forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			417 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			417 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
//===----------------------- AlignmentFromAssumptions.cpp -----------------===//
 | 
						|
//                  Set Load/Store Alignments From Assumptions
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a ScalarEvolution-based transformation to set
 | 
						|
// the alignments of load, stores and memory intrinsics based on the truth
 | 
						|
// expressions of assume intrinsics. The primary motivation is to handle
 | 
						|
// complex alignment assumptions that apply to vector loads and stores that
 | 
						|
// appear after vectorization and unrolling.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define AA_NAME "alignment-from-assumptions"
 | 
						|
#define DEBUG_TYPE AA_NAME
 | 
						|
#include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumLoadAlignChanged,
 | 
						|
  "Number of loads changed by alignment assumptions");
 | 
						|
STATISTIC(NumStoreAlignChanged,
 | 
						|
  "Number of stores changed by alignment assumptions");
 | 
						|
STATISTIC(NumMemIntAlignChanged,
 | 
						|
  "Number of memory intrinsics changed by alignment assumptions");
 | 
						|
 | 
						|
namespace {
 | 
						|
struct AlignmentFromAssumptions : public FunctionPass {
 | 
						|
  static char ID; // Pass identification, replacement for typeid
 | 
						|
  AlignmentFromAssumptions() : FunctionPass(ID) {
 | 
						|
    initializeAlignmentFromAssumptionsPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<AssumptionCacheTracker>();
 | 
						|
    AU.addRequired<ScalarEvolutionWrapperPass>();
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    AU.addPreserved<AAResultsWrapperPass>();
 | 
						|
    AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
    AU.addPreserved<LoopInfoWrapperPass>();
 | 
						|
    AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
    AU.addPreserved<ScalarEvolutionWrapperPass>();
 | 
						|
  }
 | 
						|
 | 
						|
  AlignmentFromAssumptionsPass Impl;
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
char AlignmentFromAssumptions::ID = 0;
 | 
						|
static const char aip_name[] = "Alignment from assumptions";
 | 
						|
INITIALIZE_PASS_BEGIN(AlignmentFromAssumptions, AA_NAME,
 | 
						|
                      aip_name, false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | 
						|
INITIALIZE_PASS_END(AlignmentFromAssumptions, AA_NAME,
 | 
						|
                    aip_name, false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createAlignmentFromAssumptionsPass() {
 | 
						|
  return new AlignmentFromAssumptions();
 | 
						|
}
 | 
						|
 | 
						|
// Given an expression for the (constant) alignment, AlignSCEV, and an
 | 
						|
// expression for the displacement between a pointer and the aligned address,
 | 
						|
// DiffSCEV, compute the alignment of the displaced pointer if it can be reduced
 | 
						|
// to a constant. Using SCEV to compute alignment handles the case where
 | 
						|
// DiffSCEV is a recurrence with constant start such that the aligned offset
 | 
						|
// is constant. e.g. {16,+,32} % 32 -> 16.
 | 
						|
static unsigned getNewAlignmentDiff(const SCEV *DiffSCEV,
 | 
						|
                                    const SCEV *AlignSCEV,
 | 
						|
                                    ScalarEvolution *SE) {
 | 
						|
  // DiffUnits = Diff % int64_t(Alignment)
 | 
						|
  const SCEV *DiffAlignDiv = SE->getUDivExpr(DiffSCEV, AlignSCEV);
 | 
						|
  const SCEV *DiffAlign = SE->getMulExpr(DiffAlignDiv, AlignSCEV);
 | 
						|
  const SCEV *DiffUnitsSCEV = SE->getMinusSCEV(DiffAlign, DiffSCEV);
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "\talignment relative to " << *AlignSCEV << " is "
 | 
						|
                    << *DiffUnitsSCEV << " (diff: " << *DiffSCEV << ")\n");
 | 
						|
 | 
						|
  if (const SCEVConstant *ConstDUSCEV =
 | 
						|
      dyn_cast<SCEVConstant>(DiffUnitsSCEV)) {
 | 
						|
    int64_t DiffUnits = ConstDUSCEV->getValue()->getSExtValue();
 | 
						|
 | 
						|
    // If the displacement is an exact multiple of the alignment, then the
 | 
						|
    // displaced pointer has the same alignment as the aligned pointer, so
 | 
						|
    // return the alignment value.
