forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			906 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			906 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the guard widening pass.  The semantics of the
 | |
| // @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
 | |
| // more often that it did before the transform.  This optimization is called
 | |
| // "widening" and can be used hoist and common runtime checks in situations like
 | |
| // these:
 | |
| //
 | |
| //    %cmp0 = 7 u< Length
 | |
| //    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
 | |
| //    call @unknown_side_effects()
 | |
| //    %cmp1 = 9 u< Length
 | |
| //    call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
 | |
| //    ...
 | |
| //
 | |
| // =>
 | |
| //
 | |
| //    %cmp0 = 9 u< Length
 | |
| //    call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
 | |
| //    call @unknown_side_effects()
 | |
| //    ...
 | |
| //
 | |
| // If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
 | |
| // generic implementation of the same function, which will have the correct
 | |
| // semantics from that point onward.  It is always _legal_ to deoptimize (so
 | |
| // replacing %cmp0 with false is "correct"), though it may not always be
 | |
| // profitable to do so.
 | |
| //
 | |
| // NB! This pass is a work in progress.  It hasn't been tuned to be "production
 | |
| // ready" yet.  It is known to have quadriatic running time and will not scale
 | |
| // to large numbers of guards
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar/GuardWidening.h"
 | |
| #include <functional>
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/BranchProbabilityInfo.h"
 | |
| #include "llvm/Analysis/GuardUtils.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/PostDominators.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "guard-widening"
 | |
| 
 | |
| STATISTIC(GuardsEliminated, "Number of eliminated guards");
 | |
| STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches");
 | |
| 
 | |
| static cl::opt<bool> WidenFrequentBranches(
 | |
|     "guard-widening-widen-frequent-branches", cl::Hidden,
 | |
|     cl::desc("Widen conditions of explicit branches into dominating guards in "
 | |
|              "case if their taken frequency exceeds threshold set by "
 | |
|              "guard-widening-frequent-branch-threshold option"),
 | |
|     cl::init(false));
 | |
| 
 | |
| static cl::opt<unsigned> FrequentBranchThreshold(
 | |
|     "guard-widening-frequent-branch-threshold", cl::Hidden,
 | |
|     cl::desc("When WidenFrequentBranches is set to true, this option is used "
 | |
|              "to determine which branches are frequently taken. The criteria "
 | |
|              "that a branch is taken more often than "
 | |
|              "((FrequentBranchThreshold - 1) / FrequentBranchThreshold), then "
 | |
|              "it is considered frequently taken"),
 | |
|     cl::init(1000));
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Get the condition of \p I. It can either be a guard or a conditional branch.
 | |
| static Value *getCondition(Instruction *I) {
 | |
|   if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
 | |
|     assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
 | |
|            "Bad guard intrinsic?");
 | |
|     return GI->getArgOperand(0);
 | |
|   }
 | |
|   return cast<BranchInst>(I)->getCondition();
 | |
| }
 | |
| 
 | |
| // Set the condition for \p I to \p NewCond. \p I can either be a guard or a
 | |
| // conditional branch.
 | |
| static void setCondition(Instruction *I, Value *NewCond) {
 | |
|   if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
 | |
|     assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
 | |
|            "Bad guard intrinsic?");
 | |
|     GI->setArgOperand(0, NewCond);
 | |
|     return;
 | |
|   }
 | |
|   cast<BranchInst>(I)->setCondition(NewCond);
 | |
| }
 | |
| 
 | |
| // Eliminates the guard instruction properly.
 | |
| static void eliminateGuard(Instruction *GuardInst) {
 | |
|   GuardInst->eraseFromParent();
 | |
|   ++GuardsEliminated;
 | |
| }
 | |
| 
 | |
| class GuardWideningImpl {
 | |
|   DominatorTree &DT;
 | |
|   PostDominatorTree *PDT;
 | |
|   LoopInfo &LI;
 | |
|   BranchProbabilityInfo *BPI;
 | |
| 
 | |
|   /// Together, these describe the region of interest.  This might be all of
 | |
|   /// the blocks within a function, or only a given loop's blocks and preheader.
 | |
|   DomTreeNode *Root;
 | |
|   std::function<bool(BasicBlock*)> BlockFilter;
 | |
| 
 | |
|   /// The set of guards and conditional branches whose conditions have been
 | |
|   /// widened into dominating guards.
 | |
|   SmallVector<Instruction *, 16> EliminatedGuardsAndBranches;
 | |
| 
 | |
|   /// The set of guards which have been widened to include conditions to other
 | |
|   /// guards.
 | |
|   DenseSet<Instruction *> WidenedGuards;
 | |
| 
 | |
|   /// Try to eliminate guard \p Guard by widening it into an earlier dominating
 | |
|   /// guard.  \p DFSI is the DFS iterator on the dominator tree that is
 | |
|   /// currently visiting the block containing \p Guard, and \p GuardsPerBlock
 | |
|   /// maps BasicBlocks to the set of guards seen in that block.
