forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1208 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1208 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass hoists expressions from branches to a common dominator. It uses
 | |
| // GVN (global value numbering) to discover expressions computing the same
 | |
| // values. The primary goals of code-hoisting are:
 | |
| // 1. To reduce the code size.
 | |
| // 2. In some cases reduce critical path (by exposing more ILP).
 | |
| //
 | |
| // The algorithm factors out the reachability of values such that multiple
 | |
| // queries to find reachability of values are fast. This is based on finding the
 | |
| // ANTIC points in the CFG which do not change during hoisting. The ANTIC points
 | |
| // are basically the dominance-frontiers in the inverse graph. So we introduce a
 | |
| // data structure (CHI nodes) to keep track of values flowing out of a basic
 | |
| // block. We only do this for values with multiple occurrences in the function
 | |
| // as they are the potential hoistable candidates. This approach allows us to
 | |
| // hoist instructions to a basic block with more than two successors, as well as
 | |
| // deal with infinite loops in a trivial way.
 | |
| //
 | |
| // Limitations: This pass does not hoist fully redundant expressions because
 | |
| // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before
 | |
| // and after gvn-pre because gvn-pre creates opportunities for more instructions
 | |
| // to be hoisted.
 | |
| //
 | |
| // Hoisting may affect the performance in some cases. To mitigate that, hoisting
 | |
| // is disabled in the following cases.
 | |
| // 1. Scalars across calls.
 | |
| // 2. geps when corresponding load/store cannot be hoisted.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/IteratedDominanceFrontier.h"
 | |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | |
| #include "llvm/Analysis/MemorySSA.h"
 | |
| #include "llvm/Analysis/MemorySSAUpdater.h"
 | |
| #include "llvm/Analysis/PostDominators.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Scalar/GVN.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| #include <memory>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "gvn-hoist"
 | |
| 
 | |
| STATISTIC(NumHoisted, "Number of instructions hoisted");
 | |
| STATISTIC(NumRemoved, "Number of instructions removed");
 | |
| STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
 | |
| STATISTIC(NumLoadsRemoved, "Number of loads removed");
 | |
| STATISTIC(NumStoresHoisted, "Number of stores hoisted");
 | |
| STATISTIC(NumStoresRemoved, "Number of stores removed");
 | |
| STATISTIC(NumCallsHoisted, "Number of calls hoisted");
 | |
| STATISTIC(NumCallsRemoved, "Number of calls removed");
 | |
| 
 | |
| static cl::opt<int>
 | |
|     MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
 | |
|                         cl::desc("Max number of instructions to hoist "
 | |
|                                  "(default unlimited = -1)"));
 | |
| 
 | |
| static cl::opt<int> MaxNumberOfBBSInPath(
 | |
|     "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
 | |
|     cl::desc("Max number of basic blocks on the path between "
 | |
|              "hoisting locations (default = 4, unlimited = -1)"));
 | |
| 
 | |
| static cl::opt<int> MaxDepthInBB(
 | |
|     "gvn-hoist-max-depth", cl::Hidden, cl::init(100),
 | |
|     cl::desc("Hoist instructions from the beginning of the BB up to the "
 | |
|              "maximum specified depth (default = 100, unlimited = -1)"));
 | |
| 
 | |
| static cl::opt<int>
 | |
|     MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
 | |
|                    cl::desc("Maximum length of dependent chains to hoist "
 | |
|                             "(default = 10, unlimited = -1)"));
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>;
 | |
| using SmallVecInsn = SmallVector<Instruction *, 4>;
 | |
| using SmallVecImplInsn = SmallVectorImpl<Instruction *>;
 | |
| 
 | |
| // Each element of a hoisting list contains the basic block where to hoist and
 | |
| // a list of instructions to be hoisted.
 | |
| using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>;
 | |
| 
 | |
| using HoistingPointList = SmallVector<HoistingPointInfo, 4>;
 | |
| 
 | |
| // A map from a pair of VNs to all the instructions with those VNs.
 | |
| using VNType = std::pair<unsigned, unsigned>;
 | |
| 
 | |
| using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>;
 | |
| 
 | |
| // CHI keeps information about values flowing out of a basic block.  It is
 | |
| // similar to PHI but in the inverse graph, and used for outgoing values on each
 | |
| // edge. For conciseness, it is computed only for instructions with multiple
 | |
| // occurrences in the CFG because they are the only hoistable candidates.
 | |
| //     A (CHI[{V, B, I1}, {V, C, I2}]
 | |
| //  /     \
 | |
| // /       \
 | |
| // B(I1)  C (I2)
 | |
| // The Value number for both I1 and I2 is V, the CHI node will save the
 | |
| // instruction as well as the edge where the value is flowing to.
 | |
| struct CHIArg {
 | |
|   VNType VN;
 | |
| 
 | |
|   // Edge destination (shows the direction of flow), may not be where the I is.
 | |
|   BasicBlock *Dest;
 | |
| 
 | |
|   // The instruction (VN) which uses the values flowing out of CHI.
 | |
|   Instruction *I;
 | |
| 
 | |
|   bool operator==(const CHIArg &A) { return VN == A.VN; }
 | |
|   bool operator!=(const CHIArg &A) { return !(*this == A); }
 | |
| };
 | |
| 
 | |
| using CHIIt = SmallVectorImpl<CHIArg>::iterator;
 | |
| using CHIArgs = iterator_range<CHIIt>;
 | |
| using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>;
 | |
| using InValuesType =
 | |
|     DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>;
 | |
| 
 | |
| // An invalid value number Used when inserting a single value number into
 | |
| // VNtoInsns.
 | |
| enum : unsigned { InvalidVN = ~2U };
 | |
| 
 | |
| // Records all scalar instructions candidate for code hoisting.
 | |
| class InsnInfo {
 | |
|   VNtoInsns VNtoScalars;
 | |
| 
 | |
| public:
 | |
|   // Inserts I and its value number in VNtoScalars.
 | |
|   void insert(Instruction *I, GVN::ValueTable &VN) {
 | |
|     // Scalar instruction.
