forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			249 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			249 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- BoundsChecking.cpp - Instrumentation for run-time bounds checking --===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Instrumentation/BoundsChecking.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/TargetFolder.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cstdint>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "bounds-checking"
 | |
| 
 | |
| static cl::opt<bool> SingleTrapBB("bounds-checking-single-trap",
 | |
|                                   cl::desc("Use one trap block per function"));
 | |
| 
 | |
| STATISTIC(ChecksAdded, "Bounds checks added");
 | |
| STATISTIC(ChecksSkipped, "Bounds checks skipped");
 | |
| STATISTIC(ChecksUnable, "Bounds checks unable to add");
 | |
| 
 | |
| using BuilderTy = IRBuilder<TargetFolder>;
 | |
| 
 | |
| /// Gets the conditions under which memory accessing instructions will overflow.
 | |
| ///
 | |
| /// \p Ptr is the pointer that will be read/written, and \p InstVal is either
 | |
| /// the result from the load or the value being stored. It is used to determine
 | |
| /// the size of memory block that is touched.
 | |
| ///
 | |
| /// Returns the condition under which the access will overflow.
 | |
| static Value *getBoundsCheckCond(Value *Ptr, Value *InstVal,
 | |
|                                  const DataLayout &DL, TargetLibraryInfo &TLI,
 | |
|                                  ObjectSizeOffsetEvaluator &ObjSizeEval,
 | |
|                                  BuilderTy &IRB, ScalarEvolution &SE) {
 | |
|   uint64_t NeededSize = DL.getTypeStoreSize(InstVal->getType());
 | |
|   LLVM_DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize)
 | |
|                     << " bytes\n");
 | |
| 
 | |
|   SizeOffsetEvalType SizeOffset = ObjSizeEval.compute(Ptr);
 | |
| 
 | |
|   if (!ObjSizeEval.bothKnown(SizeOffset)) {
 | |
|     ++ChecksUnable;
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   Value *Size   = SizeOffset.first;
 | |
|   Value *Offset = SizeOffset.second;
 | |
|   ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size);
 | |
| 
 | |
|   Type *IntTy = DL.getIntPtrType(Ptr->getType());
 | |
|   Value *NeededSizeVal = ConstantInt::get(IntTy, NeededSize);
 | |
| 
 | |
|   auto SizeRange = SE.getUnsignedRange(SE.getSCEV(Size));
 | |
|   auto OffsetRange = SE.getUnsignedRange(SE.getSCEV(Offset));
 | |
|   auto NeededSizeRange = SE.getUnsignedRange(SE.getSCEV(NeededSizeVal));
 | |
| 
 | |
|   // three checks are required to ensure safety:
 | |
|   // . Offset >= 0  (since the offset is given from the base ptr)
 | |
|   // . Size >= Offset  (unsigned)
 | |
|   // . Size - Offset >= NeededSize  (unsigned)
 | |
|   //
 | |
|   // optimization: if Size >= 0 (signed), skip 1st check
 | |
|   // FIXME: add NSW/NUW here?  -- we dont care if the subtraction overflows
 | |
|   Value *ObjSize = IRB.CreateSub(Size, Offset);
 | |
|   Value *Cmp2 = SizeRange.getUnsignedMin().uge(OffsetRange.getUnsignedMax())
 | |
|                     ? ConstantInt::getFalse(Ptr->getContext())
 | |
|                     : IRB.CreateICmpULT(Size, Offset);
 | |
|   Value *Cmp3 = SizeRange.sub(OffsetRange)
 | |
|                         .getUnsignedMin()
 | |
|                         .uge(NeededSizeRange.getUnsignedMax())
 | |
|                     ? ConstantInt::getFalse(Ptr->getContext())
 | |
|                     : IRB.CreateICmpULT(ObjSize, NeededSizeVal);
 | |
|   Value *Or = IRB.CreateOr(Cmp2, Cmp3);
 | |
|   if ((!SizeCI || SizeCI->getValue().slt(0)) &&
 | |
|       !SizeRange.getSignedMin().isNonNegative()) {
 | |
|     Value *Cmp1 = IRB.CreateICmpSLT(Offset, ConstantInt::get(IntTy, 0));
 | |
|     Or = IRB.CreateOr(Cmp1, Or);
 | |
|   }
 | |
| 
 | |
|   return Or;
 | |
| }
 | |
| 
 | |
| /// Adds run-time bounds checks to memory accessing instructions.
 | |
| ///
 | |
| /// \p Or is the condition that should guard the trap.
 | |
| ///
 | |
| /// \p GetTrapBB is a callable that returns the trap BB to use on failure.
 | |
| template <typename GetTrapBBT>
 | |
| static void insertBoundsCheck(Value *Or, BuilderTy IRB, GetTrapBBT GetTrapBB) {
 | |
|   // check if the comparison is always false
 | |
|   ConstantInt *C = dyn_cast_or_null<ConstantInt>(Or);
 | |
|   if (C) {
 | |
|     ++ChecksSkipped;
 | |
|     // If non-zero, nothing to do.
 | |
|     if (!C->getZExtValue())
 | |
|       return;
 | |
|   }
 | |
|   ++ChecksAdded;
 | |
| 
 | |
|   BasicBlock::iterator SplitI = IRB.GetInsertPoint();
 | |
|   BasicBlock *OldBB = SplitI->getParent();
 | |
|   BasicBlock *Cont = OldBB->splitBasicBlock(SplitI);
 | |
|   OldBB->getTerminator()->eraseFromParent();
 | |
| 
 | |
|   if (C) {
 | |
|     // If we have a constant zero, unconditionally branch.
