forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			3509 lines
		
	
	
		
			138 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3509 lines
		
	
	
		
			138 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// InstructionCombining - Combine instructions to form fewer, simple
 | 
						|
// instructions.  This pass does not modify the CFG.  This pass is where
 | 
						|
// algebraic simplification happens.
 | 
						|
//
 | 
						|
// This pass combines things like:
 | 
						|
//    %Y = add i32 %X, 1
 | 
						|
//    %Z = add i32 %Y, 1
 | 
						|
// into:
 | 
						|
//    %Z = add i32 %X, 2
 | 
						|
//
 | 
						|
// This is a simple worklist driven algorithm.
 | 
						|
//
 | 
						|
// This pass guarantees that the following canonicalizations are performed on
 | 
						|
// the program:
 | 
						|
//    1. If a binary operator has a constant operand, it is moved to the RHS
 | 
						|
//    2. Bitwise operators with constant operands are always grouped so that
 | 
						|
//       shifts are performed first, then or's, then and's, then xor's.
 | 
						|
//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
 | 
						|
//    4. All cmp instructions on boolean values are replaced with logical ops
 | 
						|
//    5. add X, X is represented as (X*2) => (X << 1)
 | 
						|
//    6. Multiplies with a power-of-two constant argument are transformed into
 | 
						|
//       shifts.
 | 
						|
//   ... etc.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstCombineInternal.h"
 | 
						|
#include "llvm-c/Initialization.h"
 | 
						|
#include "llvm-c/Transforms/InstCombine.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/TinyPtrVector.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/BasicAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/EHPersonalities.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | 
						|
#include "llvm/Analysis/TargetFolder.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DIBuilder.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/LegacyPassManager.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CBindingWrapping.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/DebugCounter.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/InstCombine/InstCombine.h"
 | 
						|
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <memory>
 | 
						|
#include <string>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "instcombine"
 | 
						|
 | 
						|
STATISTIC(NumCombined , "Number of insts combined");
 | 
						|
STATISTIC(NumConstProp, "Number of constant folds");
 | 
						|
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
 | 
						|
STATISTIC(NumSunkInst , "Number of instructions sunk");
 | 
						|
STATISTIC(NumExpand,    "Number of expansions");
 | 
						|
STATISTIC(NumFactor   , "Number of factorizations");
 | 
						|
STATISTIC(NumReassoc  , "Number of reassociations");
 | 
						|
DEBUG_COUNTER(VisitCounter, "instcombine-visit",
 | 
						|
              "Controls which instructions are visited");
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
 | 
						|
                                              cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
EnableExpensiveCombines("expensive-combines",
 | 
						|
                        cl::desc("Enable expensive instruction combines"));
 | 
						|
 | 
						|
static cl::opt<unsigned>
 | 
						|
MaxArraySize("instcombine-maxarray-size", cl::init(1024),
 | 
						|
             cl::desc("Maximum array size considered when doing a combine"));
 | 
						|
 | 
						|
// FIXME: Remove this flag when it is no longer necessary to convert
 | 
						|
// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
 | 
						|
// increases variable availability at the cost of accuracy. Variables that
 | 
						|
// cannot be promoted by mem2reg or SROA will be described as living in memory
 | 
						|
// for their entire lifetime. However, passes like DSE and instcombine can
 | 
						|
// delete stores to the alloca, leading to misleading and inaccurate debug
 | 
						|
// information. This flag can be removed when those passes are fixed.
 | 
						|
static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
 | 
						|
                                               cl::Hidden, cl::init(true));
 | 
						|
 | 
						|
Value *InstCombiner::EmitGEPOffset(User *GEP) {
 | 
						|
  return llvm::EmitGEPOffset(&Builder, DL, GEP);
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if it is desirable to convert an integer computation from a
 | 
						|
/// given bit width to a new bit width.
 | 
						|
/// We don't want to convert from a legal to an illegal type or from a smaller
 | 
						|
/// to a larger illegal type. A width of '1' is always treated as a legal type
 | 
						|
/// because i1 is a fundamental type in IR, and there are many specialized
 | 
						|
/// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
 | 
						|
/// legal to convert to, in order to open up more combining opportunities.
 | 
						|
/// NOTE: this treats i8, i16 and i32 specially, due to them being so common
 | 
						|
/// from frontend languages.
 | 
						|
bool InstCombiner::shouldChangeType(unsigned FromWidth,
 | 
						|
                                    unsigned ToWidth) const {
 | 
						|
  bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
 | 
						|
  bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
 | 
						|
 | 
						|
  // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
 | 
						|
  // shrink types, to prevent infinite loops.
 | 
						|
  if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If this is a legal integer from type, and the result would be an illegal
 | 
						|
  // type, don't do the transformation.
 | 
						|
  if (FromLegal && !ToLegal)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Otherwise, if both are illegal, do not increase the size of the result. We
 | 
						|
  // do allow things like i160 -> i64, but not i64 -> i160.
 | 
						|
  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if it is desirable to convert a computation from 'From' to 'To'.
 | 
						|
/// We don't want to convert from a legal to an illegal type or from a smaller
 | 
						|
/// to a larger illegal type. i1 is always treated as a legal type because it is
 | 
						|
/// a fundamental type in IR, and there are many specialized optimizations for
 | 
						|
/// i1 types.
 | 
						|
bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
 | 
						|
  assert(From->isIntegerTy() && To->isIntegerTy());
 | 
						|
 | 
						|
  unsigned FromWidth = From->getPrimitiveSizeInBits();
 | 
						|
  unsigned ToWidth = To->getPrimitiveSizeInBits();
 | 
						|
  return shouldChangeType(FromWidth, ToWidth);
 | 
						|
}
 | 
						|
 | 
						|
// Return true, if No Signed Wrap should be maintained for I.
 | 
						|
// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
 | 
						|
// where both B and C should be ConstantInts, results in a constant that does
 | 
						|
// not overflow. This function only handles the Add and Sub opcodes. For
 | 
						|
// all other opcodes, the function conservatively returns false.
 | 
						|
static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
 | 
						|
  OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
 | 
						|
  if (!OBO || !OBO->hasNoSignedWrap())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We reason about Add and Sub Only.
 | 
						|
  Instruction::BinaryOps Opcode = I.getOpcode();
 | 
						|
  if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const APInt *BVal, *CVal;
 | 
						|
  if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Overflow = false;
 | 
						|
  if (Opcode == Instruction::Add)
 | 
						|
    (void)BVal->sadd_ov(*CVal, Overflow);
 | 
						|
  else
 | 
						|
    (void)BVal->ssub_ov(*CVal, Overflow);
 | 
						|
 | 
						|
  return !Overflow;
 | 
						|
}
 | 
						|
 | 
						|
/// Conservatively clears subclassOptionalData after a reassociation or
 | 
						|
/// commutation. We preserve fast-math flags when applicable as they can be
 | 
						|
/// preserved.
 | 
						|
static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
 | 
						|
  FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
 | 
						|
  if (!FPMO) {
 | 
						|
    I.clearSubclassOptionalData();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  FastMathFlags FMF = I.getFastMathFlags();
 | 
						|
  I.clearSubclassOptionalData();
 | 
						|
  I.setFastMathFlags(FMF);
 | 
						|
}
 | 
						|
 | 
						|
/// Combine constant operands of associative operations either before or after a
 | 
						|
/// cast to eliminate one of the associative operations:
 | 
						|
/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
 | 
						|
/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
 | 
						|
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) {
 | 
						|
  auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
 | 
						|
  if (!Cast || !Cast->hasOneUse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TODO: Enhance logic for other casts and remove this check.
 | 
						|
  auto CastOpcode = Cast->getOpcode();
 | 
						|
  if (CastOpcode != Instruction::ZExt)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TODO: Enhance logic for other BinOps and remove this check.
 | 
						|
  if (!BinOp1->isBitwiseLogicOp())
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto AssocOpcode = BinOp1->getOpcode();
 | 
						|
  auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
 | 
						|
  if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Constant *C1, *C2;
 | 
						|
  if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
 | 
						|
      !match(BinOp2->getOperand(1), m_Constant(C2)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TODO: This assumes a zext cast.
 | 
						|
  // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
 | 
						|
  // to the destination type might lose bits.
 | 
						|
 | 
						|
  // Fold the constants together in the destination type:
 | 
						|
  // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
 | 
						|
  Type *DestTy = C1->getType();
 | 
						|
  Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
 | 
						|
  Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
 | 
						|
  Cast->setOperand(0, BinOp2->getOperand(0));
 | 
						|
  BinOp1->setOperand(1, FoldedC);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// This performs a few simplifications for operators that are associative or
 | 
						|
/// commutative:
 | 
						|
///
 | 
						|
///  Commutative operators:
 | 
						|
///
 | 
						|
///  1. Order operands such that they are listed from right (least complex) to
 | 
						|
///     left (most complex).  This puts constants before unary operators before
 | 
						|
///     binary operators.
 | 
						|
///
 | 
						|
///  Associative operators:
 | 
						|
///
 | 
						|
///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
 | 
						|
///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
 | 
						|
///
 | 
						|
///  Associative and commutative operators:
 | 
						|
///
 | 
						|
///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
 | 
						|
///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
 | 
						|
///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
 | 
						|
///     if C1 and C2 are constants.
 | 
						|
bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
 | 
						|
  Instruction::BinaryOps Opcode = I.getOpcode();
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  do {
 | 
						|
    // Order operands such that they are listed from right (least complex) to
 | 
						|
    // left (most complex).  This puts constants before unary operators before
 | 
						|
    // binary operators.
 | 
						|
    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
 | 
						|
        getComplexity(I.getOperand(1)))
 | 
						|
      Changed = !I.swapOperands();
 | 
						|
 | 
						|
    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
 | 
						|
    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
 | 
						|
 | 
						|
    if (I.isAssociative()) {
 | 
						|
      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
 | 
						|
      if (Op0 && Op0->getOpcode() == Opcode) {
 | 
						|
        Value *A = Op0->getOperand(0);
 | 
						|
        Value *B = Op0->getOperand(1);
 | 
						|
        Value *C = I.getOperand(1);
 | 
						|
 | 
						|
        // Does "B op C" simplify?
 | 
						|
        if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
 | 
						|
          // It simplifies to V.  Form "A op V".
 | 
						|
          I.setOperand(0, A);
 | 
						|
          I.setOperand(1, V);
 | 
						|
          // Conservatively clear the optional flags, since they may not be
 | 
						|
          // preserved by the reassociation.
 | 
						|
          if (MaintainNoSignedWrap(I, B, C) &&
 | 
						|
              (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
 | 
						|
            // Note: this is only valid because SimplifyBinOp doesn't look at
 | 
						|
            // the operands to Op0.
 | 
						|
            I.clearSubclassOptionalData();
 | 
						|
            I.setHasNoSignedWrap(true);
 | 
						|
          } else {
 | 
						|
            ClearSubclassDataAfterReassociation(I);
 | 
						|
          }
 | 
						|
 | 
						|
          Changed = true;
 | 
						|
          ++NumReassoc;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
 | 
						|
      if (Op1 && Op1->getOpcode() == Opcode) {
 | 
						|
        Value *A = I.getOperand(0);
 | 
						|
        Value *B = Op1->getOperand(0);
 | 
						|
        Value *C = Op1->getOperand(1);
 | 
						|
 | 
						|
        // Does "A op B" simplify?
 | 
						|
        if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
 | 
						|
          // It simplifies to V.  Form "V op C".
 | 
						|
          I.setOperand(0, V);
 | 
						|
          I.setOperand(1, C);
 | 
						|
          // Conservatively clear the optional flags, since they may not be
 | 
						|
          // preserved by the reassociation.
 | 
						|
          ClearSubclassDataAfterReassociation(I);
 | 
						|
          Changed = true;
 | 
						|
          ++NumReassoc;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (I.isAssociative() && I.isCommutative()) {
 | 
						|
      if (simplifyAssocCastAssoc(&I)) {
 | 
						|
        Changed = true;
 | 
						|
        ++NumReassoc;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
 | 
						|
      if (Op0 && Op0->getOpcode() == Opcode) {
 | 
						|
        Value *A = Op0->getOperand(0);
 | 
						|
        Value *B = Op0->getOperand(1);
 | 
						|
        Value *C = I.getOperand(1);
 | 
						|
 | 
						|
        // Does "C op A" simplify?
 | 
						|
        if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
 | 
						|
          // It simplifies to V.  Form "V op B".
 | 
						|
          I.setOperand(0, V);
 | 
						|
          I.setOperand(1, B);
 | 
						|
          // Conservatively clear the optional flags, since they may not be
 | 
						|
          // preserved by the reassociation.
 | 
						|
          ClearSubclassDataAfterReassociation(I);
 | 
						|
          Changed = true;
 | 
						|
          ++NumReassoc;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
 | 
						|
      if (Op1 && Op1->getOpcode() == Opcode) {
 | 
						|
        Value *A = I.getOperand(0);
 | 
						|
        Value *B = Op1->getOperand(0);
 | 
						|
        Value *C = Op1->getOperand(1);
 | 
						|
 | 
						|
        // Does "C op A" simplify?
 | 
						|
        if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
 | 
						|
          // It simplifies to V.  Form "B op V".
 | 
						|
          I.setOperand(0, B);
 | 
						|
          I.setOperand(1, V);
 | 
						|
          // Conservatively clear the optional flags, since they may not be
 | 
						|
          // preserved by the reassociation.
 | 
						|
          ClearSubclassDataAfterReassociation(I);
 | 
						|
          Changed = true;
 | 
						|
          ++NumReassoc;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
 | 
						|
      // if C1 and C2 are constants.
 | 
						|
      Value *A, *B;
 | 
						|
      Constant *C1, *C2;
 | 
						|
      if (Op0 && Op1 &&
 | 
						|
          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
 | 
						|
          match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
 | 
						|
          match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
 | 
						|
        BinaryOperator *NewBO = BinaryOperator::Create(Opcode, A, B);
 | 
						|
        if (isa<FPMathOperator>(NewBO)) {
 | 
						|
          FastMathFlags Flags = I.getFastMathFlags();
 | 
						|
          Flags &= Op0->getFastMathFlags();
 | 
						|
          Flags &= Op1->getFastMathFlags();
 | 
						|
          NewBO->setFastMathFlags(Flags);
 | 
						|
        }
 | 
						|
        InsertNewInstWith(NewBO, I);
 | 
						|
        NewBO->takeName(Op1);
 | 
						|
        I.setOperand(0, NewBO);
 | 
						|
        I.setOperand(1, ConstantExpr::get(Opcode, C1, C2));
 | 
						|
        // Conservatively clear the optional flags, since they may not be
 | 
						|
        // preserved by the reassociation.
 | 
						|
        ClearSubclassDataAfterReassociation(I);
 | 
						|
 | 
						|
        Changed = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // No further simplifications.
 | 
						|
    return Changed;
 | 
						|
  } while (true);
 | 
						|
}
 | 
						|
 | 
						|
/// Return whether "X LOp (Y ROp Z)" is always equal to
 | 
						|
/// "(X LOp Y) ROp (X LOp Z)".
 | 
						|
static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
 | 
						|
                                     Instruction::BinaryOps ROp) {
 | 
						|
  // X & (Y | Z) <--> (X & Y) | (X & Z)
 | 
						|
  // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
 | 
						|
  if (LOp == Instruction::And)
 | 
						|
    return ROp == Instruction::Or || ROp == Instruction::Xor;
 | 
						|
 | 
						|
  // X | (Y & Z) <--> (X | Y) & (X | Z)
 | 
						|
  if (LOp == Instruction::Or)
 | 
						|
    return ROp == Instruction::And;
 | 
						|
 | 
						|
  // X * (Y + Z) <--> (X * Y) + (X * Z)
 | 
						|
  // X * (Y - Z) <--> (X * Y) - (X * Z)
 | 
						|
  if (LOp == Instruction::Mul)
 | 
						|
    return ROp == Instruction::Add || ROp == Instruction::Sub;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Return whether "(X LOp Y) ROp Z" is always equal to
 | 
						|
/// "(X ROp Z) LOp (Y ROp Z)".
 | 
						|
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
 | 
						|
                                     Instruction::BinaryOps ROp) {
 | 
						|
  if (Instruction::isCommutative(ROp))
 | 
						|
    return leftDistributesOverRight(ROp, LOp);
 | 
						|
 | 
						|
  // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
 | 
						|
  return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
 | 
						|
 | 
						|
  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
 | 
						|
  // but this requires knowing that the addition does not overflow and other
 | 
						|
  // such subtleties.
 | 
						|
}
 | 
						|
 | 
						|
/// This function returns identity value for given opcode, which can be used to
 | 
						|
/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
 | 
						|
static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
 | 
						|
  if (isa<Constant>(V))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
 | 
						|
}
 | 
						|
 | 
						|
/// This function predicates factorization using distributive laws. By default,
 | 
						|
/// it just returns the 'Op' inputs. But for special-cases like
 | 
						|
/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
 | 
						|
/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
 | 
						|
/// allow more factorization opportunities.
 | 
						|
static Instruction::BinaryOps
 | 
						|
getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
 | 
						|
                          Value *&LHS, Value *&RHS) {
 | 
						|
  assert(Op && "Expected a binary operator");
 | 
						|
  LHS = Op->getOperand(0);
 | 
						|
  RHS = Op->getOperand(1);
 | 
						|
  if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
 | 
						|
    Constant *C;
 | 
						|
    if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
 | 
						|
      // X << C --> X * (1 << C)
 | 
						|
      RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
 | 
						|
      return Instruction::Mul;
 | 
						|
    }
 | 
						|
    // TODO: We can add other conversions e.g. shr => div etc.