 | |
|     unsigned V = VN.lookupOrAdd(I);
 | |
|     VNtoScalars[{V, InvalidVN}].push_back(I);
 | |
|   }
 | |
| 
 | |
|   const VNtoInsns &getVNTable() const { return VNtoScalars; }
 | |
| };
 | |
| 
 | |
| // Records all load instructions candidate for code hoisting.
 | |
| class LoadInfo {
 | |
|   VNtoInsns VNtoLoads;
 | |
| 
 | |
| public:
 | |
|   // Insert Load and the value number of its memory address in VNtoLoads.
 | |
|   void insert(LoadInst *Load, GVN::ValueTable &VN) {
 | |
|     if (Load->isSimple()) {
 | |
|       unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
 | |
|       VNtoLoads[{V, InvalidVN}].push_back(Load);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const VNtoInsns &getVNTable() const { return VNtoLoads; }
 | |
| };
 | |
| 
 | |
| // Records all store instructions candidate for code hoisting.
 | |
| class StoreInfo {
 | |
|   VNtoInsns VNtoStores;
 | |
| 
 | |
| public:
 | |
|   // Insert the Store and a hash number of the store address and the stored
 | |
|   // value in VNtoStores.
 | |
|   void insert(StoreInst *Store, GVN::ValueTable &VN) {
 | |
|     if (!Store->isSimple())
 | |
|       return;
 | |
|     // Hash the store address and the stored value.
 | |
|     Value *Ptr = Store->getPointerOperand();
 | |
|     Value *Val = Store->getValueOperand();
 | |
|     VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
 | |
|   }
 | |
| 
 | |
|   const VNtoInsns &getVNTable() const { return VNtoStores; }
 | |
| };
 | |
| 
 | |
| // Records all call instructions candidate for code hoisting.
 | |
| class CallInfo {
 | |
|   VNtoInsns VNtoCallsScalars;
 | |
|   VNtoInsns VNtoCallsLoads;
 | |
|   VNtoInsns VNtoCallsStores;
 | |
| 
 | |
| public:
 | |
|   // Insert Call and its value numbering in one of the VNtoCalls* containers.
 | |
|   void insert(CallInst *Call, GVN::ValueTable &VN) {
 | |
|     // A call that doesNotAccessMemory is handled as a Scalar,
 | |
|     // onlyReadsMemory will be handled as a Load instruction,
 | |
|     // all other calls will be handled as stores.
 | |
|     unsigned V = VN.lookupOrAdd(Call);
 | |
|     auto Entry = std::make_pair(V, InvalidVN);
 | |
| 
 | |
|     if (Call->doesNotAccessMemory())
 | |
|       VNtoCallsScalars[Entry].push_back(Call);
 | |
|     else if (Call->onlyReadsMemory())
 | |
|       VNtoCallsLoads[Entry].push_back(Call);
 | |
|     else
 | |
|       VNtoCallsStores[Entry].push_back(Call);
 | |
|   }
 | |
| 
 | |
|   const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
 | |
|   const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
 | |
|   const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
 | |
| };
 | |
| 
 | |
| static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
 | |
|   static const unsigned KnownIDs[] = {
 | |
|       LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
 | |
|       LLVMContext::MD_noalias,        LLVMContext::MD_range,
 | |
|       LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
 | |
|       LLVMContext::MD_invariant_group};
 | |
|   combineMetadata(ReplInst, I, KnownIDs, true);
 | |
| }
 | |
| 
 | |
| // This pass hoists common computations across branches sharing common
 | |
| // dominator. The primary goal is to reduce the code size, and in some
 | |
| // cases reduce critical path (by exposing more ILP).
 | |
| class GVNHoist {
 | |
| public:
 | |
|   GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA,
 | |
|            MemoryDependenceResults *MD, MemorySSA *MSSA)
 | |
|       : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA),
 | |
|         MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {}
 | |
| 
 | |
|   bool run(Function &F) {
 | |
|     NumFuncArgs = F.arg_size();
 | |
|     VN.setDomTree(DT);
 | |
|     VN.setAliasAnalysis(AA);
 | |
|     VN.setMemDep(MD);
 | |
|     bool Res = false;
 | |
|     // Perform DFS Numbering of instructions.
 | |
|     unsigned BBI = 0;
 | |
|     for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
 | |
|       DFSNumber[BB] = ++BBI;
 | |
|       unsigned I = 0;
 | |
|       for (auto &Inst : *BB)
 | |
|         DFSNumber[&Inst] = ++I;
 | |
|     }
 | |
| 
 | |
|     int ChainLength = 0;
 | |
| 
 | |
|     // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
 | |
|     while (true) {
 | |
|       if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
 | |
|         return Res;
 | |
| 
 | |
|       auto HoistStat = hoistExpressions(F);
 | |
|       if (HoistStat.first + HoistStat.second == 0)
 | |
|         return Res;
 | |
| 
 | |
|       if (HoistStat.second > 0)
 | |
|         // To address a limitation of the current GVN, we need to rerun the
 | |
|         // hoisting after we hoisted loads or stores in order to be able to
 | |
|         // hoist all scalars dependent on the hoisted ld/st.
 | |
|         VN.clear();
 | |
| 
 | |
|       Res = true;
 | |
|     }
 | |
| 
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   // Copied from NewGVN.cpp
 | |
|   // This function provides global ranking of operations so that we can place
 | |
|   // them in a canonical order.  Note that rank alone is not necessarily enough
 | |
|   // for a complete ordering, as constants all have the same rank.  However,
 | |
|   // generally, we will simplify an operation with all constants so that it
 | |
|   // doesn't matter what order they appear in.
 | |
|   unsigned int rank(const Value *V) const {
 | |
|     // Prefer constants to undef to anything else
 | |
|     // Undef is a constant, have to check it first.
 | |
|     // Prefer smaller constants to constantexprs
 | |
|     if (isa<ConstantExpr>(V))
 | |
|       return 2;
 | |
|     if (isa<UndefValue>(V))
 | |
|       return 1;
 | |
|     if (isa<Constant>(V))
 | |
|       return 0;
 | |
|     else if (auto *A = dyn_cast<Argument>(V))
 | |
|       return 3 + A->getArgNo();
 | |
| 
 | |
|     // Need to shift the instruction DFS by number of arguments + 3 to account
 | |
|     // for the constant and argument ranking above.
