forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1021 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1021 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InferAddressSpace.cpp - --------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // CUDA C/C++ includes memory space designation as variable type qualifers (such
 | |
| // as __global__ and __shared__). Knowing the space of a memory access allows
 | |
| // CUDA compilers to emit faster PTX loads and stores. For example, a load from
 | |
| // shared memory can be translated to `ld.shared` which is roughly 10% faster
 | |
| // than a generic `ld` on an NVIDIA Tesla K40c.
 | |
| //
 | |
| // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
 | |
| // compilers must infer the memory space of an address expression from
 | |
| // type-qualified variables.
 | |
| //
 | |
| // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
 | |
| // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
 | |
| // places only type-qualified variables in specific address spaces, and then
 | |
| // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
 | |
| // (so-called the generic address space) for other instructions to use.
 | |
| //
 | |
| // For example, the Clang translates the following CUDA code
 | |
| //   __shared__ float a[10];
 | |
| //   float v = a[i];
 | |
| // to
 | |
| //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
 | |
| //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
 | |
| //   %v = load float, float* %1 ; emits ld.f32
 | |
| // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
 | |
| // redirected to %0 (the generic version of @a).
 | |
| //
 | |
| // The optimization implemented in this file propagates specific address spaces
 | |
| // from type-qualified variable declarations to its users. For example, it
 | |
| // optimizes the above IR to
 | |
| //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
 | |
| //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
 | |
| // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
 | |
| // codegen is able to emit ld.shared.f32 for %v.
 | |
| //
 | |
| // Address space inference works in two steps. First, it uses a data-flow
 | |
| // analysis to infer as many generic pointers as possible to point to only one
 | |
| // specific address space. In the above example, it can prove that %1 only
 | |
| // points to addrspace(3). This algorithm was published in
 | |
| //   CUDA: Compiling and optimizing for a GPU platform
 | |
| //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
 | |
| //   ICCS 2012
 | |
| //
 | |
| // Then, address space inference replaces all refinable generic pointers with
 | |
| // equivalent specific pointers.
 | |
| //
 | |
| // The major challenge of implementing this optimization is handling PHINodes,
 | |
| // which may create loops in the data flow graph. This brings two complications.
 | |
| //
 | |
| // First, the data flow analysis in Step 1 needs to be circular. For example,
 | |
| //     %generic.input = addrspacecast float addrspace(3)* %input to float*
 | |
| //   loop:
 | |
| //     %y = phi [ %generic.input, %y2 ]
 | |
| //     %y2 = getelementptr %y, 1
 | |
| //     %v = load %y2
 | |
| //     br ..., label %loop, ...
 | |
| // proving %y specific requires proving both %generic.input and %y2 specific,
 | |
| // but proving %y2 specific circles back to %y. To address this complication,
 | |
| // the data flow analysis operates on a lattice:
 | |
| //   uninitialized > specific address spaces > generic.
 | |
| // All address expressions (our implementation only considers phi, bitcast,
 | |
| // addrspacecast, and getelementptr) start with the uninitialized address space.
 | |
| // The monotone transfer function moves the address space of a pointer down a
 | |
| // lattice path from uninitialized to specific and then to generic. A join
 | |
| // operation of two different specific address spaces pushes the expression down
 | |
| // to the generic address space. The analysis completes once it reaches a fixed
 | |
| // point.