 | |
|     // FIXME: We should really handle this differently to bypass the splitting
 | |
|     // the block.
 | |
|     BranchInst::Create(GetTrapBB(IRB), OldBB);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Create the conditional branch.
 | |
|   BranchInst::Create(GetTrapBB(IRB), Cont, Or, OldBB);
 | |
| }
 | |
| 
 | |
| static bool addBoundsChecking(Function &F, TargetLibraryInfo &TLI,
 | |
|                               ScalarEvolution &SE) {
 | |
|   const DataLayout &DL = F.getParent()->getDataLayout();
 | |
|   ObjectSizeOffsetEvaluator ObjSizeEval(DL, &TLI, F.getContext(),
 | |
|                                            /*RoundToAlign=*/true);
 | |
| 
 | |
|   // check HANDLE_MEMORY_INST in include/llvm/Instruction.def for memory
 | |
|   // touching instructions
 | |
|   SmallVector<std::pair<Instruction *, Value *>, 4> TrapInfo;
 | |
|   for (Instruction &I : instructions(F)) {
 | |
|     Value *Or = nullptr;
 | |
|     BuilderTy IRB(I.getParent(), BasicBlock::iterator(&I), TargetFolder(DL));
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
 | |
|       Or = getBoundsCheckCond(LI->getPointerOperand(), LI, DL, TLI,
 | |
|                               ObjSizeEval, IRB, SE);
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
 | |
|       Or = getBoundsCheckCond(SI->getPointerOperand(), SI->getValueOperand(),
 | |
|                               DL, TLI, ObjSizeEval, IRB, SE);
 | |
|     } else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
 | |
|       Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getCompareOperand(),
 | |
|                               DL, TLI, ObjSizeEval, IRB, SE);
 | |
|     } else if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
 | |
|       Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getValOperand(), DL,
 | |
|                               TLI, ObjSizeEval, IRB, SE);
 | |
|     }
 | |
|     if (Or)
 | |
|       TrapInfo.push_back(std::make_pair(&I, Or));
 | |
|   }
 | |
| 
 | |
|   // Create a trapping basic block on demand using a callback. Depending on
 | |
|   // flags, this will either create a single block for the entire function or
 | |
|   // will create a fresh block every time it is called.
 | |
|   BasicBlock *TrapBB = nullptr;
 | |
|   auto GetTrapBB = [&TrapBB](BuilderTy &IRB) {
 | |
|     if (TrapBB && SingleTrapBB)
 | |
|       return TrapBB;
 | |
| 
 | |
|     Function *Fn = IRB.GetInsertBlock()->getParent();
 | |
|     // FIXME: This debug location doesn't make a lot of sense in the
 | |
|     // `SingleTrapBB` case.
 | |
|     auto DebugLoc = IRB.getCurrentDebugLocation();
 | |
|     IRBuilder<>::InsertPointGuard Guard(IRB);
 | |
|     TrapBB = BasicBlock::Create(Fn->getContext(), "trap", Fn);
 | |
|     IRB.SetInsertPoint(TrapBB);
 | |
| 
 | |
|     auto *F = Intrinsic::getDeclaration(Fn->getParent(), Intrinsic::trap);
 | |
|     CallInst *TrapCall = IRB.CreateCall(F, {});
 | |
|     TrapCall->setDoesNotReturn();
 | |
|     TrapCall->setDoesNotThrow();
 | |
|     TrapCall->setDebugLoc(DebugLoc);
 | |
|     IRB.CreateUnreachable();
 | |
| 
 | |
|     return TrapBB;
 | |
|   };
 | |
| 
 | |
|   // Add the checks.
 | |
|   for (const auto &Entry : TrapInfo) {
 | |
|     Instruction *Inst = Entry.first;
 | |
|     BuilderTy IRB(Inst->getParent(), BasicBlock::iterator(Inst), TargetFolder(DL));
 | |
|     insertBoundsCheck(Entry.second, IRB, GetTrapBB);
 | |
|   }
 | |
| 
 | |
|   return !TrapInfo.empty();
 | |
| }
 | |
| 
 | |
| PreservedAnalyses BoundsCheckingPass::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
 | |
|   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
 | |
| 
 | |
|   if (!addBoundsChecking(F, TLI, SE))
 | |
|     return PreservedAnalyses::all();
 | |
| 
 | |
|   return PreservedAnalyses::none();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct BoundsCheckingLegacyPass : public FunctionPass {
 | |
|   static char ID;
 | |
| 
 | |
|   BoundsCheckingLegacyPass() : FunctionPass(ID) {
 | |
|     initializeBoundsCheckingLegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
|     auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | |
|     return addBoundsChecking(F, TLI, SE);
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|     AU.addRequired<ScalarEvolutionWrapperPass>();
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| char BoundsCheckingLegacyPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(BoundsCheckingLegacyPass, "bounds-checking",
 | |
|                       "Run-time bounds checking", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(BoundsCheckingLegacyPass, "bounds-checking",
 | |
|                     "Run-time bounds checking", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createBoundsCheckingLegacyPass() {
 | |
|   return new BoundsCheckingLegacyPass();
 | |
| }
 |