 | |
|     auto Result = DFSNumber.lookup(V);
 | |
|     if (Result > 0)
 | |
|       return 4 + NumFuncArgs + Result;
 | |
|     // Unreachable or something else, just return a really large number.
 | |
|     return ~0;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   GVN::ValueTable VN;
 | |
|   DominatorTree *DT;
 | |
|   PostDominatorTree *PDT;
 | |
|   AliasAnalysis *AA;
 | |
|   MemoryDependenceResults *MD;
 | |
|   MemorySSA *MSSA;
 | |
|   std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
 | |
|   DenseMap<const Value *, unsigned> DFSNumber;
 | |
|   BBSideEffectsSet BBSideEffects;
 | |
|   DenseSet<const BasicBlock *> HoistBarrier;
 | |
|   SmallVector<BasicBlock *, 32> IDFBlocks;
 | |
|   unsigned NumFuncArgs;
 | |
|   const bool HoistingGeps = false;
 | |
| 
 | |
|   enum InsKind { Unknown, Scalar, Load, Store };
 | |
| 
 | |
|   // Return true when there are exception handling in BB.
 | |
|   bool hasEH(const BasicBlock *BB) {
 | |
|     auto It = BBSideEffects.find(BB);
 | |
|     if (It != BBSideEffects.end())
 | |
|       return It->second;
 | |
| 
 | |
|     if (BB->isEHPad() || BB->hasAddressTaken()) {
 | |
|       BBSideEffects[BB] = true;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (BB->getTerminator()->mayThrow()) {
 | |
|       BBSideEffects[BB] = true;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     BBSideEffects[BB] = false;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Return true when a successor of BB dominates A.
 | |
|   bool successorDominate(const BasicBlock *BB, const BasicBlock *A) {
 | |
|     for (const BasicBlock *Succ : successors(BB))
 | |
|       if (DT->dominates(Succ, A))
 | |
|         return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Return true when I1 appears before I2 in the instructions of BB.
 | |
|   bool firstInBB(const Instruction *I1, const Instruction *I2) {
 | |
|     assert(I1->getParent() == I2->getParent());
 | |
|     unsigned I1DFS = DFSNumber.lookup(I1);
 | |
|     unsigned I2DFS = DFSNumber.lookup(I2);
 | |
|     assert(I1DFS && I2DFS);
 | |
|     return I1DFS < I2DFS;
 | |
|   }
 | |
| 
 | |
|   // Return true when there are memory uses of Def in BB.
 | |
|   bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
 | |
|                     const BasicBlock *BB) {
 | |
|     const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
 | |
|     if (!Acc)
 | |
|       return false;
 | |
| 
 | |
|     Instruction *OldPt = Def->getMemoryInst();
 | |
|     const BasicBlock *OldBB = OldPt->getParent();
 | |
|     const BasicBlock *NewBB = NewPt->getParent();
 | |
|     bool ReachedNewPt = false;
 | |
| 
 | |
|     for (const MemoryAccess &MA : *Acc)
 | |
|       if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) {
 | |
|         Instruction *Insn = MU->getMemoryInst();
 | |
| 
 | |
|         // Do not check whether MU aliases Def when MU occurs after OldPt.
 | |
|         if (BB == OldBB && firstInBB(OldPt, Insn))
 | |
|           break;
 | |
| 
 | |
|         // Do not check whether MU aliases Def when MU occurs before NewPt.
 | |
|         if (BB == NewBB) {
 | |
|           if (!ReachedNewPt) {
 | |
|             if (firstInBB(Insn, NewPt))
 | |
|               continue;
 | |
|             ReachedNewPt = true;
 | |
|           }
 | |
|         }
 | |
|         if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA))
 | |
|           return true;
 | |
|       }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
 | |
|                    int &NBBsOnAllPaths) {
 | |
|     // Stop walk once the limit is reached.
 | |
|     if (NBBsOnAllPaths == 0)
 | |
|       return true;
 | |
| 
 | |
|     // Impossible to hoist with exceptions on the path.
 | |
|     if (hasEH(BB))
 | |
|       return true;
 | |
| 
 | |
|     // No such instruction after HoistBarrier in a basic block was
 | |
|     // selected for hoisting so instructions selected within basic block with
 | |
|     // a hoist barrier can be hoisted.
 | |
|     if ((BB != SrcBB) && HoistBarrier.count(BB))
 | |
|       return true;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Return true when there are exception handling or loads of memory Def
 | |
|   // between Def and NewPt.  This function is only called for stores: Def is
 | |
|   // the MemoryDef of the store to be hoisted.
 | |
| 
 | |
|   // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
 | |
|   // return true when the counter NBBsOnAllPaths reaces 0, except when it is
 | |
|   // initialized to -1 which is unlimited.
 | |
|   bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
 | |
|                           int &NBBsOnAllPaths) {
 | |
|     const BasicBlock *NewBB = NewPt->getParent();
 | |
|     const BasicBlock *OldBB = Def->getBlock();
 | |
|     assert(DT->dominates(NewBB, OldBB) && "invalid path");
 | |
|     assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
 | |
|            "def does not dominate new hoisting point");
 | |
| 
 | |
|     // Walk all basic blocks reachable in depth-first iteration on the inverse
 | |
|     // CFG from OldBB to NewBB. These blocks are all the blocks that may be
 | |
|     // executed between the execution of NewBB and OldBB. Hoisting an expression
 | |
|     // from OldBB into NewBB has to be safe on all execution paths.
 | |
|     for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
 | |
|       const BasicBlock *BB = *I;
 | |
|       if (BB == NewBB) {
 | |
|         // Stop traversal when reaching HoistPt.
 | |
|         I.skipChildren();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (hasEHhelper(BB, OldBB, NBBsOnAllPaths))
 | |
|         return true;
 | |
| 
 | |
|       // Check that we do not move a store past loads.
 | |
|       if (hasMemoryUse(NewPt, Def, BB))
 | |
|         return true;
 | |
| 
 | |
|       // -1 is unlimited number of blocks on all paths.