 | |
| //
 | |
| // Second, IR rewriting in Step 2 also needs to be circular. For example,
 | |
| // converting %y to addrspace(3) requires the compiler to know the converted
 | |
| // %y2, but converting %y2 needs the converted %y. To address this complication,
 | |
| // we break these cycles using "undef" placeholders. When converting an
 | |
| // instruction `I` to a new address space, if its operand `Op` is not converted
 | |
| // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
 | |
| // For instance, our algorithm first converts %y to
 | |
| //   %y' = phi float addrspace(3)* [ %input, undef ]
 | |
| // Then, it converts %y2 to
 | |
| //   %y2' = getelementptr %y', 1
 | |
| // Finally, it fixes the undef in %y' so that
 | |
| //   %y' = phi float addrspace(3)* [ %input, %y2' ]
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/ValueMapper.h"
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| #define DEBUG_TYPE "infer-address-spaces"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static const unsigned UninitializedAddressSpace =
 | |
|     std::numeric_limits<unsigned>::max();
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
 | |
| 
 | |
| /// InferAddressSpaces
 | |
| class InferAddressSpaces : public FunctionPass {
 | |
|   /// Target specific address space which uses of should be replaced if
 | |
|   /// possible.
 | |
|   unsigned FlatAddrSpace;
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   InferAddressSpaces() : FunctionPass(ID) {}
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesCFG();
 | |
|     AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override;
 | |
| 
 | |
| private:
 | |
|   // Returns the new address space of V if updated; otherwise, returns None.
 | |
|   Optional<unsigned>
 | |
|   updateAddressSpace(const Value &V,
 | |
|                      const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
 | |
| 
 | |
|   // Tries to infer the specific address space of each address expression in
 | |
|   // Postorder.
 | |
|   void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
 | |
|                           ValueToAddrSpaceMapTy *InferredAddrSpace) const;
 | |
| 
 | |
|   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
 | |
| 
 | |
|   // Changes the flat address expressions in function F to point to specific
 | |
|   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
 | |
|   // all flat expressions in the use-def graph of function F.
 | |
|   bool rewriteWithNewAddressSpaces(
 | |
|       const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
 | |
|       const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const;
 | |
| 
 | |
|   void appendsFlatAddressExpressionToPostorderStack(
 | |
|     Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
 | |
|     DenseSet<Value *> &Visited) const;
 | |
| 
 | |
|   bool rewriteIntrinsicOperands(IntrinsicInst *II,
 | |
|                                 Value *OldV, Value *NewV) const;
 | |
|   void collectRewritableIntrinsicOperands(
 | |
|     IntrinsicInst *II,
 | |
|     std::vector<std::pair<Value *, bool>> &PostorderStack,
 | |
|     DenseSet<Value *> &Visited) const;
 | |
| 
 | |
|   std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
 | |
| 
 | |
|   Value *cloneValueWithNewAddressSpace(
 | |
|     Value *V, unsigned NewAddrSpace,
 | |
|     const ValueToValueMapTy &ValueWithNewAddrSpace,
 | |
|     SmallVectorImpl<const Use *> *UndefUsesToFix) const;
 | |
|   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char InferAddressSpaces::ID = 0;
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| void initializeInferAddressSpacesPass(PassRegistry &);
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
 | |
|                 false, false)
 | |
| 
 | |
| // Returns true if V is an address expression.
 | |
| // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
 | |
| // getelementptr operators.
 | |
| static bool isAddressExpression(const Value &V) {
 | |
|   if (!isa<Operator>(V))
 | |
|     return false;
 | |
| 
 | |
|   switch (cast<Operator>(V).getOpcode()) {
 | |
|   case Instruction::PHI:
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::AddrSpaceCast:
 | |
|   case Instruction::GetElementPtr:
 | |
|   case Instruction::Select:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Returns the pointer operands of V.
 | |
| //
 | |
| // Precondition: V is an address expression.
 | |
| static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
 | |
|   const Operator &Op = cast<Operator>(V);
 | |
|   switch (Op.getOpcode()) {
 | |
|   case Instruction::PHI: {
 | |
|     auto IncomingValues = cast<PHINode>(Op).incoming_values();
 | |
|     return SmallVector<Value *, 2>(IncomingValues.begin(),
 | |
|                                    IncomingValues.end());
 | |
|   }
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::AddrSpaceCast:
 | |
|   case Instruction::GetElementPtr:
 | |
|     return {Op.getOperand(0)};
 | |
|   case Instruction::Select:
 | |
|     return {Op.getOperand(1), Op.getOperand(2)};
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected instruction type.");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // TODO: Move logic to TTI?