 | |
|   bool eliminateGuardViaWidening(
 | |
|       Instruction *Guard, const df_iterator<DomTreeNode *> &DFSI,
 | |
|       const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
 | |
|           GuardsPerBlock, bool InvertCondition = false);
 | |
| 
 | |
|   /// Used to keep track of which widening potential is more effective.
 | |
|   enum WideningScore {
 | |
|     /// Don't widen.
 | |
|     WS_IllegalOrNegative,
 | |
| 
 | |
|     /// Widening is performance neutral as far as the cycles spent in check
 | |
|     /// conditions goes (but can still help, e.g., code layout, having less
 | |
|     /// deopt state).
 | |
|     WS_Neutral,
 | |
| 
 | |
|     /// Widening is profitable.
 | |
|     WS_Positive,
 | |
| 
 | |
|     /// Widening is very profitable.  Not significantly different from \c
 | |
|     /// WS_Positive, except by the order.
 | |
|     WS_VeryPositive
 | |
|   };
 | |
| 
 | |
|   static StringRef scoreTypeToString(WideningScore WS);
 | |
| 
 | |
|   /// Compute the score for widening the condition in \p DominatedGuard
 | |
|   /// (contained in \p DominatedGuardLoop) into \p DominatingGuard (contained in
 | |
|   /// \p DominatingGuardLoop). If \p InvertCond is set, then we widen the
 | |
|   /// inverted condition of the dominating guard.
 | |
|   WideningScore computeWideningScore(Instruction *DominatedGuard,
 | |
|                                      Loop *DominatedGuardLoop,
 | |
|                                      Instruction *DominatingGuard,
 | |
|                                      Loop *DominatingGuardLoop,
 | |
|                                      bool InvertCond);
 | |
| 
 | |
|   /// Helper to check if \p V can be hoisted to \p InsertPos.
 | |
|   bool isAvailableAt(Value *V, Instruction *InsertPos) {
 | |
|     SmallPtrSet<Instruction *, 8> Visited;
 | |
|     return isAvailableAt(V, InsertPos, Visited);
 | |
|   }
 | |
| 
 | |
|   bool isAvailableAt(Value *V, Instruction *InsertPos,
 | |
|                      SmallPtrSetImpl<Instruction *> &Visited);
 | |
| 
 | |
|   /// Helper to hoist \p V to \p InsertPos.  Guaranteed to succeed if \c
 | |
|   /// isAvailableAt returned true.
 | |
|   void makeAvailableAt(Value *V, Instruction *InsertPos);
 | |
| 
 | |
|   /// Common helper used by \c widenGuard and \c isWideningCondProfitable.  Try
 | |
|   /// to generate an expression computing the logical AND of \p Cond0 and (\p
 | |
|   /// Cond1 XOR \p InvertCondition).
 | |
|   /// Return true if the expression computing the AND is only as
 | |
|   /// expensive as computing one of the two. If \p InsertPt is true then
 | |
|   /// actually generate the resulting expression, make it available at \p
 | |
|   /// InsertPt and return it in \p Result (else no change to the IR is made).
 | |
|   bool widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt,
 | |
|                        Value *&Result, bool InvertCondition);
 | |
| 
 | |
|   /// Represents a range check of the form \c Base + \c Offset u< \c Length,
 | |
|   /// with the constraint that \c Length is not negative.  \c CheckInst is the
 | |
|   /// pre-existing instruction in the IR that computes the result of this range
 | |
|   /// check.
 | |
|   class RangeCheck {
 | |
|     Value *Base;
 | |
|     ConstantInt *Offset;
 | |
|     Value *Length;
 | |
|     ICmpInst *CheckInst;
 | |
| 
 | |
|   public:
 | |
|     explicit RangeCheck(Value *Base, ConstantInt *Offset, Value *Length,
 | |
|                         ICmpInst *CheckInst)
 | |
|         : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}
 | |
| 
 | |
|     void setBase(Value *NewBase) { Base = NewBase; }
 | |
|     void setOffset(ConstantInt *NewOffset) { Offset = NewOffset; }
 | |
| 
 | |
|     Value *getBase() const { return Base; }
 | |
|     ConstantInt *getOffset() const { return Offset; }
 | |
|     const APInt &getOffsetValue() const { return getOffset()->getValue(); }
 | |
|     Value *getLength() const { return Length; };
 | |
|     ICmpInst *getCheckInst() const { return CheckInst; }
 | |
| 
 | |
|     void print(raw_ostream &OS, bool PrintTypes = false) {
 | |
|       OS << "Base: ";
 | |
|       Base->printAsOperand(OS, PrintTypes);
 | |
|       OS << " Offset: ";
 | |
|       Offset->printAsOperand(OS, PrintTypes);
 | |
|       OS << " Length: ";
 | |
|       Length->printAsOperand(OS, PrintTypes);
 | |
|     }
 | |
| 
 | |
|     LLVM_DUMP_METHOD void dump() {
 | |
|       print(dbgs());
 | |
|       dbgs() << "\n";
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// Parse \p CheckCond into a conjunction (logical-and) of range checks; and
 | |
|   /// append them to \p Checks.  Returns true on success, may clobber \c Checks
 | |
|   /// on failure.
