWidth)
 | 
						|
      InputDemandedBits.setBit(SrcBitWidth-1);
 | 
						|
 | 
						|
    KnownBits InputKnown(SrcBitWidth);
 | 
						|
    if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
 | 
						|
      return I;
 | 
						|
 | 
						|
    // If the input sign bit is known zero, or if the NewBits are not demanded
 | 
						|
    // convert this into a zero extension.
 | 
						|
    if (InputKnown.isNonNegative() ||
 | 
						|
        DemandedMask.getActiveBits() <= SrcBitWidth) {
 | 
						|
      // Convert to ZExt cast.
 | 
						|
      CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
 | 
						|
      return InsertNewInstWith(NewCast, *I);
 | 
						|
     }
 | 
						|
 | 
						|
    // If the sign bit of the input is known set or clear, then we know the
 | 
						|
    // top bits of the result.
 | 
						|
    Known = InputKnown.sext(BitWidth);
 | 
						|
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub: {
 | 
						|
    /// If the high-bits of an ADD/SUB are not demanded, then we do not care
 | 
						|
    /// about the high bits of the operands.
 | 
						|
    unsigned NLZ = DemandedMask.countLeadingZeros();
 | 
						|
    // Right fill the mask of bits for this ADD/SUB to demand the most
 | 
						|
    // significant bit and all those below it.
 | 
						|
    APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
 | 
						|
    if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
 | 
						|
        SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
 | 
						|
        ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
 | 
						|
        SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
 | 
						|
      if (NLZ > 0) {
 | 
						|
        // Disable the nsw and nuw flags here: We can no longer guarantee that
 | 
						|
        // we won't wrap after simplification. Removing the nsw/nuw flags is
 | 
						|
        // legal here because the top bit is not demanded.
 | 
						|
        BinaryOperator &BinOP = *cast<BinaryOperator>(I);
 | 
						|
        BinOP.setHasNoSignedWrap(false);
 | 
						|
        BinOP.setHasNoUnsignedWrap(false);
 | 
						|
      }
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we are known to be adding/subtracting zeros to every bit below
 | 
						|
    // the highest demanded bit, we just return the other side.
 | 
						|
    if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
 | 
						|
      return I->getOperand(0);
 | 
						|
    // We can't do this with the LHS for subtraction, unless we are only
 | 
						|
    // demanding the LSB.
 | 
						|
    if ((I->getOpcode() == Instruction::Add ||
 | 
						|
         DemandedFromOps.isOneValue()) &&
 | 
						|
        DemandedFromOps.isSubsetOf(LHSKnown.Zero))
 | 
						|
      return I->getOperand(1);
 | 
						|
 | 
						|
    // Otherwise just compute the known bits of the result.
 | 
						|
    bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
 | 
						|
    Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
 | 
						|
                                        NSW, LHSKnown, RHSKnown);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Shl: {
 | 
						|
    const APInt *SA;
 | 
						|
    if (match(I->getOperand(1), m_APInt(SA))) {
 | 
						|
      const APInt *ShrAmt;
 | 
						|
      if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
 | 
						|
        if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
 | 
						|
          if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
 | 
						|
                                                    DemandedMask, Known))
 | 
						|
            return R;
 | 
						|
 | 
						|
      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
 | 
						|
      APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
 | 
						|
 | 
						|
      // If the shift is NUW/NSW, then it does demand the high bits.
 | 
						|
      ShlOperator *IOp = cast<ShlOperator>(I);
 | 
						|
      if (IOp->hasNoSignedWrap())
 | 
						|
        DemandedMaskIn.setHighBits(ShiftAmt+1);
 | 
						|
      else if (IOp->hasNoUnsignedWrap())
 | 
						|
        DemandedMaskIn.setHighBits(ShiftAmt);
 | 
						|
 | 
						|
      if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
 | 
						|
        return I;
 | 
						|
      assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						|
      Known.Zero <<= ShiftAmt;
 | 
						|
      Known.One  <<= ShiftAmt;
 | 
						|
      // low bits known zero.
 | 
						|
      if (ShiftAmt)
 | 
						|
        Known.Zero.setLowBits(ShiftAmt);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::LShr: {
 | 
						|
    const APInt *SA;
 | 
						|
    if (match(I->getOperand(1), m_APInt(SA))) {
 | 
						|
      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
 | 
						|
 | 
						|
      // Unsigned shift right.
 | 
						|
      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
 | 
						|
 | 
						|
      // If the shift is exact, then it does demand the low bits (and knows that
 | 
						|
      // they are zero).
 | 
						|
      if (cast<LShrOperator>(I)->isExact())
 | 
						|
        DemandedMaskIn.setLowBits(ShiftAmt);
 | 
						|
 | 
						|
      if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
 | 
						|
        return I;
 | 
						|
      assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						|
      Known.Zero.lshrInPlace(ShiftAmt);
 | 
						|
      Known.One.lshrInPlace(ShiftAmt);
 | 
						|
      if (ShiftAmt)
 | 
						|
        Known.Zero.setHighBits(ShiftAmt);  // high bits known zero.
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::AShr: {
 | 
						|
    // If this is an arithmetic shift right and only the low-bit is set, we can
 | 
						|
    // always convert this into a logical shr, even if the shift amount is
 | 
						|
    // variable.  The low bit of the shift cannot be an input sign bit unless
 | 
						|
    // the shift amount is >= the size of the datatype, which is undefined.
 | 
						|
    if (DemandedMask.isOneValue()) {
 | 
						|
      // Perform the logical shift right.
 | 
						|
      Instruction *NewVal = BinaryOperator::CreateLShr(
 | 
						|
                        I->getOperand(0), I->getOperand(1), I->getName());
 | 
						|
      return InsertNewInstWith(NewVal, *I);
 | 
						|
    }
 | 
						|
 | 
						|
    // If the sign bit is the only bit demanded by this ashr, then there is no
 | 
						|
    // need to do it, the shift doesn't change the high bit.
 | 
						|
    if (DemandedMask.isSignMask())
 | 
						|
      return I->getOperand(0);
 | 
						|
 | 
						|
    const APInt *SA;
 | 
						|
    if (match(I->getOperand(1), m_APInt(SA))) {
 | 
						|
      uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
 | 
						|
 | 
						|
      // Signed shift right.
 | 
						|
      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
 | 
						|
      // If any of the high bits are demanded, we should set the sign bit as
 | 
						|
      // demanded.
 | 
						|
      if (DemandedMask.countLeadingZeros() <= ShiftAmt)
 | 
						|
        DemandedMaskIn.setSignBit();
 | 
						|
 | 
						|
      // If the shift is exact, then it does demand the low bits (and knows that
 | 
						|
      // they are zero).
