forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			218 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			218 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- DivRemPairs.cpp - Hoist/decompose division and remainder -*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass hoists and/or decomposes integer division and remainder
 | |
| // instructions to enable CFG improvements and better codegen.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar/DivRemPairs.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/DebugCounter.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/BypassSlowDivision.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "div-rem-pairs"
 | |
| STATISTIC(NumPairs, "Number of div/rem pairs");
 | |
| STATISTIC(NumHoisted, "Number of instructions hoisted");
 | |
| STATISTIC(NumDecomposed, "Number of instructions decomposed");
 | |
| DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform",
 | |
|               "Controls transformations in div-rem-pairs pass");
 | |
| 
 | |
| /// Find matching pairs of integer div/rem ops (they have the same numerator,
 | |
| /// denominator, and signedness). If they exist in different basic blocks, bring
 | |
| /// them together by hoisting or replace the common division operation that is
 | |
| /// implicit in the remainder:
 | |
| /// X % Y <--> X - ((X / Y) * Y).
 | |
| ///
 | |
| /// We can largely ignore the normal safety and cost constraints on speculation
 | |
| /// of these ops when we find a matching pair. This is because we are already
 | |
| /// guaranteed that any exceptions and most cost are already incurred by the
 | |
| /// first member of the pair.
 | |
| ///
 | |
| /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
 | |
| /// SimplifyCFG, but it's split off on its own because it's different enough
 | |
| /// that it doesn't quite match the stated objectives of those passes.
 | |
| static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI,
 | |
|                            const DominatorTree &DT) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Insert all divide and remainder instructions into maps keyed by their
 | |
|   // operands and opcode (signed or unsigned).
 | |
|   DenseMap<DivRemMapKey, Instruction *> DivMap;
 | |
|   // Use a MapVector for RemMap so that instructions are moved/inserted in a
 | |
|   // deterministic order.
 | |
|   MapVector<DivRemMapKey, Instruction *> RemMap;
 | |
|   for (auto &BB : F) {
 | |
|     for (auto &I : BB) {
 | |
|       if (I.getOpcode() == Instruction::SDiv)
 | |
|         DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
 | |
|       else if (I.getOpcode() == Instruction::UDiv)
 | |
|         DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
 | |
|       else if (I.getOpcode() == Instruction::SRem)
 | |
|         RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
 | |
|       else if (I.getOpcode() == Instruction::URem)
 | |
|         RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We can iterate over either map because we are only looking for matched
 | |
|   // pairs. Choose remainders for efficiency because they are usually even more
 | |
|   // rare than division.
 | |
|   for (auto &RemPair : RemMap) {
 | |
|     // Find the matching division instruction from the division map.
 | |
|     Instruction *DivInst = DivMap[RemPair.first];
 | |
|     if (!DivInst)
 | |
|       continue;
 | |
| 
 | |
|     // We have a matching pair of div/rem instructions. If one dominates the
 | |
|     // other, hoist and/or replace one.
 | |
|     NumPairs++;
 | |
|     Instruction *RemInst = RemPair.second;
 | |
|     bool IsSigned = DivInst->getOpcode() == Instruction::SDiv;
 | |
|     bool HasDivRemOp = TTI.hasDivRemOp(DivInst->getType(), IsSigned);
 | |
| 
 | |
|     // If the target supports div+rem and the instructions are in the same block
 | |
|     // already, there's nothing to do. The backend should handle this. If the
 | |
|     // target does not support div+rem, then we will decompose the rem.
 | |
|     if (HasDivRemOp && RemInst->getParent() == DivInst->getParent())
 | |
|       continue;
 | |
| 
 | |
|     bool DivDominates = DT.dominates(DivInst, RemInst);
 | |
|     if (!DivDominates && !DT.dominates(RemInst, DivInst))
 | |
|       continue;
 | |
| 
 | |
|     if (!DebugCounter::shouldExecute(DRPCounter))
 | |
|       continue;
 | |
| 
 | |
|     if (HasDivRemOp) {
 | |
|       // The target has a single div/rem operation. Hoist the lower instruction
 | |
|       // to make the matched pair visible to the backend.