 | |
|   bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks) {
 | |
|     SmallPtrSet<Value *, 8> Visited;
 | |
|     return parseRangeChecks(CheckCond, Checks, Visited);
 | |
|   }
 | |
| 
 | |
|   bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks,
 | |
|                         SmallPtrSetImpl<Value *> &Visited);
 | |
| 
 | |
|   /// Combine the checks in \p Checks into a smaller set of checks and append
 | |
|   /// them into \p CombinedChecks.  Return true on success (i.e. all of checks
 | |
|   /// in \p Checks were combined into \p CombinedChecks).  Clobbers \p Checks
 | |
|   /// and \p CombinedChecks on success and on failure.
 | |
|   bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
 | |
|                           SmallVectorImpl<RangeCheck> &CombinedChecks);
 | |
| 
 | |
|   /// Can we compute the logical AND of \p Cond0 and \p Cond1 for the price of
 | |
|   /// computing only one of the two expressions?
 | |
|   bool isWideningCondProfitable(Value *Cond0, Value *Cond1, bool InvertCond) {
 | |
|     Value *ResultUnused;
 | |
|     return widenCondCommon(Cond0, Cond1, /*InsertPt=*/nullptr, ResultUnused,
 | |
|                            InvertCond);
 | |
|   }
 | |
| 
 | |
|   /// If \p InvertCondition is false, Widen \p ToWiden to fail if
 | |
|   /// \p NewCondition is false, otherwise make it fail if \p NewCondition is
 | |
|   /// true (in addition to whatever it is already checking).
 | |
|   void widenGuard(Instruction *ToWiden, Value *NewCondition,
 | |
|                   bool InvertCondition) {
 | |
|     Value *Result;
 | |
|     widenCondCommon(ToWiden->getOperand(0), NewCondition, ToWiden, Result,
 | |
|                     InvertCondition);
 | |
|     setCondition(ToWiden, Result);
 | |
|   }
 | |
| 
 | |
| public:
 | |
| 
 | |
|   explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT,
 | |
|                              LoopInfo &LI, BranchProbabilityInfo *BPI,
 | |
|                              DomTreeNode *Root,
 | |
|                              std::function<bool(BasicBlock*)> BlockFilter)
 | |
|     : DT(DT), PDT(PDT), LI(LI), BPI(BPI), Root(Root), BlockFilter(BlockFilter)
 | |
|         {}
 | |
| 
 | |
|   /// The entry point for this pass.
 | |
|   bool run();
 | |
| };
 | |
| }
 | |
| 
 | |
| bool GuardWideningImpl::run() {
 | |
|   DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock;
 | |
|   bool Changed = false;
 | |
|   Optional<BranchProbability> LikelyTaken = None;
 | |
|   if (WidenFrequentBranches && BPI) {
 | |
|     unsigned Threshold = FrequentBranchThreshold;
 | |
|     assert(Threshold > 0 && "Zero threshold makes no sense!");
 | |
|     LikelyTaken = BranchProbability(Threshold - 1, Threshold);
 | |
|   }
 | |
| 
 | |
|   for (auto DFI = df_begin(Root), DFE = df_end(Root);
 | |
|        DFI != DFE; ++DFI) {
 | |
|     auto *BB = (*DFI)->getBlock();
 | |
|     if (!BlockFilter(BB))
 | |
|       continue;
 | |
| 
 | |
|     auto &CurrentList = GuardsInBlock[BB];
 | |
| 
 | |
|     for (auto &I : *BB)
 | |
|       if (isGuard(&I))
 | |
|         CurrentList.push_back(cast<Instruction>(&I));
 | |
| 
 | |
|     for (auto *II : CurrentList)
 | |
|       Changed |= eliminateGuardViaWidening(II, DFI, GuardsInBlock);
 | |
|     if (WidenFrequentBranches && BPI)
 | |
|       if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator()))
 | |
|         if (BI->isConditional()) {
 | |
|           // If one of branches of a conditional is likely taken, try to
 | |
|           // eliminate it.