 | 
						|
      if (cast<AShrOperator>(I)->isExact())
 | 
						|
        DemandedMaskIn.setLowBits(ShiftAmt);
 | 
						|
 | 
						|
      if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
 | 
						|
        return I;
 | 
						|
 | 
						|
      unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
 | 
						|
 | 
						|
      assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						|
      // Compute the new bits that are at the top now plus sign bits.
 | 
						|
      APInt HighBits(APInt::getHighBitsSet(
 | 
						|
          BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
 | 
						|
      Known.Zero.lshrInPlace(ShiftAmt);
 | 
						|
      Known.One.lshrInPlace(ShiftAmt);
 | 
						|
 | 
						|
      // If the input sign bit is known to be zero, or if none of the top bits
 | 
						|
      // are demanded, turn this into an unsigned shift right.
 | 
						|
      assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
 | 
						|
      if (Known.Zero[BitWidth-ShiftAmt-1] ||
 | 
						|
          !DemandedMask.intersects(HighBits)) {
 | 
						|
        BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
 | 
						|
                                                          I->getOperand(1));
 | 
						|
        LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
 | 
						|
        return InsertNewInstWith(LShr, *I);
 | 
						|
      } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
 | 
						|
        Known.One |= HighBits;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::UDiv: {
 | 
						|
    // UDiv doesn't demand low bits that are zero in the divisor.
 | 
						|
    const APInt *SA;
 | 
						|
    if (match(I->getOperand(1), m_APInt(SA))) {
 | 
						|
      // If the shift is exact, then it does demand the low bits.
 | 
						|
      if (cast<UDivOperator>(I)->isExact())
 | 
						|
        break;
 | 
						|
 | 
						|
      // FIXME: Take the demanded mask of the result into account.
 | 
						|
      unsigned RHSTrailingZeros = SA->countTrailingZeros();
 | 
						|
      APInt DemandedMaskIn =
 | 
						|
          APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
 | 
						|
      if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
 | 
						|
        return I;
 | 
						|
 | 
						|
      // Propagate zero bits from the input.
 | 
						|
      Known.Zero.setHighBits(std::min(
 | 
						|
          BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::SRem:
 | 
						|
    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      // X % -1 demands all the bits because we don't want to introduce
 | 
						|
      // INT_MIN % -1 (== undef) by accident.
 | 
						|
      if (Rem->isMinusOne())
 | 
						|
        break;
 | 
						|
      APInt RA = Rem->getValue().abs();
 | 
						|
      if (RA.isPowerOf2()) {
 | 
						|
        if (DemandedMask.ult(RA))    // srem won't affect demanded bits
 | 
						|
          return I->getOperand(0);
 | 
						|
 | 
						|
        APInt LowBits = RA - 1;
 | 
						|
        APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
 | 
						|
        if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
 | 
						|
          return I;
 | 
						|
 | 
						|
        // The low bits of LHS are unchanged by the srem.
 | 
						|
        Known.Zero = LHSKnown.Zero & LowBits;
 | 
						|
        Known.One = LHSKnown.One & LowBits;
 | 
						|
 | 
						|
        // If LHS is non-negative or has all low bits zero, then the upper bits
 | 
						|
        // are all zero.
 | 
						|
        if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
 | 
						|
          Known.Zero |= ~LowBits;
 | 
						|
 | 
						|
        // If LHS is negative and not all low bits are zero, then the upper bits
 | 
						|
        // are all one.
 | 
						|
        if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
 | 
						|
          Known.One |= ~LowBits;
 | 
						|
 | 
						|
        assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // The sign bit is the LHS's sign bit, except when the result of the
 | 
						|
    // remainder is zero.
 | 
						|
    if (DemandedMask.isSignBitSet()) {
 | 
						|
      computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
 | 
						|
      // If it's known zero, our sign bit is also zero.
 | 
						|
      if (LHSKnown.isNonNegative())
 | 
						|
        Known.makeNonNegative();
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::URem: {
 | 
						|
    KnownBits Known2(BitWidth);
 | 
						|
    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
 | 
						|
    if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
 | 
						|
        SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
 | 
						|
      return I;
 | 
						|
 | 
						|
    unsigned Leaders = Known2.countMinLeadingZeros();
 | 
						|
    Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Call:
 | 
						|
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
      switch (II->getIntrinsicID()) {
 | 
						|
      default: break;
 | 
						|
      case Intrinsic::bswap: {
 | 
						|
        // If the only bits demanded come from one byte of the bswap result,
 | 
						|
        // just shift the input byte into position to eliminate the bswap.
 | 
						|
        unsigned NLZ = DemandedMask.countLeadingZeros();
 | 
						|
        unsigned NTZ = DemandedMask.countTrailingZeros();
 | 
						|
 | 
						|
        // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
 | 
						|
        // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
 | 
						|
        // have 14 leading zeros, round to 8.
 | 
						|
        NLZ &= ~7;
 | 
						|
        NTZ &= ~7;
 | 
						|
        // If we need exactly one byte, we can do this transformation.
 | 
						|
        if (BitWidth-NLZ-NTZ == 8) {
 | 
						|
          unsigned ResultBit = NTZ;
 | 
						|
          unsigned InputBit = BitWidth-NTZ-8;
 | 
						|
 | 
						|
          // Replace this with either a left or right shift to get the byte into
 | 
						|
          // the right place.
 | 
						|
          Instruction *NewVal;
 | 
						|
          if (InputBit > ResultBit)
 | 
						|
            NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
 | 
						|
                    ConstantInt::get(I->getType(), InputBit-ResultBit));
 | 
						|
          else
 | 
						|
            NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
 | 
						|
                    ConstantInt::get(I->getType(), ResultBit-InputBit));
 | 
						|
          NewVal->takeName(I);
 | 
						|
          return InsertNewInstWith(NewVal, *I);
 | 
						|
        }
 | 
						|
 | 
						|
        // TODO: Could compute known zero/one bits based on the input.