 | 
						|
    if (!DiffUnits)
 | 
						|
      return (unsigned)
 | 
						|
        cast<SCEVConstant>(AlignSCEV)->getValue()->getSExtValue();
 | 
						|
 | 
						|
    // If the displacement is not an exact multiple, but the remainder is a
 | 
						|
    // constant, then return this remainder (but only if it is a power of 2).
 | 
						|
    uint64_t DiffUnitsAbs = std::abs(DiffUnits);
 | 
						|
    if (isPowerOf2_64(DiffUnitsAbs))
 | 
						|
      return (unsigned) DiffUnitsAbs;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// There is an address given by an offset OffSCEV from AASCEV which has an
 | 
						|
// alignment AlignSCEV. Use that information, if possible, to compute a new
 | 
						|
// alignment for Ptr.
 | 
						|
static unsigned getNewAlignment(const SCEV *AASCEV, const SCEV *AlignSCEV,
 | 
						|
                                const SCEV *OffSCEV, Value *Ptr,
 | 
						|
                                ScalarEvolution *SE) {
 | 
						|
  const SCEV *PtrSCEV = SE->getSCEV(Ptr);
 | 
						|
  const SCEV *DiffSCEV = SE->getMinusSCEV(PtrSCEV, AASCEV);
 | 
						|
 | 
						|
  // On 32-bit platforms, DiffSCEV might now have type i32 -- we've always
 | 
						|
  // sign-extended OffSCEV to i64, so make sure they agree again.
 | 
						|
  DiffSCEV = SE->getNoopOrSignExtend(DiffSCEV, OffSCEV->getType());
 | 
						|
 | 
						|
  // What we really want to know is the overall offset to the aligned
 | 
						|
  // address. This address is displaced by the provided offset.
 | 
						|
  DiffSCEV = SE->getMinusSCEV(DiffSCEV, OffSCEV);
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "AFI: alignment of " << *Ptr << " relative to "
 | 
						|
                    << *AlignSCEV << " and offset " << *OffSCEV
 | 
						|
                    << " using diff " << *DiffSCEV << "\n");
 | 
						|
 | 
						|
  unsigned NewAlignment = getNewAlignmentDiff(DiffSCEV, AlignSCEV, SE);
 | 
						|
  LLVM_DEBUG(dbgs() << "\tnew alignment: " << NewAlignment << "\n");
 | 
						|
 | 
						|
  if (NewAlignment) {
 | 
						|
    return NewAlignment;
 | 
						|
  } else if (const SCEVAddRecExpr *DiffARSCEV =
 | 
						|
             dyn_cast<SCEVAddRecExpr>(DiffSCEV)) {
 | 
						|
    // The relative offset to the alignment assumption did not yield a constant,
 | 
						|
    // but we should try harder: if we assume that a is 32-byte aligned, then in
 | 
						|
    // for (i = 0; i < 1024; i += 4) r += a[i]; not all of the loads from a are
 | 
						|
    // 32-byte aligned, but instead alternate between 32 and 16-byte alignment.
 | 
						|
    // As a result, the new alignment will not be a constant, but can still
 | 
						|
    // be improved over the default (of 4) to 16.
 | 
						|
 | 
						|
    const SCEV *DiffStartSCEV = DiffARSCEV->getStart();
 | 
						|
    const SCEV *DiffIncSCEV = DiffARSCEV->getStepRecurrence(*SE);
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "\ttrying start/inc alignment using start "
 | 
						|
                      << *DiffStartSCEV << " and inc " << *DiffIncSCEV << "\n");
 | 
						|
 | 
						|
    // Now compute the new alignment using the displacement to the value in the
 | 
						|
    // first iteration, and also the alignment using the per-iteration delta.