 | |
|       if (NBBsOnAllPaths != -1)
 | |
|         --NBBsOnAllPaths;
 | |
| 
 | |
|       ++I;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Return true when there are exception handling between HoistPt and BB.
 | |
|   // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
 | |
|   // return true when the counter NBBsOnAllPaths reaches 0, except when it is
 | |
|   // initialized to -1 which is unlimited.
 | |
|   bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
 | |
|                    int &NBBsOnAllPaths) {
 | |
|     assert(DT->dominates(HoistPt, SrcBB) && "Invalid path");
 | |
| 
 | |
|     // Walk all basic blocks reachable in depth-first iteration on
 | |
|     // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
 | |
|     // blocks that may be executed between the execution of NewHoistPt and
 | |
|     // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
 | |
|     // on all execution paths.
 | |
|     for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) {
 | |
|       const BasicBlock *BB = *I;
 | |
|       if (BB == HoistPt) {
 | |
|         // Stop traversal when reaching NewHoistPt.
 | |
|         I.skipChildren();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths))
 | |
|         return true;
 | |
| 
 | |
|       // -1 is unlimited number of blocks on all paths.
 | |
|       if (NBBsOnAllPaths != -1)
 | |
|         --NBBsOnAllPaths;
 | |
| 
 | |
|       ++I;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Return true when it is safe to hoist a memory load or store U from OldPt
 | |
|   // to NewPt.
 | |
|   bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
 | |
|                        MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) {
 | |
|     // In place hoisting is safe.
 | |
|     if (NewPt == OldPt)
 | |
|       return true;
 | |
| 
 | |
|     const BasicBlock *NewBB = NewPt->getParent();
 | |
|     const BasicBlock *OldBB = OldPt->getParent();
 | |
|     const BasicBlock *UBB = U->getBlock();
 | |
| 
 | |
|     // Check for dependences on the Memory SSA.
 | |
|     MemoryAccess *D = U->getDefiningAccess();
 | |
|     BasicBlock *DBB = D->getBlock();
 | |
|     if (DT->properlyDominates(NewBB, DBB))
 | |
|       // Cannot move the load or store to NewBB above its definition in DBB.
 | |
|       return false;
 | |
| 
 | |
|     if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
 | |
|       if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
 | |
|         if (!firstInBB(UD->getMemoryInst(), NewPt))
 | |
|           // Cannot move the load or store to NewPt above its definition in D.
 | |
|           return false;
 | |
| 
 | |
|     // Check for unsafe hoistings due to side effects.
 | |
|     if (K == InsKind::Store) {
 | |
|       if (hasEHOrLoadsOnPath(NewPt, dyn_cast<MemoryDef>(U), NBBsOnAllPaths))
 | |
|         return false;
 | |
|     } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
 | |
|       return false;
 | |
| 
 | |
|     if (UBB == NewBB) {
 | |
|       if (DT->properlyDominates(DBB, NewBB))
 | |
|         return true;
 | |
|       assert(UBB == DBB);
 | |
|       assert(MSSA->locallyDominates(D, U));
 | |
|     }
 | |
| 
 | |
|     // No side effects: it is safe to hoist.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Return true when it is safe to hoist scalar instructions from all blocks in
 | |
|   // WL to HoistBB.
 | |
|   bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB,
 | |
|                          int &NBBsOnAllPaths) {
 | |
|     return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths);
 | |
|   }
 | |
| 
 | |
|   // In the inverse CFG, the dominance frontier of basic block (BB) is the
 | |
|   // point where ANTIC needs to be computed for instructions which are going
 | |
|   // to be hoisted. Since this point does not change during gvn-hoist,
 | |
|   // we compute it only once (on demand).
 | |
|   // The ides is inspired from:
 | |
|   // "Partial Redundancy Elimination in SSA Form"
 | |
|   // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW
 | |
|   // They use similar idea in the forward graph to find fully redundant and
 | |
|   // partially redundant expressions, here it is used in the inverse graph to
 | |
|   // find fully anticipable instructions at merge point (post-dominator in
 | |
|   // the inverse CFG).
 | |
|   // Returns the edge via which an instruction in BB will get the values from.
 | |
| 
 | |
|   // Returns true when the values are flowing out to each edge.
 | |
|   bool valueAnticipable(CHIArgs C, Instruction *TI) const {
 | |
|     if (TI->getNumSuccessors() > (unsigned)size(C))
 | |
|       return false; // Not enough args in this CHI.
 | |
| 
 | |
|     for (auto CHI : C) {
 | |
|       BasicBlock *Dest = CHI.Dest;
 | |
|       // Find if all the edges have values flowing out of BB.
 | |
|       bool Found = llvm::any_of(
 | |
|           successors(TI), [Dest](const BasicBlock *BB) { return BB == Dest; });
 | |
|       if (!Found)
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check if it is safe to hoist values tracked by CHI in the range
 | |
|   // [Begin, End) and accumulate them in Safe.
 | |
|   void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K,
 | |
|                    SmallVectorImpl<CHIArg> &Safe) {
 | |
|     int NumBBsOnAllPaths = MaxNumberOfBBSInPath;
 | |
|     for (auto CHI : C) {
 | |
|       Instruction *Insn = CHI.I;
 | |
|       if (!Insn) // No instruction was inserted in this CHI.
 | |
|         continue;
 | |
|       if (K == InsKind::Scalar) {
 | |
|         if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths))
 | |
|           Safe.push_back(CHI);
 | |
|       } else {
 | |
|         MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn);
 | |
|         if (safeToHoistLdSt(BB->getTerminator(), Insn, UD, K, NumBBsOnAllPaths))
 | |
|           Safe.push_back(CHI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>;
 | |
| 
 | |
|   // Push all the VNs corresponding to BB into RenameStack.
 | |
|   void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
 | |
|                        RenameStackType &RenameStack) {
 | |
|     auto it1 = ValueBBs.find(BB);
 | |
|     if (it1 != ValueBBs.end()) {
 | |
|       // Iterate in reverse order to keep lower ranked values on the top.