 | 
						|
  }
 | 
						|
  return Op->getOpcode();
 | 
						|
}
 | 
						|
 | 
						|
/// This tries to simplify binary operations by factorizing out common terms
 | 
						|
/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
 | 
						|
Value *InstCombiner::tryFactorization(BinaryOperator &I,
 | 
						|
                                      Instruction::BinaryOps InnerOpcode,
 | 
						|
                                      Value *A, Value *B, Value *C, Value *D) {
 | 
						|
  assert(A && B && C && D && "All values must be provided");
 | 
						|
 | 
						|
  Value *V = nullptr;
 | 
						|
  Value *SimplifiedInst = nullptr;
 | 
						|
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | 
						|
  Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
 | 
						|
 | 
						|
  // Does "X op' Y" always equal "Y op' X"?
 | 
						|
  bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
 | 
						|
 | 
						|
  // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
 | 
						|
  if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
 | 
						|
    // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
 | 
						|
    // commutative case, "(A op' B) op (C op' A)"?
 | 
						|
    if (A == C || (InnerCommutative && A == D)) {
 | 
						|
      if (A != C)
 | 
						|
        std::swap(C, D);
 | 
						|
      // Consider forming "A op' (B op D)".
 | 
						|
      // If "B op D" simplifies then it can be formed with no cost.
 | 
						|
      V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
 | 
						|
      // If "B op D" doesn't simplify then only go on if both of the existing
 | 
						|
      // operations "A op' B" and "C op' D" will be zapped as no longer used.
 | 
						|
      if (!V && LHS->hasOneUse() && RHS->hasOneUse())
 | 
						|
        V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
 | 
						|
      if (V) {
 | 
						|
        SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
 | 
						|
  if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
 | 
						|
    // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
 | 
						|
    // commutative case, "(A op' B) op (B op' D)"?
 | 
						|
    if (B == D || (InnerCommutative && B == C)) {
 | 
						|
      if (B != D)
 | 
						|
        std::swap(C, D);
 | 
						|
      // Consider forming "(A op C) op' B".
 | 
						|
      // If "A op C" simplifies then it can be formed with no cost.
 | 
						|
      V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
 | 
						|
 | 
						|
      // If "A op C" doesn't simplify then only go on if both of the existing
 | 
						|
      // operations "A op' B" and "C op' D" will be zapped as no longer used.
 | 
						|
      if (!V && LHS->hasOneUse() && RHS->hasOneUse())
 | 
						|
        V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
 | 
						|
      if (V) {
 | 
						|
        SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  if (SimplifiedInst) {
 | 
						|
    ++NumFactor;
 | 
						|
    SimplifiedInst->takeName(&I);
 | 
						|
 | 
						|
    // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
 | 
						|
    // TODO: Check for NUW.
 | 
						|
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
 | 
						|
      if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
 | 
						|
        bool HasNSW = false;
 | 
						|
        if (isa<OverflowingBinaryOperator>(&I))
 | 
						|
          HasNSW = I.hasNoSignedWrap();
 | 
						|
 | 
						|
        if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS))
 | 
						|
          HasNSW &= LOBO->hasNoSignedWrap();
 | 
						|
 | 
						|
        if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS))
 | 
						|
          HasNSW &= ROBO->hasNoSignedWrap();
 | 
						|
 | 
						|
        // We can propagate 'nsw' if we know that
 | 
						|
        //  %Y = mul nsw i16 %X, C
 | 
						|
        //  %Z = add nsw i16 %Y, %X
 | 
						|
        // =>
 | 
						|
        //  %Z = mul nsw i16 %X, C+1
 | 
						|
        //
 | 
						|
        // iff C+1 isn't INT_MIN
 | 
						|
        const APInt *CInt;
 | 
						|
        if (TopLevelOpcode == Instruction::Add &&
 | 
						|
            InnerOpcode == Instruction::Mul)
 | 
						|
          if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
 | 
						|
            BO->setHasNoSignedWrap(HasNSW);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return SimplifiedInst;
 | 
						|
}
 | 
						|
 | 
						|
/// This tries to simplify binary operations which some other binary operation
 | 
						|
/// distributes over either by factorizing out common terms
 | 
						|
/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
 | 
						|
/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
 | 
						|
/// Returns the simplified value, or null if it didn't simplify.
 | 
						|
Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
 | 
						|
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | 
						|
  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
 | 
						|
  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
 | 
						|
  Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
 | 
						|
 | 
						|
  {
 | 
						|
    // Factorization.
 | 
						|
    Value *A, *B, *C, *D;
 | 
						|
    Instruction::BinaryOps LHSOpcode, RHSOpcode;
 | 
						|
    if (Op0)
 | 
						|
      LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
 | 
						|
    if (Op1)
 | 
						|
      RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
 | 
						|
 | 
						|
    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
 | 
						|
    // a common term.
 | 
						|
    if (Op0 && Op1 && LHSOpcode == RHSOpcode)
 | 
						|
      if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
 | 
						|
        return V;
 | 
						|
 | 
						|
    // The instruction has the form "(A op' B) op (C)".  Try to factorize common
 | 
						|
    // term.
 | 
						|
    if (Op0)
 | 
						|
      if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
 | 
						|
        if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
 | 
						|
          return V;
 | 
						|
 | 
						|
    // The instruction has the form "(B) op (C op' D)".  Try to factorize common
 | 
						|
    // term.
 | 
						|
    if (Op1)
 | 
						|
      if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
 | 
						|
        if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
 | 
						|
          return V;
 | 
						|
  }
 | 
						|
 | 
						|
  // Expansion.
 | 
						|
  if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
 | 
						|
    // The instruction has the form "(A op' B) op C".  See if expanding it out
 | 
						|
    // to "(A op C) op' (B op C)" results in simplifications.
 | 
						|
    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
 | 
						|
    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
 | 
						|
 | 
						|
    Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
 | 
						|
    Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));
 | 
						|
 | 
						|
    // Do "A op C" and "B op C" both simplify?
 | 
						|
    if (L && R) {
 | 
						|
      // They do! Return "L op' R".
 | 
						|
      ++NumExpand;
 | 
						|
      C = Builder.CreateBinOp(InnerOpcode, L, R);
 | 
						|
      C->takeName(&I);
 | 
						|
      return C;
 | 
						|
    }
 | 
						|
 | 
						|
    // Does "A op C" simplify to the identity value for the inner opcode?
 | 
						|
    if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
 | 
						|
      // They do! Return "B op C".
 | 
						|
      ++NumExpand;
 | 
						|
      C = Builder.CreateBinOp(TopLevelOpcode, B, C);
 | 
						|
      C->takeName(&I);
 | 
						|
      return C;
 | 
						|
    }
 | 
						|
 | 
						|
    // Does "B op C" simplify to the identity value for the inner opcode?
 | 
						|
    if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
 | 
						|
      // They do! Return "A op C".
 | 
						|
      ++NumExpand;
 | 
						|
      C = Builder.CreateBinOp(TopLevelOpcode, A, C);
 | 
						|
      C->takeName(&I);
 | 
						|
      return C;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
 | 
						|
    // The instruction has the form "A op (B op' C)".  See if expanding it out
 | 
						|
    // to "(A op B) op' (A op C)" results in simplifications.
 | 
						|
    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
 | 
						|
    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
 | 
						|
 | 
						|
    Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
 | 
						|
    Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
 | 
						|
 | 
						|
    // Do "A op B" and "A op C" both simplify?
 | 
						|
    if (L && R) {
 | 
						|
      // They do! Return "L op' R".
 | 
						|
      ++NumExpand;
 | 
						|
      A = Builder.CreateBinOp(InnerOpcode, L, R);
 | 
						|
      A->takeName(&I);
 | 
						|
      return A;
 | 
						|
    }
 | 
						|
 | 
						|
    // Does "A op B" simplify to the identity value for the inner opcode?
 | 
						|
    if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
 | 
						|
      // They do! Return "A op C".
 | 
						|
      ++NumExpand;
 | 
						|
      A = Builder.CreateBinOp(TopLevelOpcode, A, C);
 | 
						|
      A->takeName(&I);
 | 
						|
      return A;
 | 
						|
    }
 | 
						|
 | 
						|
    // Does "A op C" simplify to the identity value for the inner opcode?
 | 
						|
    if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
 | 
						|
      // They do! Return "A op B".
 | 
						|
      ++NumExpand;
 | 
						|
      A = Builder.CreateBinOp(TopLevelOpcode, A, B);
 | 
						|
      A->takeName(&I);
 | 
						|
      return A;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
 | 
						|
}
 | 
						|
 | 
						|
Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
 | 
						|
                                                    Value *LHS, Value *RHS) {
 | 
						|
  Instruction::BinaryOps Opcode = I.getOpcode();
 | 
						|
  // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op
 | 
						|
  // c, e)))
 | 
						|
  Value *A, *B, *C, *D, *E;
 | 
						|
  Value *SI = nullptr;
 | 
						|
  if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) &&
 | 
						|
      match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) {
 | 
						|
    bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse();
 | 
						|
    BuilderTy::FastMathFlagGuard Guard(Builder);
 | 
						|
    if (isa<FPMathOperator>(&I))
 | 
						|
      Builder.setFastMathFlags(I.getFastMathFlags());
 | 
						|
 | 
						|
    Value *V1 = SimplifyBinOp(Opcode, C, E, SQ.getWithInstruction(&I));
 | 
						|
    Value *V2 = SimplifyBinOp(Opcode, B, D, SQ.getWithInstruction(&I));
 | 
						|
    if (V1 && V2)
 | 
						|
      SI = Builder.CreateSelect(A, V2, V1);
 | 
						|
    else if (V2 && SelectsHaveOneUse)
 | 
						|
      SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E));
 | 
						|
    else if (V1 && SelectsHaveOneUse)
 | 
						|
      SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1);
 | 
						|
 | 
						|
    if (SI)
 | 
						|
      SI->takeName(&I);
 | 
						|
  }
 | 
						|
 | 
						|
  return SI;
 | 
						|
}
 | 
						|
 | 
						|
/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
 | 
						|
/// constant zero (which is the 'negate' form).
 | 
						|
Value *InstCombiner::dyn_castNegVal(Value *V) const {
 | 
						|
  Value *NegV;
 | 
						|
  if (match(V, m_Neg(m_Value(NegV))))
 | 
						|
    return NegV;
 | 
						|
 | 
						|
  // Constants can be considered to be negated values if they can be folded.
 | 
						|
  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
 | 
						|
    return ConstantExpr::getNeg(C);
 | 
						|
 | 
						|
  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
 | 
						|
    if (C->getType()->getElementType()->isIntegerTy())
 | 
						|
      return ConstantExpr::getNeg(C);
 | 
						|
 | 
						|
  if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
 | 
						|
    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
 | 
						|
      Constant *Elt = CV->getAggregateElement(i);
 | 
						|
      if (!Elt)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      if (isa<UndefValue>(Elt))
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (!isa<ConstantInt>(Elt))
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
    return ConstantExpr::getNeg(CV);
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
 | 
						|
                                             InstCombiner::BuilderTy &Builder) {
 | 
						|
  if (auto *Cast = dyn_cast<CastInst>(&I))
 | 
						|
    return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
 | 
						|
 | 
						|
  assert(I.isBinaryOp() && "Unexpected opcode for select folding");
 | 
						|
 | 
						|
  // Figure out if the constant is the left or the right argument.
 | 
						|
  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
 | 
						|
  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
 | 
						|
 | 
						|
  if (auto *SOC = dyn_cast<Constant>(SO)) {
 | 
						|
    if (ConstIsRHS)
 | 
						|
      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
 | 
						|
    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Op0 = SO, *Op1 = ConstOperand;
 | 
						|
  if (!ConstIsRHS)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
 | 
						|
  auto *BO = cast<BinaryOperator>(&I);
 | 
						|
  Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
 | 
						|
                                  SO->getName() + ".op");
 | 
						|
  auto *FPInst = dyn_cast<Instruction>(RI);
 | 
						|
  if (FPInst && isa<FPMathOperator>(FPInst))
 | 
						|
    FPInst->copyFastMathFlags(BO);
 | 
						|
  return RI;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
 | 
						|
  // Don't modify shared select instructions.
 | 
						|
  if (!SI->hasOneUse())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *TV = SI->getTrueValue();
 | 
						|
  Value *FV = SI->getFalseValue();
 | 
						|
  if (!(isa<Constant>(TV) || isa<Constant>(FV)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Bool selects with constant operands can be folded to logical ops.
 | 
						|
  if (SI->getType()->isIntOrIntVectorTy(1))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If it's a bitcast involving vectors, make sure it has the same number of
 | 
						|
  // elements on both sides.
 | 
						|
  if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
 | 
						|
    VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
 | 
						|
    VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
 | 
						|
 | 
						|
    // Verify that either both or neither are vectors.
 | 
						|
    if ((SrcTy == nullptr) != (DestTy == nullptr))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // If vectors, verify that they have the same number of elements.
 | 
						|
    if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Test if a CmpInst instruction is used exclusively by a select as
 | 
						|
  // part of a minimum or maximum operation. If so, refrain from doing
 | 
						|
  // any other folding. This helps out other analyses which understand
 | 
						|
  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
 | 
						|
  // and CodeGen. And in this case, at least one of the comparison
 | 
						|
  // operands has at least one user besides the compare (the select),
 | 
						|
  // which would often largely negate the benefit of folding anyway.
 | 
						|
  if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
 | 
						|
    if (CI->hasOneUse()) {
 | 
						|
      Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
 | 
						|
      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
 | 
						|
          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
 | 
						|
  Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
 | 
						|
  return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
 | 
						|
}
 | 
						|
 | 
						|
static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
 | 
						|
                                        InstCombiner::BuilderTy &Builder) {
 | 
						|
  bool ConstIsRHS = isa<Constant>(I->getOperand(1));
 | 
						|
  Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
 | 
						|
 | 
						|
  if (auto *InC = dyn_cast<Constant>(InV)) {
 | 
						|
    if (ConstIsRHS)
 | 
						|
      return ConstantExpr::get(I->getOpcode(), InC, C);
 | 
						|
    return ConstantExpr::get(I->getOpcode(), C, InC);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Op0 = InV, *Op1 = C;
 | 
						|
  if (!ConstIsRHS)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
 | 
						|
  Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp");
 | 
						|
  auto *FPInst = dyn_cast<Instruction>(RI);
 | 
						|
  if (FPInst && isa<FPMathOperator>(FPInst))
 | 
						|
    FPInst->copyFastMathFlags(I);
 | 
						|
  return RI;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
 | 
						|
  unsigned NumPHIValues = PN->getNumIncomingValues();
 | 
						|
  if (NumPHIValues == 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // We normally only transform phis with a single use.  However, if a PHI has
 | 
						|
  // multiple uses and they are all the same operation, we can fold *all* of the
 | 
						|
  // uses into the PHI.
 | 
						|
  if (!PN->hasOneUse()) {
 | 
						|
    // Walk the use list for the instruction, comparing them to I.
 | 
						|
    for (User *U : PN->users()) {
 | 
						|
      Instruction *UI = cast<Instruction>(U);
 | 
						|
      if (UI != &I && !I.isIdenticalTo(UI))
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
    // Otherwise, we can replace *all* users with the new PHI we form.
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if all of the operands of the PHI are simple constants
 | 
						|
  // (constantint/constantfp/undef).  If there is one non-constant value,
 | 
						|
  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
 | 
						|
  // bail out.  We don't do arbitrary constant expressions here because moving
 | 
						|
  // their computation can be expensive without a cost model.
 | 
						|
  BasicBlock *NonConstBB = nullptr;
 | 
						|
  for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
    Value *InVal = PN->getIncomingValue(i);
 | 
						|
    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
 | 
						|
    if (NonConstBB) return nullptr;  // More than one non-const value.
 | 
						|
 | 
						|
    NonConstBB = PN->getIncomingBlock(i);
 | 
						|
 | 
						|
    // If the InVal is an invoke at the end of the pred block, then we can't
 | 
						|
    // insert a computation after it without breaking the edge.
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
 | 
						|
      if (II->getParent() == NonConstBB)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
    // If the incoming non-constant value is in I's block, we will remove one
 | 
						|
    // instruction, but insert another equivalent one, leading to infinite
 | 
						|
    // instcombine.
 | 
						|
    if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is exactly one non-constant value, we can insert a copy of the
 | 
						|
  // operation in that block.  However, if this is a critical edge, we would be
 | 
						|
  // inserting the computation on some other paths (e.g. inside a loop).  Only
 | 
						|
  // do this if the pred block is unconditionally branching into the phi block.
 | 
						|
  if (NonConstBB != nullptr) {
 | 
						|
    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
 | 
						|
    if (!BI || !BI->isUnconditional()) return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we can do the transformation: create the new PHI node.
 | 
						|
  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
 | 
						|
  InsertNewInstBefore(NewPN, *PN);
 | 
						|
  NewPN->takeName(PN);
 | 
						|
 | 
						|
  // If we are going to have to insert a new computation, do so right before the
 | 
						|
  // predecessor's terminator.
 | 
						|
  if (NonConstBB)
 | 
						|
    Builder.SetInsertPoint(NonConstBB->getTerminator());
 | 
						|
 | 
						|
  // Next, add all of the operands to the PHI.