 | 
						|
    // If these are the same, then use that answer. Otherwise, use the smaller
 | 
						|
    // one, but only if it divides the larger one.
 | 
						|
    NewAlignment = getNewAlignmentDiff(DiffStartSCEV, AlignSCEV, SE);
 | 
						|
    unsigned NewIncAlignment = getNewAlignmentDiff(DiffIncSCEV, AlignSCEV, SE);
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "\tnew start alignment: " << NewAlignment << "\n");
 | 
						|
    LLVM_DEBUG(dbgs() << "\tnew inc alignment: " << NewIncAlignment << "\n");
 | 
						|
 | 
						|
    if (!NewAlignment || !NewIncAlignment) {
 | 
						|
      return 0;
 | 
						|
    } else if (NewAlignment > NewIncAlignment) {
 | 
						|
      if (NewAlignment % NewIncAlignment == 0) {
 | 
						|
        LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewIncAlignment
 | 
						|
                          << "\n");
 | 
						|
        return NewIncAlignment;
 | 
						|
      }
 | 
						|
    } else if (NewIncAlignment > NewAlignment) {
 | 
						|
      if (NewIncAlignment % NewAlignment == 0) {
 | 
						|
        LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment
 | 
						|
                          << "\n");
 | 
						|
        return NewAlignment;
 | 
						|
      }
 | 
						|
    } else if (NewIncAlignment == NewAlignment) {
 | 
						|
      LLVM_DEBUG(dbgs() << "\tnew start/inc alignment: " << NewAlignment
 | 
						|
                        << "\n");
 | 
						|
      return NewAlignment;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool AlignmentFromAssumptionsPass::extractAlignmentInfo(CallInst *I,
 | 
						|
                                                        Value *&AAPtr,
 | 
						|
                                                        const SCEV *&AlignSCEV,
 | 
						|
                                                        const SCEV *&OffSCEV) {
 | 
						|
  // An alignment assume must be a statement about the least-significant
 | 
						|
  // bits of the pointer being zero, possibly with some offset.
 | 
						|
  ICmpInst *ICI = dyn_cast<ICmpInst>(I->getArgOperand(0));
 | 
						|
  if (!ICI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This must be an expression of the form: x & m == 0.
 | 
						|
  if (ICI->getPredicate() != ICmpInst::ICMP_EQ)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Swap things around so that the RHS is 0.
 | 
						|
  Value *CmpLHS = ICI->getOperand(0);
 | 
						|
  Value *CmpRHS = ICI->getOperand(1);
 | 
						|
  const SCEV *CmpLHSSCEV = SE->getSCEV(CmpLHS);
 | 
						|
  const SCEV *CmpRHSSCEV = SE->getSCEV(CmpRHS);
 | 
						|
  if (CmpLHSSCEV->isZero())
 | 
						|
    std::swap(CmpLHS, CmpRHS);
 | 
						|
  else if (!CmpRHSSCEV->isZero())
 | 
						|
    return false;
 | 
						|
 | 
						|
  BinaryOperator *CmpBO = dyn_cast<BinaryOperator>(CmpLHS);
 | 
						|
  if (!CmpBO || CmpBO->getOpcode() != Instruction::And)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Swap things around so that the right operand of the and is a constant
 | 
						|
  // (the mask); we cannot deal with variable masks.
 | 
						|
  Value *AndLHS = CmpBO->getOperand(0);
 | 
						|
  Value *AndRHS = CmpBO->getOperand(1);
 | 
						|
  const SCEV *AndLHSSCEV = SE->getSCEV(AndLHS);
 | 
						|
  const SCEV *AndRHSSCEV = SE->getSCEV(AndRHS);
 | 
						|
  if (isa<SCEVConstant>(AndLHSSCEV)) {
 | 
						|
    std::swap(AndLHS, AndRHS);
 | 
						|
    std::swap(AndLHSSCEV, AndRHSSCEV);
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEVConstant *MaskSCEV = dyn_cast<SCEVConstant>(AndRHSSCEV);
 | 
						|
  if (!MaskSCEV)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The mask must have some trailing ones (otherwise the condition is
 | 
						|
  // trivial and tells us nothing about the alignment of the left operand).