 | |
|       for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) {
 | |
|         // Get the value of instruction I
 | |
|         LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second);
 | |
|         RenameStack[VI.first].push_back(VI.second);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
 | |
|                    RenameStackType &RenameStack) {
 | |
|     // For each *predecessor* (because Post-DOM) of BB check if it has a CHI
 | |
|     for (auto Pred : predecessors(BB)) {
 | |
|       auto P = CHIBBs.find(Pred);
 | |
|       if (P == CHIBBs.end()) {
 | |
|         continue;
 | |
|       }
 | |
|       LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName(););
 | |
|       // A CHI is found (BB -> Pred is an edge in the CFG)
 | |
|       // Pop the stack until Top(V) = Ve.
 | |
|       auto &VCHI = P->second;
 | |
|       for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) {
 | |
|         CHIArg &C = *It;
 | |
|         if (!C.Dest) {
 | |
|           auto si = RenameStack.find(C.VN);
 | |
|           // The Basic Block where CHI is must dominate the value we want to
 | |
|           // track in a CHI. In the PDom walk, there can be values in the
 | |
|           // stack which are not control dependent e.g., nested loop.
 | |
|           if (si != RenameStack.end() && si->second.size() &&
 | |
|               DT->properlyDominates(Pred, si->second.back()->getParent())) {
 | |
|             C.Dest = BB;                     // Assign the edge
 | |
|             C.I = si->second.pop_back_val(); // Assign the argument
 | |
|             LLVM_DEBUG(dbgs()
 | |
|                        << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I
 | |
|                        << ", VN: " << C.VN.first << ", " << C.VN.second);
 | |
|           }
 | |
|           // Move to next CHI of a different value
 | |
|           It = std::find_if(It, VCHI.end(),
 | |
|                             [It](CHIArg &A) { return A != *It; });
 | |
|         } else
 | |
|           ++It;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Walk the post-dominator tree top-down and use a stack for each value to
 | |
|   // store the last value you see. When you hit a CHI from a given edge, the
 | |
|   // value to use as the argument is at the top of the stack, add the value to
 | |
|   // CHI and pop.
 | |
|   void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) {
 | |
|     auto Root = PDT->getNode(nullptr);
 | |
|     if (!Root)
 | |
|       return;
 | |
|     // Depth first walk on PDom tree to fill the CHIargs at each PDF.
 | |
|     RenameStackType RenameStack;
 | |
|     for (auto Node : depth_first(Root)) {
 | |
|       BasicBlock *BB = Node->getBlock();
 | |
|       if (!BB)
 | |
|         continue;
 | |
| 
 | |
|       // Collect all values in BB and push to stack.
 | |
|       fillRenameStack(BB, ValueBBs, RenameStack);
 | |
| 
 | |
|       // Fill outgoing values in each CHI corresponding to BB.
 | |
|       fillChiArgs(BB, CHIBBs, RenameStack);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Walk all the CHI-nodes to find ones which have a empty-entry and remove
 | |
|   // them Then collect all the instructions which are safe to hoist and see if
 | |
|   // they form a list of anticipable values. OutValues contains CHIs
 | |
|   // corresponding to each basic block.
 | |
|   void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K,
 | |
|                                HoistingPointList &HPL) {
 | |
|     auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; };
 | |
| 
 | |
|     // CHIArgs now have the outgoing values, so check for anticipability and
 | |
|     // accumulate hoistable candidates in HPL.
 | |
|     for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) {
 | |
|       BasicBlock *BB = A.first;
 | |
|       SmallVectorImpl<CHIArg> &CHIs = A.second;
 | |
|       // Vector of PHIs contains PHIs for different instructions.
 | |
|       // Sort the args according to their VNs, such that identical
 | |
|       // instructions are together.
 | |
|       std::stable_sort(CHIs.begin(), CHIs.end(), cmpVN);
 | |
|       auto TI = BB->getTerminator();
 | |
|       auto B = CHIs.begin();
 | |
|       // [PreIt, PHIIt) form a range of CHIs which have identical VNs.
 | |
|       auto PHIIt = std::find_if(CHIs.begin(), CHIs.end(),
 | |
|                                  [B](CHIArg &A) { return A != *B; });
 | |
|       auto PrevIt = CHIs.begin();
 | |
|       while (PrevIt != PHIIt) {
 | |
|         // Collect values which satisfy safety checks.
 | |
|         SmallVector<CHIArg, 2> Safe;
 | |
|         // We check for safety first because there might be multiple values in
 | |
|         // the same path, some of which are not safe to be hoisted, but overall
 | |
|         // each edge has at least one value which can be hoisted, making the
 | |
|         // value anticipable along that path.
 | |
|         checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe);
 | |
| 
 | |
|         // List of safe values should be anticipable at TI.
 | |
|         if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) {
 | |
|           HPL.push_back({BB, SmallVecInsn()});
 | |
|           SmallVecInsn &V = HPL.back().second;
 | |
|           for (auto B : Safe)
 | |
|             V.push_back(B.I);
 | |
|         }
 | |
| 
 | |
|         // Check other VNs
 | |
|         PrevIt = PHIIt;
 | |
|         PHIIt = std::find_if(PrevIt, CHIs.end(),
 | |
|                              [PrevIt](CHIArg &A) { return A != *PrevIt; });
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compute insertion points for each values which can be fully anticipated at
 | |
|   // a dominator. HPL contains all such values.
 | |
|   void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
 | |
|                               InsKind K) {
 | |
|     // Sort VNs based on their rankings
 | |
|     std::vector<VNType> Ranks;
 | |
|     for (const auto &Entry : Map) {
 | |
|       Ranks.push_back(Entry.first);
 | |
|     }
 | |
| 
 | |
|     // TODO: Remove fully-redundant expressions.
 | |
|     // Get instruction from the Map, assume that all the Instructions
 | |
|     // with same VNs have same rank (this is an approximation).
 | |
|     llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) {
 | |
|       return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin()));
 | |
|     });
 | |
| 
 | |
|     // - Sort VNs according to their rank, and start with lowest ranked VN
 | |
|     // - Take a VN and for each instruction with same VN
 | |
|     //   - Find the dominance frontier in the inverse graph (PDF)
 | |
|     //   - Insert the chi-node at PDF
 | |
|     // - Remove the chi-nodes with missing entries
 | |
|     // - Remove values from CHI-nodes which do not truly flow out, e.g.,
 | |
|     //   modified along the path.