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
 | 
						|
    // We only currently try to fold the condition of a select when it is a phi,
 | 
						|
    // not the true/false values.
 | 
						|
    Value *TrueV = SI->getTrueValue();
 | 
						|
    Value *FalseV = SI->getFalseValue();
 | 
						|
    BasicBlock *PhiTransBB = PN->getParent();
 | 
						|
    for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
      BasicBlock *ThisBB = PN->getIncomingBlock(i);
 | 
						|
      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
 | 
						|
      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
 | 
						|
      Value *InV = nullptr;
 | 
						|
      // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
 | 
						|
      // even if currently isNullValue gives false.
 | 
						|
      Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
 | 
						|
      // For vector constants, we cannot use isNullValue to fold into
 | 
						|
      // FalseVInPred versus TrueVInPred. When we have individual nonzero
 | 
						|
      // elements in the vector, we will incorrectly fold InC to
 | 
						|
      // `TrueVInPred`.
 | 
						|
      if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
 | 
						|
        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
 | 
						|
      else {
 | 
						|
        // Generate the select in the same block as PN's current incoming block.
 | 
						|
        // Note: ThisBB need not be the NonConstBB because vector constants
 | 
						|
        // which are constants by definition are handled here.
 | 
						|
        // FIXME: This can lead to an increase in IR generation because we might
 | 
						|
        // generate selects for vector constant phi operand, that could not be
 | 
						|
        // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
 | 
						|
        // non-vector phis, this transformation was always profitable because
 | 
						|
        // the select would be generated exactly once in the NonConstBB.
 | 
						|
        Builder.SetInsertPoint(ThisBB->getTerminator());
 | 
						|
        InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
 | 
						|
                                   FalseVInPred, "phitmp");
 | 
						|
      }
 | 
						|
      NewPN->addIncoming(InV, ThisBB);
 | 
						|
    }
 | 
						|
  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
 | 
						|
    Constant *C = cast<Constant>(I.getOperand(1));
 | 
						|
    for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
      Value *InV = nullptr;
 | 
						|
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
 | 
						|
        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
 | 
						|
      else if (isa<ICmpInst>(CI))
 | 
						|
        InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
 | 
						|
                                 C, "phitmp");
 | 
						|
      else
 | 
						|
        InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
 | 
						|
                                 C, "phitmp");
 | 
						|
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | 
						|
    }
 | 
						|
  } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
 | 
						|
    for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
      Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
 | 
						|
                                             Builder);
 | 
						|
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    CastInst *CI = cast<CastInst>(&I);
 | 
						|
    Type *RetTy = CI->getType();
 | 
						|
    for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
      Value *InV;
 | 
						|
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
 | 
						|
        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
 | 
						|
      else
 | 
						|
        InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
 | 
						|
                                 I.getType(), "phitmp");
 | 
						|
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
 | 
						|
    Instruction *User = cast<Instruction>(*UI++);
 | 
						|
    if (User == &I) continue;
 | 
						|
    replaceInstUsesWith(*User, NewPN);
 | 
						|
    eraseInstFromFunction(*User);
 | 
						|
  }
 | 
						|
  return replaceInstUsesWith(I, NewPN);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
 | 
						|
  if (!isa<Constant>(I.getOperand(1)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
 | 
						|
    if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
 | 
						|
      return NewSel;
 | 
						|
  } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
 | 
						|
    if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
 | 
						|
      return NewPhi;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Given a pointer type and a constant offset, determine whether or not there
 | 
						|
/// is a sequence of GEP indices into the pointed type that will land us at the
 | 
						|
/// specified offset. If so, fill them into NewIndices and return the resultant
 | 
						|
/// element type, otherwise return null.
 | 
						|
Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
 | 
						|
                                        SmallVectorImpl<Value *> &NewIndices) {
 | 
						|
  Type *Ty = PtrTy->getElementType();
 | 
						|
  if (!Ty->isSized())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Start with the index over the outer type.  Note that the type size
 | 
						|
  // might be zero (even if the offset isn't zero) if the indexed type
 | 
						|
  // is something like [0 x {int, int}]
 | 
						|
  Type *IndexTy = DL.getIndexType(PtrTy);
 | 
						|
  int64_t FirstIdx = 0;
 | 
						|
  if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
 | 
						|
    FirstIdx = Offset/TySize;
 | 
						|
    Offset -= FirstIdx*TySize;
 | 
						|
 | 
						|
    // Handle hosts where % returns negative instead of values [0..TySize).
 | 
						|
    if (Offset < 0) {
 | 
						|
      --FirstIdx;
 | 
						|
      Offset += TySize;
 | 
						|
      assert(Offset >= 0);
 | 
						|
    }
 | 
						|
    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
 | 
						|
  }
 | 
						|
 | 
						|
  NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
 | 
						|
 | 
						|
  // Index into the types.  If we fail, set OrigBase to null.
 | 
						|
  while (Offset) {
 | 
						|
    // Indexing into tail padding between struct/array elements.
 | 
						|
    if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
      const StructLayout *SL = DL.getStructLayout(STy);
 | 
						|
      assert(Offset < (int64_t)SL->getSizeInBytes() &&
 | 
						|
             "Offset must stay within the indexed type");
 | 
						|
 | 
						|
      unsigned Elt = SL->getElementContainingOffset(Offset);
 | 
						|
      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
 | 
						|
                                            Elt));
 | 
						|
 | 
						|
      Offset -= SL->getElementOffset(Elt);
 | 
						|
      Ty = STy->getElementType(Elt);
 | 
						|
    } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
 | 
						|
      uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
 | 
						|
      assert(EltSize && "Cannot index into a zero-sized array");
 | 
						|
      NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
 | 
						|
      Offset %= EltSize;
 | 
						|
      Ty = AT->getElementType();
 | 
						|
    } else {
 | 
						|
      // Otherwise, we can't index into the middle of this atomic type, bail.
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Ty;
 | 
						|
}
 | 
						|
 | 
						|
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
 | 
						|
  // If this GEP has only 0 indices, it is the same pointer as
 | 
						|
  // Src. If Src is not a trivial GEP too, don't combine
 | 
						|
  // the indices.
 | 
						|
  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
 | 
						|
      !Src.hasOneUse())
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return a value X such that Val = X * Scale, or null if none.
 | 
						|
/// If the multiplication is known not to overflow, then NoSignedWrap is set.
 | 
						|
Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
 | 
						|
  assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
 | 
						|
  assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
 | 
						|
         Scale.getBitWidth() && "Scale not compatible with value!");
 | 
						|
 | 
						|
  // If Val is zero or Scale is one then Val = Val * Scale.
 | 
						|
  if (match(Val, m_Zero()) || Scale == 1) {
 | 
						|
    NoSignedWrap = true;
 | 
						|
    return Val;
 | 
						|
  }
 | 
						|
 | 
						|
  // If Scale is zero then it does not divide Val.
 | 
						|
  if (Scale.isMinValue())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Look through chains of multiplications, searching for a constant that is
 | 
						|
  // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
 | 
						|
  // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
 | 
						|
  // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
 | 
						|
  // down from Val:
 | 
						|
  //
 | 
						|
  //     Val = M1 * X          ||   Analysis starts here and works down
 | 
						|
  //      M1 = M2 * Y          ||   Doesn't descend into terms with more
 | 
						|
  //      M2 =  Z * 4          \/   than one use
 | 
						|
  //
 | 
						|
  // Then to modify a term at the bottom:
 | 
						|
  //
 | 
						|
  //     Val = M1 * X
 | 
						|
  //      M1 =  Z * Y          ||   Replaced M2 with Z
 | 
						|
  //
 | 
						|
  // Then to work back up correcting nsw flags.
 | 
						|
 | 
						|
  // Op - the term we are currently analyzing.  Starts at Val then drills down.
 | 
						|
  // Replaced with its descaled value before exiting from the drill down loop.
 | 
						|
  Value *Op = Val;
 | 
						|
 | 
						|
  // Parent - initially null, but after drilling down notes where Op came from.
 | 
						|
  // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
 | 
						|
  // 0'th operand of Val.
 | 
						|
  std::pair<Instruction *, unsigned> Parent;
 | 
						|
 | 
						|
  // Set if the transform requires a descaling at deeper levels that doesn't
 | 
						|
  // overflow.
 | 
						|
  bool RequireNoSignedWrap = false;
 | 
						|
 | 
						|
  // Log base 2 of the scale. Negative if not a power of 2.
 | 
						|
  int32_t logScale = Scale.exactLogBase2();
 | 
						|
 | 
						|
  for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
 | 
						|
      // If Op is a constant divisible by Scale then descale to the quotient.
 | 
						|
      APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
 | 
						|
      APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
 | 
						|
      if (!Remainder.isMinValue())
 | 
						|
        // Not divisible by Scale.
 | 
						|
        return nullptr;
 | 
						|
      // Replace with the quotient in the parent.
 | 
						|
      Op = ConstantInt::get(CI->getType(), Quotient);
 | 
						|
      NoSignedWrap = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
 | 
						|
      if (BO->getOpcode() == Instruction::Mul) {
 | 
						|
        // Multiplication.
 | 
						|
        NoSignedWrap = BO->hasNoSignedWrap();
 | 
						|
        if (RequireNoSignedWrap && !NoSignedWrap)
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
        // There are three cases for multiplication: multiplication by exactly
 | 
						|
        // the scale, multiplication by a constant different to the scale, and
 | 
						|
        // multiplication by something else.
 | 
						|
        Value *LHS = BO->getOperand(0);
 | 
						|
        Value *RHS = BO->getOperand(1);
 | 
						|
 | 
						|
        if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | 
						|
          // Multiplication by a constant.
 | 
						|
          if (CI->getValue() == Scale) {
 | 
						|
            // Multiplication by exactly the scale, replace the multiplication
 | 
						|
            // by its left-hand side in the parent.
 | 
						|
            Op = LHS;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          // Otherwise drill down into the constant.
 | 
						|
          if (!Op->hasOneUse())
 | 
						|
            return nullptr;
 | 
						|
 | 
						|
          Parent = std::make_pair(BO, 1);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // Multiplication by something else. Drill down into the left-hand side
 | 
						|
        // since that's where the reassociate pass puts the good stuff.
 | 
						|
        if (!Op->hasOneUse())
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
        Parent = std::make_pair(BO, 0);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
 | 
						|
          isa<ConstantInt>(BO->getOperand(1))) {
 | 
						|
        // Multiplication by a power of 2.
 | 
						|
        NoSignedWrap = BO->hasNoSignedWrap();
 | 
						|
        if (RequireNoSignedWrap && !NoSignedWrap)
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
        Value *LHS = BO->getOperand(0);
 | 
						|
        int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
 | 
						|
          getLimitedValue(Scale.getBitWidth());
 | 
						|
        // Op = LHS << Amt.
 | 
						|
 | 
						|
        if (Amt == logScale) {
 | 
						|
          // Multiplication by exactly the scale, replace the multiplication
 | 
						|
          // by its left-hand side in the parent.
 | 
						|
          Op = LHS;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (Amt < logScale || !Op->hasOneUse())
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
        // Multiplication by more than the scale.  Reduce the multiplying amount
 | 
						|
        // by the scale in the parent.
 | 
						|
        Parent = std::make_pair(BO, 1);
 | 
						|
        Op = ConstantInt::get(BO->getType(), Amt - logScale);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Op->hasOneUse())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
 | 
						|
      if (Cast->getOpcode() == Instruction::SExt) {
 | 
						|
        // Op is sign-extended from a smaller type, descale in the smaller type.
 | 
						|
        unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
 | 
						|
        APInt SmallScale = Scale.trunc(SmallSize);
 | 
						|
        // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
 | 
						|
        // descale Op as (sext Y) * Scale.  In order to have
 | 
						|
        //   sext (Y * SmallScale) = (sext Y) * Scale
 | 
						|
        // some conditions need to hold however: SmallScale must sign-extend to
 | 
						|
        // Scale and the multiplication Y * SmallScale should not overflow.
 | 
						|
        if (SmallScale.sext(Scale.getBitWidth()) != Scale)
 | 
						|
          // SmallScale does not sign-extend to Scale.
 | 
						|
          return nullptr;
 | 
						|
        assert(SmallScale.exactLogBase2() == logScale);
 | 
						|
        // Require that Y * SmallScale must not overflow.
 | 
						|
        RequireNoSignedWrap = true;
 | 
						|
 | 
						|
        // Drill down through the cast.
 | 
						|
        Parent = std::make_pair(Cast, 0);
 | 
						|
        Scale = SmallScale;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Cast->getOpcode() == Instruction::Trunc) {
 | 
						|
        // Op is truncated from a larger type, descale in the larger type.
 | 
						|
        // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
 | 
						|
        //   trunc (Y * sext Scale) = (trunc Y) * Scale
 | 
						|
        // always holds.  However (trunc Y) * Scale may overflow even if
 | 
						|
        // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
 | 
						|
        // from this point up in the expression (see later).
 | 
						|
        if (RequireNoSignedWrap)
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
        // Drill down through the cast.
 | 
						|
        unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
 | 
						|
        Parent = std::make_pair(Cast, 0);
 | 
						|
        Scale = Scale.sext(LargeSize);
 | 
						|
        if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
 | 
						|
          logScale = -1;
 | 
						|
        assert(Scale.exactLogBase2() == logScale);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Unsupported expression, bail out.
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If Op is zero then Val = Op * Scale.
 | 
						|
  if (match(Op, m_Zero())) {
 | 
						|
    NoSignedWrap = true;
 | 
						|
    return Op;
 | 
						|
  }
 | 
						|
 | 
						|
  // We know that we can successfully descale, so from here on we can safely
 | 
						|
  // modify the IR.  Op holds the descaled version of the deepest term in the
 | 
						|
  // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
 | 
						|
  // not to overflow.
 | 
						|
 | 
						|
  if (!Parent.first)
 | 
						|
    // The expression only had one term.
 | 
						|
    return Op;
 | 
						|
 | 
						|
  // Rewrite the parent using the descaled version of its operand.
 | 
						|
  assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
 | 
						|
  assert(Op != Parent.first->getOperand(Parent.second) &&
 | 
						|
         "Descaling was a no-op?");
 | 
						|
  Parent.first->setOperand(Parent.second, Op);
 | 
						|
  Worklist.Add(Parent.first);
 | 
						|
 | 
						|
  // Now work back up the expression correcting nsw flags.  The logic is based
 | 
						|
  // on the following observation: if X * Y is known not to overflow as a signed
 | 
						|
  // multiplication, and Y is replaced by a value Z with smaller absolute value,
 | 
						|
  // then X * Z will not overflow as a signed multiplication either.  As we work
 | 
						|
  // our way up, having NoSignedWrap 'true' means that the descaled value at the
 | 
						|
  // current level has strictly smaller absolute value than the original.
 | 
						|
  Instruction *Ancestor = Parent.first;
 | 
						|
  do {
 | 
						|
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
 | 
						|
      // If the multiplication wasn't nsw then we can't say anything about the
 | 
						|
      // value of the descaled multiplication, and we have to clear nsw flags
 | 
						|
      // from this point on up.
 | 
						|
      bool OpNoSignedWrap = BO->hasNoSignedWrap();
 | 
						|
      NoSignedWrap &= OpNoSignedWrap;
 | 
						|
      if (NoSignedWrap != OpNoSignedWrap) {
 | 
						|
        BO->setHasNoSignedWrap(NoSignedWrap);
 | 
						|
        Worklist.Add(Ancestor);
 | 
						|
      }
 | 
						|
    } else if (Ancestor->getOpcode() == Instruction::Trunc) {
 | 
						|
      // The fact that the descaled input to the trunc has smaller absolute
 | 
						|
      // value than the original input doesn't tell us anything useful about
 | 
						|
      // the absolute values of the truncations.
 | 
						|
      NoSignedWrap = false;
 | 
						|
    }
 | 
						|
    assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
 | 
						|
           "Failed to keep proper track of nsw flags while drilling down?");
 | 
						|
 | 
						|
    if (Ancestor == Val)
 | 
						|
      // Got to the top, all done!
 | 
						|
      return Val;
 | 
						|
 | 
						|
    // Move up one level in the expression.
 | 
						|
    assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
 | 
						|
    Ancestor = Ancestor->user_back();
 | 
						|
  } while (true);
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) {
 | 
						|
  if (!Inst.getType()->isVectorTy()) return nullptr;
 | 
						|
 | 
						|
  BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
 | 
						|
  unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements();
 | 
						|
  Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
 | 
						|
  assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts);
 | 
						|
  assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts);
 | 
						|
 | 
						|
  // If both operands of the binop are vector concatenations, then perform the
 | 
						|
  // narrow binop on each pair of the source operands followed by concatenation
 | 
						|
  // of the results.
 | 
						|
  Value *L0, *L1, *R0, *R1;
 | 
						|
  Constant *Mask;
 | 
						|
  if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) &&
 | 
						|
      match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) &&
 | 
						|
      LHS->hasOneUse() && RHS->hasOneUse() &&
 | 
						|
      cast<ShuffleVectorInst>(LHS)->isConcat()) {
 | 
						|
    // This transform does not have the speculative execution constraint as
 | 
						|
    // below because the shuffle is a concatenation. The new binops are
 | 
						|
    // operating on exactly the same elements as the existing binop.
 | 
						|
    // TODO: We could ease the mask requirement to allow different undef lanes,
 | 
						|
    //       but that requires an analysis of the binop-with-undef output value.
 | 
						|
    Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
 | 
						|
    if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
 | 
						|
      BO->copyIRFlags(&Inst);
 | 
						|
    Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
 | 
						|
    if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
 | 
						|
      BO->copyIRFlags(&Inst);
 | 
						|
    return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
 | 
						|
  }
 | 
						|
 | 
						|
  // It may not be safe to reorder shuffles and things like div, urem, etc.
 | 
						|
  // because we may trap when executing those ops on unknown vector elements.
 | 
						|
  // See PR20059.
 | 
						|
  if (!isSafeToSpeculativelyExecute(&Inst))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) {
 | 
						|
    Value *XY = Builder.CreateBinOp(Opcode, X, Y);
 | 
						|
    if (auto *BO = dyn_cast<BinaryOperator>(XY))
 | 
						|
      BO->copyIRFlags(&Inst);
 | 
						|
    return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
 | 
						|
  };
 | 
						|
 | 
						|
  // If both arguments of the binary operation are shuffles that use the same
 | 
						|
  // mask and shuffle within a single vector, move the shuffle after the binop.
 | 
						|
  Value *V1, *V2;
 | 
						|
  if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) &&
 | 
						|
      match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) &&
 | 
						|
      V1->getType() == V2->getType() &&
 | 
						|
      (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
 | 
						|
    // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
 | 
						|
    return createBinOpShuffle(V1, V2, Mask);
 | 
						|
  }
 | 
						|
 | 
						|
  // If one argument is a shuffle within one vector and the other is a constant,
 | 
						|
  // try moving the shuffle after the binary operation. This canonicalization
 | 
						|
  // intends to move shuffles closer to other shuffles and binops closer to
 | 
						|
  // other binops, so they can be folded. It may also enable demanded elements
 | 
						|
  // transforms.