 | |
|           if (BPI->getEdgeProbability(BB, 0U) >= *LikelyTaken)
 | |
|             Changed |= eliminateGuardViaWidening(BI, DFI, GuardsInBlock);
 | |
|           else if (BPI->getEdgeProbability(BB, 1U) >= *LikelyTaken)
 | |
|             Changed |= eliminateGuardViaWidening(BI, DFI, GuardsInBlock,
 | |
|                                                  /*InvertCondition*/true);
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   assert(EliminatedGuardsAndBranches.empty() || Changed);
 | |
|   for (auto *I : EliminatedGuardsAndBranches)
 | |
|     if (!WidenedGuards.count(I)) {
 | |
|       assert(isa<ConstantInt>(getCondition(I)) && "Should be!");
 | |
|       if (isGuard(I))
 | |
|         eliminateGuard(I);
 | |
|       else {
 | |
|         assert(isa<BranchInst>(I) &&
 | |
|                "Eliminated something other than guard or branch?");
 | |
|         ++CondBranchEliminated;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool GuardWideningImpl::eliminateGuardViaWidening(
 | |
|     Instruction *GuardInst, const df_iterator<DomTreeNode *> &DFSI,
 | |
|     const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
 | |
|         GuardsInBlock, bool InvertCondition) {
 | |
|   // Ignore trivial true or false conditions. These instructions will be
 | |
|   // trivially eliminated by any cleanup pass. Do not erase them because other
 | |
|   // guards can possibly be widened into them.
 | |
|   if (isa<ConstantInt>(getCondition(GuardInst)))
 | |
|     return false;
 | |
| 
 | |
|   Instruction *BestSoFar = nullptr;
 | |
|   auto BestScoreSoFar = WS_IllegalOrNegative;
 | |
|   auto *GuardInstLoop = LI.getLoopFor(GuardInst->getParent());
 | |
| 
 | |
|   // In the set of dominating guards, find the one we can merge GuardInst with
 | |
|   // for the most profit.
 | |
|   for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
 | |
|     auto *CurBB = DFSI.getPath(i)->getBlock();
 | |
|     if (!BlockFilter(CurBB))
 | |
|       break;
 | |
|     auto *CurLoop = LI.getLoopFor(CurBB);
 | |
|     assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
 | |
|     const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;
 | |
| 
 | |
|     auto I = GuardsInCurBB.begin();
 | |
|     auto E = GuardsInCurBB.end();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     {
 | |
|       unsigned Index = 0;
 | |
|       for (auto &I : *CurBB) {
 | |
|         if (Index == GuardsInCurBB.size())
 | |
|           break;
 | |
|         if (GuardsInCurBB[Index] == &I)
 | |
|           Index++;
 | |
|       }
 | |
|       assert(Index == GuardsInCurBB.size() &&
 | |
|              "Guards expected to be in order!");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     assert((i == (e - 1)) == (GuardInst->getParent() == CurBB) && "Bad DFS?");
 | |
| 
 | |
|     if (i == (e - 1) && CurBB->getTerminator() != GuardInst) {
 | |
|       // Corner case: make sure we're only looking at guards strictly dominating
 | |
|       // GuardInst when visiting GuardInst->getParent().
 | |
|       auto NewEnd = std::find(I, E, GuardInst);
 | |
|       assert(NewEnd != E && "GuardInst not in its own block?");
 | |
|       E = NewEnd;
 | |
|     }
 | |
| 
 | |
|     for (auto *Candidate : make_range(I, E)) {
 | |
|       auto Score =
 | |
|           computeWideningScore(GuardInst, GuardInstLoop, Candidate, CurLoop,
 | |
|                                InvertCondition);
 | |
|       LLVM_DEBUG(dbgs() << "Score between " << *getCondition(GuardInst)
 | |
|                         << " and " << *getCondition(Candidate) << " is "
 | |
|                         << scoreTypeToString(Score) << "\n");
 | |
|       if (Score > BestScoreSoFar) {
 | |
|         BestScoreSoFar = Score;
 | |
|         BestSoFar = Candidate;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (BestScoreSoFar == WS_IllegalOrNegative) {
 | |
|     LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *GuardInst << "\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   assert(BestSoFar != GuardInst && "Should have never visited same guard!");
 | |
|   assert(DT.dominates(BestSoFar, GuardInst) && "Should be!");
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Widening " << *GuardInst << " into " << *BestSoFar
 | |
|                     << " with score " << scoreTypeToString(BestScoreSoFar)
 | |
|                     << "\n");
 | |
|   widenGuard(BestSoFar, getCondition(GuardInst), InvertCondition);
 | |
|   auto NewGuardCondition = InvertCondition
 | |
|                                ? ConstantInt::getFalse(GuardInst->getContext())
 | |
|                                : ConstantInt::getTrue(GuardInst->getContext());
 | |
|   setCondition(GuardInst, NewGuardCondition);
 | |
|   EliminatedGuardsAndBranches.push_back(GuardInst);
 | |
|   WidenedGuards.insert(BestSoFar);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| GuardWideningImpl::WideningScore GuardWideningImpl::computeWideningScore(
 | |
|     Instruction *DominatedGuard, Loop *DominatedGuardLoop,
 | |
|     Instruction *DominatingGuard, Loop *DominatingGuardLoop, bool InvertCond) {
 | |
|   bool HoistingOutOfLoop = false;
 | |
| 
 | |
|   if (DominatingGuardLoop != DominatedGuardLoop) {
 | |
|     // Be conservative and don't widen into a sibling loop.  TODO: If the
 | |
|     // sibling is colder, we should consider allowing this.