 | |
|       if (DivDominates)
 | |
|         RemInst->moveAfter(DivInst);
 | |
|       else
 | |
|         DivInst->moveAfter(RemInst);
 | |
|       NumHoisted++;
 | |
|     } else {
 | |
|       // The target does not have a single div/rem operation. Decompose the
 | |
|       // remainder calculation as:
 | |
|       // X % Y --> X - ((X / Y) * Y).
 | |
|       Value *X = RemInst->getOperand(0);
 | |
|       Value *Y = RemInst->getOperand(1);
 | |
|       Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y);
 | |
|       Instruction *Sub = BinaryOperator::CreateSub(X, Mul);
 | |
| 
 | |
|       // If the remainder dominates, then hoist the division up to that block:
 | |
|       //
 | |
|       // bb1:
 | |
|       //   %rem = srem %x, %y
 | |
|       // bb2:
 | |
|       //   %div = sdiv %x, %y
 | |
|       // -->
 | |
|       // bb1:
 | |
|       //   %div = sdiv %x, %y
 | |
|       //   %mul = mul %div, %y
 | |
|       //   %rem = sub %x, %mul
 | |
|       //
 | |
|       // If the division dominates, it's already in the right place. The mul+sub
 | |
|       // will be in a different block because we don't assume that they are
 | |
|       // cheap to speculatively execute:
 | |
|       //
 | |
|       // bb1:
 | |
|       //   %div = sdiv %x, %y
 | |
|       // bb2:
 | |
|       //   %rem = srem %x, %y
 | |
|       // -->
 | |
|       // bb1:
 | |
|       //   %div = sdiv %x, %y
 | |
|       // bb2:
 | |
|       //   %mul = mul %div, %y
 | |
|       //   %rem = sub %x, %mul
 | |
|       //
 | |
|       // If the div and rem are in the same block, we do the same transform,
 | |
|       // but any code movement would be within the same block.
 | |
| 
 | |
|       if (!DivDominates)
 | |
|         DivInst->moveBefore(RemInst);
 | |
|       Mul->insertAfter(RemInst);
 | |
|       Sub->insertAfter(Mul);
 | |
| 
 | |
|       // Now kill the explicit remainder. We have replaced it with:
 | |
|       // (sub X, (mul (div X, Y), Y)
 | |
|       RemInst->replaceAllUsesWith(Sub);
 | |
|       RemInst->eraseFromParent();
 | |
|       NumDecomposed++;
 | |
|     }
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // Pass manager boilerplate below here.
 | |
| 
 | |
| namespace {
 | |
| struct DivRemPairsLegacyPass : public FunctionPass {
 | |
|   static char ID;
 | |
|   DivRemPairsLegacyPass() : FunctionPass(ID) {
 | |
|     initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|     AU.setPreservesCFG();
 | |
|     AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|     AU.addPreserved<GlobalsAAWrapperPass>();
 | |
|     FunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     if (skipFunction(F))
 | |
|       return false;
 | |
|     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
|     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|     return optimizeDivRem(F, TTI, DT);
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| char DivRemPairsLegacyPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs",
 | |
|                       "Hoist/decompose integer division and remainder", false,
 | |
|                       false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs",
 | |
|                     "Hoist/decompose integer division and remainder", false,
 | |
|                     false)
 | |
| FunctionPass *llvm::createDivRemPairsPass() {
 | |
|   return new DivRemPairsLegacyPass();
 | |
| }
 | |
| 
 | |
| PreservedAnalyses DivRemPairsPass::run(Function &F,
 | |
|                                        FunctionAnalysisManager &FAM) {
 | |
|   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
 | |
|   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
 | |
|   if (!optimizeDivRem(F, TTI, DT))
 | |
|     return PreservedAnalyses::all();
 | |
|   // TODO: This pass just hoists/replaces math ops - all analyses are preserved?
 | |
|   PreservedAnalyses PA;
 | |
|   PA.preserveSet<CFGAnalyses>();
 | |
|   PA.preserve<GlobalsAA>();
 | |
|   return PA;
 | |
| }
 |