 | 
						|
  Constant *C;
 | 
						|
  if (match(&Inst, m_c_BinOp(
 | 
						|
          m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))),
 | 
						|
          m_Constant(C))) &&
 | 
						|
      V1->getType()->getVectorNumElements() <= NumElts) {
 | 
						|
    assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
 | 
						|
           "Shuffle should not change scalar type");
 | 
						|
    unsigned V1Width = V1->getType()->getVectorNumElements();
 | 
						|
    // Find constant NewC that has property:
 | 
						|
    //   shuffle(NewC, ShMask) = C
 | 
						|
    // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
 | 
						|
    // reorder is not possible. A 1-to-1 mapping is not required. Example:
 | 
						|
    // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
 | 
						|
    SmallVector<int, 16> ShMask;
 | 
						|
    ShuffleVectorInst::getShuffleMask(Mask, ShMask);
 | 
						|
    SmallVector<Constant *, 16>
 | 
						|
        NewVecC(V1Width, UndefValue::get(C->getType()->getScalarType()));
 | 
						|
    bool MayChange = true;
 | 
						|
    for (unsigned I = 0; I < NumElts; ++I) {
 | 
						|
      if (ShMask[I] >= 0) {
 | 
						|
        assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
 | 
						|
        Constant *CElt = C->getAggregateElement(I);
 | 
						|
        Constant *NewCElt = NewVecC[ShMask[I]];
 | 
						|
        // Bail out if:
 | 
						|
        // 1. The constant vector contains a constant expression.
 | 
						|
        // 2. The shuffle needs an element of the constant vector that can't
 | 
						|
        //    be mapped to a new constant vector.
 | 
						|
        // 3. This is a widening shuffle that copies elements of V1 into the
 | 
						|
        //    extended elements (extending with undef is allowed).
 | 
						|
        if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
 | 
						|
            I >= V1Width) {
 | 
						|
          MayChange = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        NewVecC[ShMask[I]] = CElt;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (MayChange) {
 | 
						|
      Constant *NewC = ConstantVector::get(NewVecC);
 | 
						|
      // It may not be safe to execute a binop on a vector with undef elements
 | 
						|
      // because the entire instruction can be folded to undef or create poison
 | 
						|
      // that did not exist in the original code.
 | 
						|
      bool ConstOp1 = isa<Constant>(Inst.getOperand(1));
 | 
						|
      if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
 | 
						|
        NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
 | 
						|
 | 
						|
      // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
 | 
						|
      // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
 | 
						|
      Value *NewLHS = isa<Constant>(LHS) ? NewC : V1;
 | 
						|
      Value *NewRHS = isa<Constant>(LHS) ? V1 : NewC;
 | 
						|
      return createBinOpShuffle(NewLHS, NewRHS, Mask);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to narrow the width of a binop if at least 1 operand is an extend of
 | 
						|
/// of a value. This requires a potentially expensive known bits check to make
 | 
						|
/// sure the narrow op does not overflow.
 | 
						|
Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) {
 | 
						|
  // We need at least one extended operand.
 | 
						|
  Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
 | 
						|
 | 
						|
  // If this is a sub, we swap the operands since we always want an extension
 | 
						|
  // on the RHS. The LHS can be an extension or a constant.
 | 
						|
  if (BO.getOpcode() == Instruction::Sub)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
 | 
						|
  Value *X;
 | 
						|
  bool IsSext = match(Op0, m_SExt(m_Value(X)));
 | 
						|
  if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If both operands are the same extension from the same source type and we
 | 
						|
  // can eliminate at least one (hasOneUse), this might work.
 | 
						|
  CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
 | 
						|
  Value *Y;
 | 
						|
  if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
 | 
						|
        cast<Operator>(Op1)->getOpcode() == CastOpc &&
 | 
						|
        (Op0->hasOneUse() || Op1->hasOneUse()))) {
 | 
						|
    // If that did not match, see if we have a suitable constant operand.
 | 
						|
    // Truncating and extending must produce the same constant.
 | 
						|
    Constant *WideC;
 | 
						|
    if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
 | 
						|
      return nullptr;
 | 
						|
    Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
 | 
						|
    if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
 | 
						|
      return nullptr;
 | 
						|
    Y = NarrowC;
 | 
						|
  }
 | 
						|
 | 
						|
  // Swap back now that we found our operands.
 | 
						|
  if (BO.getOpcode() == Instruction::Sub)
 | 
						|
    std::swap(X, Y);
 | 
						|
 | 
						|
  // Both operands have narrow versions. Last step: the math must not overflow
 | 
						|
  // in the narrow width.
 | 
						|
  if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // bo (ext X), (ext Y) --> ext (bo X, Y)
 | 
						|
  // bo (ext X), C       --> ext (bo X, C')
 | 
						|
  Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
 | 
						|
  if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
 | 
						|
    if (IsSext)
 | 
						|
      NewBinOp->setHasNoSignedWrap();
 | 
						|
    else
 | 
						|
      NewBinOp->setHasNoUnsignedWrap();
 | 
						|
  }
 | 
						|
  return CastInst::Create(CastOpc, NarrowBO, BO.getType());
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | 
						|
  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
 | 
						|
  Type *GEPType = GEP.getType();
 | 
						|
  Type *GEPEltType = GEP.getSourceElementType();
 | 
						|
  if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
 | 
						|
    return replaceInstUsesWith(GEP, V);
 | 
						|
 | 
						|
  Value *PtrOp = GEP.getOperand(0);
 | 
						|
 | 
						|
  // Eliminate unneeded casts for indices, and replace indices which displace
 | 
						|
  // by multiples of a zero size type with zero.
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Index width may not be the same width as pointer width.
 | 
						|
  // Data layout chooses the right type based on supported integer types.
 | 
						|
  Type *NewScalarIndexTy =
 | 
						|
      DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
 | 
						|
 | 
						|
  gep_type_iterator GTI = gep_type_begin(GEP);
 | 
						|
  for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
 | 
						|
       ++I, ++GTI) {
 | 
						|
    // Skip indices into struct types.
 | 
						|
    if (GTI.isStruct())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Type *IndexTy = (*I)->getType();
 | 
						|
    Type *NewIndexType =
 | 
						|
        IndexTy->isVectorTy()
 | 
						|
            ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements())
 | 
						|
            : NewScalarIndexTy;
 | 
						|
 | 
						|
    // If the element type has zero size then any index over it is equivalent
 | 
						|
    // to an index of zero, so replace it with zero if it is not zero already.
 | 
						|
    Type *EltTy = GTI.getIndexedType();
 | 
						|
    if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0)
 | 
						|
      if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
 | 
						|
        *I = Constant::getNullValue(NewIndexType);
 | 
						|
        MadeChange = true;
 | 
						|
      }
 | 
						|
 | 
						|
    if (IndexTy != NewIndexType) {
 | 
						|
      // If we are using a wider index than needed for this platform, shrink
 | 
						|
      // it to what we need.  If narrower, sign-extend it to what we need.
 | 
						|
      // This explicit cast can make subsequent optimizations more obvious.
 | 
						|
      *I = Builder.CreateIntCast(*I, NewIndexType, true);
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (MadeChange)
 | 
						|
    return &GEP;
 | 
						|
 | 
						|
  // Check to see if the inputs to the PHI node are getelementptr instructions.
 | 
						|
  if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
 | 
						|
    auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
 | 
						|
    if (!Op1)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Don't fold a GEP into itself through a PHI node. This can only happen
 | 
						|
    // through the back-edge of a loop. Folding a GEP into itself means that
 | 
						|
    // the value of the previous iteration needs to be stored in the meantime,
 | 
						|
    // thus requiring an additional register variable to be live, but not
 | 
						|
    // actually achieving anything (the GEP still needs to be executed once per
 | 
						|
    // loop iteration).
 | 
						|
    if (Op1 == &GEP)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    int DI = -1;
 | 
						|
 | 
						|
    for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
 | 
						|
      auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
 | 
						|
      if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      // As for Op1 above, don't try to fold a GEP into itself.
 | 
						|
      if (Op2 == &GEP)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      // Keep track of the type as we walk the GEP.
 | 
						|
      Type *CurTy = nullptr;
 | 
						|
 | 
						|
      for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
 | 
						|
        if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
        if (Op1->getOperand(J) != Op2->getOperand(J)) {
 | 
						|
          if (DI == -1) {
 | 
						|
            // We have not seen any differences yet in the GEPs feeding the
 | 
						|
            // PHI yet, so we record this one if it is allowed to be a
 | 
						|
            // variable.
 | 
						|
 | 
						|
            // The first two arguments can vary for any GEP, the rest have to be
 | 
						|
            // static for struct slots
 | 
						|
            if (J > 1 && CurTy->isStructTy())
 | 
						|
              return nullptr;
 | 
						|
 | 
						|
            DI = J;
 | 
						|
          } else {
 | 
						|
            // The GEP is different by more than one input. While this could be
 | 
						|
            // extended to support GEPs that vary by more than one variable it
 | 
						|
            // doesn't make sense since it greatly increases the complexity and
 | 
						|
            // would result in an R+R+R addressing mode which no backend
 | 
						|
            // directly supports and would need to be broken into several
 | 
						|
            // simpler instructions anyway.
 | 
						|
            return nullptr;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Sink down a layer of the type for the next iteration.
 | 
						|
        if (J > 0) {
 | 
						|
          if (J == 1) {
 | 
						|
            CurTy = Op1->getSourceElementType();
 | 
						|
          } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) {
 | 
						|
            CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
 | 
						|
          } else {
 | 
						|
            CurTy = nullptr;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If not all GEPs are identical we'll have to create a new PHI node.
 | 
						|
    // Check that the old PHI node has only one use so that it will get
 | 
						|
    // removed.
 | 
						|
    if (DI != -1 && !PN->hasOneUse())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
 | 
						|
    if (DI == -1) {
 | 
						|
      // All the GEPs feeding the PHI are identical. Clone one down into our
 | 
						|
      // BB so that it can be merged with the current GEP.
 | 
						|
      GEP.getParent()->getInstList().insert(
 | 
						|
          GEP.getParent()->getFirstInsertionPt(), NewGEP);
 | 
						|
    } else {
 | 
						|
      // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
 | 
						|
      // into the current block so it can be merged, and create a new PHI to
 | 
						|
      // set that index.
 | 
						|
      PHINode *NewPN;
 | 
						|
      {
 | 
						|
        IRBuilderBase::InsertPointGuard Guard(Builder);
 | 
						|
        Builder.SetInsertPoint(PN);
 | 
						|
        NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
 | 
						|
                                  PN->getNumOperands());
 | 
						|
      }
 | 
						|
 | 
						|
      for (auto &I : PN->operands())
 | 
						|
        NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
 | 
						|
                           PN->getIncomingBlock(I));
 | 
						|
 | 
						|
      NewGEP->setOperand(DI, NewPN);
 | 
						|
      GEP.getParent()->getInstList().insert(
 | 
						|
          GEP.getParent()->getFirstInsertionPt(), NewGEP);
 | 
						|
      NewGEP->setOperand(DI, NewPN);
 | 
						|
    }
 | 
						|
 | 
						|
    GEP.setOperand(0, NewGEP);
 | 
						|
    PtrOp = NewGEP;
 | 
						|
  }
 | 
						|
 | 
						|
  // Combine Indices - If the source pointer to this getelementptr instruction
 | 
						|
  // is a getelementptr instruction, combine the indices of the two
 | 
						|
  // getelementptr instructions into a single instruction.
 | 
						|
  if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
 | 
						|
    if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Try to reassociate loop invariant GEP chains to enable LICM.
 | 
						|
    if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
 | 
						|
        Src->hasOneUse()) {
 | 
						|
      if (Loop *L = LI->getLoopFor(GEP.getParent())) {
 | 
						|
        Value *GO1 = GEP.getOperand(1);
 | 
						|
        Value *SO1 = Src->getOperand(1);
 | 
						|
        // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
 | 
						|
        // invariant: this breaks the dependence between GEPs and allows LICM
 | 
						|
        // to hoist the invariant part out of the loop.
 | 
						|
        if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
 | 
						|
          // We have to be careful here.
 | 
						|
          // We have something like:
 | 
						|
          //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
 | 
						|
          //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
 | 
						|
          // If we just swap idx & idx2 then we could inadvertantly
 | 
						|
          // change %src from a vector to a scalar, or vice versa.
 | 
						|
          // Cases:
 | 
						|
          //  1) %base a scalar & idx a scalar & idx2 a vector
 | 
						|
          //      => Swapping idx & idx2 turns %src into a vector type.
 | 
						|
          //  2) %base a scalar & idx a vector & idx2 a scalar
 | 
						|
          //      => Swapping idx & idx2 turns %src in a scalar type
 | 
						|
          //  3) %base, %idx, and %idx2 are scalars
 | 
						|
          //      => %src & %gep are scalars
 | 
						|
          //      => swapping idx & idx2 is safe
 | 
						|
          //  4) %base a vector
 | 
						|
          //      => %src is a vector
 | 
						|
          //      => swapping idx & idx2 is safe.
 | 
						|
          auto *SO0 = Src->getOperand(0);
 | 
						|
          auto *SO0Ty = SO0->getType();
 | 
						|
          if (!isa<VectorType>(GEPType) || // case 3
 | 
						|
              isa<VectorType>(SO0Ty)) {    // case 4
 | 
						|
            Src->setOperand(1, GO1);
 | 
						|
            GEP.setOperand(1, SO1);
 | 
						|
            return &GEP;
 | 
						|
          } else {
 | 
						|
            // Case 1 or 2
 | 
						|
            // -- have to recreate %src & %gep
 | 
						|
            // put NewSrc at same location as %src
 | 
						|
            Builder.SetInsertPoint(cast<Instruction>(PtrOp));
 | 
						|
            auto *NewSrc = cast<GetElementPtrInst>(
 | 
						|
                Builder.CreateGEP(SO0, GO1, Src->getName()));
 | 
						|
            NewSrc->setIsInBounds(Src->isInBounds());
 | 
						|
            auto *NewGEP = GetElementPtrInst::Create(nullptr, NewSrc, {SO1});
 | 
						|
            NewGEP->setIsInBounds(GEP.isInBounds());
 | 
						|
            return NewGEP;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Note that if our source is a gep chain itself then we wait for that
 | 
						|
    // chain to be resolved before we perform this transformation.  This
 | 
						|
    // avoids us creating a TON of code in some cases.
 | 
						|
    if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
 | 
						|
      if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
 | 
						|
        return nullptr;   // Wait until our source is folded to completion.
 | 
						|
 | 
						|
    SmallVector<Value*, 8> Indices;
 | 
						|
 | 
						|
    // Find out whether the last index in the source GEP is a sequential idx.
 | 
						|
    bool EndsWithSequential = false;
 | 
						|
    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
 | 
						|
         I != E; ++I)
 | 
						|
      EndsWithSequential = I.isSequential();
 | 
						|
 | 
						|
    // Can we combine the two pointer arithmetics offsets?
 | 
						|
    if (EndsWithSequential) {
 | 
						|
      // Replace: gep (gep %P, long B), long A, ...
 | 
						|
      // With:    T = long A+B; gep %P, T, ...
 | 
						|
      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
 | 
						|
      Value *GO1 = GEP.getOperand(1);
 | 
						|
 | 
						|
      // If they aren't the same type, then the input hasn't been processed
 | 
						|
      // by the loop above yet (which canonicalizes sequential index types to
 | 
						|
      // intptr_t).  Just avoid transforming this until the input has been
 | 
						|
      // normalized.
 | 
						|
      if (SO1->getType() != GO1->getType())
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      Value *Sum =
 | 
						|
          SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
 | 
						|
      // Only do the combine when we are sure the cost after the
 | 
						|
      // merge is never more than that before the merge.
 | 
						|
      if (Sum == nullptr)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      // Update the GEP in place if possible.
 | 
						|
      if (Src->getNumOperands() == 2) {
 | 
						|
        GEP.setOperand(0, Src->getOperand(0));
 | 
						|
        GEP.setOperand(1, Sum);
 | 
						|
        return &GEP;
 | 
						|
      }
 | 
						|
      Indices.append(Src->op_begin()+1, Src->op_end()-1);
 | 
						|
      Indices.push_back(Sum);
 | 
						|
      Indices.append(GEP.op_begin()+2, GEP.op_end());
 | 
						|
    } else if (isa<Constant>(*GEP.idx_begin()) &&
 | 
						|
               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
 | 
						|
               Src->getNumOperands() != 1) {
 | 
						|
      // Otherwise we can do the fold if the first index of the GEP is a zero
 | 
						|
      Indices.append(Src->op_begin()+1, Src->op_end());
 | 
						|
      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Indices.empty())
 | 
						|
      return GEP.isInBounds() && Src->isInBounds()
 | 
						|
                 ? GetElementPtrInst::CreateInBounds(
 | 
						|
                       Src->getSourceElementType(), Src->getOperand(0), Indices,
 | 
						|
                       GEP.getName())
 | 
						|
                 : GetElementPtrInst::Create(Src->getSourceElementType(),
 | 
						|
                                             Src->getOperand(0), Indices,
 | 
						|
                                             GEP.getName());
 | 
						|
  }
 | 
						|
 | 
						|
  if (GEP.getNumIndices() == 1) {
 | 
						|
    unsigned AS = GEP.getPointerAddressSpace();
 | 
						|
    if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
 | 
						|
        DL.getIndexSizeInBits(AS)) {
 | 
						|
      uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType);
 | 
						|
 | 
						|
      bool Matched = false;
 | 
						|
      uint64_t C;
 | 
						|
      Value *V = nullptr;
 | 
						|
      if (TyAllocSize == 1) {
 | 
						|
        V = GEP.getOperand(1);
 | 
						|
        Matched = true;
 | 
						|
      } else if (match(GEP.getOperand(1),
 | 
						|
                       m_AShr(m_Value(V), m_ConstantInt(C)))) {
 | 
						|
        if (TyAllocSize == 1ULL << C)
 | 
						|
          Matched = true;
 | 
						|
      } else if (match(GEP.getOperand(1),
 | 
						|
                       m_SDiv(m_Value(V), m_ConstantInt(C)))) {
 | 
						|
        if (TyAllocSize == C)
 | 
						|
          Matched = true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Matched) {
 | 
						|
        // Canonicalize (gep i8* X, -(ptrtoint Y))
 | 
						|
        // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
 | 
						|
        // The GEP pattern is emitted by the SCEV expander for certain kinds of
 | 
						|
        // pointer arithmetic.