 | |
|     // - Collect the remaining values that are still anticipable
 | |
|     SmallVector<BasicBlock *, 2> IDFBlocks;
 | |
|     ReverseIDFCalculator IDFs(*PDT);
 | |
|     OutValuesType OutValue;
 | |
|     InValuesType InValue;
 | |
|     for (const auto &R : Ranks) {
 | |
|       const SmallVecInsn &V = Map.lookup(R);
 | |
|       if (V.size() < 2)
 | |
|         continue;
 | |
|       const VNType &VN = R;
 | |
|       SmallPtrSet<BasicBlock *, 2> VNBlocks;
 | |
|       for (auto &I : V) {
 | |
|         BasicBlock *BBI = I->getParent();
 | |
|         if (!hasEH(BBI))
 | |
|           VNBlocks.insert(BBI);
 | |
|       }
 | |
|       // Compute the Post Dominance Frontiers of each basic block
 | |
|       // The dominance frontier of a live block X in the reverse
 | |
|       // control graph is the set of blocks upon which X is control
 | |
|       // dependent. The following sequence computes the set of blocks
 | |
|       // which currently have dead terminators that are control
 | |
|       // dependence sources of a block which is in NewLiveBlocks.
 | |
|       IDFs.setDefiningBlocks(VNBlocks);
 | |
|       IDFBlocks.clear();
 | |
|       IDFs.calculate(IDFBlocks);
 | |
| 
 | |
|       // Make a map of BB vs instructions to be hoisted.
 | |
|       for (unsigned i = 0; i < V.size(); ++i) {
 | |
|         InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
 | |
|       }
 | |
|       // Insert empty CHI node for this VN. This is used to factor out
 | |
|       // basic blocks where the ANTIC can potentially change.
 | |
|       for (auto IDFB : IDFBlocks) {
 | |
|         for (unsigned i = 0; i < V.size(); ++i) {
 | |
|           CHIArg C = {VN, nullptr, nullptr};
 | |
|            // Ignore spurious PDFs.
 | |
|           if (DT->properlyDominates(IDFB, V[i]->getParent())) {
 | |
|             OutValue[IDFB].push_back(C);
 | |
|             LLVM_DEBUG(dbgs() << "\nInsertion a CHI for BB: " << IDFB->getName()
 | |
|                               << ", for Insn: " << *V[i]);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Insert CHI args at each PDF to iterate on factored graph of
 | |
|     // control dependence.
 | |
|     insertCHI(InValue, OutValue);
 | |
|     // Using the CHI args inserted at each PDF, find fully anticipable values.
 | |
|     findHoistableCandidates(OutValue, K, HPL);
 | |
|   }
 | |
| 
 | |
|   // Return true when all operands of Instr are available at insertion point
 | |
|   // HoistPt. When limiting the number of hoisted expressions, one could hoist
 | |
|   // a load without hoisting its access function. So before hoisting any
 | |
|   // expression, make sure that all its operands are available at insert point.
 | |
|   bool allOperandsAvailable(const Instruction *I,
 | |
|                             const BasicBlock *HoistPt) const {
 | |
|     for (const Use &Op : I->operands())
 | |
|       if (const auto *Inst = dyn_cast<Instruction>(&Op))
 | |
|         if (!DT->dominates(Inst->getParent(), HoistPt))
 | |
|           return false;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Same as allOperandsAvailable with recursive check for GEP operands.
 | |
|   bool allGepOperandsAvailable(const Instruction *I,
 | |
|                                const BasicBlock *HoistPt) const {
 | |
|     for (const Use &Op : I->operands())
 | |
|       if (const auto *Inst = dyn_cast<Instruction>(&Op))
 | |
|         if (!DT->dominates(Inst->getParent(), HoistPt)) {
 | |
|           if (const GetElementPtrInst *GepOp =
 | |
|                   dyn_cast<GetElementPtrInst>(Inst)) {
 | |
|             if (!allGepOperandsAvailable(GepOp, HoistPt))
 | |
|               return false;
 | |
|             // Gep is available if all operands of GepOp are available.
 | |
|           } else {
 | |
|             // Gep is not available if it has operands other than GEPs that are
 | |
|             // defined in blocks not dominating HoistPt.
 | |
|             return false;
 | |
|           }
 | |
|         }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Make all operands of the GEP available.
 | |
|   void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
 | |
|                          const SmallVecInsn &InstructionsToHoist,
 | |
|                          Instruction *Gep) const {
 | |
|     assert(allGepOperandsAvailable(Gep, HoistPt) &&
 | |
|            "GEP operands not available");
 | |
| 
 | |
|     Instruction *ClonedGep = Gep->clone();
 | |
|     for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
 | |
|       if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
 | |
|         // Check whether the operand is already available.
 | |
|         if (DT->dominates(Op->getParent(), HoistPt))
 | |
|           continue;
 | |
| 
 | |
|         // As a GEP can refer to other GEPs, recursively make all the operands
 | |
|         // of this GEP available at HoistPt.
 | |
|         if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
 | |
|           makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
 | |
|       }
 | |
| 
 | |
|     // Copy Gep and replace its uses in Repl with ClonedGep.
 | |
|     ClonedGep->insertBefore(HoistPt->getTerminator());
 | |
| 
 | |
|     // Conservatively discard any optimization hints, they may differ on the
 | |
|     // other paths.
 | |
|     ClonedGep->dropUnknownNonDebugMetadata();
 | |
| 
 | |
|     // If we have optimization hints which agree with each other along different
 | |
|     // paths, preserve them.
 | |
|     for (const Instruction *OtherInst : InstructionsToHoist) {
 | |
|       const GetElementPtrInst *OtherGep;
 | |
|       if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
 | |
|         OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
 | |
|       else
 | |
|         OtherGep = cast<GetElementPtrInst>(
 | |
|             cast<StoreInst>(OtherInst)->getPointerOperand());
 | |
|       ClonedGep->andIRFlags(OtherGep);
 | |
|     }
 | |
| 
 | |
|     // Replace uses of Gep with ClonedGep in Repl.