 | |
| bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
 | |
|                                                   Value *OldV,
 | |
|                                                   Value *NewV) const {
 | |
|   Module *M = II->getParent()->getParent()->getParent();
 | |
| 
 | |
|   switch (II->getIntrinsicID()) {
 | |
|   case Intrinsic::amdgcn_atomic_inc:
 | |
|   case Intrinsic::amdgcn_atomic_dec:
 | |
|   case Intrinsic::amdgcn_ds_fadd:
 | |
|   case Intrinsic::amdgcn_ds_fmin:
 | |
|   case Intrinsic::amdgcn_ds_fmax: {
 | |
|     const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4));
 | |
|     if (!IsVolatile || !IsVolatile->isZero())
 | |
|       return false;
 | |
| 
 | |
|     LLVM_FALLTHROUGH;
 | |
|   }
 | |
|   case Intrinsic::objectsize: {
 | |
|     Type *DestTy = II->getType();
 | |
|     Type *SrcTy = NewV->getType();
 | |
|     Function *NewDecl =
 | |
|         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
 | |
|     II->setArgOperand(0, NewV);
 | |
|     II->setCalledFunction(NewDecl);
 | |
|     return true;
 | |
|   }
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // TODO: Move logic to TTI?
 | |
| void InferAddressSpaces::collectRewritableIntrinsicOperands(
 | |
|     IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack,
 | |
|     DenseSet<Value *> &Visited) const {
 | |
|   switch (II->getIntrinsicID()) {
 | |
|   case Intrinsic::objectsize:
 | |
|   case Intrinsic::amdgcn_atomic_inc:
 | |
|   case Intrinsic::amdgcn_atomic_dec:
 | |
|   case Intrinsic::amdgcn_ds_fadd:
 | |
|   case Intrinsic::amdgcn_ds_fmin:
 | |
|   case Intrinsic::amdgcn_ds_fmax:
 | |
|     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
 | |
|                                                  PostorderStack, Visited);
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Returns all flat address expressions in function F. The elements are
 | |
| // If V is an unvisited flat address expression, appends V to PostorderStack
 | |
| // and marks it as visited.
 | |
| void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
 | |
|     Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
 | |
|     DenseSet<Value *> &Visited) const {
 | |
|   assert(V->getType()->isPointerTy());
 | |
| 
 | |
|   // Generic addressing expressions may be hidden in nested constant
 | |
|   // expressions.
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | |
|     // TODO: Look in non-address parts, like icmp operands.
 | |
|     if (isAddressExpression(*CE) && Visited.insert(CE).second)
 | |
|       PostorderStack.push_back(std::make_pair(CE, false));
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (isAddressExpression(*V) &&
 | |
|       V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
 | |
|     if (Visited.insert(V).second) {
 | |
|       PostorderStack.push_back(std::make_pair(V, false));
 | |
| 
 | |
|       Operator *Op = cast<Operator>(V);
 | |
|       for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
 | |
|         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
 | |
|           if (isAddressExpression(*CE) && Visited.insert(CE).second)
 | |
|             PostorderStack.emplace_back(CE, false);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Returns all flat address expressions in function F. The elements are ordered
 | |
| // ordered in postorder.
 | |
| std::vector<WeakTrackingVH>
 | |
| InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
 | |
|   // This function implements a non-recursive postorder traversal of a partial
 | |
|   // use-def graph of function F.
 | |
|   std::vector<std::pair<Value *, bool>> PostorderStack;
 | |
|   // The set of visited expressions.
 | |
|   DenseSet<Value *> Visited;
 | |
| 
 | |
|   auto PushPtrOperand = [&](Value *Ptr) {
 | |
|     appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
 | |
|                                                  Visited);
 | |
|   };
 | |
| 
 | |
|   // Look at operations that may be interesting accelerate by moving to a known
 | |
|   // address space. We aim at generating after loads and stores, but pure
 | |
|   // addressing calculations may also be faster.