 | 
						|
        if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
 | 
						|
          Operator *Index = cast<Operator>(V);
 | 
						|
          Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
 | 
						|
          Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
 | 
						|
          return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
 | 
						|
        }
 | 
						|
        // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
 | 
						|
        // to (bitcast Y)
 | 
						|
        Value *Y;
 | 
						|
        if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
 | 
						|
                           m_PtrToInt(m_Specific(GEP.getOperand(0))))))
 | 
						|
          return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We do not handle pointer-vector geps here.
 | 
						|
  if (GEPType->isVectorTy())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
 | 
						|
  Value *StrippedPtr = PtrOp->stripPointerCasts();
 | 
						|
  PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
 | 
						|
 | 
						|
  if (StrippedPtr != PtrOp) {
 | 
						|
    bool HasZeroPointerIndex = false;
 | 
						|
    if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
 | 
						|
      HasZeroPointerIndex = C->isZero();
 | 
						|
 | 
						|
    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
 | 
						|
    // into     : GEP [10 x i8]* X, i32 0, ...
 | 
						|
    //
 | 
						|
    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
 | 
						|
    //           into     : GEP i8* X, ...
 | 
						|
    //
 | 
						|
    // This occurs when the program declares an array extern like "int X[];"
 | 
						|
    if (HasZeroPointerIndex) {
 | 
						|
      if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
 | 
						|
        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
 | 
						|
        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
 | 
						|
          // -> GEP i8* X, ...
 | 
						|
          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
 | 
						|
          GetElementPtrInst *Res = GetElementPtrInst::Create(
 | 
						|
              StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
 | 
						|
          Res->setIsInBounds(GEP.isInBounds());
 | 
						|
          if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
 | 
						|
            return Res;
 | 
						|
          // Insert Res, and create an addrspacecast.
 | 
						|
          // e.g.,
 | 
						|
          // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
 | 
						|
          // ->
 | 
						|
          // %0 = GEP i8 addrspace(1)* X, ...
 | 
						|
          // addrspacecast i8 addrspace(1)* %0 to i8*
 | 
						|
          return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
 | 
						|
        }
 | 
						|
 | 
						|
        if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrTy->getElementType())) {
 | 
						|
          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
 | 
						|
          if (CATy->getElementType() == XATy->getElementType()) {
 | 
						|
            // -> GEP [10 x i8]* X, i32 0, ...
 | 
						|
            // At this point, we know that the cast source type is a pointer
 | 
						|
            // to an array of the same type as the destination pointer
 | 
						|
            // array.  Because the array type is never stepped over (there
 | 
						|
            // is a leading zero) we can fold the cast into this GEP.
 | 
						|
            if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
 | 
						|
              GEP.setOperand(0, StrippedPtr);
 | 
						|
              GEP.setSourceElementType(XATy);
 | 
						|
              return &GEP;
 | 
						|
            }
 | 
						|
            // Cannot replace the base pointer directly because StrippedPtr's
 | 
						|
            // address space is different. Instead, create a new GEP followed by
 | 
						|
            // an addrspacecast.
 | 
						|
            // e.g.,
 | 
						|
            // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
 | 
						|
            //   i32 0, ...
 | 
						|
            // ->
 | 
						|
            // %0 = GEP [10 x i8] addrspace(1)* X, ...
 | 
						|
            // addrspacecast i8 addrspace(1)* %0 to i8*
 | 
						|
            SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
 | 
						|
            Value *NewGEP = GEP.isInBounds()
 | 
						|
                                ? Builder.CreateInBoundsGEP(
 | 
						|
                                      nullptr, StrippedPtr, Idx, GEP.getName())
 | 
						|
                                : Builder.CreateGEP(nullptr, StrippedPtr, Idx,
 | 
						|
                                                    GEP.getName());
 | 
						|
            return new AddrSpaceCastInst(NewGEP, GEPType);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (GEP.getNumOperands() == 2) {
 | 
						|
      // Transform things like:
 | 
						|
      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
 | 
						|
      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
 | 
						|
      Type *SrcEltTy = StrippedPtrTy->getElementType();
 | 
						|
      if (SrcEltTy->isArrayTy() &&
 | 
						|
          DL.getTypeAllocSize(SrcEltTy->getArrayElementType()) ==
 | 
						|
              DL.getTypeAllocSize(GEPEltType)) {
 | 
						|
        Type *IdxType = DL.getIndexType(GEPType);
 | 
						|
        Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
 | 
						|
        Value *NewGEP =
 | 
						|
            GEP.isInBounds()
 | 
						|
                ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
 | 
						|
                                            GEP.getName())
 | 
						|
                : Builder.CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
 | 
						|
 | 
						|
        // V and GEP are both pointer types --> BitCast
 | 
						|
        return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
 | 
						|
      }
 | 
						|
 | 
						|
      // Transform things like:
 | 
						|
      // %V = mul i64 %N, 4
 | 
						|
      // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
 | 
						|
      // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
 | 
						|
      if (GEPEltType->isSized() && SrcEltTy->isSized()) {
 | 
						|
        // Check that changing the type amounts to dividing the index by a scale
 | 
						|
        // factor.
 | 
						|
        uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
 | 
						|
        uint64_t SrcSize = DL.getTypeAllocSize(SrcEltTy);
 | 
						|
        if (ResSize && SrcSize % ResSize == 0) {
 | 
						|
          Value *Idx = GEP.getOperand(1);
 | 
						|
          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
 | 
						|
          uint64_t Scale = SrcSize / ResSize;
 | 
						|
 | 
						|
          // Earlier transforms ensure that the index has the right type
 | 
						|
          // according to Data Layout, which considerably simplifies the
 | 
						|
          // logic by eliminating implicit casts.
 | 
						|
          assert(Idx->getType() == DL.getIndexType(GEPType) &&
 | 
						|
                 "Index type does not match the Data Layout preferences");
 | 
						|
 | 
						|
          bool NSW;
 | 
						|
          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
 | 
						|
            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
 | 
						|
            // If the multiplication NewIdx * Scale may overflow then the new
 | 
						|
            // GEP may not be "inbounds".
 | 
						|
            Value *NewGEP =
 | 
						|
                GEP.isInBounds() && NSW
 | 
						|
                    ? Builder.CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
 | 
						|
                                                GEP.getName())
 | 
						|
                    : Builder.CreateGEP(nullptr, StrippedPtr, NewIdx,
 | 
						|
                                        GEP.getName());
 | 
						|
 | 
						|
            // The NewGEP must be pointer typed, so must the old one -> BitCast
 | 
						|
            return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
 | 
						|
                                                                 GEPType);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Similarly, transform things like:
 | 
						|
      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
 | 
						|
      //   (where tmp = 8*tmp2) into:
 | 
						|
      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
 | 
						|
      if (GEPEltType->isSized() && SrcEltTy->isSized() &&
 | 
						|
          SrcEltTy->isArrayTy()) {
 | 
						|
        // Check that changing to the array element type amounts to dividing the
 | 
						|
        // index by a scale factor.
 | 
						|
        uint64_t ResSize = DL.getTypeAllocSize(GEPEltType);
 | 
						|
        uint64_t ArrayEltSize =
 | 
						|
            DL.getTypeAllocSize(SrcEltTy->getArrayElementType());
 | 
						|
        if (ResSize && ArrayEltSize % ResSize == 0) {
 | 
						|
          Value *Idx = GEP.getOperand(1);
 | 
						|
          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
 | 
						|
          uint64_t Scale = ArrayEltSize / ResSize;
 | 
						|
 | 
						|
          // Earlier transforms ensure that the index has the right type
 | 
						|
          // according to the Data Layout, which considerably simplifies
 | 
						|
          // the logic by eliminating implicit casts.
 | 
						|
          assert(Idx->getType() == DL.getIndexType(GEPType) &&
 | 
						|
                 "Index type does not match the Data Layout preferences");
 | 
						|
 | 
						|
          bool NSW;
 | 
						|
          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
 | 
						|
            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
 | 
						|
            // If the multiplication NewIdx * Scale may overflow then the new
 | 
						|
            // GEP may not be "inbounds".
 | 
						|
            Type *IndTy = DL.getIndexType(GEPType);
 | 
						|
            Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
 | 
						|
 | 
						|
            Value *NewGEP = GEP.isInBounds() && NSW
 | 
						|
                                ? Builder.CreateInBoundsGEP(
 | 
						|
                                      SrcEltTy, StrippedPtr, Off, GEP.getName())
 | 
						|
                                : Builder.CreateGEP(SrcEltTy, StrippedPtr, Off,
 | 
						|
                                                    GEP.getName());
 | 
						|
            // The NewGEP must be pointer typed, so must the old one -> BitCast
 | 
						|
            return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
 | 
						|
                                                                 GEPType);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // addrspacecast between types is canonicalized as a bitcast, then an
 | 
						|
  // addrspacecast. To take advantage of the below bitcast + struct GEP, look
 | 
						|
  // through the addrspacecast.
 | 
						|
  Value *ASCStrippedPtrOp = PtrOp;
 | 
						|
  if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
 | 
						|
    //   X = bitcast A addrspace(1)* to B addrspace(1)*
 | 
						|
    //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
 | 
						|
    //   Z = gep Y, <...constant indices...>
 | 
						|
    // Into an addrspacecasted GEP of the struct.
 | 
						|
    if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
 | 
						|
      ASCStrippedPtrOp = BC;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
 | 
						|
    Value *SrcOp = BCI->getOperand(0);
 | 
						|
    PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
 | 
						|
    Type *SrcEltType = SrcType->getElementType();
 | 
						|
 | 
						|
    // GEP directly using the source operand if this GEP is accessing an element
 | 
						|
    // of a bitcasted pointer to vector or array of the same dimensions:
 | 
						|
    // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
 | 
						|
    // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
 | 
						|
    auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) {
 | 
						|
      return ArrTy->getArrayElementType() == VecTy->getVectorElementType() &&
 | 
						|
             ArrTy->getArrayNumElements() == VecTy->getVectorNumElements();
 | 
						|
    };
 | 
						|
    if (GEP.getNumOperands() == 3 &&
 | 
						|
        ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
 | 
						|
          areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) ||
 | 
						|
         (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
 | 
						|
          areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) {
 | 
						|
 | 
						|
      // Create a new GEP here, as using `setOperand()` followed by
 | 
						|
      // `setSourceElementType()` won't actually update the type of the
 | 
						|
      // existing GEP Value. Causing issues if this Value is accessed when
 | 
						|
      // constructing an AddrSpaceCastInst
 | 
						|
      Value *NGEP =
 | 
						|
          GEP.isInBounds()
 | 
						|
              ? Builder.CreateInBoundsGEP(nullptr, SrcOp, {Ops[1], Ops[2]})
 | 
						|
              : Builder.CreateGEP(nullptr, SrcOp, {Ops[1], Ops[2]});
 | 
						|
      NGEP->takeName(&GEP);
 | 
						|
 | 
						|
      // Preserve GEP address space to satisfy users
 | 
						|
      if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
 | 
						|
        return new AddrSpaceCastInst(NGEP, GEPType);
 | 
						|
 | 
						|
      return replaceInstUsesWith(GEP, NGEP);
 | 
						|
    }
 | 
						|
 | 
						|
    // See if we can simplify:
 | 
						|
    //   X = bitcast A* to B*
 | 
						|
    //   Y = gep X, <...constant indices...>
 | 
						|
    // into a gep of the original struct. This is important for SROA and alias
 | 
						|
    // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
 | 
						|
    unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
 | 
						|
    APInt Offset(OffsetBits, 0);
 | 
						|
    if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
 | 
						|
      // If this GEP instruction doesn't move the pointer, just replace the GEP
 | 
						|
      // with a bitcast of the real input to the dest type.
 | 
						|
      if (!Offset) {
 | 
						|
        // If the bitcast is of an allocation, and the allocation will be
 | 
						|
        // converted to match the type of the cast, don't touch this.
 | 
						|
        if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
 | 
						|
          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
 | 
						|
          if (Instruction *I = visitBitCast(*BCI)) {
 | 
						|
            if (I != BCI) {
 | 
						|
              I->takeName(BCI);
 | 
						|
              BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
 | 
						|
              replaceInstUsesWith(*BCI, I);
 | 
						|
            }
 | 
						|
            return &GEP;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
 | 
						|
          return new AddrSpaceCastInst(SrcOp, GEPType);
 | 
						|
        return new BitCastInst(SrcOp, GEPType);
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, if the offset is non-zero, we need to find out if there is a
 | 
						|
      // field at Offset in 'A's type.  If so, we can pull the cast through the
 | 
						|
      // GEP.
 | 
						|
      SmallVector<Value*, 8> NewIndices;
 | 
						|
      if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
 | 
						|
        Value *NGEP =
 | 
						|
            GEP.isInBounds()
 | 
						|
                ? Builder.CreateInBoundsGEP(nullptr, SrcOp, NewIndices)
 | 
						|
                : Builder.CreateGEP(nullptr, SrcOp, NewIndices);
 | 
						|
 | 
						|
        if (NGEP->getType() == GEPType)
 | 
						|
          return replaceInstUsesWith(GEP, NGEP);
 | 
						|
        NGEP->takeName(&GEP);
 | 
						|
 | 
						|
        if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
 | 
						|
          return new AddrSpaceCastInst(NGEP, GEPType);
 | 
						|
        return new BitCastInst(NGEP, GEPType);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!GEP.isInBounds()) {
 | 
						|
    unsigned IdxWidth =
 | 
						|
        DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
 | 
						|
    APInt BasePtrOffset(IdxWidth, 0);
 | 
						|
    Value *UnderlyingPtrOp =
 | 
						|
            PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
 | 
						|
                                                             BasePtrOffset);
 | 
						|
    if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
 | 
						|
      if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
 | 
						|
          BasePtrOffset.isNonNegative()) {
 | 
						|
        APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType()));
 | 
						|
        if (BasePtrOffset.ule(AllocSize)) {
 | 
						|
          return GetElementPtrInst::CreateInBounds(
 | 
						|
              PtrOp, makeArrayRef(Ops).slice(1), GEP.getName());
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
 | 
						|
                                         Instruction *AI) {
 | 
						|
  if (isa<ConstantPointerNull>(V))
 | 
						|
    return true;
 | 
						|
  if (auto *LI = dyn_cast<LoadInst>(V))
 | 
						|
    return isa<GlobalVariable>(LI->getPointerOperand());
 | 
						|
  // Two distinct allocations will never be equal.
 | 
						|
  // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
 | 
						|
  // through bitcasts of V can cause
 | 
						|
  // the result statement below to be true, even when AI and V (ex:
 | 
						|
  // i8* ->i32* ->i8* of AI) are the same allocations.
 | 
						|
  return isAllocLikeFn(V, TLI) && V != AI;
 | 
						|
}
 | 
						|
 | 
						|
static bool isAllocSiteRemovable(Instruction *AI,
 | 
						|
                                 SmallVectorImpl<WeakTrackingVH> &Users,
 | 
						|
                                 const TargetLibraryInfo *TLI) {
 | 
						|
  SmallVector<Instruction*, 4> Worklist;
 | 
						|
  Worklist.push_back(AI);
 | 
						|
 | 
						|
  do {
 | 
						|
    Instruction *PI = Worklist.pop_back_val();
 | 
						|
    for (User *U : PI->users()) {
 | 
						|
      Instruction *I = cast<Instruction>(U);
 | 
						|
      switch (I->getOpcode()) {
 | 
						|
      default:
 | 
						|
        // Give up the moment we see something we can't handle.
 | 
						|
        return false;
 | 
						|
 | 
						|
      case Instruction::AddrSpaceCast:
 | 
						|
      case Instruction::BitCast:
 | 
						|
      case Instruction::GetElementPtr:
 | 
						|
        Users.emplace_back(I);
 | 
						|
        Worklist.push_back(I);
 | 
						|
        continue;
 | 
						|
 | 
						|
      case Instruction::ICmp: {
 | 
						|
        ICmpInst *ICI = cast<ICmpInst>(I);
 | 
						|
        // We can fold eq/ne comparisons with null to false/true, respectively.
 | 
						|
        // We also fold comparisons in some conditions provided the alloc has
 | 
						|
        // not escaped (see isNeverEqualToUnescapedAlloc).
 | 
						|
        if (!ICI->isEquality())
 | 
						|
          return false;
 | 
						|
        unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
 | 
						|
        if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
 | 
						|
          return false;
 | 
						|
        Users.emplace_back(I);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      case Instruction::Call:
 | 
						|
        // Ignore no-op and store intrinsics.
 | 
						|
        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
          switch (II->getIntrinsicID()) {
 | 
						|
          default:
 | 
						|
            return false;
 | 
						|
 | 
						|
          case Intrinsic::memmove:
 | 
						|
          case Intrinsic::memcpy:
 | 
						|
          case Intrinsic::memset: {
 | 
						|
            MemIntrinsic *MI = cast<MemIntrinsic>(II);
 | 
						|
            if (MI->isVolatile() || MI->getRawDest() != PI)
 | 
						|
              return false;
 | 
						|
            LLVM_FALLTHROUGH;
 | 
						|
          }
 | 
						|
          case Intrinsic::invariant_start:
 | 
						|
          case Intrinsic::invariant_end:
 | 
						|
          case Intrinsic::lifetime_start:
 | 
						|
          case Intrinsic::lifetime_end:
 | 
						|
          case Intrinsic::objectsize:
 | 
						|
            Users.emplace_back(I);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (isFreeCall(I, TLI)) {
 | 
						|
          Users.emplace_back(I);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        return false;
 | 
						|
 | 
						|
      case Instruction::Store: {
 | 
						|
        StoreInst *SI = cast<StoreInst>(I);
 | 
						|
        if (SI->isVolatile() || SI->getPointerOperand() != PI)
 | 
						|
          return false;
 | 
						|
        Users.emplace_back(I);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      }
 | 
						|
      llvm_unreachable("missing a return?");
 | 
						|
    }
 | 
						|
  } while (!Worklist.empty());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
 | 
						|
  // If we have a malloc call which is only used in any amount of comparisons
 | 
						|
  // to null and free calls, delete the calls and replace the comparisons with
 | 
						|
  // true or false as appropriate.
 | 
						|
  SmallVector<WeakTrackingVH, 64> Users;
 | 
						|
 | 
						|
  // If we are removing an alloca with a dbg.declare, insert dbg.value calls
 | 
						|
  // before each store.
 | 
						|
  TinyPtrVector<DbgVariableIntrinsic *> DIIs;
 | 
						|
  std::unique_ptr<DIBuilder> DIB;
 | 
						|
  if (isa<AllocaInst>(MI)) {
 | 
						|
    DIIs = FindDbgAddrUses(&MI);
 | 
						|
    DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
 | 
						|
  }
 | 
						|
 | 
						|
  if (isAllocSiteRemovable(&MI, Users, &TLI)) {
 | 
						|
    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
 | 
						|
      // Lowering all @llvm.objectsize calls first because they may
 | 
						|
      // use a bitcast/GEP of the alloca we are removing.
 | 
						|
      if (!Users[i])
 | 
						|
       continue;
 | 
						|
 | 
						|
      Instruction *I = cast<Instruction>(&*Users[i]);
 | 
						|
 | 
						|
      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
        if (II->getIntrinsicID() == Intrinsic::objectsize) {
 | 
						|
          ConstantInt *Result = lowerObjectSizeCall(II, DL, &TLI,
 | 
						|
                                                    /*MustSucceed=*/true);
 | 
						|
          replaceInstUsesWith(*I, Result);
 | 
						|
          eraseInstFromFunction(*I);
 | 
						|
          Users[i] = nullptr; // Skip examining in the next loop.