 | |
|     Repl->replaceUsesOfWith(Gep, ClonedGep);
 | |
|   }
 | |
| 
 | |
|   void updateAlignment(Instruction *I, Instruction *Repl) {
 | |
|     if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
 | |
|       ReplacementLoad->setAlignment(
 | |
|           std::min(ReplacementLoad->getAlignment(),
 | |
|                    cast<LoadInst>(I)->getAlignment()));
 | |
|       ++NumLoadsRemoved;
 | |
|     } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
 | |
|       ReplacementStore->setAlignment(
 | |
|           std::min(ReplacementStore->getAlignment(),
 | |
|                    cast<StoreInst>(I)->getAlignment()));
 | |
|       ++NumStoresRemoved;
 | |
|     } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
 | |
|       ReplacementAlloca->setAlignment(
 | |
|           std::max(ReplacementAlloca->getAlignment(),
 | |
|                    cast<AllocaInst>(I)->getAlignment()));
 | |
|     } else if (isa<CallInst>(Repl)) {
 | |
|       ++NumCallsRemoved;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remove all the instructions in Candidates and replace their usage with Repl.
 | |
|   // Returns the number of instructions removed.
 | |
|   unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl,
 | |
|                 MemoryUseOrDef *NewMemAcc) {
 | |
|     unsigned NR = 0;
 | |
|     for (Instruction *I : Candidates) {
 | |
|       if (I != Repl) {
 | |
|         ++NR;
 | |
|         updateAlignment(I, Repl);
 | |
|         if (NewMemAcc) {
 | |
|           // Update the uses of the old MSSA access with NewMemAcc.
 | |
|           MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
 | |
|           OldMA->replaceAllUsesWith(NewMemAcc);
 | |
|           MSSAUpdater->removeMemoryAccess(OldMA);
 | |
|         }
 | |
| 
 | |
|         Repl->andIRFlags(I);
 | |
|         combineKnownMetadata(Repl, I);
 | |
|         I->replaceAllUsesWith(Repl);
 | |
|         // Also invalidate the Alias Analysis cache.
 | |
|         MD->removeInstruction(I);
 | |
|         I->eraseFromParent();
 | |
|       }
 | |
|     }
 | |
|     return NR;
 | |
|   }
 | |
| 
 | |
|   // Replace all Memory PHI usage with NewMemAcc.
 | |
|   void raMPHIuw(MemoryUseOrDef *NewMemAcc) {
 | |
|     SmallPtrSet<MemoryPhi *, 4> UsePhis;
 | |
|     for (User *U : NewMemAcc->users())
 | |
|       if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
 | |
|         UsePhis.insert(Phi);
 | |
| 
 | |
|     for (MemoryPhi *Phi : UsePhis) {
 | |
|       auto In = Phi->incoming_values();
 | |
|       if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
 | |
|         Phi->replaceAllUsesWith(NewMemAcc);
 | |
|         MSSAUpdater->removeMemoryAccess(Phi);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remove all other instructions and replace them with Repl.
 | |
|   unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl,
 | |
|                             BasicBlock *DestBB, bool MoveAccess) {
 | |
|     MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl);
 | |
|     if (MoveAccess && NewMemAcc) {
 | |
|         // The definition of this ld/st will not change: ld/st hoisting is
 | |
|         // legal when the ld/st is not moved past its current definition.
 | |
|         MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::End);
 | |
|     }
 | |
| 
 | |
|     // Replace all other instructions with Repl with memory access NewMemAcc.
 | |
|     unsigned NR = rauw(Candidates, Repl, NewMemAcc);
 | |
| 
 | |
|     // Remove MemorySSA phi nodes with the same arguments.
 | |
|     if (NewMemAcc)
 | |
|       raMPHIuw(NewMemAcc);
 | |
|     return NR;
 | |
|   }
 | |
| 
 | |
|   // In the case Repl is a load or a store, we make all their GEPs
 | |
|   // available: GEPs are not hoisted by default to avoid the address
 | |
|   // computations to be hoisted without the associated load or store.
 | |
|   bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
 | |
|                                 const SmallVecInsn &InstructionsToHoist) const {
 | |
|     // Check whether the GEP of a ld/st can be synthesized at HoistPt.
 | |
|     GetElementPtrInst *Gep = nullptr;
 | |
|     Instruction *Val = nullptr;
 | |
|     if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
 | |
|       Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
 | |
|     } else if (auto *St = dyn_cast<StoreInst>(Repl)) {
 | |
|       Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
 | |
|       Val = dyn_cast<Instruction>(St->getValueOperand());
 | |
|       // Check that the stored value is available.
 | |
|       if (Val) {
 | |
|         if (isa<GetElementPtrInst>(Val)) {
 | |
|           // Check whether we can compute the GEP at HoistPt.
 | |
|           if (!allGepOperandsAvailable(Val, HoistPt))
 | |
|             return false;
 | |
|         } else if (!DT->dominates(Val->getParent(), HoistPt))
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Check whether we can compute the Gep at HoistPt.
 | |
|     if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
 | |
|       return false;
 | |
| 
 | |
|     makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);
 | |
| 
 | |
|     if (Val && isa<GetElementPtrInst>(Val))
 | |
|       makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) {
 | |
|     unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
 | |
|     for (const HoistingPointInfo &HP : HPL) {
 | |
|       // Find out whether we already have one of the instructions in HoistPt,
 | |
|       // in which case we do not have to move it.
 | |
|       BasicBlock *DestBB = HP.first;
 | |
|       const SmallVecInsn &InstructionsToHoist = HP.second;
 | |
|       Instruction *Repl = nullptr;
 | |
|       for (Instruction *I : InstructionsToHoist)
 | |
|         if (I->getParent() == DestBB)
 | |
|           // If there are two instructions in HoistPt to be hoisted in place:
 | |
|           // update Repl to be the first one, such that we can rename the uses
 | |
|           // of the second based on the first.
 | |
|           if (!Repl || firstInBB(I, Repl))
 | |
|             Repl = I;
 | |
| 
 | |
|       // Keep track of whether we moved the instruction so we know whether we
 | |
|       // should move the MemoryAccess.