 | |
|   for (Instruction &I : instructions(F)) {
 | |
|     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
 | |
|       if (!GEP->getType()->isVectorTy())
 | |
|         PushPtrOperand(GEP->getPointerOperand());
 | |
|     } else if (auto *LI = dyn_cast<LoadInst>(&I))
 | |
|       PushPtrOperand(LI->getPointerOperand());
 | |
|     else if (auto *SI = dyn_cast<StoreInst>(&I))
 | |
|       PushPtrOperand(SI->getPointerOperand());
 | |
|     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
 | |
|       PushPtrOperand(RMW->getPointerOperand());
 | |
|     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
 | |
|       PushPtrOperand(CmpX->getPointerOperand());
 | |
|     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
 | |
|       // For memset/memcpy/memmove, any pointer operand can be replaced.
 | |
|       PushPtrOperand(MI->getRawDest());
 | |
| 
 | |
|       // Handle 2nd operand for memcpy/memmove.
 | |
|       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
 | |
|         PushPtrOperand(MTI->getRawSource());
 | |
|     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
 | |
|       collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
 | |
|     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
 | |
|       // FIXME: Handle vectors of pointers
 | |
|       if (Cmp->getOperand(0)->getType()->isPointerTy()) {
 | |
|         PushPtrOperand(Cmp->getOperand(0));
 | |
|         PushPtrOperand(Cmp->getOperand(1));
 | |
|       }
 | |
|     } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
 | |
|       if (!ASC->getType()->isVectorTy())
 | |
|         PushPtrOperand(ASC->getPointerOperand());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
 | |
|   while (!PostorderStack.empty()) {
 | |
|     Value *TopVal = PostorderStack.back().first;
 | |
|     // If the operands of the expression on the top are already explored,
 | |
|     // adds that expression to the resultant postorder.
 | |
|     if (PostorderStack.back().second) {
 | |
|       if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
 | |
|         Postorder.push_back(TopVal);
 | |
|       PostorderStack.pop_back();
 | |
|       continue;
 | |
|     }
 | |
|     // Otherwise, adds its operands to the stack and explores them.
 | |
|     PostorderStack.back().second = true;
 | |
|     for (Value *PtrOperand : getPointerOperands(*TopVal)) {
 | |
|       appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
 | |
|                                                    Visited);
 | |
|     }
 | |
|   }
 | |
|   return Postorder;
 | |
| }
 | |
| 
 | |
| // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
 | |
| // of OperandUse.get() in the new address space. If the clone is not ready yet,
 | |
| // returns an undef in the new address space as a placeholder.
 | |
| static Value *operandWithNewAddressSpaceOrCreateUndef(
 | |
|     const Use &OperandUse, unsigned NewAddrSpace,
 | |
|     const ValueToValueMapTy &ValueWithNewAddrSpace,
 | |
|     SmallVectorImpl<const Use *> *UndefUsesToFix) {
 | |
|   Value *Operand = OperandUse.get();
 | |
| 
 | |
|   Type *NewPtrTy =
 | |
|       Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
 | |
| 
 | |
|   if (Constant *C = dyn_cast<Constant>(Operand))
 | |
|     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
 | |
| 
 | |
|   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
 | |
|     return NewOperand;
 | |
| 
 | |
|   UndefUsesToFix->push_back(&OperandUse);
 | |
|   return UndefValue::get(NewPtrTy);
 | |
| }
 | |
| 
 | |
| // Returns a clone of `I` with its operands converted to those specified in
 | |
| // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
 | |
| // operand whose address space needs to be modified might not exist in
 | |
| // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
 | |
| // adds that operand use to UndefUsesToFix so that caller can fix them later.
 | |
| //
 | |
| // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
 | |
| // from a pointer whose type already matches. Therefore, this function returns a
 | |
| // Value* instead of an Instruction*.