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case Intrinsic::x86_mmx_pmovmskb:
 | 
						|
      case Intrinsic::x86_sse_movmsk_ps:
 | 
						|
      case Intrinsic::x86_sse2_movmsk_pd:
 | 
						|
      case Intrinsic::x86_sse2_pmovmskb_128:
 | 
						|
      case Intrinsic::x86_avx_movmsk_ps_256:
 | 
						|
      case Intrinsic::x86_avx_movmsk_pd_256:
 | 
						|
      case Intrinsic::x86_avx2_pmovmskb: {
 | 
						|
        // MOVMSK copies the vector elements' sign bits to the low bits
 | 
						|
        // and zeros the high bits.
 | 
						|
        unsigned ArgWidth;
 | 
						|
        if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
 | 
						|
          ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
 | 
						|
        } else {
 | 
						|
          auto Arg = II->getArgOperand(0);
 | 
						|
          auto ArgType = cast<VectorType>(Arg->getType());
 | 
						|
          ArgWidth = ArgType->getNumElements();
 | 
						|
        }
 | 
						|
 | 
						|
        // If we don't need any of low bits then return zero,
 | 
						|
        // we know that DemandedMask is non-zero already.
 | 
						|
        APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
 | 
						|
        if (DemandedElts.isNullValue())
 | 
						|
          return ConstantInt::getNullValue(VTy);
 | 
						|
 | 
						|
        // We know that the upper bits are set to zero.
 | 
						|
        Known.Zero.setBitsFrom(ArgWidth);
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
      case Intrinsic::x86_sse42_crc32_64_64:
 | 
						|
        Known.Zero.setBitsFrom(32);
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    computeKnownBits(V, Known, Depth, CxtI);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the client is only demanding bits that we know, return the known
 | 
						|
  // constant.
 | 
						|
  if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
 | 
						|
    return Constant::getIntegerValue(VTy, Known.One);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Helper routine of SimplifyDemandedUseBits. It computes Known
 | 
						|
/// bits. It also tries to handle simplifications that can be done based on
 | 
						|
/// DemandedMask, but without modifying the Instruction.
 | 
						|
Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
 | 
						|
                                                     const APInt &DemandedMask,
 | 
						|
                                                     KnownBits &Known,
 | 
						|
                                                     unsigned Depth,
 | 
						|
                                                     Instruction *CxtI) {
 | 
						|
  unsigned BitWidth = DemandedMask.getBitWidth();
 | 
						|
  Type *ITy = I->getType();
 | 
						|
 | 
						|
  KnownBits LHSKnown(BitWidth);
 | 
						|
  KnownBits RHSKnown(BitWidth);
 | 
						|
 | 
						|
  // Despite the fact that we can't simplify this instruction in all User's
 | 
						|
  // context, we can at least compute the known bits, and we can
 | 
						|
  // do simplifications that apply to *just* the one user if we know that
 | 
						|
  // this instruction has a simpler value in that context.
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::And: {
 | 
						|
    // If either the LHS or the RHS are Zero, the result is zero.
 | 
						|
    computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
 | 
						|
    computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
 | 
						|
                     CxtI);
 | 
						|
 | 
						|
    // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | 
						|
    APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
 | 
						|
    // Output known-1 bits are only known if set in both the LHS & RHS.
 | 
						|
    APInt IKnownOne = RHSKnown.One & LHSKnown.One;
 | 
						|
 | 
						|
    // If the client is only demanding bits that we know, return the known
 | 
						|
    // constant.
 | 
						|
    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
 | 
						|
      return Constant::getIntegerValue(ITy, IKnownOne);
 | 
						|
 | 
						|
    // If all of the demanded bits are known 1 on one side, return the other.
 | 
						|
    // These bits cannot contribute to the result of the 'and' in this
 | 
						|
    // context.
 | 
						|
    if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
 | 
						|
      return I->getOperand(0);
 | 
						|
    if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
 | 
						|
      return I->getOperand(1);
 | 
						|
 | 
						|
    Known.Zero = std::move(IKnownZero);
 | 
						|
    Known.One  = std::move(IKnownOne);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Or: {
 | 
						|
    // We can simplify (X|Y) -> X or Y in the user's context if we know that
 | 
						|
    // only bits from X or Y are demanded.
 | 
						|
 | 
						|
    // If either the LHS or the RHS are One, the result is One.
 | 
						|
    computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
 | 
						|
    computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
 | 
						|
                     CxtI);
 | 
						|
 | 
						|
    // Output known-0 bits are only known if clear in both the LHS & RHS.
 | 
						|
    APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
 | 
						|
    // Output known-1 are known to be set if set in either the LHS | RHS.
 | 
						|
    APInt IKnownOne = RHSKnown.One | LHSKnown.One;
 | 
						|
 | 
						|
    // If the client is only demanding bits that we know, return the known
 | 
						|
    // constant.
 | 
						|
    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
 | 
						|
      return Constant::getIntegerValue(ITy, IKnownOne);
 | 
						|
 | 
						|
    // If all of the demanded bits are known zero on one side, return the
 | 
						|
    // other.  These bits cannot contribute to the result of the 'or' in this
 | 
						|
    // context.
 | 
						|
    if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
 | 
						|
      return I->getOperand(0);
 | 
						|
    if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
 | 
						|
      return I->getOperand(1);
 | 
						|
 | 
						|
    Known.Zero = std::move(IKnownZero);
 | 
						|
    Known.One  = std::move(IKnownOne);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Xor: {
 | 
						|
    // We can simplify (X^Y) -> X or Y in the user's context if we know that
 | 
						|
    // only bits from X or Y are demanded.
 | 
						|
 | 
						|
    computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
 | 
						|
    computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
 | 
						|
                     CxtI);
 | 
						|
 | 
						|
    // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | 
						|
    APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
 | 
						|
                       (RHSKnown.One & LHSKnown.One);
 | 
						|
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | 
						|
    APInt IKnownOne =  (RHSKnown.Zero & LHSKnown.One) |
 | 
						|
                       (RHSKnown.One & LHSKnown.Zero);
 | 
						|
 | 
						|
    // If the client is only demanding bits that we know, return the known
 | 
						|
    // constant.
 | 
						|
    if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
 | 
						|
      return Constant::getIntegerValue(ITy, IKnownOne);
 | 
						|
 | 
						|
    // If all of the demanded bits are known zero on one side, return the
 | 
						|
    // other.
 | 
						|
    if (DemandedMask.isSubsetOf(RHSKnown.Zero))
 | 
						|
      return I->getOperand(0);
 | 
						|
    if (DemandedMask.isSubsetOf(LHSKnown.Zero))
 | 
						|
      return I->getOperand(1);
 | 
						|
 | 
						|
    // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | 
						|
    Known.Zero = std::move(IKnownZero);
 | 
						|
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | 
						|
    Known.One  = std::move(IKnownOne);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    // Compute the Known bits to simplify things downstream.
 | 
						|
    computeKnownBits(I, Known, Depth, CxtI);
 | 
						|
 | 
						|
    // If this user is only demanding bits that we know, return the known
 | 
						|
    // constant.
 | 
						|
    if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
 | 
						|
      return Constant::getIntegerValue(ITy, Known.One);
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
 | 
						|
/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
 | 
						|
/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
 | 
						|
/// of "C2-C1".
 | 
						|
///
 | 
						|
/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
 | 
						|
/// ..., bn}, without considering the specific value X is holding.