 | |
|     if (DominatingGuardLoop &&
 | |
|         !DominatingGuardLoop->contains(DominatedGuardLoop))
 | |
|       return WS_IllegalOrNegative;
 | |
| 
 | |
|     HoistingOutOfLoop = true;
 | |
|   }
 | |
| 
 | |
|   if (!isAvailableAt(getCondition(DominatedGuard), DominatingGuard))
 | |
|     return WS_IllegalOrNegative;
 | |
| 
 | |
|   // If the guard was conditional executed, it may never be reached
 | |
|   // dynamically.  There are two potential downsides to hoisting it out of the
 | |
|   // conditionally executed region: 1) we may spuriously deopt without need and
 | |
|   // 2) we have the extra cost of computing the guard condition in the common
 | |
|   // case.  At the moment, we really only consider the second in our heuristic
 | |
|   // here.  TODO: evaluate cost model for spurious deopt
 | |
|   // NOTE: As written, this also lets us hoist right over another guard which
 | |
|   // is essentially just another spelling for control flow.
 | |
|   if (isWideningCondProfitable(getCondition(DominatedGuard),
 | |
|                                getCondition(DominatingGuard), InvertCond))
 | |
|     return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;
 | |
| 
 | |
|   if (HoistingOutOfLoop)
 | |
|     return WS_Positive;
 | |
| 
 | |
|   // Returns true if we might be hoisting above explicit control flow.  Note
 | |
|   // that this completely ignores implicit control flow (guards, calls which
 | |
|   // throw, etc...).  That choice appears arbitrary.
 | |
|   auto MaybeHoistingOutOfIf = [&]() {
 | |
|     auto *DominatingBlock = DominatingGuard->getParent();
 | |
|     auto *DominatedBlock = DominatedGuard->getParent();
 | |
| 
 | |
|     // Same Block?
 | |
|     if (DominatedBlock == DominatingBlock)
 | |
|       return false;
 | |
|     // Obvious successor (common loop header/preheader case)
 | |
|     if (DominatedBlock == DominatingBlock->getUniqueSuccessor())
 | |
|       return false;
 | |
|     // TODO: diamond, triangle cases
 | |
|     if (!PDT) return true;
 | |
|     return !PDT->dominates(DominatedGuard->getParent(),
 | |
|                            DominatingGuard->getParent());
 | |
|   };
 | |
| 
 | |
|   return MaybeHoistingOutOfIf() ? WS_IllegalOrNegative : WS_Neutral;
 | |
| }
 | |
| 
 | |
| bool GuardWideningImpl::isAvailableAt(Value *V, Instruction *Loc,
 | |
|                                       SmallPtrSetImpl<Instruction *> &Visited) {
 | |
|   auto *Inst = dyn_cast<Instruction>(V);
 | |
|   if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
 | |
|     return true;
 | |
| 
 | |
|   if (!isSafeToSpeculativelyExecute(Inst, Loc, &DT) ||
 | |
|       Inst->mayReadFromMemory())
 | |
|     return false;
 | |
| 
 | |
|   Visited.insert(Inst);
 | |
| 
 | |
|   // We only want to go _up_ the dominance chain when recursing.
 | |
|   assert(!isa<PHINode>(Loc) &&
 | |
|          "PHIs should return false for isSafeToSpeculativelyExecute");
 | |
|   assert(DT.isReachableFromEntry(Inst->getParent()) &&
 | |
|          "We did a DFS from the block entry!");
 | |
|   return all_of(Inst->operands(),
 | |
|                 [&](Value *Op) { return isAvailableAt(Op, Loc, Visited); });
 | |
| }
 | |
| 
 | |
| void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) {
 | |
|   auto *Inst = dyn_cast<Instruction>(V);
 | |
|   if (!Inst || DT.dominates(Inst, Loc))
 | |
|     return;
 | |
| 
 | |
|   assert(isSafeToSpeculativelyExecute(Inst, Loc, &DT) &&
 | |
|          !Inst->mayReadFromMemory() && "Should've checked with isAvailableAt!");
 | |
| 
 | |
|   for (Value *Op : Inst->operands())
 | |
|     makeAvailableAt(Op, Loc);
 | |
| 
 | |
|   Inst->moveBefore(Loc);
 | |
| }
 | |
| 
 | |
| bool GuardWideningImpl::widenCondCommon(Value *Cond0, Value *Cond1,
 | |
|                                         Instruction *InsertPt, Value *&Result,
 | |
|                                         bool InvertCondition) {
 | |
|   using namespace llvm::PatternMatch;
 | |
| 
 | |
|   {
 | |
|     // L >u C0 && L >u C1  ->  L >u max(C0, C1)
 | |
|     ConstantInt *RHS0, *RHS1;
 | |
|     Value *LHS;
 | |
|     ICmpInst::Predicate Pred0, Pred1;
 | |
|     if (match(Cond0, m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
 | |
|         match(Cond1, m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {
 | |
|       if (InvertCondition)
 | |
|         Pred1 = ICmpInst::getInversePredicate(Pred1);
 | |
| 
 | |
|       ConstantRange CR0 =
 | |
|           ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue());
 | |
|       ConstantRange CR1 =
 | |
|           ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue());
 | |
| 
 | |
|       // SubsetIntersect is a subset of the actual mathematical intersection of
 | |
|       // CR0 and CR1, while SupersetIntersect is a superset of the actual
 | |
|       // mathematical intersection.  If these two ConstantRanges are equal, then
 | |
|       // we know we were able to represent the actual mathematical intersection
 | |
|       // of CR0 and CR1, and can use the same to generate an icmp instruction.