 | |
| static Value *cloneInstructionWithNewAddressSpace(
 | |
|     Instruction *I, unsigned NewAddrSpace,
 | |
|     const ValueToValueMapTy &ValueWithNewAddrSpace,
 | |
|     SmallVectorImpl<const Use *> *UndefUsesToFix) {
 | |
|   Type *NewPtrType =
 | |
|       I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
 | |
| 
 | |
|   if (I->getOpcode() == Instruction::AddrSpaceCast) {
 | |
|     Value *Src = I->getOperand(0);
 | |
|     // Because `I` is flat, the source address space must be specific.
 | |
|     // Therefore, the inferred address space must be the source space, according
 | |
|     // to our algorithm.
 | |
|     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
 | |
|     if (Src->getType() != NewPtrType)
 | |
|       return new BitCastInst(Src, NewPtrType);
 | |
|     return Src;
 | |
|   }
 | |
| 
 | |
|   // Computes the converted pointer operands.
 | |
|   SmallVector<Value *, 4> NewPointerOperands;
 | |
|   for (const Use &OperandUse : I->operands()) {
 | |
|     if (!OperandUse.get()->getType()->isPointerTy())
 | |
|       NewPointerOperands.push_back(nullptr);
 | |
|     else
 | |
|       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
 | |
|                                      OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
 | |
|   }
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::BitCast:
 | |
|     return new BitCastInst(NewPointerOperands[0], NewPtrType);
 | |
|   case Instruction::PHI: {
 | |
|     assert(I->getType()->isPointerTy());
 | |
|     PHINode *PHI = cast<PHINode>(I);
 | |
|     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
 | |
|     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
 | |
|       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
 | |
|       NewPHI->addIncoming(NewPointerOperands[OperandNo],
 | |
|                           PHI->getIncomingBlock(Index));
 | |
|     }
 | |
|     return NewPHI;
 | |
|   }
 | |
|   case Instruction::GetElementPtr: {
 | |
|     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
 | |
|     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
 | |
|         GEP->getSourceElementType(), NewPointerOperands[0],
 | |
|         SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
 | |
|     NewGEP->setIsInBounds(GEP->isInBounds());
 | |
|     return NewGEP;
 | |
|   }
 | |
|   case Instruction::Select:
 | |
|     assert(I->getType()->isPointerTy());
 | |
|     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
 | |
|                               NewPointerOperands[2], "", nullptr, I);
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected opcode");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
 | |
| // constant expression `CE` with its operands replaced as specified in
 | |
| // ValueWithNewAddrSpace.
 | |
| static Value *cloneConstantExprWithNewAddressSpace(
 | |
|   ConstantExpr *CE, unsigned NewAddrSpace,
 | |
|   const ValueToValueMapTy &ValueWithNewAddrSpace) {
 | |
|   Type *TargetType =
 | |
|     CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
 | |
| 
 | |
|   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
 | |
|     // Because CE is flat, the source address space must be specific.
 | |
|     // Therefore, the inferred address space must be the source space according
 | |
|     // to our algorithm.
 | |
|     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
 | |
|            NewAddrSpace);
 | |
|     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
 | |
|   }
 | |
| 
 | |
|   if (CE->getOpcode() == Instruction::BitCast) {
 | |
|     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
 | |
|       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
 | |
|     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
 | |
|   }
 | |
| 
 | |
|   if (CE->getOpcode() == Instruction::Select) {
 | |
|     Constant *Src0 = CE->getOperand(1);
 | |
|     Constant *Src1 = CE->getOperand(2);
 | |
|     if (Src0->getType()->getPointerAddressSpace() ==
 | |
|         Src1->getType()->getPointerAddressSpace()) {
 | |
| 
 | |
|       return ConstantExpr::getSelect(
 | |
|           CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
 | |
|           ConstantExpr::getAddrSpaceCast(Src1, TargetType));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Computes the operands of the new constant expression.