 | 
						|
/// This transformation is legal iff one of following conditions is hold:
 | 
						|
///  1) All the bit in S are 0, in this case E1 == E2.
 | 
						|
///  2) We don't care those bits in S, per the input DemandedMask.
 | 
						|
///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
 | 
						|
///     rest bits.
 | 
						|
///
 | 
						|
/// Currently we only test condition 2).
 | 
						|
///
 | 
						|
/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
 | 
						|
/// not successful.
 | 
						|
Value *
 | 
						|
InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
 | 
						|
                                         Instruction *Shl, const APInt &ShlOp1,
 | 
						|
                                         const APInt &DemandedMask,
 | 
						|
                                         KnownBits &Known) {
 | 
						|
  if (!ShlOp1 || !ShrOp1)
 | 
						|
    return nullptr; // No-op.
 | 
						|
 | 
						|
  Value *VarX = Shr->getOperand(0);
 | 
						|
  Type *Ty = VarX->getType();
 | 
						|
  unsigned BitWidth = Ty->getScalarSizeInBits();
 | 
						|
  if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
 | 
						|
    return nullptr; // Undef.
 | 
						|
 | 
						|
  unsigned ShlAmt = ShlOp1.getZExtValue();
 | 
						|
  unsigned ShrAmt = ShrOp1.getZExtValue();
 | 
						|
 | 
						|
  Known.One.clearAllBits();
 | 
						|
  Known.Zero.setLowBits(ShlAmt - 1);
 | 
						|
  Known.Zero &= DemandedMask;
 | 
						|
 | 
						|
  APInt BitMask1(APInt::getAllOnesValue(BitWidth));
 | 
						|
  APInt BitMask2(APInt::getAllOnesValue(BitWidth));
 | 
						|
 | 
						|
  bool isLshr = (Shr->getOpcode() == Instruction::LShr);
 | 
						|
  BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
 | 
						|
                      (BitMask1.ashr(ShrAmt) << ShlAmt);
 | 
						|
 | 
						|
  if (ShrAmt <= ShlAmt) {
 | 
						|
    BitMask2 <<= (ShlAmt - ShrAmt);
 | 
						|
  } else {
 | 
						|
    BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
 | 
						|
                        BitMask2.ashr(ShrAmt - ShlAmt);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if condition-2 (see the comment to this function) is satified.
 | 
						|
  if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
 | 
						|
    if (ShrAmt == ShlAmt)
 | 
						|
      return VarX;
 | 
						|
 | 
						|
    if (!Shr->hasOneUse())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    BinaryOperator *New;
 | 
						|
    if (ShrAmt < ShlAmt) {
 | 
						|
      Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
 | 
						|
      New = BinaryOperator::CreateShl(VarX, Amt);
 | 
						|
      BinaryOperator *Orig = cast<BinaryOperator>(Shl);
 | 
						|
      New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
 | 
						|
      New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
 | 
						|
    } else {
 | 
						|
      Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
 | 
						|
      New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
 | 
						|
                     BinaryOperator::CreateAShr(VarX, Amt);
 | 
						|
      if (cast<BinaryOperator>(Shr)->isExact())
 | 
						|
        New->setIsExact(true);
 | 
						|
    }
 | 
						|
 | 
						|
    return InsertNewInstWith(New, *Shl);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
 | 
						|
Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
 | 
						|
                                                           APInt DemandedElts,
 | 
						|
                                                           int DMaskIdx) {
 | 
						|
  unsigned VWidth = II->getType()->getVectorNumElements();
 | 
						|
  if (VWidth == 1)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  ConstantInt *NewDMask = nullptr;
 | 
						|
 | 
						|
  if (DMaskIdx < 0) {
 | 
						|
    // Pretend that a prefix of elements is demanded to simplify the code
 | 
						|
    // below.
 | 
						|
    DemandedElts = (1 << DemandedElts.getActiveBits()) - 1;
 | 
						|
  } else {
 | 
						|
    ConstantInt *DMask = dyn_cast<ConstantInt>(II->getArgOperand(DMaskIdx));
 | 
						|
    if (!DMask)
 | 
						|
      return nullptr; // non-constant dmask is not supported by codegen
 | 
						|
 | 
						|
    unsigned DMaskVal = DMask->getZExtValue() & 0xf;
 | 
						|
 | 
						|
    // Mask off values that are undefined because the dmask doesn't cover them
 | 
						|
    DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;
 | 
						|
 | 
						|
    unsigned NewDMaskVal = 0;
 | 
						|
    unsigned OrigLoadIdx = 0;
 | 
						|
    for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
 | 
						|
      const unsigned Bit = 1 << SrcIdx;
 | 
						|
      if (!!(DMaskVal & Bit)) {
 | 
						|
        if (!!DemandedElts[OrigLoadIdx])
 | 
						|
          NewDMaskVal |= Bit;
 | 
						|
        OrigLoadIdx++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (DMaskVal != NewDMaskVal)
 | 
						|
      NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal);
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Handle 3 vectors when supported in code gen.
 | 
						|
  unsigned NewNumElts = PowerOf2Ceil(DemandedElts.countPopulation());
 | 
						|
  if (!NewNumElts)
 | 
						|
    return UndefValue::get(II->getType());
 | 
						|
 | 
						|
  if (NewNumElts >= VWidth && DemandedElts.isMask()) {
 | 
						|
    if (NewDMask)
 | 
						|
      II->setArgOperand(DMaskIdx, NewDMask);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine the overload types of the original intrinsic.
 | 
						|
  auto IID = II->getIntrinsicID();
 | 
						|
  SmallVector<Intrinsic::IITDescriptor, 16> Table;
 | 
						|
  getIntrinsicInfoTableEntries(IID, Table);
 | 
						|
  ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
 | 
						|
 | 
						|
  FunctionType *FTy = II->getCalledFunction()->getFunctionType();
 | 
						|
  SmallVector<Type *, 6> OverloadTys;
 | 
						|
  Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, OverloadTys);
 | 
						|
  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | 
						|
    Intrinsic::matchIntrinsicType(FTy->getParamType(i), TableRef, OverloadTys);
 | 
						|
 | 
						|
  // Get the new return type overload of the intrinsic.