 | |
|       bool MoveAccess = true;
 | |
|       if (Repl) {
 | |
|         // Repl is already in HoistPt: it remains in place.
 | |
|         assert(allOperandsAvailable(Repl, DestBB) &&
 | |
|                "instruction depends on operands that are not available");
 | |
|         MoveAccess = false;
 | |
|       } else {
 | |
|         // When we do not find Repl in HoistPt, select the first in the list
 | |
|         // and move it to HoistPt.
 | |
|         Repl = InstructionsToHoist.front();
 | |
| 
 | |
|         // We can move Repl in HoistPt only when all operands are available.
 | |
|         // The order in which hoistings are done may influence the availability
 | |
|         // of operands.
 | |
|         if (!allOperandsAvailable(Repl, DestBB)) {
 | |
|           // When HoistingGeps there is nothing more we can do to make the
 | |
|           // operands available: just continue.
 | |
|           if (HoistingGeps)
 | |
|             continue;
 | |
| 
 | |
|           // When not HoistingGeps we need to copy the GEPs.
 | |
|           if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist))
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         // Move the instruction at the end of HoistPt.
 | |
|         Instruction *Last = DestBB->getTerminator();
 | |
|         MD->removeInstruction(Repl);
 | |
|         Repl->moveBefore(Last);
 | |
| 
 | |
|         DFSNumber[Repl] = DFSNumber[Last]++;
 | |
|       }
 | |
| 
 | |
|       NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess);
 | |
| 
 | |
|       if (isa<LoadInst>(Repl))
 | |
|         ++NL;
 | |
|       else if (isa<StoreInst>(Repl))
 | |
|         ++NS;
 | |
|       else if (isa<CallInst>(Repl))
 | |
|         ++NC;
 | |
|       else // Scalar
 | |
|         ++NI;
 | |
|     }
 | |
| 
 | |
|     NumHoisted += NL + NS + NC + NI;
 | |
|     NumRemoved += NR;
 | |
|     NumLoadsHoisted += NL;
 | |
|     NumStoresHoisted += NS;
 | |
|     NumCallsHoisted += NC;
 | |
|     return {NI, NL + NC + NS};
 | |
|   }
 | |
| 
 | |
|   // Hoist all expressions. Returns Number of scalars hoisted
 | |
|   // and number of non-scalars hoisted.
 | |
|   std::pair<unsigned, unsigned> hoistExpressions(Function &F) {
 | |
|     InsnInfo II;
 | |
|     LoadInfo LI;
 | |
|     StoreInfo SI;
 | |
|     CallInfo CI;
 | |
|     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
 | |
|       int InstructionNb = 0;
 | |
|       for (Instruction &I1 : *BB) {
 | |
|         // If I1 cannot guarantee progress, subsequent instructions
 | |
|         // in BB cannot be hoisted anyways.
 | |
|         if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) {
 | |
|           HoistBarrier.insert(BB);
 | |
|           break;
 | |
|         }
 | |
|         // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
 | |
|         // deeper may increase the register pressure and compilation time.
 | |
|         if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
 | |
|           break;
 | |
| 
 | |
|         // Do not value number terminator instructions.
 | |
|         if (I1.isTerminator())
 | |
|           break;
 | |
| 
 | |
|         if (auto *Load = dyn_cast<LoadInst>(&I1))
 | |
|           LI.insert(Load, VN);
 | |
|         else if (auto *Store = dyn_cast<StoreInst>(&I1))
 | |
|           SI.insert(Store, VN);
 | |
|         else if (auto *Call = dyn_cast<CallInst>(&I1)) {
 | |
|           if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
 | |
|             if (isa<DbgInfoIntrinsic>(Intr) ||
 | |
|                 Intr->getIntrinsicID() == Intrinsic::assume ||
 | |
|                 Intr->getIntrinsicID() == Intrinsic::sideeffect)
 | |
|               continue;
 | |
|           }
 | |
|           if (Call->mayHaveSideEffects())
 | |
|             break;
 | |
| 
 | |
|           if (Call->isConvergent())
 | |
|             break;
 | |
| 
 | |
|           CI.insert(Call, VN);
 | |
|         } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
 | |
|           // Do not hoist scalars past calls that may write to memory because
 | |
|           // that could result in spills later. geps are handled separately.
 | |
|           // TODO: We can relax this for targets like AArch64 as they have more
 | |
|           // registers than X86.
 | |
|           II.insert(&I1, VN);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     HoistingPointList HPL;
 | |
|     computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
 | |
|     computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
 | |
|     computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
 | |
|     computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
 | |
|     computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
 | |
|     computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
 | |
|     return hoist(HPL);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class GVNHoistLegacyPass : public FunctionPass {
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   GVNHoistLegacyPass() : FunctionPass(ID) {
 | |
|     initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     if (skipFunction(F))
 | |
|       return false;
 | |
|     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
 | |
|     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|     auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
 | |
|     auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
 | |
| 
 | |
|     GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
 | |
|     return G.run(F);
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<PostDominatorTreeWrapperPass>();
 | |
|     AU.addRequired<AAResultsWrapperPass>();
 | |
|     AU.addRequired<MemoryDependenceWrapperPass>();
 | |
|     AU.addRequired<MemorySSAWrapperPass>();
 | |
|     AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|     AU.addPreserved<MemorySSAWrapperPass>();
 | |
|     AU.addPreserved<GlobalsAAWrapperPass>();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | |
|   PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
 | |
|   AliasAnalysis &AA = AM.getResult<AAManager>(F);
 | |
|   MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
 | |
|   MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
 | |
|   GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
 | |
|   if (!G.run(F))
 | |
|     return PreservedAnalyses::all();
 | |
| 
 | |
|   PreservedAnalyses PA;
 | |
|   PA.preserve<DominatorTreeAnalysis>();
 | |
|   PA.preserve<MemorySSAAnalysis>();
 | |
|   PA.preserve<GlobalsAA>();
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| char GVNHoistLegacyPass::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
 | |
|                       "Early GVN Hoisting of Expressions", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
 | |
|                     "Early GVN Hoisting of Expressions", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }
 |