 | |
|   bool IsNew = false;
 | |
|   SmallVector<Constant *, 4> NewOperands;
 | |
|   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
 | |
|     Constant *Operand = CE->getOperand(Index);
 | |
|     // If the address space of `Operand` needs to be modified, the new operand
 | |
|     // with the new address space should already be in ValueWithNewAddrSpace
 | |
|     // because (1) the constant expressions we consider (i.e. addrspacecast,
 | |
|     // bitcast, and getelementptr) do not incur cycles in the data flow graph
 | |
|     // and (2) this function is called on constant expressions in postorder.
 | |
|     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
 | |
|       IsNew = true;
 | |
|       NewOperands.push_back(cast<Constant>(NewOperand));
 | |
|     } else {
 | |
|       // Otherwise, reuses the old operand.
 | |
|       NewOperands.push_back(Operand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If !IsNew, we will replace the Value with itself. However, replaced values
 | |
|   // are assumed to wrapped in a addrspace cast later so drop it now.
 | |
|   if (!IsNew)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (CE->getOpcode() == Instruction::GetElementPtr) {
 | |
|     // Needs to specify the source type while constructing a getelementptr
 | |
|     // constant expression.
 | |
|     return CE->getWithOperands(
 | |
|       NewOperands, TargetType, /*OnlyIfReduced=*/false,
 | |
|       NewOperands[0]->getType()->getPointerElementType());
 | |
|   }
 | |
| 
 | |
|   return CE->getWithOperands(NewOperands, TargetType);
 | |
| }
 | |
| 
 | |
| // Returns a clone of the value `V`, with its operands replaced as specified in
 | |
| // ValueWithNewAddrSpace. This function is called on every flat address
 | |
| // expression whose address space needs to be modified, in postorder.
 | |
| //
 | |
| // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
 | |
| Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
 | |
|   Value *V, unsigned NewAddrSpace,
 | |
|   const ValueToValueMapTy &ValueWithNewAddrSpace,
 | |
|   SmallVectorImpl<const Use *> *UndefUsesToFix) const {
 | |
|   // All values in Postorder are flat address expressions.
 | |
|   assert(isAddressExpression(*V) &&
 | |
|          V->getType()->getPointerAddressSpace() == FlatAddrSpace);
 | |
| 
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     Value *NewV = cloneInstructionWithNewAddressSpace(
 | |
|       I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
 | |
|     if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
 | |
|       if (NewI->getParent() == nullptr) {
 | |
|         NewI->insertBefore(I);
 | |
|         NewI->takeName(I);
 | |
|       }
 | |
|     }
 | |
|     return NewV;
 | |
|   }
 | |
| 
 | |
|   return cloneConstantExprWithNewAddressSpace(
 | |
|     cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
 | |
| }
 | |
| 
 | |
| // Defines the join operation on the address space lattice (see the file header
 | |
| // comments).
 | |
| unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
 | |
|                                                unsigned AS2) const {
 | |
|   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
 | |
|     return FlatAddrSpace;
 | |
| 
 | |
|   if (AS1 == UninitializedAddressSpace)
 | |
|     return AS2;
 | |
|   if (AS2 == UninitializedAddressSpace)
 | |
|     return AS1;
 | |
| 
 | |
|   // The join of two different specific address spaces is flat.
 | |
|   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
 | |
| }
 | |
| 
 | |
| bool InferAddressSpaces::runOnFunction(Function &F) {
 | |
|   if (skipFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   const TargetTransformInfo &TTI =
 | |
|       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
|   FlatAddrSpace = TTI.getFlatAddressSpace();
 | |
|   if (FlatAddrSpace == UninitializedAddressSpace)
 | |
|     return false;
 | |
| 
 | |
|   // Collects all flat address expressions in postorder.
 | |
|   std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
 | |
| 
 | |
|   // Runs a data-flow analysis to refine the address spaces of every expression
 | |
|   // in Postorder.