 | 
						|
  Module *M = II->getParent()->getParent()->getParent();
 | 
						|
  Type *EltTy = II->getType()->getVectorElementType();
 | 
						|
  Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts);
 | 
						|
 | 
						|
  OverloadTys[0] = NewTy;
 | 
						|
  Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys);
 | 
						|
 | 
						|
  SmallVector<Value *, 16> Args;
 | 
						|
  for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
 | 
						|
    Args.push_back(II->getArgOperand(I));
 | 
						|
 | 
						|
  if (NewDMask)
 | 
						|
    Args[DMaskIdx] = NewDMask;
 | 
						|
 | 
						|
  IRBuilderBase::InsertPointGuard Guard(Builder);
 | 
						|
  Builder.SetInsertPoint(II);
 | 
						|
 | 
						|
  CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
 | 
						|
  NewCall->takeName(II);
 | 
						|
  NewCall->copyMetadata(*II);
 | 
						|
 | 
						|
  if (NewNumElts == 1) {
 | 
						|
    return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall,
 | 
						|
                                       DemandedElts.countTrailingZeros());
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<uint32_t, 8> EltMask;
 | 
						|
  unsigned NewLoadIdx = 0;
 | 
						|
  for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
 | 
						|
    if (!!DemandedElts[OrigLoadIdx])
 | 
						|
      EltMask.push_back(NewLoadIdx++);
 | 
						|
    else
 | 
						|
      EltMask.push_back(NewNumElts);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Shuffle =
 | 
						|
      Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask);
 | 
						|
 | 
						|
  return Shuffle;
 | 
						|
}
 | 
						|
 | 
						|
/// The specified value produces a vector with any number of elements.
 | 
						|
/// DemandedElts contains the set of elements that are actually used by the
 | 
						|
/// caller. This method analyzes which elements of the operand are undef and
 | 
						|
/// returns that information in UndefElts.
 | 
						|
///
 | 
						|
/// If the information about demanded elements can be used to simplify the
 | 
						|
/// operation, the operation is simplified, then the resultant value is
 | 
						|
/// returned.  This returns null if no change was made.
 | 
						|
Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
 | 
						|
                                                APInt &UndefElts,
 | 
						|
                                                unsigned Depth) {
 | 
						|
  unsigned VWidth = V->getType()->getVectorNumElements();
 | 
						|
  APInt EltMask(APInt::getAllOnesValue(VWidth));
 | 
						|
  assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
 | 
						|
 | 
						|
  if (isa<UndefValue>(V)) {
 | 
						|
    // If the entire vector is undefined, just return this info.
 | 
						|
    UndefElts = EltMask;
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
 | 
						|
    UndefElts = EltMask;
 | 
						|
    return UndefValue::get(V->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  UndefElts = 0;
 | 
						|
 | 
						|
  if (auto *C = dyn_cast<Constant>(V)) {
 | 
						|
    // Check if this is identity. If so, return 0 since we are not simplifying
 | 
						|
    // anything.
 | 
						|
    if (DemandedElts.isAllOnesValue())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    Type *EltTy = cast<VectorType>(V->getType())->getElementType();
 | 
						|
    Constant *Undef = UndefValue::get(EltTy);
 | 
						|
    SmallVector<Constant*, 16> Elts;
 | 
						|
    for (unsigned i = 0; i != VWidth; ++i) {
 | 
						|
      if (!DemandedElts[i]) {   // If not demanded, set to undef.
 | 
						|
        Elts.push_back(Undef);
 | 
						|
        UndefElts.setBit(i);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      Constant *Elt = C->getAggregateElement(i);
 | 
						|
      if (!Elt) return nullptr;
 | 
						|
 | 
						|
      if (isa<UndefValue>(Elt)) {   // Already undef.
 | 
						|
        Elts.push_back(Undef);
 | 
						|
        UndefElts.setBit(i);
 | 
						|
      } else {                               // Otherwise, defined.
 | 
						|
        Elts.push_back(Elt);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we changed the constant, return it.
 | 
						|
    Constant *NewCV = ConstantVector::get(Elts);
 | 
						|
    return NewCV != C ? NewCV : nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Limit search depth.
 | 
						|
  if (Depth == 10)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If multiple users are using the root value, proceed with
 | 
						|
  // simplification conservatively assuming that all elements
 | 
						|
  // are needed.
 | 
						|
  if (!V->hasOneUse()) {
 | 
						|
    // Quit if we find multiple users of a non-root value though.
 | 
						|
    // They'll be handled when it's their turn to be visited by
 | 
						|
    // the main instcombine process.
 | 
						|
    if (Depth != 0)
 | 
						|
      // TODO: Just compute the UndefElts information recursively.
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Conservatively assume that all elements are needed.
 | 
						|
    DemandedElts = EltMask;
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return nullptr;        // Only analyze instructions.
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
 | 
						|
                              APInt Demanded, APInt &Undef) {
 | 
						|
    auto *II = dyn_cast<IntrinsicInst>(Inst);
 | 
						|
    Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
 | 
						|
    if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
 | 
						|
      if (II)
 | 
						|
        II->setArgOperand(OpNum, V);
 | 
						|
      else
 | 
						|
        Inst->setOperand(OpNum, V);
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  APInt UndefElts2(VWidth, 0);
 | 
						|
  APInt UndefElts3(VWidth, 0);
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
 | 
						|
  case Instruction::InsertElement: {
 | 
						|
    // If this is a variable index, we don't know which element it overwrites.
 | 
						|
    // demand exactly the same input as we produce.
 | 
						|
    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
 | 
						|
    if (!Idx) {
 | 
						|
      // Note that we can't propagate undef elt info, because we don't know
 | 
						|
      // which elt is getting updated.
 | 
						|
      simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // The element inserted overwrites whatever was there, so the input demanded
 | 
						|
    // set is simpler than the output set.
 | 
						|
    unsigned IdxNo = Idx->getZExtValue();
 | 
						|
    APInt PreInsertDemandedElts = DemandedElts;
 | 
						|
    if (IdxNo < VWidth)
 | 
						|
      PreInsertDemandedElts.clearBit(IdxNo);
 | 
						|
 | 
						|
    simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
 | 
						|
 | 
						|
    // If this is inserting an element that isn't demanded, remove this
 | 
						|
    // insertelement.
 | 
						|
    if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
 | 
						|
      Worklist.Add(I);
 | 
						|
      return I->getOperand(0);
 | 
						|
    }
 | 
						|
 | 
						|
    // The inserted element is defined.