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
 | 
						|
      if (!Users[i])
 | 
						|
        continue;
 | 
						|
 | 
						|
      Instruction *I = cast<Instruction>(&*Users[i]);
 | 
						|
 | 
						|
      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
 | 
						|
        replaceInstUsesWith(*C,
 | 
						|
                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
 | 
						|
                                             C->isFalseWhenEqual()));
 | 
						|
      } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) ||
 | 
						|
                 isa<AddrSpaceCastInst>(I)) {
 | 
						|
        replaceInstUsesWith(*I, UndefValue::get(I->getType()));
 | 
						|
      } else if (auto *SI = dyn_cast<StoreInst>(I)) {
 | 
						|
        for (auto *DII : DIIs)
 | 
						|
          ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
 | 
						|
      }
 | 
						|
      eraseInstFromFunction(*I);
 | 
						|
    }
 | 
						|
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
 | 
						|
      // Replace invoke with a NOP intrinsic to maintain the original CFG
 | 
						|
      Module *M = II->getModule();
 | 
						|
      Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
 | 
						|
      InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
 | 
						|
                         None, "", II->getParent());
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto *DII : DIIs)
 | 
						|
      eraseInstFromFunction(*DII);
 | 
						|
 | 
						|
    return eraseInstFromFunction(MI);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Move the call to free before a NULL test.
 | 
						|
///
 | 
						|
/// Check if this free is accessed after its argument has been test
 | 
						|
/// against NULL (property 0).
 | 
						|
/// If yes, it is legal to move this call in its predecessor block.
 | 
						|
///
 | 
						|
/// The move is performed only if the block containing the call to free
 | 
						|
/// will be removed, i.e.:
 | 
						|
/// 1. it has only one predecessor P, and P has two successors
 | 
						|
/// 2. it contains the call, noops, and an unconditional branch
 | 
						|
/// 3. its successor is the same as its predecessor's successor
 | 
						|
///
 | 
						|
/// The profitability is out-of concern here and this function should
 | 
						|
/// be called only if the caller knows this transformation would be
 | 
						|
/// profitable (e.g., for code size).
 | 
						|
static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
 | 
						|
                                                const DataLayout &DL) {
 | 
						|
  Value *Op = FI.getArgOperand(0);
 | 
						|
  BasicBlock *FreeInstrBB = FI.getParent();
 | 
						|
  BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
 | 
						|
 | 
						|
  // Validate part of constraint #1: Only one predecessor
 | 
						|
  // FIXME: We can extend the number of predecessor, but in that case, we
 | 
						|
  //        would duplicate the call to free in each predecessor and it may
 | 
						|
  //        not be profitable even for code size.
 | 
						|
  if (!PredBB)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Validate constraint #2: Does this block contains only the call to
 | 
						|
  //                         free, noops, and an unconditional branch?
 | 
						|
  BasicBlock *SuccBB;
 | 
						|
  Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
 | 
						|
  if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If there are only 2 instructions in the block, at this point,
 | 
						|
  // this is the call to free and unconditional.
 | 
						|
  // If there are more than 2 instructions, check that they are noops
 | 
						|
  // i.e., they won't hurt the performance of the generated code.
 | 
						|
  if (FreeInstrBB->size() != 2) {
 | 
						|
    for (const Instruction &Inst : *FreeInstrBB) {
 | 
						|
      if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
 | 
						|
        continue;
 | 
						|
      auto *Cast = dyn_cast<CastInst>(&Inst);
 | 
						|
      if (!Cast || !Cast->isNoopCast(DL))
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Validate the rest of constraint #1 by matching on the pred branch.
 | 
						|
  Instruction *TI = PredBB->getTerminator();
 | 
						|
  BasicBlock *TrueBB, *FalseBB;
 | 
						|
  ICmpInst::Predicate Pred;
 | 
						|
  if (!match(TI, m_Br(m_ICmp(Pred,
 | 
						|
                             m_CombineOr(m_Specific(Op),
 | 
						|
                                         m_Specific(Op->stripPointerCasts())),
 | 
						|
                             m_Zero()),
 | 
						|
                      TrueBB, FalseBB)))
 | 
						|
    return nullptr;
 | 
						|
  if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Validate constraint #3: Ensure the null case just falls through.
 | 
						|
  if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
 | 
						|
    return nullptr;
 | 
						|
  assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
 | 
						|
         "Broken CFG: missing edge from predecessor to successor");
 | 
						|
 | 
						|
  // At this point, we know that everything in FreeInstrBB can be moved
 | 
						|
  // before TI.
 | 
						|
  for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
 | 
						|
       It != End;) {
 | 
						|
    Instruction &Instr = *It++;
 | 
						|
    if (&Instr == FreeInstrBBTerminator)
 | 
						|
      break;
 | 
						|
    Instr.moveBefore(TI);
 | 
						|
  }
 | 
						|
  assert(FreeInstrBB->size() == 1 &&
 | 
						|
         "Only the branch instruction should remain");
 | 
						|
  return &FI;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFree(CallInst &FI) {
 | 
						|
  Value *Op = FI.getArgOperand(0);
 | 
						|
 | 
						|
  // free undef -> unreachable.
 | 
						|
  if (isa<UndefValue>(Op)) {
 | 
						|
    // Insert a new store to null because we cannot modify the CFG here.
 | 
						|
    Builder.CreateStore(ConstantInt::getTrue(FI.getContext()),
 | 
						|
                        UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
 | 
						|
    return eraseInstFromFunction(FI);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have 'free null' delete the instruction.  This can happen in stl code
 | 
						|
  // when lots of inlining happens.
 | 
						|
  if (isa<ConstantPointerNull>(Op))
 | 
						|
    return eraseInstFromFunction(FI);
 | 
						|
 | 
						|
  // If we optimize for code size, try to move the call to free before the null
 | 
						|
  // test so that simplify cfg can remove the empty block and dead code
 | 
						|
  // elimination the branch. I.e., helps to turn something like:
 | 
						|
  // if (foo) free(foo);
 | 
						|
  // into
 | 
						|
  // free(foo);
 | 
						|
  if (MinimizeSize)
 | 
						|
    if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
 | 
						|
      return I;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
 | 
						|
  if (RI.getNumOperands() == 0) // ret void
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *ResultOp = RI.getOperand(0);
 | 
						|
  Type *VTy = ResultOp->getType();
 | 
						|
  if (!VTy->isIntegerTy())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // There might be assume intrinsics dominating this return that completely
 | 
						|
  // determine the value. If so, constant fold it.
 | 
						|
  KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
 | 
						|
  if (Known.isConstant())
 | 
						|
    RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant()));
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
 | 
						|
  // Change br (not X), label True, label False to: br X, label False, True
 | 
						|
  Value *X = nullptr;
 | 
						|
  BasicBlock *TrueDest;
 | 
						|
  BasicBlock *FalseDest;
 | 
						|
  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
 | 
						|
      !isa<Constant>(X)) {
 | 
						|
    // Swap Destinations and condition...
 | 
						|
    BI.setCondition(X);
 | 
						|
    BI.swapSuccessors();
 | 
						|
    return &BI;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the condition is irrelevant, remove the use so that other
 | 
						|
  // transforms on the condition become more effective.
 | 
						|
  if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) &&
 | 
						|
      BI.getSuccessor(0) == BI.getSuccessor(1)) {
 | 
						|
    BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType()));
 | 
						|
    return &BI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq.
 | 
						|
  CmpInst::Predicate Pred;
 | 
						|
  if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), TrueDest,
 | 
						|
                      FalseDest)) &&
 | 
						|
      !isCanonicalPredicate(Pred)) {
 | 
						|
    // Swap destinations and condition.
 | 
						|
    CmpInst *Cond = cast<CmpInst>(BI.getCondition());
 | 
						|
    Cond->setPredicate(CmpInst::getInversePredicate(Pred));
 | 
						|
    BI.swapSuccessors();
 | 
						|
    Worklist.Add(Cond);
 | 
						|
    return &BI;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
 | 
						|
  Value *Cond = SI.getCondition();
 | 
						|
  Value *Op0;
 | 
						|
  ConstantInt *AddRHS;
 | 
						|
  if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
 | 
						|
    // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
 | 
						|
    for (auto Case : SI.cases()) {
 | 
						|
      Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
 | 
						|
      assert(isa<ConstantInt>(NewCase) &&
 | 
						|
             "Result of expression should be constant");
 | 
						|
      Case.setValue(cast<ConstantInt>(NewCase));
 | 
						|
    }
 | 
						|
    SI.setCondition(Op0);
 | 
						|
    return &SI;
 | 
						|
  }
 | 
						|
 | 
						|
  KnownBits Known = computeKnownBits(Cond, 0, &SI);
 | 
						|
  unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
 | 
						|
  unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
 | 
						|
 | 
						|
  // Compute the number of leading bits we can ignore.
 | 
						|
  // TODO: A better way to determine this would use ComputeNumSignBits().
 | 
						|
  for (auto &C : SI.cases()) {
 | 
						|
    LeadingKnownZeros = std::min(
 | 
						|
        LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
 | 
						|
    LeadingKnownOnes = std::min(
 | 
						|
        LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
 | 
						|
 | 
						|
  // Shrink the condition operand if the new type is smaller than the old type.
 | 
						|
  // But do not shrink to a non-standard type, because backend can't generate 
 | 
						|
  // good code for that yet.
 | 
						|
  // TODO: We can make it aggressive again after fixing PR39569.
 | 
						|
  if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
 | 
						|
      shouldChangeType(Known.getBitWidth(), NewWidth)) {
 | 
						|
    IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
 | 
						|
    Builder.SetInsertPoint(&SI);
 | 
						|
    Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
 | 
						|
    SI.setCondition(NewCond);
 | 
						|
 | 
						|
    for (auto Case : SI.cases()) {
 | 
						|
      APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
 | 
						|
      Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
 | 
						|
    }
 | 
						|
    return &SI;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
 | 
						|
  Value *Agg = EV.getAggregateOperand();
 | 
						|
 | 
						|
  if (!EV.hasIndices())
 | 
						|
    return replaceInstUsesWith(EV, Agg);
 | 
						|
 | 
						|
  if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
 | 
						|
                                          SQ.getWithInstruction(&EV)))
 | 
						|
    return replaceInstUsesWith(EV, V);
 | 
						|
 | 
						|
  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
 | 
						|
    // We're extracting from an insertvalue instruction, compare the indices
 | 
						|
    const unsigned *exti, *exte, *insi, *inse;
 | 
						|
    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
 | 
						|
         exte = EV.idx_end(), inse = IV->idx_end();
 | 
						|
         exti != exte && insi != inse;
 | 
						|
         ++exti, ++insi) {
 | 
						|
      if (*insi != *exti)
 | 
						|
        // The insert and extract both reference distinctly different elements.
 | 
						|
        // This means the extract is not influenced by the insert, and we can
 | 
						|
        // replace the aggregate operand of the extract with the aggregate
 | 
						|
        // operand of the insert. i.e., replace
 | 
						|
        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
 | 
						|
        // %E = extractvalue { i32, { i32 } } %I, 0
 | 
						|
        // with
 | 
						|
        // %E = extractvalue { i32, { i32 } } %A, 0
 | 
						|
        return ExtractValueInst::Create(IV->getAggregateOperand(),
 | 
						|
                                        EV.getIndices());
 | 
						|
    }
 | 
						|
    if (exti == exte && insi == inse)
 | 
						|
      // Both iterators are at the end: Index lists are identical. Replace
 | 
						|
      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
 | 
						|
      // %C = extractvalue { i32, { i32 } } %B, 1, 0
 | 
						|
      // with "i32 42"
 | 
						|
      return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
 | 
						|
    if (exti == exte) {
 | 
						|
      // The extract list is a prefix of the insert list. i.e. replace
 | 
						|
      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
 | 
						|
      // %E = extractvalue { i32, { i32 } } %I, 1
 | 
						|
      // with
 | 
						|
      // %X = extractvalue { i32, { i32 } } %A, 1
 | 
						|
      // %E = insertvalue { i32 } %X, i32 42, 0
 | 
						|
      // by switching the order of the insert and extract (though the
 | 
						|
      // insertvalue should be left in, since it may have other uses).
 | 
						|
      Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
 | 
						|
                                                EV.getIndices());
 | 
						|
      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
 | 
						|
                                     makeArrayRef(insi, inse));
 | 
						|
    }
 | 
						|
    if (insi == inse)
 | 
						|
      // The insert list is a prefix of the extract list
 | 
						|
      // We can simply remove the common indices from the extract and make it
 | 
						|
      // operate on the inserted value instead of the insertvalue result.
 | 
						|
      // i.e., replace
 | 
						|
      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
 | 
						|
      // %E = extractvalue { i32, { i32 } } %I, 1, 0
 | 
						|
      // with
 | 
						|
      // %E extractvalue { i32 } { i32 42 }, 0
 | 
						|
      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
 | 
						|
                                      makeArrayRef(exti, exte));
 | 
						|
  }
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
 | 
						|
    // We're extracting from an intrinsic, see if we're the only user, which
 | 
						|
    // allows us to simplify multiple result intrinsics to simpler things that
 | 
						|
    // just get one value.
 | 
						|
    if (II->hasOneUse()) {
 | 
						|
      // Check if we're grabbing the overflow bit or the result of a 'with
 | 
						|
      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
 | 
						|
      // and replace it with a traditional binary instruction.
 | 
						|
      switch (II->getIntrinsicID()) {
 | 
						|
      case Intrinsic::uadd_with_overflow:
 | 
						|
      case Intrinsic::sadd_with_overflow:
 | 
						|
        if (*EV.idx_begin() == 0) {  // Normal result.
 | 
						|
          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
 | 
						|
          replaceInstUsesWith(*II, UndefValue::get(II->getType()));
 | 
						|
          eraseInstFromFunction(*II);
 | 
						|
          return BinaryOperator::CreateAdd(LHS, RHS);
 | 
						|
        }
 | 
						|
 | 
						|
        // If the normal result of the add is dead, and the RHS is a constant,
 | 
						|
        // we can transform this into a range comparison.
 | 
						|
        // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
 | 
						|
        if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
 | 
						|
          if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
 | 
						|
            return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
 | 
						|
                                ConstantExpr::getNot(CI));
 | 
						|
        break;
 | 
						|
      case Intrinsic::usub_with_overflow:
 | 
						|
      case Intrinsic::ssub_with_overflow:
 | 
						|
        if (*EV.idx_begin() == 0) {  // Normal result.
 | 
						|
          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
 | 
						|
          replaceInstUsesWith(*II, UndefValue::get(II->getType()));
 | 
						|
          eraseInstFromFunction(*II);
 | 
						|
          return BinaryOperator::CreateSub(LHS, RHS);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Intrinsic::umul_with_overflow:
 | 
						|
      case Intrinsic::smul_with_overflow:
 | 
						|
        if (*EV.idx_begin() == 0) {  // Normal result.
 | 
						|
          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
 | 
						|
          replaceInstUsesWith(*II, UndefValue::get(II->getType()));
 | 
						|
          eraseInstFromFunction(*II);
 | 
						|
          return BinaryOperator::CreateMul(LHS, RHS);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
 | 
						|
    // If the (non-volatile) load only has one use, we can rewrite this to a
 | 
						|
    // load from a GEP. This reduces the size of the load. If a load is used
 | 
						|
    // only by extractvalue instructions then this either must have been
 | 
						|
    // optimized before, or it is a struct with padding, in which case we
 | 
						|
    // don't want to do the transformation as it loses padding knowledge.
 | 
						|
    if (L->isSimple() && L->hasOneUse()) {
 | 
						|
      // extractvalue has integer indices, getelementptr has Value*s. Convert.
 | 
						|
      SmallVector<Value*, 4> Indices;
 | 
						|
      // Prefix an i32 0 since we need the first element.
 | 
						|
      Indices.push_back(Builder.getInt32(0));
 | 
						|
      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
 | 
						|
            I != E; ++I)
 | 
						|
        Indices.push_back(Builder.getInt32(*I));
 | 
						|
 | 
						|
      // We need to insert these at the location of the old load, not at that of
 | 
						|
      // the extractvalue.
 | 
						|
      Builder.SetInsertPoint(L);
 | 
						|
      Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
 | 
						|
                                             L->getPointerOperand(), Indices);
 | 
						|
      Instruction *NL = Builder.CreateLoad(GEP);
 | 
						|
      // Whatever aliasing information we had for the orignal load must also
 | 
						|
      // hold for the smaller load, so propagate the annotations.
 | 
						|
      AAMDNodes Nodes;
 | 
						|
      L->getAAMetadata(Nodes);
 | 
						|
      NL->setAAMetadata(Nodes);
 | 
						|
      // Returning the load directly will cause the main loop to insert it in
 | 
						|
      // the wrong spot, so use replaceInstUsesWith().
 | 
						|
      return replaceInstUsesWith(EV, NL);
 | 
						|
    }
 | 
						|
  // We could simplify extracts from other values. Note that nested extracts may
 | 
						|
  // already be simplified implicitly by the above: extract (extract (insert) )
 | 
						|
  // will be translated into extract ( insert ( extract ) ) first and then just
 | 
						|
  // the value inserted, if appropriate. Similarly for extracts from single-use
 | 
						|
  // loads: extract (extract (load)) will be translated to extract (load (gep))
 | 
						|
  // and if again single-use then via load (gep (gep)) to load (gep).
 | 
						|
  // However, double extracts from e.g. function arguments or return values
 | 
						|
  // aren't handled yet.