 | |
|       //
 | |
|       // Given what we're doing here and the semantics of guards, it would
 | |
|       // actually be correct to just use SubsetIntersect, but that may be too
 | |
|       // aggressive in cases we care about.
 | |
|       auto SubsetIntersect = CR0.inverse().unionWith(CR1.inverse()).inverse();
 | |
|       auto SupersetIntersect = CR0.intersectWith(CR1);
 | |
| 
 | |
|       APInt NewRHSAP;
 | |
|       CmpInst::Predicate Pred;
 | |
|       if (SubsetIntersect == SupersetIntersect &&
 | |
|           SubsetIntersect.getEquivalentICmp(Pred, NewRHSAP)) {
 | |
|         if (InsertPt) {
 | |
|           ConstantInt *NewRHS = ConstantInt::get(Cond0->getContext(), NewRHSAP);
 | |
|           Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk");
 | |
|         }
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks;
 | |
|     // TODO: Support InvertCondition case?
 | |
|     if (!InvertCondition &&
 | |
|         parseRangeChecks(Cond0, Checks) && parseRangeChecks(Cond1, Checks) &&
 | |
|         combineRangeChecks(Checks, CombinedChecks)) {
 | |
|       if (InsertPt) {
 | |
|         Result = nullptr;
 | |
|         for (auto &RC : CombinedChecks) {
 | |
|           makeAvailableAt(RC.getCheckInst(), InsertPt);
 | |
|           if (Result)
 | |
|             Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
 | |
|                                                InsertPt);
 | |
|           else
 | |
|             Result = RC.getCheckInst();
 | |
|         }
 | |
| 
 | |
|         Result->setName("wide.chk");
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Base case -- just logical-and the two conditions together.
 | |
| 
 | |
|   if (InsertPt) {
 | |
|     makeAvailableAt(Cond0, InsertPt);
 | |
|     makeAvailableAt(Cond1, InsertPt);
 | |
|     if (InvertCondition)
 | |
|       Cond1 = BinaryOperator::CreateNot(Cond1, "inverted", InsertPt);
 | |
|     Result = BinaryOperator::CreateAnd(Cond0, Cond1, "wide.chk", InsertPt);
 | |
|   }
 | |
| 
 | |
|   // We were not able to compute Cond0 AND Cond1 for the price of one.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool GuardWideningImpl::parseRangeChecks(
 | |
|     Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
 | |
|     SmallPtrSetImpl<Value *> &Visited) {
 | |
|   if (!Visited.insert(CheckCond).second)
 | |
|     return true;
 | |
| 
 | |
|   using namespace llvm::PatternMatch;
 | |
| 
 | |
|   {
 | |
|     Value *AndLHS, *AndRHS;
 | |
|     if (match(CheckCond, m_And(m_Value(AndLHS), m_Value(AndRHS))))
 | |
|       return parseRangeChecks(AndLHS, Checks) &&
 | |
|              parseRangeChecks(AndRHS, Checks);
 | |
|   }
 | |
| 
 | |
|   auto *IC = dyn_cast<ICmpInst>(CheckCond);
 | |
|   if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
 | |
|       (IC->getPredicate() != ICmpInst::ICMP_ULT &&
 | |
|        IC->getPredicate() != ICmpInst::ICMP_UGT))
 | |
|     return false;
 | |
| 
 | |
|   Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
 | |
|   if (IC->getPredicate() == ICmpInst::ICMP_UGT)
 | |
|     std::swap(CmpLHS, CmpRHS);
 | |
| 
 | |
|   auto &DL = IC->getModule()->getDataLayout();
 | |
| 
 | |
|   GuardWideningImpl::RangeCheck Check(
 | |
|       CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
 | |
|       CmpRHS, IC);
 | |
| 
 | |
|   if (!isKnownNonNegative(Check.getLength(), DL))
 | |
|     return false;
 | |
| 
 | |
|   // What we have in \c Check now is a correct interpretation of \p CheckCond.
 | |
|   // Try to see if we can move some constant offsets into the \c Offset field.