 | 
						|
    UndefElts.clearBit(IdxNo);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::ShuffleVector: {
 | 
						|
    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
 | 
						|
    unsigned LHSVWidth =
 | 
						|
      Shuffle->getOperand(0)->getType()->getVectorNumElements();
 | 
						|
    APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
 | 
						|
    for (unsigned i = 0; i < VWidth; i++) {
 | 
						|
      if (DemandedElts[i]) {
 | 
						|
        unsigned MaskVal = Shuffle->getMaskValue(i);
 | 
						|
        if (MaskVal != -1u) {
 | 
						|
          assert(MaskVal < LHSVWidth * 2 &&
 | 
						|
                 "shufflevector mask index out of range!");
 | 
						|
          if (MaskVal < LHSVWidth)
 | 
						|
            LeftDemanded.setBit(MaskVal);
 | 
						|
          else
 | 
						|
            RightDemanded.setBit(MaskVal - LHSVWidth);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    APInt LHSUndefElts(LHSVWidth, 0);
 | 
						|
    simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
 | 
						|
 | 
						|
    APInt RHSUndefElts(LHSVWidth, 0);
 | 
						|
    simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
 | 
						|
 | 
						|
    bool NewUndefElts = false;
 | 
						|
    unsigned LHSIdx = -1u, LHSValIdx = -1u;
 | 
						|
    unsigned RHSIdx = -1u, RHSValIdx = -1u;
 | 
						|
    bool LHSUniform = true;
 | 
						|
    bool RHSUniform = true;
 | 
						|
    for (unsigned i = 0; i < VWidth; i++) {
 | 
						|
      unsigned MaskVal = Shuffle->getMaskValue(i);
 | 
						|
      if (MaskVal == -1u) {
 | 
						|
        UndefElts.setBit(i);
 | 
						|
      } else if (!DemandedElts[i]) {
 | 
						|
        NewUndefElts = true;
 | 
						|
        UndefElts.setBit(i);
 | 
						|
      } else if (MaskVal < LHSVWidth) {
 | 
						|
        if (LHSUndefElts[MaskVal]) {
 | 
						|
          NewUndefElts = true;
 | 
						|
          UndefElts.setBit(i);
 | 
						|
        } else {
 | 
						|
          LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
 | 
						|
          LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
 | 
						|
          LHSUniform = LHSUniform && (MaskVal == i);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        if (RHSUndefElts[MaskVal - LHSVWidth]) {
 | 
						|
          NewUndefElts = true;
 | 
						|
          UndefElts.setBit(i);
 | 
						|
        } else {
 | 
						|
          RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
 | 
						|
          RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
 | 
						|
          RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to transform shuffle with constant vector and single element from
 | 
						|
    // this constant vector to single insertelement instruction.
 | 
						|
    // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
 | 
						|
    // insertelement V, C[ci], ci-n
 | 
						|
    if (LHSVWidth == Shuffle->getType()->getNumElements()) {
 | 
						|
      Value *Op = nullptr;
 | 
						|
      Constant *Value = nullptr;
 | 
						|
      unsigned Idx = -1u;
 | 
						|
 | 
						|
      // Find constant vector with the single element in shuffle (LHS or RHS).
 | 
						|
      if (LHSIdx < LHSVWidth && RHSUniform) {
 | 
						|
        if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
 | 
						|
          Op = Shuffle->getOperand(1);
 | 
						|
          Value = CV->getOperand(LHSValIdx);
 | 
						|
          Idx = LHSIdx;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (RHSIdx < LHSVWidth && LHSUniform) {
 | 
						|
        if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
 | 
						|
          Op = Shuffle->getOperand(0);
 | 
						|
          Value = CV->getOperand(RHSValIdx);
 | 
						|
          Idx = RHSIdx;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Found constant vector with single element - convert to insertelement.
 | 
						|
      if (Op && Value) {
 | 
						|
        Instruction *New = InsertElementInst::Create(
 | 
						|
            Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
 | 
						|
            Shuffle->getName());
 | 
						|
        InsertNewInstWith(New, *Shuffle);
 | 
						|
        return New;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (NewUndefElts) {
 | 
						|
      // Add additional discovered undefs.
 | 
						|
      SmallVector<Constant*, 16> Elts;
 | 
						|
      for (unsigned i = 0; i < VWidth; ++i) {
 | 
						|
        if (UndefElts[i])
 | 
						|
          Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
 | 
						|
        else
 | 
						|
          Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
 | 
						|
                                          Shuffle->getMaskValue(i)));
 | 
						|
      }
 | 
						|
      I->setOperand(2, ConstantVector::get(Elts));
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Select: {
 | 
						|
    // If this is a vector select, try to transform the select condition based
 | 
						|
    // on the current demanded elements.
 | 
						|
    SelectInst *Sel = cast<SelectInst>(I);
 | 
						|
    if (Sel->getCondition()->getType()->isVectorTy()) {
 | 
						|
      // TODO: We are not doing anything with UndefElts based on this call.
 | 
						|
      // It is overwritten below based on the other select operands. If an
 | 
						|
      // element of the select condition is known undef, then we are free to
 | 
						|
      // choose the output value from either arm of the select. If we know that
 | 
						|
      // one of those values is undef, then the output can be undef.
 | 
						|
      simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
 | 
						|
    }
 | 
						|
 | 
						|
    // Next, see if we can transform the arms of the select.
 | 
						|
    APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
 | 
						|
    if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
 | 
						|
      for (unsigned i = 0; i < VWidth; i++) {
 | 
						|
        // isNullValue() always returns false when called on a ConstantExpr.
 | 
						|
        // Skip constant expressions to avoid propagating incorrect information.
 | 
						|
        Constant *CElt = CV->getAggregateElement(i);
 | 
						|
        if (isa<ConstantExpr>(CElt))
 | 
						|
          continue;
 | 
						|
        // TODO: If a select condition element is undef, we can demand from
 | 
						|
        // either side. If one side is known undef, choosing that side would
 | 
						|
        // propagate undef.
 | 
						|
        if (CElt->isNullValue())
 | 
						|
          DemandedLHS.clearBit(i);
 | 
						|
        else
 | 
						|
          DemandedRHS.clearBit(i);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
 | 
						|
    simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
 | 
						|
 | 
						|
    // Output elements are undefined if the element from each arm is undefined.
 | 
						|
    // TODO: This can be improved. See comment in select condition handling.
 | 
						|
    UndefElts = UndefElts2 & UndefElts3;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::BitCast: {
 | 
						|
    // Vector->vector casts only.
 | 
						|
    VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
 | 
						|
    if (!VTy) break;
 | 
						|
    unsigned InVWidth = VTy->getNumElements();
 | 
						|
    APInt InputDemandedElts(InVWidth, 0);
 | 
						|
    UndefElts2 = APInt(InVWidth, 0);
 | 
						|
    unsigned Ratio;
 | 
						|
 | 
						|
    if (VWidth == InVWidth) {
 | 
						|
      // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
 | 
						|
      // elements as are demanded of us.
 | 
						|
      Ratio = 1;
 | 
						|
      InputDemandedElts = DemandedElts;
 | 
						|
    } else if ((VWidth % InVWidth) == 0) {
 | 
						|
      // If the number of elements in the output is a multiple of the number of
 | 
						|
      // elements in the input then an input element is live if any of the
 | 
						|
      // corresponding output elements are live.