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Return 'true' if the given typeinfo will match anything.
 | 
						|
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
 | 
						|
  switch (Personality) {
 | 
						|
  case EHPersonality::GNU_C:
 | 
						|
  case EHPersonality::GNU_C_SjLj:
 | 
						|
  case EHPersonality::Rust:
 | 
						|
    // The GCC C EH and Rust personality only exists to support cleanups, so
 | 
						|
    // it's not clear what the semantics of catch clauses are.
 | 
						|
    return false;
 | 
						|
  case EHPersonality::Unknown:
 | 
						|
    return false;
 | 
						|
  case EHPersonality::GNU_Ada:
 | 
						|
    // While __gnat_all_others_value will match any Ada exception, it doesn't
 | 
						|
    // match foreign exceptions (or didn't, before gcc-4.7).
 | 
						|
    return false;
 | 
						|
  case EHPersonality::GNU_CXX:
 | 
						|
  case EHPersonality::GNU_CXX_SjLj:
 | 
						|
  case EHPersonality::GNU_ObjC:
 | 
						|
  case EHPersonality::MSVC_X86SEH:
 | 
						|
  case EHPersonality::MSVC_Win64SEH:
 | 
						|
  case EHPersonality::MSVC_CXX:
 | 
						|
  case EHPersonality::CoreCLR:
 | 
						|
  case EHPersonality::Wasm_CXX:
 | 
						|
    return TypeInfo->isNullValue();
 | 
						|
  }
 | 
						|
  llvm_unreachable("invalid enum");
 | 
						|
}
 | 
						|
 | 
						|
static bool shorter_filter(const Value *LHS, const Value *RHS) {
 | 
						|
  return
 | 
						|
    cast<ArrayType>(LHS->getType())->getNumElements()
 | 
						|
  <
 | 
						|
    cast<ArrayType>(RHS->getType())->getNumElements();
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
 | 
						|
  // The logic here should be correct for any real-world personality function.
 | 
						|
  // However if that turns out not to be true, the offending logic can always
 | 
						|
  // be conditioned on the personality function, like the catch-all logic is.
 | 
						|
  EHPersonality Personality =
 | 
						|
      classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
 | 
						|
 | 
						|
  // Simplify the list of clauses, eg by removing repeated catch clauses
 | 
						|
  // (these are often created by inlining).
 | 
						|
  bool MakeNewInstruction = false; // If true, recreate using the following:
 | 
						|
  SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
 | 
						|
  bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
 | 
						|
 | 
						|
  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
 | 
						|
  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
 | 
						|
    bool isLastClause = i + 1 == e;
 | 
						|
    if (LI.isCatch(i)) {
 | 
						|
      // A catch clause.
 | 
						|
      Constant *CatchClause = LI.getClause(i);
 | 
						|
      Constant *TypeInfo = CatchClause->stripPointerCasts();
 | 
						|
 | 
						|
      // If we already saw this clause, there is no point in having a second
 | 
						|
      // copy of it.
 | 
						|
      if (AlreadyCaught.insert(TypeInfo).second) {
 | 
						|
        // This catch clause was not already seen.
 | 
						|
        NewClauses.push_back(CatchClause);
 | 
						|
      } else {
 | 
						|
        // Repeated catch clause - drop the redundant copy.
 | 
						|
        MakeNewInstruction = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this is a catch-all then there is no point in keeping any following
 | 
						|
      // clauses or marking the landingpad as having a cleanup.
 | 
						|
      if (isCatchAll(Personality, TypeInfo)) {
 | 
						|
        if (!isLastClause)
 | 
						|
          MakeNewInstruction = true;
 | 
						|
        CleanupFlag = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // A filter clause.  If any of the filter elements were already caught
 | 
						|
      // then they can be dropped from the filter.  It is tempting to try to
 | 
						|
      // exploit the filter further by saying that any typeinfo that does not
 | 
						|
      // occur in the filter can't be caught later (and thus can be dropped).
 | 
						|
      // However this would be wrong, since typeinfos can match without being
 | 
						|
      // equal (for example if one represents a C++ class, and the other some
 | 
						|
      // class derived from it).
 | 
						|
      assert(LI.isFilter(i) && "Unsupported landingpad clause!");
 | 
						|
      Constant *FilterClause = LI.getClause(i);
 | 
						|
      ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
 | 
						|
      unsigned NumTypeInfos = FilterType->getNumElements();
 | 
						|
 | 
						|
      // An empty filter catches everything, so there is no point in keeping any
 | 
						|
      // following clauses or marking the landingpad as having a cleanup.  By
 | 
						|
      // dealing with this case here the following code is made a bit simpler.
 | 
						|
      if (!NumTypeInfos) {
 | 
						|
        NewClauses.push_back(FilterClause);
 | 
						|
        if (!isLastClause)
 | 
						|
          MakeNewInstruction = true;
 | 
						|
        CleanupFlag = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      bool MakeNewFilter = false; // If true, make a new filter.
 | 
						|
      SmallVector<Constant *, 16> NewFilterElts; // New elements.
 | 
						|
      if (isa<ConstantAggregateZero>(FilterClause)) {
 | 
						|
        // Not an empty filter - it contains at least one null typeinfo.
 | 
						|
        assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
 | 
						|
        Constant *TypeInfo =
 | 
						|
          Constant::getNullValue(FilterType->getElementType());
 | 
						|
        // If this typeinfo is a catch-all then the filter can never match.
 | 
						|
        if (isCatchAll(Personality, TypeInfo)) {
 | 
						|
          // Throw the filter away.
 | 
						|
          MakeNewInstruction = true;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // There is no point in having multiple copies of this typeinfo, so
 | 
						|
        // discard all but the first copy if there is more than one.
 | 
						|
        NewFilterElts.push_back(TypeInfo);
 | 
						|
        if (NumTypeInfos > 1)
 | 
						|
          MakeNewFilter = true;
 | 
						|
      } else {
 | 
						|
        ConstantArray *Filter = cast<ConstantArray>(FilterClause);
 | 
						|
        SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
 | 
						|
        NewFilterElts.reserve(NumTypeInfos);
 | 
						|
 | 
						|
        // Remove any filter elements that were already caught or that already
 | 
						|
        // occurred in the filter.  While there, see if any of the elements are
 | 
						|
        // catch-alls.  If so, the filter can be discarded.
 | 
						|
        bool SawCatchAll = false;
 | 
						|
        for (unsigned j = 0; j != NumTypeInfos; ++j) {
 | 
						|
          Constant *Elt = Filter->getOperand(j);
 | 
						|
          Constant *TypeInfo = Elt->stripPointerCasts();
 | 
						|
          if (isCatchAll(Personality, TypeInfo)) {
 | 
						|
            // This element is a catch-all.  Bail out, noting this fact.
 | 
						|
            SawCatchAll = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          // Even if we've seen a type in a catch clause, we don't want to
 | 
						|
          // remove it from the filter.  An unexpected type handler may be
 | 
						|
          // set up for a call site which throws an exception of the same
 | 
						|
          // type caught.  In order for the exception thrown by the unexpected
 | 
						|
          // handler to propagate correctly, the filter must be correctly
 | 
						|
          // described for the call site.
 | 
						|
          //
 | 
						|
          // Example:
 | 
						|
          //
 | 
						|
          // void unexpected() { throw 1;}
 | 
						|
          // void foo() throw (int) {
 | 
						|
          //   std::set_unexpected(unexpected);
 | 
						|
          //   try {
 | 
						|
          //     throw 2.0;
 | 
						|
          //   } catch (int i) {}
 | 
						|
          // }
 | 
						|
 | 
						|
          // There is no point in having multiple copies of the same typeinfo in
 | 
						|
          // a filter, so only add it if we didn't already.
 | 
						|
          if (SeenInFilter.insert(TypeInfo).second)
 | 
						|
            NewFilterElts.push_back(cast<Constant>(Elt));
 | 
						|
        }
 | 
						|
        // A filter containing a catch-all cannot match anything by definition.
 | 
						|
        if (SawCatchAll) {
 | 
						|
          // Throw the filter away.
 | 
						|
          MakeNewInstruction = true;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // If we dropped something from the filter, make a new one.
 | 
						|
        if (NewFilterElts.size() < NumTypeInfos)
 | 
						|
          MakeNewFilter = true;
 | 
						|
      }
 | 
						|
      if (MakeNewFilter) {
 | 
						|
        FilterType = ArrayType::get(FilterType->getElementType(),
 | 
						|
                                    NewFilterElts.size());
 | 
						|
        FilterClause = ConstantArray::get(FilterType, NewFilterElts);
 | 
						|
        MakeNewInstruction = true;
 | 
						|
      }
 | 
						|
 | 
						|
      NewClauses.push_back(FilterClause);
 | 
						|
 | 
						|
      // If the new filter is empty then it will catch everything so there is
 | 
						|
      // no point in keeping any following clauses or marking the landingpad
 | 
						|
      // as having a cleanup.  The case of the original filter being empty was
 | 
						|
      // already handled above.
 | 
						|
      if (MakeNewFilter && !NewFilterElts.size()) {
 | 
						|
        assert(MakeNewInstruction && "New filter but not a new instruction!");
 | 
						|
        CleanupFlag = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If several filters occur in a row then reorder them so that the shortest
 | 
						|
  // filters come first (those with the smallest number of elements).  This is
 | 
						|
  // advantageous because shorter filters are more likely to match, speeding up
 | 
						|
  // unwinding, but mostly because it increases the effectiveness of the other
 | 
						|
  // filter optimizations below.
 | 
						|
  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
 | 
						|
    unsigned j;
 | 
						|
    // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
 | 
						|
    for (j = i; j != e; ++j)
 | 
						|
      if (!isa<ArrayType>(NewClauses[j]->getType()))
 | 
						|
        break;
 | 
						|
 | 
						|
    // Check whether the filters are already sorted by length.  We need to know
 | 
						|
    // if sorting them is actually going to do anything so that we only make a
 | 
						|
    // new landingpad instruction if it does.
 | 
						|
    for (unsigned k = i; k + 1 < j; ++k)
 | 
						|
      if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
 | 
						|
        // Not sorted, so sort the filters now.  Doing an unstable sort would be
 | 
						|
        // correct too but reordering filters pointlessly might confuse users.
 | 
						|
        std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
 | 
						|
                         shorter_filter);
 | 
						|
        MakeNewInstruction = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
    // Look for the next batch of filters.
 | 
						|
    i = j + 1;
 | 
						|
  }
 | 
						|
 | 
						|
  // If typeinfos matched if and only if equal, then the elements of a filter L
 | 
						|
  // that occurs later than a filter F could be replaced by the intersection of
 | 
						|
  // the elements of F and L.  In reality two typeinfos can match without being
 | 
						|
  // equal (for example if one represents a C++ class, and the other some class
 | 
						|
  // derived from it) so it would be wrong to perform this transform in general.
 | 
						|
  // However the transform is correct and useful if F is a subset of L.  In that
 | 
						|
  // case L can be replaced by F, and thus removed altogether since repeating a
 | 
						|
  // filter is pointless.  So here we look at all pairs of filters F and L where
 | 
						|
  // L follows F in the list of clauses, and remove L if every element of F is
 | 
						|
  // an element of L.  This can occur when inlining C++ functions with exception
 | 
						|
  // specifications.
 | 
						|
  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
 | 
						|
    // Examine each filter in turn.
 | 
						|
    Value *Filter = NewClauses[i];
 | 
						|
    ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
 | 
						|
    if (!FTy)
 | 
						|
      // Not a filter - skip it.
 | 
						|
      continue;
 | 
						|
    unsigned FElts = FTy->getNumElements();
 | 
						|
    // Examine each filter following this one.  Doing this backwards means that
 | 
						|
    // we don't have to worry about filters disappearing under us when removed.
 | 
						|
    for (unsigned j = NewClauses.size() - 1; j != i; --j) {
 | 
						|
      Value *LFilter = NewClauses[j];
 | 
						|
      ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
 | 
						|
      if (!LTy)
 | 
						|
        // Not a filter - skip it.
 | 
						|
        continue;
 | 
						|
      // If Filter is a subset of LFilter, i.e. every element of Filter is also
 | 
						|
      // an element of LFilter, then discard LFilter.
 | 
						|
      SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
 | 
						|
      // If Filter is empty then it is a subset of LFilter.
 | 
						|
      if (!FElts) {
 | 
						|
        // Discard LFilter.
 | 
						|
        NewClauses.erase(J);
 | 
						|
        MakeNewInstruction = true;
 | 
						|
        // Move on to the next filter.
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      unsigned LElts = LTy->getNumElements();
 | 
						|
      // If Filter is longer than LFilter then it cannot be a subset of it.
 | 
						|
      if (FElts > LElts)
 | 
						|
        // Move on to the next filter.
 | 
						|
        continue;
 | 
						|
      // At this point we know that LFilter has at least one element.
 | 
						|
      if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
 | 
						|
        // Filter is a subset of LFilter iff Filter contains only zeros (as we
 | 
						|
        // already know that Filter is not longer than LFilter).
 | 
						|
        if (isa<ConstantAggregateZero>(Filter)) {
 | 
						|
          assert(FElts <= LElts && "Should have handled this case earlier!");
 | 
						|
          // Discard LFilter.
 | 
						|
          NewClauses.erase(J);
 | 
						|
          MakeNewInstruction = true;
 | 
						|
        }
 | 
						|
        // Move on to the next filter.
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      ConstantArray *LArray = cast<ConstantArray>(LFilter);
 | 
						|
      if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
 | 
						|
        // Since Filter is non-empty and contains only zeros, it is a subset of
 | 
						|
        // LFilter iff LFilter contains a zero.
 | 
						|
        assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
 | 
						|
        for (unsigned l = 0; l != LElts; ++l)
 | 
						|
          if (LArray->getOperand(l)->isNullValue()) {
 | 
						|
            // LFilter contains a zero - discard it.
 | 
						|
            NewClauses.erase(J);
 | 
						|
            MakeNewInstruction = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        // Move on to the next filter.
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // At this point we know that both filters are ConstantArrays.  Loop over
 | 
						|
      // operands to see whether every element of Filter is also an element of
 | 
						|
      // LFilter.  Since filters tend to be short this is probably faster than
 | 
						|
      // using a method that scales nicely.
 | 
						|
      ConstantArray *FArray = cast<ConstantArray>(Filter);
 | 
						|
      bool AllFound = true;
 | 
						|
      for (unsigned f = 0; f != FElts; ++f) {
 | 
						|
        Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
 | 
						|
        AllFound = false;
 | 
						|
        for (unsigned l = 0; l != LElts; ++l) {
 | 
						|
          Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
 | 
						|
          if (LTypeInfo == FTypeInfo) {
 | 
						|
            AllFound = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (!AllFound)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      if (AllFound) {
 | 
						|
        // Discard LFilter.
 | 
						|
        NewClauses.erase(J);
 | 
						|
        MakeNewInstruction = true;
 | 
						|
      }
 | 
						|
      // Move on to the next filter.