 | |
|   ValueToAddrSpaceMapTy InferredAddrSpace;
 | |
|   inferAddressSpaces(Postorder, &InferredAddrSpace);
 | |
| 
 | |
|   // Changes the address spaces of the flat address expressions who are inferred
 | |
|   // to point to a specific address space.
 | |
|   return rewriteWithNewAddressSpaces(TTI, Postorder, InferredAddrSpace, &F);
 | |
| }
 | |
| 
 | |
| // Constants need to be tracked through RAUW to handle cases with nested
 | |
| // constant expressions, so wrap values in WeakTrackingVH.
 | |
| void InferAddressSpaces::inferAddressSpaces(
 | |
|     ArrayRef<WeakTrackingVH> Postorder,
 | |
|     ValueToAddrSpaceMapTy *InferredAddrSpace) const {
 | |
|   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
 | |
|   // Initially, all expressions are in the uninitialized address space.
 | |
|   for (Value *V : Postorder)
 | |
|     (*InferredAddrSpace)[V] = UninitializedAddressSpace;
 | |
| 
 | |
|   while (!Worklist.empty()) {
 | |
|     Value *V = Worklist.pop_back_val();
 | |
| 
 | |
|     // Tries to update the address space of the stack top according to the
 | |
|     // address spaces of its operands.
 | |
|     LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << *V << '\n');
 | |
|     Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
 | |
|     if (!NewAS.hasValue())
 | |
|       continue;
 | |
|     // If any updates are made, grabs its users to the worklist because
 | |
|     // their address spaces can also be possibly updated.
 | |
|     LLVM_DEBUG(dbgs() << "  to " << NewAS.getValue() << '\n');
 | |
|     (*InferredAddrSpace)[V] = NewAS.getValue();
 | |
| 
 | |
|     for (Value *User : V->users()) {
 | |
|       // Skip if User is already in the worklist.
 | |
|       if (Worklist.count(User))
 | |
|         continue;
 | |
| 
 | |
|       auto Pos = InferredAddrSpace->find(User);
 | |
|       // Our algorithm only updates the address spaces of flat address
 | |
|       // expressions, which are those in InferredAddrSpace.
 | |
|       if (Pos == InferredAddrSpace->end())
 | |
|         continue;
 | |
| 
 | |
|       // Function updateAddressSpace moves the address space down a lattice
 | |
|       // path. Therefore, nothing to do if User is already inferred as flat (the
 | |
|       // bottom element in the lattice).
 | |
|       if (Pos->second == FlatAddrSpace)
 | |
|         continue;
 | |
| 
 | |
|       Worklist.insert(User);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Optional<unsigned> InferAddressSpaces::updateAddressSpace(
 | |
|     const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
 | |
|   assert(InferredAddrSpace.count(&V));
 | |
| 
 | |
|   // The new inferred address space equals the join of the address spaces
 | |
|   // of all its pointer operands.
 | |
|   unsigned NewAS = UninitializedAddressSpace;
 | |
| 
 | |
|   const Operator &Op = cast<Operator>(V);
 | |
|   if (Op.getOpcode() == Instruction::Select) {
 | |
|     Value *Src0 = Op.getOperand(1);
 | |
|     Value *Src1 = Op.getOperand(2);
 | |
| 
 | |
|     auto I = InferredAddrSpace.find(Src0);
 | |
|     unsigned Src0AS = (I != InferredAddrSpace.end()) ?
 | |
|       I->second : Src0->getType()->getPointerAddressSpace();
 | |
| 
 | |
|     auto J = InferredAddrSpace.find(Src1);
 | |
|     unsigned Src1AS = (J != InferredAddrSpace.end()) ?
 | |
|       J->second : Src1->getType()->getPointerAddressSpace();
 | |
| 
 | |
|     auto *C0 = dyn_cast<Constant>(Src0);
 | |
|     auto *C1 = dyn_cast<Constant>(Src1);
 | |
| 
 | |
|     // If one of the inputs is a constant, we may be able to do a constant
 | |
|     // addrspacecast of it. Defer inferring the address space until the input
 | |
|     // address space is known.