 | |
| 
 | |
|   bool Changed;
 | |
|   auto &Ctx = CheckCond->getContext();
 | |
| 
 | |
|   do {
 | |
|     Value *OpLHS;
 | |
|     ConstantInt *OpRHS;
 | |
|     Changed = false;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
 | |
|     assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
 | |
|            "Unreachable instruction?");
 | |
| #endif
 | |
| 
 | |
|     if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
 | |
|       Check.setBase(OpLHS);
 | |
|       APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
 | |
|       Check.setOffset(ConstantInt::get(Ctx, NewOffset));
 | |
|       Changed = true;
 | |
|     } else if (match(Check.getBase(),
 | |
|                      m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
 | |
|       KnownBits Known = computeKnownBits(OpLHS, DL);
 | |
|       if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
 | |
|         Check.setBase(OpLHS);
 | |
|         APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
 | |
|         Check.setOffset(ConstantInt::get(Ctx, NewOffset));
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   } while (Changed);
 | |
| 
 | |
|   Checks.push_back(Check);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool GuardWideningImpl::combineRangeChecks(
 | |
|     SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
 | |
|     SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) {
 | |
|   unsigned OldCount = Checks.size();
 | |
|   while (!Checks.empty()) {
 | |
|     // Pick all of the range checks with a specific base and length, and try to
 | |
|     // merge them.
 | |
|     Value *CurrentBase = Checks.front().getBase();
 | |
|     Value *CurrentLength = Checks.front().getLength();
 | |
| 
 | |
|     SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks;
 | |
| 
 | |
|     auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
 | |
|       return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
 | |
|     };
 | |
| 
 | |
|     copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
 | |
|     Checks.erase(remove_if(Checks, IsCurrentCheck), Checks.end());
 | |
| 
 | |
|     assert(CurrentChecks.size() != 0 && "We know we have at least one!");
 | |
| 
 | |
|     if (CurrentChecks.size() < 3) {
 | |
|       RangeChecksOut.insert(RangeChecksOut.end(), CurrentChecks.begin(),
 | |
|                             CurrentChecks.end());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // CurrentChecks.size() will typically be 3 here, but so far there has been
 | |
|     // no need to hard-code that fact.
 | |
| 
 | |
|     llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS,
 | |
|                                   const GuardWideningImpl::RangeCheck &RHS) {
 | |
|       return LHS.getOffsetValue().slt(RHS.getOffsetValue());
 | |
|     });
 | |
| 
 | |
|     // Note: std::sort should not invalidate the ChecksStart iterator.
 | |
| 
 | |
|     ConstantInt *MinOffset = CurrentChecks.front().getOffset(),
 | |
|                 *MaxOffset = CurrentChecks.back().getOffset();
 | |
| 
 | |
|     unsigned BitWidth = MaxOffset->getValue().getBitWidth();
 | |
|     if ((MaxOffset->getValue() - MinOffset->getValue())
 | |
|             .ugt(APInt::getSignedMinValue(BitWidth)))
 | |
|       return false;
 | |
| 
 | |
|     APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
 | |
|     const APInt &HighOffset = MaxOffset->getValue();
 | |
|     auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
 | |
|       return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
 | |
|     };
 | |
| 
 | |
|     if (MaxDiff.isMinValue() ||
 | |
|         !std::all_of(std::next(CurrentChecks.begin()), CurrentChecks.end(),
 | |
|                      OffsetOK))
 | |
|       return false;
 | |
| 
 | |
|     // We have a series of f+1 checks as:
 | |
|     //
 | |
|     //   I+k_0 u< L   ... Chk_0
 | |
|     //   I+k_1 u< L   ... Chk_1
 | |
|     //   ...
 | |
|     //   I+k_f u< L   ... Chk_f
 | |
|     //
 | |
|     //     with forall i in [0,f]: k_f-k_i u< k_f-k_0  ... Precond_0
 | |
|     //          k_f-k_0 u< INT_MIN+k_f                 ... Precond_1
 | |
|     //          k_f != k_0                             ... Precond_2
 | |
|     //
 | |
|     // Claim:
 | |
|     //   Chk_0 AND Chk_f  implies all the other checks
 | |
|     //
 | |
|     // Informal proof sketch:
 | |
|     //
 | |
|     // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
 | |
|     // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
 | |
|     // thus I+k_f is the greatest unsigned value in that range.
 | |
|     //
 | |
|     // This combined with Ckh_(f+1) shows that everything in that range is u< L.
 | |
|     // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
 | |
|     // lie in [I+k_0,I+k_f], this proving our claim.
 | |
|     //
 | |
|     // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
 | |
|     // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
 | |
|     // since k_0 != k_f).  In the former case, [I+k_0,I+k_f] is not a wrapping
 | |
|     // range by definition, and the latter case is impossible:
 | |
|     //
 | |
|     //   0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
 | |
|     //   xxxxxx             xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 | |
|     //
 | |
|     // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
 | |
|     // with 'x' above) to be at least >u INT_MIN.