 | 
						|
      Ratio = VWidth / InVWidth;
 | 
						|
      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
 | 
						|
        if (DemandedElts[OutIdx])
 | 
						|
          InputDemandedElts.setBit(OutIdx / Ratio);
 | 
						|
    } else if ((InVWidth % VWidth) == 0) {
 | 
						|
      // If the number of elements in the input is a multiple of the number of
 | 
						|
      // elements in the output then an input element is live if the
 | 
						|
      // corresponding output element is live.
 | 
						|
      Ratio = InVWidth / VWidth;
 | 
						|
      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
 | 
						|
        if (DemandedElts[InIdx / Ratio])
 | 
						|
          InputDemandedElts.setBit(InIdx);
 | 
						|
    } else {
 | 
						|
      // Unsupported so far.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
 | 
						|
 | 
						|
    if (VWidth == InVWidth) {
 | 
						|
      UndefElts = UndefElts2;
 | 
						|
    } else if ((VWidth % InVWidth) == 0) {
 | 
						|
      // If the number of elements in the output is a multiple of the number of
 | 
						|
      // elements in the input then an output element is undef if the
 | 
						|
      // corresponding input element is undef.
 | 
						|
      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
 | 
						|
        if (UndefElts2[OutIdx / Ratio])
 | 
						|
          UndefElts.setBit(OutIdx);
 | 
						|
    } else if ((InVWidth % VWidth) == 0) {
 | 
						|
      // If the number of elements in the input is a multiple of the number of
 | 
						|
      // elements in the output then an output element is undef if all of the
 | 
						|
      // corresponding input elements are undef.
 | 
						|
      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
 | 
						|
        APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
 | 
						|
        if (SubUndef.countPopulation() == Ratio)
 | 
						|
          UndefElts.setBit(OutIdx);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("Unimp");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
  case Instruction::FPExt:
 | 
						|
    simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Call: {
 | 
						|
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
 | 
						|
    if (!II) break;
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    case Intrinsic::x86_xop_vfrcz_ss:
 | 
						|
    case Intrinsic::x86_xop_vfrcz_sd:
 | 
						|
      // The instructions for these intrinsics are speced to zero upper bits not
 | 
						|
      // pass them through like other scalar intrinsics. So we shouldn't just
 | 
						|
      // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
 | 
						|
      // Instead we should return a zero vector.
 | 
						|
      if (!DemandedElts[0]) {
 | 
						|
        Worklist.Add(II);
 | 
						|
        return ConstantAggregateZero::get(II->getType());
 | 
						|
      }
 | 
						|
 | 
						|
      // Only the lower element is used.
 | 
						|
      DemandedElts = 1;
 | 
						|
      simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
 | 
						|
 | 
						|
      // Only the lower element is undefined. The high elements are zero.
 | 
						|
      UndefElts = UndefElts[0];
 | 
						|
      break;
 | 
						|
 | 
						|
    // Unary scalar-as-vector operations that work column-wise.
 | 
						|
    case Intrinsic::x86_sse_rcp_ss:
 | 
						|
    case Intrinsic::x86_sse_rsqrt_ss:
 | 
						|
      simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
 | 
						|
 | 
						|
      // If lowest element of a scalar op isn't used then use Arg0.
 | 
						|
      if (!DemandedElts[0]) {
 | 
						|
        Worklist.Add(II);
 | 
						|
        return II->getArgOperand(0);
 | 
						|
      }
 | 
						|
      // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
 | 
						|
      // checks).
 | 
						|
      break;
 | 
						|
 | 
						|
    // Binary scalar-as-vector operations that work column-wise. The high
 | 
						|
    // elements come from operand 0. The low element is a function of both
 | 
						|
    // operands.
 | 
						|
    case Intrinsic::x86_sse_min_ss:
 | 
						|
    case Intrinsic::x86_sse_max_ss:
 | 
						|
    case Intrinsic::x86_sse_cmp_ss:
 | 
						|
    case Intrinsic::x86_sse2_min_sd:
 | 
						|
    case Intrinsic::x86_sse2_max_sd:
 | 
						|
    case Intrinsic::x86_sse2_cmp_sd: {
 | 
						|
      simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
 | 
						|
 | 
						|
      // If lowest element of a scalar op isn't used then use Arg0.
 | 
						|
      if (!DemandedElts[0]) {
 | 
						|
        Worklist.Add(II);
 | 
						|
        return II->getArgOperand(0);
 | 
						|
      }
 | 
						|
 | 
						|
      // Only lower element is used for operand 1.
 | 
						|
      DemandedElts = 1;
 | 
						|
      simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
 | 
						|
 | 
						|
      // Lower element is undefined if both lower elements are undefined.
 | 
						|
      // Consider things like undef&0.  The result is known zero, not undef.
 | 
						|
      if (!UndefElts2[0])
 | 
						|
        UndefElts.clearBit(0);
 | 
						|
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Binary scalar-as-vector operations that work column-wise. The high
 | 
						|
    // elements come from operand 0 and the low element comes from operand 1.
 | 
						|
    case Intrinsic::x86_sse41_round_ss:
 | 
						|
    case Intrinsic::x86_sse41_round_sd: {
 | 
						|
      // Don't use the low element of operand 0.
 | 
						|
      APInt DemandedElts2 = DemandedElts;
 | 
						|
      DemandedElts2.clearBit(0);
 | 
						|
      simplifyAndSetOp(II, 0, DemandedElts2, UndefElts);
 | 
						|
 | 
						|
      // If lowest element of a scalar op isn't used then use Arg0.
 | 
						|
      if (!DemandedElts[0]) {
 | 
						|
        Worklist.Add(II);
 | 
						|
        return II->getArgOperand(0);
 | 
						|
      }
 | 
						|
 | 
						|
      // Only lower element is used for operand 1.
 | 
						|
      DemandedElts = 1;
 | 
						|
      simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
 | 
						|
 | 
						|
      // Take the high undef elements from operand 0 and take the lower element
 | 
						|
      // from operand 1.
 | 
						|
      UndefElts.clearBit(0);
 | 
						|
      UndefElts |= UndefElts2[0];
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Three input scalar-as-vector operations that work column-wise. The high
 | 
						|
    // elements come from operand 0 and the low element is a function of all
 | 
						|
    // three inputs.