 | 
						|
  unsigned TrailingOnes = MaskSCEV->getAPInt().countTrailingOnes();
 | 
						|
  if (!TrailingOnes)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Cap the alignment at the maximum with which LLVM can deal (and make sure
 | 
						|
  // we don't overflow the shift).
 | 
						|
  uint64_t Alignment;
 | 
						|
  TrailingOnes = std::min(TrailingOnes,
 | 
						|
    unsigned(sizeof(unsigned) * CHAR_BIT - 1));
 | 
						|
  Alignment = std::min(1u << TrailingOnes, +Value::MaximumAlignment);
 | 
						|
 | 
						|
  Type *Int64Ty = Type::getInt64Ty(I->getParent()->getParent()->getContext());
 | 
						|
  AlignSCEV = SE->getConstant(Int64Ty, Alignment);
 | 
						|
 | 
						|
  // The LHS might be a ptrtoint instruction, or it might be the pointer
 | 
						|
  // with an offset.
 | 
						|
  AAPtr = nullptr;
 | 
						|
  OffSCEV = nullptr;
 | 
						|
  if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(AndLHS)) {
 | 
						|
    AAPtr = PToI->getPointerOperand();
 | 
						|
    OffSCEV = SE->getZero(Int64Ty);
 | 
						|
  } else if (const SCEVAddExpr* AndLHSAddSCEV =
 | 
						|
             dyn_cast<SCEVAddExpr>(AndLHSSCEV)) {
 | 
						|
    // Try to find the ptrtoint; subtract it and the rest is the offset.
 | 
						|
    for (SCEVAddExpr::op_iterator J = AndLHSAddSCEV->op_begin(),
 | 
						|
         JE = AndLHSAddSCEV->op_end(); J != JE; ++J)
 | 
						|
      if (const SCEVUnknown *OpUnk = dyn_cast<SCEVUnknown>(*J))
 | 
						|
        if (PtrToIntInst *PToI = dyn_cast<PtrToIntInst>(OpUnk->getValue())) {
 | 
						|
          AAPtr = PToI->getPointerOperand();
 | 
						|
          OffSCEV = SE->getMinusSCEV(AndLHSAddSCEV, *J);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!AAPtr)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Sign extend the offset to 64 bits (so that it is like all of the other
 | 
						|
  // expressions).
 | 
						|
  unsigned OffSCEVBits = OffSCEV->getType()->getPrimitiveSizeInBits();
 | 
						|
  if (OffSCEVBits < 64)
 | 
						|
    OffSCEV = SE->getSignExtendExpr(OffSCEV, Int64Ty);
 | 
						|
  else if (OffSCEVBits > 64)
 | 
						|
    return false;
 | 
						|
 | 
						|
  AAPtr = AAPtr->stripPointerCasts();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AlignmentFromAssumptionsPass::processAssumption(CallInst *ACall) {
 | 
						|
  Value *AAPtr;
 | 
						|
  const SCEV *AlignSCEV, *OffSCEV;
 | 
						|
  if (!extractAlignmentInfo(ACall, AAPtr, AlignSCEV, OffSCEV))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Skip ConstantPointerNull and UndefValue.  Assumptions on these shouldn't
 | 
						|
  // affect other users.
 | 
						|
  if (isa<ConstantData>(AAPtr))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const SCEV *AASCEV = SE->getSCEV(AAPtr);
 | 
						|
 | 
						|
  // Apply the assumption to all other users of the specified pointer.