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we changed any of the clauses, replace the old landingpad instruction
 | 
						|
  // with a new one.
 | 
						|
  if (MakeNewInstruction) {
 | 
						|
    LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
 | 
						|
                                                 NewClauses.size());
 | 
						|
    for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
 | 
						|
      NLI->addClause(NewClauses[i]);
 | 
						|
    // A landing pad with no clauses must have the cleanup flag set.  It is
 | 
						|
    // theoretically possible, though highly unlikely, that we eliminated all
 | 
						|
    // clauses.  If so, force the cleanup flag to true.
 | 
						|
    if (NewClauses.empty())
 | 
						|
      CleanupFlag = true;
 | 
						|
    NLI->setCleanup(CleanupFlag);
 | 
						|
    return NLI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Even if none of the clauses changed, we may nonetheless have understood
 | 
						|
  // that the cleanup flag is pointless.  Clear it if so.
 | 
						|
  if (LI.isCleanup() != CleanupFlag) {
 | 
						|
    assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
 | 
						|
    LI.setCleanup(CleanupFlag);
 | 
						|
    return &LI;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to move the specified instruction from its current block into the
 | 
						|
/// beginning of DestBlock, which can only happen if it's safe to move the
 | 
						|
/// instruction past all of the instructions between it and the end of its
 | 
						|
/// block.
 | 
						|
static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
 | 
						|
  assert(I->hasOneUse() && "Invariants didn't hold!");
 | 
						|
  BasicBlock *SrcBlock = I->getParent();
 | 
						|
 | 
						|
  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
 | 
						|
  if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
 | 
						|
      I->isTerminator())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Do not sink alloca instructions out of the entry block.
 | 
						|
  if (isa<AllocaInst>(I) && I->getParent() ==
 | 
						|
        &DestBlock->getParent()->getEntryBlock())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Do not sink into catchswitch blocks.
 | 
						|
  if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Do not sink convergent call instructions.
 | 
						|
  if (auto *CI = dyn_cast<CallInst>(I)) {
 | 
						|
    if (CI->isConvergent())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  // We can only sink load instructions if there is nothing between the load and
 | 
						|
  // the end of block that could change the value.
 | 
						|
  if (I->mayReadFromMemory()) {
 | 
						|
    for (BasicBlock::iterator Scan = I->getIterator(),
 | 
						|
                              E = I->getParent()->end();
 | 
						|
         Scan != E; ++Scan)
 | 
						|
      if (Scan->mayWriteToMemory())
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
 | 
						|
  I->moveBefore(&*InsertPos);
 | 
						|
  ++NumSunkInst;
 | 
						|
 | 
						|
  // Also sink all related debug uses from the source basic block. Otherwise we
 | 
						|
  // get debug use before the def.
 | 
						|
  SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
 | 
						|
  findDbgUsers(DbgUsers, I);
 | 
						|
  for (auto *DII : DbgUsers) {
 | 
						|
    if (DII->getParent() == SrcBlock) {
 | 
						|
      DII->moveBefore(&*InsertPos);
 | 
						|
      LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n');
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool InstCombiner::run() {
 | 
						|
  while (!Worklist.isEmpty()) {
 | 
						|
    Instruction *I = Worklist.RemoveOne();
 | 
						|
    if (I == nullptr) continue;  // skip null values.
 | 
						|
 | 
						|
    // Check to see if we can DCE the instruction.
 | 
						|
    if (isInstructionTriviallyDead(I, &TLI)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
 | 
						|
      eraseInstFromFunction(*I);
 | 
						|
      ++NumDeadInst;
 | 
						|
      MadeIRChange = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!DebugCounter::shouldExecute(VisitCounter))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Instruction isn't dead, see if we can constant propagate it.
 | 
						|
    if (!I->use_empty() &&
 | 
						|
        (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
 | 
						|
      if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
 | 
						|
        LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
 | 
						|
                          << '\n');
 | 
						|
 | 
						|
        // Add operands to the worklist.
 | 
						|
        replaceInstUsesWith(*I, C);
 | 
						|
        ++NumConstProp;
 | 
						|
        if (isInstructionTriviallyDead(I, &TLI))
 | 
						|
          eraseInstFromFunction(*I);
 | 
						|
        MadeIRChange = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // In general, it is possible for computeKnownBits to determine all bits in
 | 
						|
    // a value even when the operands are not all constants.
 | 
						|
    Type *Ty = I->getType();
 | 
						|
    if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) {
 | 
						|
      KnownBits Known = computeKnownBits(I, /*Depth*/0, I);
 | 
						|
      if (Known.isConstant()) {
 | 
						|
        Constant *C = ConstantInt::get(Ty, Known.getConstant());
 | 
						|
        LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C
 | 
						|
                          << " from: " << *I << '\n');
 | 
						|
 | 
						|
        // Add operands to the worklist.
 | 
						|
        replaceInstUsesWith(*I, C);
 | 
						|
        ++NumConstProp;
 | 
						|
        if (isInstructionTriviallyDead(I, &TLI))
 | 
						|
          eraseInstFromFunction(*I);
 | 
						|
        MadeIRChange = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // See if we can trivially sink this instruction to a successor basic block.
 | 
						|
    if (EnableCodeSinking && I->hasOneUse()) {
 | 
						|
      BasicBlock *BB = I->getParent();
 | 
						|
      Instruction *UserInst = cast<Instruction>(*I->user_begin());
 | 
						|
      BasicBlock *UserParent;
 | 
						|
 | 
						|
      // Get the block the use occurs in.
 | 
						|
      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
 | 
						|
        UserParent = PN->getIncomingBlock(*I->use_begin());
 | 
						|
      else
 | 
						|
        UserParent = UserInst->getParent();
 | 
						|
 | 
						|
      if (UserParent != BB) {
 | 
						|
        bool UserIsSuccessor = false;
 | 
						|
        // See if the user is one of our successors.
 | 
						|
        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
 | 
						|
          if (*SI == UserParent) {
 | 
						|
            UserIsSuccessor = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
        // If the user is one of our immediate successors, and if that successor
 | 
						|
        // only has us as a predecessors (we'd have to split the critical edge
 | 
						|
        // otherwise), we can keep going.
 | 
						|
        if (UserIsSuccessor && UserParent->getUniquePredecessor()) {
 | 
						|
          // Okay, the CFG is simple enough, try to sink this instruction.
 | 
						|
          if (TryToSinkInstruction(I, UserParent)) {
 | 
						|
            LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
 | 
						|
            MadeIRChange = true;
 | 
						|
            // We'll add uses of the sunk instruction below, but since sinking
 | 
						|
            // can expose opportunities for it's *operands* add them to the
 | 
						|
            // worklist
 | 
						|
            for (Use &U : I->operands())
 | 
						|
              if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
 | 
						|
                Worklist.Add(OpI);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we have an instruction, try combining it to simplify it.
 | 
						|
    Builder.SetInsertPoint(I);
 | 
						|
    Builder.SetCurrentDebugLocation(I->getDebugLoc());
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    std::string OrigI;
 | 
						|
#endif
 | 
						|
    LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
 | 
						|
    LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
 | 
						|
 | 
						|
    if (Instruction *Result = visit(*I)) {
 | 
						|
      ++NumCombined;
 | 
						|
      // Should we replace the old instruction with a new one?
 | 
						|
      if (Result != I) {
 | 
						|
        LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
 | 
						|
                          << "    New = " << *Result << '\n');
 | 
						|
 | 
						|
        if (I->getDebugLoc())
 | 
						|
          Result->setDebugLoc(I->getDebugLoc());
 | 
						|
        // Everything uses the new instruction now.
 | 
						|
        I->replaceAllUsesWith(Result);
 | 
						|
 | 
						|
        // Move the name to the new instruction first.
 | 
						|
        Result->takeName(I);
 | 
						|
 | 
						|
        // Push the new instruction and any users onto the worklist.
 | 
						|
        Worklist.AddUsersToWorkList(*Result);
 | 
						|
        Worklist.Add(Result);
 | 
						|
 | 
						|
        // Insert the new instruction into the basic block...
 | 
						|
        BasicBlock *InstParent = I->getParent();
 | 
						|
        BasicBlock::iterator InsertPos = I->getIterator();
 | 
						|
 | 
						|
        // If we replace a PHI with something that isn't a PHI, fix up the
 | 
						|
        // insertion point.
 | 
						|
        if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
 | 
						|
          InsertPos = InstParent->getFirstInsertionPt();
 | 
						|
 | 
						|
        InstParent->getInstList().insert(InsertPos, Result);
 | 
						|
 | 
						|
        eraseInstFromFunction(*I);
 | 
						|
      } else {
 | 
						|
        LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
 | 
						|
                          << "    New = " << *I << '\n');
 | 
						|
 | 
						|
        // If the instruction was modified, it's possible that it is now dead.
 | 
						|
        // if so, remove it.
 | 
						|
        if (isInstructionTriviallyDead(I, &TLI)) {
 | 
						|
          eraseInstFromFunction(*I);
 | 
						|
        } else {
 | 
						|
          Worklist.AddUsersToWorkList(*I);
 | 
						|
          Worklist.Add(I);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      MadeIRChange = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Worklist.Zap();
 | 
						|
  return MadeIRChange;
 | 
						|
}
 | 
						|
 | 
						|
/// Walk the function in depth-first order, adding all reachable code to the
 | 
						|
/// worklist.
 | 
						|
///
 | 
						|
/// This has a couple of tricks to make the code faster and more powerful.  In
 | 
						|
/// particular, we constant fold and DCE instructions as we go, to avoid adding
 | 
						|
/// them to the worklist (this significantly speeds up instcombine on code where
 | 
						|
/// many instructions are dead or constant).  Additionally, if we find a branch
 | 
						|
/// whose condition is a known constant, we only visit the reachable successors.
 | 
						|
static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
 | 
						|
                                       SmallPtrSetImpl<BasicBlock *> &Visited,
 | 
						|
                                       InstCombineWorklist &ICWorklist,
 | 
						|
                                       const TargetLibraryInfo *TLI) {
 | 
						|
  bool MadeIRChange = false;
 | 
						|
  SmallVector<BasicBlock*, 256> Worklist;
 | 
						|
  Worklist.push_back(BB);
 | 
						|
 | 
						|
  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
 | 
						|
  DenseMap<Constant *, Constant *> FoldedConstants;
 | 
						|
 | 
						|
  do {
 | 
						|
    BB = Worklist.pop_back_val();
 | 
						|
 | 
						|
    // We have now visited this block!  If we've already been here, ignore it.
 | 
						|
    if (!Visited.insert(BB).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
 | 
						|
      Instruction *Inst = &*BBI++;
 | 
						|
 | 
						|
      // DCE instruction if trivially dead.
 | 
						|
      if (isInstructionTriviallyDead(Inst, TLI)) {
 | 
						|
        ++NumDeadInst;
 | 
						|
        LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
 | 
						|
        salvageDebugInfo(*Inst);
 | 
						|
        Inst->eraseFromParent();
 | 
						|
        MadeIRChange = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // ConstantProp instruction if trivially constant.
 | 
						|
      if (!Inst->use_empty() &&
 | 
						|
          (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
 | 
						|
        if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
 | 
						|
          LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
 | 
						|
                            << '\n');
 | 
						|
          Inst->replaceAllUsesWith(C);
 | 
						|
          ++NumConstProp;
 | 
						|
          if (isInstructionTriviallyDead(Inst, TLI))
 | 
						|
            Inst->eraseFromParent();
 | 
						|
          MadeIRChange = true;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
      // See if we can constant fold its operands.
 | 
						|
      for (Use &U : Inst->operands()) {
 | 
						|
        if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
 | 
						|
          continue;
 | 
						|
 | 
						|
        auto *C = cast<Constant>(U);
 | 
						|
        Constant *&FoldRes = FoldedConstants[C];
 | 
						|
        if (!FoldRes)
 | 
						|
          FoldRes = ConstantFoldConstant(C, DL, TLI);
 | 
						|
        if (!FoldRes)
 | 
						|
          FoldRes = C;
 | 
						|
 | 
						|
        if (FoldRes != C) {
 | 
						|
          LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
 | 
						|
                            << "\n    Old = " << *C
 | 
						|
                            << "\n    New = " << *FoldRes << '\n');
 | 
						|
          U = FoldRes;
 | 
						|
          MadeIRChange = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Skip processing debug intrinsics in InstCombine. Processing these call instructions
 | 
						|
      // consumes non-trivial amount of time and provides no value for the optimization.
 | 
						|
      if (!isa<DbgInfoIntrinsic>(Inst))
 | 
						|
        InstrsForInstCombineWorklist.push_back(Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    // Recursively visit successors.  If this is a branch or switch on a
 | 
						|
    // constant, only visit the reachable successor.
 | 
						|
    Instruction *TI = BB->getTerminator();
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | 
						|
      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
 | 
						|
        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
 | 
						|
        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
 | 
						|
        Worklist.push_back(ReachableBB);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | 
						|
      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
 | 
						|
        Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    for (BasicBlock *SuccBB : successors(TI))
 | 
						|
      Worklist.push_back(SuccBB);
 | 
						|
  } while (!Worklist.empty());
 | 
						|
 | 
						|
  // Once we've found all of the instructions to add to instcombine's worklist,
 | 
						|
  // add them in reverse order.  This way instcombine will visit from the top
 | 
						|
  // of the function down.  This jives well with the way that it adds all uses
 | 
						|
  // of instructions to the worklist after doing a transformation, thus avoiding
 | 
						|
  // some N^2 behavior in pathological cases.
 | 
						|
  ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
 | 
						|
 | 
						|
  return MadeIRChange;
 | 
						|
}
 | 
						|
 | 
						|
/// Populate the IC worklist from a function, and prune any dead basic
 | 
						|
/// blocks discovered in the process.
 | 
						|
///
 | 
						|
/// This also does basic constant propagation and other forward fixing to make
 | 
						|
/// the combiner itself run much faster.
 | 
						|
static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
 | 
						|
                                          TargetLibraryInfo *TLI,
 | 
						|
                                          InstCombineWorklist &ICWorklist) {
 | 
						|
  bool MadeIRChange = false;
 | 
						|
 | 
						|
  // Do a depth-first traversal of the function, populate the worklist with
 | 
						|
  // the reachable instructions.  Ignore blocks that are not reachable.  Keep
 | 
						|
  // track of which blocks we visit.
 | 
						|
  SmallPtrSet<BasicBlock *, 32> Visited;
 | 
						|
  MadeIRChange |=
 | 
						|
      AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
 | 
						|
 | 
						|
  // Do a quick scan over the function.  If we find any blocks that are
 | 
						|
  // unreachable, remove any instructions inside of them.  This prevents
 | 
						|
  // the instcombine code from having to deal with some bad special cases.
 | 
						|
  for (BasicBlock &BB : F) {
 | 
						|
    if (Visited.count(&BB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
 | 
						|
    MadeIRChange |= NumDeadInstInBB > 0;
 | 
						|
    NumDeadInst += NumDeadInstInBB;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeIRChange;
 | 
						|
}
 | 
						|
 | 
						|
static bool combineInstructionsOverFunction(
 | 
						|
    Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
 | 
						|
    AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
 | 
						|
    OptimizationRemarkEmitter &ORE, bool ExpensiveCombines = true,
 | 
						|
    LoopInfo *LI = nullptr) {
 | 
						|
  auto &DL = F.getParent()->getDataLayout();
 | 
						|
  ExpensiveCombines |= EnableExpensiveCombines;
 | 
						|
 | 
						|
  /// Builder - This is an IRBuilder that automatically inserts new
 | 
						|
  /// instructions into the worklist when they are created.
 | 
						|
  IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
 | 
						|
      F.getContext(), TargetFolder(DL),
 | 
						|
      IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
 | 
						|
        Worklist.Add(I);
 | 
						|
        if (match(I, m_Intrinsic<Intrinsic::assume>()))
 | 
						|
          AC.registerAssumption(cast<CallInst>(I));
 | 
						|
      }));
 | 
						|
 | 
						|
  // Lower dbg.declare intrinsics otherwise their value may be clobbered
 | 
						|
  // by instcombiner.
 | 
						|
  bool MadeIRChange = false;
 | 
						|
  if (ShouldLowerDbgDeclare)
 | 
						|
    MadeIRChange = LowerDbgDeclare(F);
 | 
						|
 | 
						|
  // Iterate while there is work to do.
 | 
						|
  int Iteration = 0;
 | 
						|
  while (true) {
 | 
						|
    ++Iteration;
 | 
						|
    LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
 | 
						|
                      << F.getName() << "\n");
 | 
						|
 | 
						|
    MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
 | 
						|
 | 
						|
    InstCombiner IC(Worklist, Builder, F.optForMinSize(), ExpensiveCombines, AA,
 | 
						|
                    AC, TLI, DT, ORE, DL, LI);
 | 
						|
    IC.MaxArraySizeForCombine = MaxArraySize;
 | 
						|
 | 
						|
    if (!IC.run())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeIRChange || Iteration > 1;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses InstCombinePass::run(Function &F,
 | 
						|
                                       FunctionAnalysisManager &AM) {
 | 
						|
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
 | 
						|
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
 | 
						|
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
 | 
						|
 | 
						|
  auto *LI = AM.getCachedResult<LoopAnalysis>(F);
 | 
						|
 | 
						|
  auto *AA = &AM.getResult<AAManager>(F);
 | 
						|
  if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
 | 
						|
                                       ExpensiveCombines, LI))
 | 
						|
    // No changes, all analyses are preserved.
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  // Mark all the analyses that instcombine updates as preserved.
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserveSet<CFGAnalyses>();
 | 
						|
  PA.preserve<AAManager>();
 | 
						|
  PA.preserve<BasicAA>();
 | 
						|
  PA.preserve<GlobalsAA>();
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesCFG();
 | 
						|
  AU.addRequired<AAResultsWrapperPass>();
 | 
						|
  AU.addRequired<AssumptionCacheTracker>();
 | 
						|
  AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
 | 
						|
  AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
  AU.addPreserved<AAResultsWrapperPass>();
 | 
						|
  AU.addPreserved<BasicAAWrapperPass>();
 | 
						|
  AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
}
 | 
						|
 | 
						|
bool InstructionCombiningPass::runOnFunction(Function &F) {
 | 
						|
  if (skipFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Required analyses.
 | 
						|
  auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | 
						|
  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | 
						|
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
 | 
						|
 | 
						|
  // Optional analyses.
 | 
						|
  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
 | 
						|
  auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
 | 
						|
 | 
						|
  return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE,
 | 
						|
                                         ExpensiveCombines, LI);
 | 
						|
}
 | 
						|
 | 
						|
char InstructionCombiningPass::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
 | 
						|
                      "Combine redundant instructions", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
 | 
						|
INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
 | 
						|
                    "Combine redundant instructions", false, false)
 | 
						|
 | 
						|
// Initialization Routines
 | 
						|
void llvm::initializeInstCombine(PassRegistry &Registry) {
 | 
						|
  initializeInstructionCombiningPassPass(Registry);
 | 
						|
}
 | 
						|
 | 
						|
void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
 | 
						|
  initializeInstructionCombiningPassPass(*unwrap(R));
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) {
 | 
						|
  return new InstructionCombiningPass(ExpensiveCombines);
 | 
						|
}
 | 
						|
 | 
						|
void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
 | 
						|
  unwrap(PM)->add(createInstructionCombiningPass());
 | 
						|
}
 |