 | 
						|
    case Intrinsic::x86_avx512_mask_add_ss_round:
 | 
						|
    case Intrinsic::x86_avx512_mask_div_ss_round:
 | 
						|
    case Intrinsic::x86_avx512_mask_mul_ss_round:
 | 
						|
    case Intrinsic::x86_avx512_mask_sub_ss_round:
 | 
						|
    case Intrinsic::x86_avx512_mask_max_ss_round:
 | 
						|
    case Intrinsic::x86_avx512_mask_min_ss_round:
 | 
						|
    case Intrinsic::x86_avx512_mask_add_sd_round:
 | 
						|
    case Intrinsic::x86_avx512_mask_div_sd_round:
 | 
						|
    case Intrinsic::x86_avx512_mask_mul_sd_round:
 | 
						|
    case Intrinsic::x86_avx512_mask_sub_sd_round:
 | 
						|
    case Intrinsic::x86_avx512_mask_max_sd_round:
 | 
						|
    case Intrinsic::x86_avx512_mask_min_sd_round:
 | 
						|
      simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
 | 
						|
 | 
						|
      // If lowest element of a scalar op isn't used then use Arg0.
 | 
						|
      if (!DemandedElts[0]) {
 | 
						|
        Worklist.Add(II);
 | 
						|
        return II->getArgOperand(0);
 | 
						|
      }
 | 
						|
 | 
						|
      // Only lower element is used for operand 1 and 2.
 | 
						|
      DemandedElts = 1;
 | 
						|
      simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
 | 
						|
      simplifyAndSetOp(II, 2, DemandedElts, UndefElts3);
 | 
						|
 | 
						|
      // Lower element is undefined if all three lower elements are undefined.
 | 
						|
      // Consider things like undef&0.  The result is known zero, not undef.
 | 
						|
      if (!UndefElts2[0] || !UndefElts3[0])
 | 
						|
        UndefElts.clearBit(0);
 | 
						|
 | 
						|
      break;
 | 
						|
 | 
						|
    case Intrinsic::x86_sse2_packssdw_128:
 | 
						|
    case Intrinsic::x86_sse2_packsswb_128:
 | 
						|
    case Intrinsic::x86_sse2_packuswb_128:
 | 
						|
    case Intrinsic::x86_sse41_packusdw:
 | 
						|
    case Intrinsic::x86_avx2_packssdw:
 | 
						|
    case Intrinsic::x86_avx2_packsswb:
 | 
						|
    case Intrinsic::x86_avx2_packusdw:
 | 
						|
    case Intrinsic::x86_avx2_packuswb:
 | 
						|
    case Intrinsic::x86_avx512_packssdw_512:
 | 
						|
    case Intrinsic::x86_avx512_packsswb_512:
 | 
						|
    case Intrinsic::x86_avx512_packusdw_512:
 | 
						|
    case Intrinsic::x86_avx512_packuswb_512: {
 | 
						|
      auto *Ty0 = II->getArgOperand(0)->getType();
 | 
						|
      unsigned InnerVWidth = Ty0->getVectorNumElements();
 | 
						|
      assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
 | 
						|
 | 
						|
      unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
 | 
						|
      unsigned VWidthPerLane = VWidth / NumLanes;
 | 
						|
      unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
 | 
						|
 | 
						|
      // Per lane, pack the elements of the first input and then the second.
 | 
						|
      // e.g.
 | 
						|
      // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
 | 
						|
      // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
 | 
						|
      for (int OpNum = 0; OpNum != 2; ++OpNum) {
 | 
						|
        APInt OpDemandedElts(InnerVWidth, 0);
 | 
						|
        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
 | 
						|
          unsigned LaneIdx = Lane * VWidthPerLane;
 | 
						|
          for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
 | 
						|
            unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
 | 
						|
            if (DemandedElts[Idx])
 | 
						|
              OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Demand elements from the operand.
 | 
						|
        APInt OpUndefElts(InnerVWidth, 0);
 | 
						|
        simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts);
 | 
						|
 | 
						|
        // Pack the operand's UNDEF elements, one lane at a time.
 | 
						|
        OpUndefElts = OpUndefElts.zext(VWidth);
 | 
						|
        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
 | 
						|
          APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
 | 
						|
          LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
 | 
						|
          LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
 | 
						|
          UndefElts |= LaneElts;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // PSHUFB
 | 
						|
    case Intrinsic::x86_ssse3_pshuf_b_128:
 | 
						|
    case Intrinsic::x86_avx2_pshuf_b:
 | 
						|
    case Intrinsic::x86_avx512_pshuf_b_512:
 | 
						|
    // PERMILVAR
 | 
						|
    case Intrinsic::x86_avx_vpermilvar_ps:
 | 
						|
    case Intrinsic::x86_avx_vpermilvar_ps_256:
 | 
						|
    case Intrinsic::x86_avx512_vpermilvar_ps_512:
 | 
						|
    case Intrinsic::x86_avx_vpermilvar_pd:
 | 
						|
    case Intrinsic::x86_avx_vpermilvar_pd_256:
 | 
						|
    case Intrinsic::x86_avx512_vpermilvar_pd_512:
 | 
						|
    // PERMV
 | 
						|
    case Intrinsic::x86_avx2_permd:
 | 
						|
    case Intrinsic::x86_avx2_permps: {
 | 
						|
      simplifyAndSetOp(II, 1, DemandedElts, UndefElts);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // SSE4A instructions leave the upper 64-bits of the 128-bit result
 | 
						|
    // in an undefined state.
 | 
						|
    case Intrinsic::x86_sse4a_extrq:
 | 
						|
    case Intrinsic::x86_sse4a_extrqi:
 | 
						|
    case Intrinsic::x86_sse4a_insertq:
 | 
						|
    case Intrinsic::x86_sse4a_insertqi:
 | 
						|
      UndefElts.setHighBits(VWidth / 2);
 | 
						|
      break;
 | 
						|
    case Intrinsic::amdgcn_buffer_load:
 | 
						|
    case Intrinsic::amdgcn_buffer_load_format:
 | 
						|
      return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts);
 | 
						|
    default: {
 | 
						|
      if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID()))
 | 
						|
        return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0);
 | 
						|
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    } // switch on IntrinsicID
 | 
						|
    break;
 | 
						|
  } // case Call
 | 
						|
  } // switch on Opcode
 | 
						|
 | 
						|
  // TODO: We bail completely on integer div/rem and shifts because they have
 | 
						|
  // UB/poison potential, but that should be refined.
 | 
						|
  BinaryOperator *BO;
 | 
						|
  if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
 | 
						|
    simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
 | 
						|
    simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
 | 
						|
 | 
						|
    // Any change to an instruction with potential poison must clear those flags
 | 
						|
    // because we can not guarantee those constraints now. Other analysis may
 | 
						|
    // determine that it is safe to re-apply the flags.
 | 
						|
    if (MadeChange)
 | 
						|
      BO->dropPoisonGeneratingFlags();
 | 
						|
 | 
						|
    // Output elements are undefined if both are undefined. Consider things
 | 
						|
    // like undef & 0. The result is known zero, not undef.
 | 
						|
    UndefElts &= UndefElts2;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange ? I : nullptr;
 | 
						|
}
 |