 | |
| 
 | |
|     RangeChecksOut.emplace_back(CurrentChecks.front());
 | |
|     RangeChecksOut.emplace_back(CurrentChecks.back());
 | |
|   }
 | |
| 
 | |
|   assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
 | |
|   return RangeChecksOut.size() != OldCount;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
 | |
|   switch (WS) {
 | |
|   case WS_IllegalOrNegative:
 | |
|     return "IllegalOrNegative";
 | |
|   case WS_Neutral:
 | |
|     return "Neutral";
 | |
|   case WS_Positive:
 | |
|     return "Positive";
 | |
|   case WS_VeryPositive:
 | |
|     return "VeryPositive";
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Fully covered switch above!");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| PreservedAnalyses GuardWideningPass::run(Function &F,
 | |
|                                          FunctionAnalysisManager &AM) {
 | |
|   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | |
|   auto &LI = AM.getResult<LoopAnalysis>(F);
 | |
|   auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
 | |
|   BranchProbabilityInfo *BPI = nullptr;
 | |
|   if (WidenFrequentBranches)
 | |
|     BPI = AM.getCachedResult<BranchProbabilityAnalysis>(F);
 | |
|   if (!GuardWideningImpl(DT, &PDT, LI, BPI, DT.getRootNode(),
 | |
|                          [](BasicBlock*) { return true; } ).run())
 | |
|     return PreservedAnalyses::all();
 | |
| 
 | |
|   PreservedAnalyses PA;
 | |
|   PA.preserveSet<CFGAnalyses>();
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct GuardWideningLegacyPass : public FunctionPass {
 | |
|   static char ID;
 | |
| 
 | |
|   GuardWideningLegacyPass() : FunctionPass(ID) {
 | |
|     initializeGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     if (skipFunction(F))
 | |
|       return false;
 | |
|     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
 | |
|     BranchProbabilityInfo *BPI = nullptr;
 | |
|     if (WidenFrequentBranches)
 | |
|       BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
 | |
|     return GuardWideningImpl(DT, &PDT, LI, BPI, DT.getRootNode(),
 | |
|                          [](BasicBlock*) { return true; } ).run();
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesCFG();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<PostDominatorTreeWrapperPass>();
 | |
|     AU.addRequired<LoopInfoWrapperPass>();
 | |
|     if (WidenFrequentBranches)
 | |
|       AU.addRequired<BranchProbabilityInfoWrapperPass>();
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Same as above, but restricted to a single loop at a time.  Can be
 | |
| /// scheduled with other loop passes w/o breaking out of LPM
 | |
| struct LoopGuardWideningLegacyPass : public LoopPass {
 | |
|   static char ID;
 | |
| 
 | |
|   LoopGuardWideningLegacyPass() : LoopPass(ID) {
 | |
|     initializeLoopGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
 | |
|     if (skipLoop(L))
 | |
|       return false;
 | |
|     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|     auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
 | |
|     auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
 | |
|     BasicBlock *RootBB = L->getLoopPredecessor();
 | |
|     if (!RootBB)
 | |
|       RootBB = L->getHeader();
 | |
|     auto BlockFilter = [&](BasicBlock *BB) {
 | |
|       return BB == RootBB || L->contains(BB);
 | |
|     };
 | |
|     BranchProbabilityInfo *BPI = nullptr;
 | |
|     if (WidenFrequentBranches)
 | |
|       BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
 | |
|     return GuardWideningImpl(DT, PDT, LI, BPI,
 | |
|                              DT.getNode(RootBB), BlockFilter).run();
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     if (WidenFrequentBranches)
 | |
|       AU.addRequired<BranchProbabilityInfoWrapperPass>();
 | |
|     AU.setPreservesCFG();
 | |
|     getLoopAnalysisUsage(AU);
 | |
|     AU.addPreserved<PostDominatorTreeWrapperPass>();
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| char GuardWideningLegacyPass::ID = 0;
 | |
| char LoopGuardWideningLegacyPass::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(GuardWideningLegacyPass, "guard-widening", "Widen guards",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| if (WidenFrequentBranches)
 | |
|   INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(GuardWideningLegacyPass, "guard-widening", "Widen guards",
 | |
|                     false, false)
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(LoopGuardWideningLegacyPass, "loop-guard-widening",
 | |
|                       "Widen guards (within a single loop, as a loop pass)",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| if (WidenFrequentBranches)
 | |
|   INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(LoopGuardWideningLegacyPass, "loop-guard-widening",
 | |
|                     "Widen guards (within a single loop, as a loop pass)",
 | |
|                     false, false)
 | |
| 
 | |
| FunctionPass *llvm::createGuardWideningPass() {
 | |
|   return new GuardWideningLegacyPass();
 | |
| }
 | |
| 
 | |
| Pass *llvm::createLoopGuardWideningPass() {
 | |
|   return new LoopGuardWideningLegacyPass();
 | |
| }
 |