 | 
						|
  SmallPtrSet<Instruction *, 32> Visited;
 | 
						|
  SmallVector<Instruction*, 16> WorkList;
 | 
						|
  for (User *J : AAPtr->users()) {
 | 
						|
    if (J == ACall)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (Instruction *K = dyn_cast<Instruction>(J))
 | 
						|
      if (isValidAssumeForContext(ACall, K, DT))
 | 
						|
        WorkList.push_back(K);
 | 
						|
  }
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    Instruction *J = WorkList.pop_back_val();
 | 
						|
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(J)) {
 | 
						|
      unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
 | 
						|
        LI->getPointerOperand(), SE);
 | 
						|
 | 
						|
      if (NewAlignment > LI->getAlignment()) {
 | 
						|
        LI->setAlignment(NewAlignment);
 | 
						|
        ++NumLoadAlignChanged;
 | 
						|
      }
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(J)) {
 | 
						|
      unsigned NewAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
 | 
						|
        SI->getPointerOperand(), SE);
 | 
						|
 | 
						|
      if (NewAlignment > SI->getAlignment()) {
 | 
						|
        SI->setAlignment(NewAlignment);
 | 
						|
        ++NumStoreAlignChanged;
 | 
						|
      }
 | 
						|
    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(J)) {
 | 
						|
      unsigned NewDestAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
 | 
						|
        MI->getDest(), SE);
 | 
						|
 | 
						|
      LLVM_DEBUG(dbgs() << "\tmem inst: " << NewDestAlignment << "\n";);
 | 
						|
      if (NewDestAlignment > MI->getDestAlignment()) {
 | 
						|
        MI->setDestAlignment(NewDestAlignment);
 | 
						|
        ++NumMemIntAlignChanged;
 | 
						|
      }
 | 
						|
 | 
						|
      // For memory transfers, there is also a source alignment that
 | 
						|
      // can be set.
 | 
						|
      if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
 | 
						|
        unsigned NewSrcAlignment = getNewAlignment(AASCEV, AlignSCEV, OffSCEV,
 | 
						|
          MTI->getSource(), SE);
 | 
						|
 | 
						|
        LLVM_DEBUG(dbgs() << "\tmem trans: " << NewSrcAlignment << "\n";);
 | 
						|
 | 
						|
        if (NewSrcAlignment > MTI->getSourceAlignment()) {
 | 
						|
          MTI->setSourceAlignment(NewSrcAlignment);
 | 
						|
          ++NumMemIntAlignChanged;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we've updated that use of the pointer, look for other uses of
 | 
						|
    // the pointer to update.
 | 
						|
    Visited.insert(J);
 | 
						|
    for (User *UJ : J->users()) {
 | 
						|
      Instruction *K = cast<Instruction>(UJ);
 | 
						|
      if (!Visited.count(K) && isValidAssumeForContext(ACall, K, DT))
 | 
						|
        WorkList.push_back(K);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AlignmentFromAssumptions::runOnFunction(Function &F) {
 | 
						|
  if (skipFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | 
						|
  ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | 
						|
  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
 | 
						|
  return Impl.runImpl(F, AC, SE, DT);
 | 
						|
}
 | 
						|
 | 
						|
bool AlignmentFromAssumptionsPass::runImpl(Function &F, AssumptionCache &AC,
 | 
						|
                                           ScalarEvolution *SE_,
 | 
						|
                                           DominatorTree *DT_) {
 | 
						|
  SE = SE_;
 | 
						|
  DT = DT_;
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (auto &AssumeVH : AC.assumptions())
 | 
						|
    if (AssumeVH)
 | 
						|
      Changed |= processAssumption(cast<CallInst>(AssumeVH));
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses
 | 
						|
AlignmentFromAssumptionsPass::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						|
 | 
						|
  AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
 | 
						|
  ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
 | 
						|
  DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  if (!runImpl(F, AC, &SE, &DT))
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserveSet<CFGAnalyses>();
 | 
						|
  PA.preserve<AAManager>();
 | 
						|
  PA.preserve<ScalarEvolutionAnalysis>();
 | 
						|
  PA.preserve<GlobalsAA>();
 | 
						|
  return PA;
 | 
						|
}
 |