 | |
|     if ((C1 && Src0AS == UninitializedAddressSpace) ||
 | |
|         (C0 && Src1AS == UninitializedAddressSpace))
 | |
|       return None;
 | |
| 
 | |
|     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
 | |
|       NewAS = Src1AS;
 | |
|     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
 | |
|       NewAS = Src0AS;
 | |
|     else
 | |
|       NewAS = joinAddressSpaces(Src0AS, Src1AS);
 | |
|   } else {
 | |
|     for (Value *PtrOperand : getPointerOperands(V)) {
 | |
|       auto I = InferredAddrSpace.find(PtrOperand);
 | |
|       unsigned OperandAS = I != InferredAddrSpace.end() ?
 | |
|         I->second : PtrOperand->getType()->getPointerAddressSpace();
 | |
| 
 | |
|       // join(flat, *) = flat. So we can break if NewAS is already flat.
 | |
|       NewAS = joinAddressSpaces(NewAS, OperandAS);
 | |
|       if (NewAS == FlatAddrSpace)
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned OldAS = InferredAddrSpace.lookup(&V);
 | |
|   assert(OldAS != FlatAddrSpace);
 | |
|   if (OldAS == NewAS)
 | |
|     return None;
 | |
|   return NewAS;
 | |
| }
 | |
| 
 | |
| /// \p returns true if \p U is the pointer operand of a memory instruction with
 | |
| /// a single pointer operand that can have its address space changed by simply
 | |
| /// mutating the use to a new value. If the memory instruction is volatile,
 | |
| /// return true only if the target allows the memory instruction to be volatile
 | |
| /// in the new address space.
 | |
| static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
 | |
|                                              Use &U, unsigned AddrSpace) {
 | |
|   User *Inst = U.getUser();
 | |
|   unsigned OpNo = U.getOperandNo();
 | |
|   bool VolatileIsAllowed = false;
 | |
|   if (auto *I = dyn_cast<Instruction>(Inst))
 | |
|     VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
 | |
| 
 | |
|   if (auto *LI = dyn_cast<LoadInst>(Inst))
 | |
|     return OpNo == LoadInst::getPointerOperandIndex() &&
 | |
|            (VolatileIsAllowed || !LI->isVolatile());
 | |
| 
 | |
|   if (auto *SI = dyn_cast<StoreInst>(Inst))
 | |
|     return OpNo == StoreInst::getPointerOperandIndex() &&
 | |
|            (VolatileIsAllowed || !SI->isVolatile());
 | |
| 
 | |
|   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
 | |
|     return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
 | |
|            (VolatileIsAllowed || !RMW->isVolatile());
 | |
| 
 | |
|   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
 | |
|     return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
 | |
|            (VolatileIsAllowed || !CmpX->isVolatile());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Update memory intrinsic uses that require more complex processing than
 | |
| /// simple memory instructions. Thse require re-mangling and may have multiple
 | |
| /// pointer operands.
 | |
| static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
 | |
|                                      Value *NewV) {
 | |
|   IRBuilder<> B(MI);
 | |
|   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
 | |
|   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
 | |
|   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
 | |
| 
 | |
|   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
 | |
|     B.CreateMemSet(NewV, MSI->getValue(),
 | |
|                    MSI->getLength(), MSI->getDestAlignment(),
 | |
|                    false, // isVolatile
 | |
|                    TBAA, ScopeMD, NoAliasMD);
 | |
|   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
 | |
|     Value *Src = MTI->getRawSource();
 | |
|     Value *Dest = MTI->getRawDest();
 | |
| 
 | |
|     // Be careful in case this is a self-to-self copy.
 | |
|     if (Src == OldV)
 | |
|       Src = NewV;
 | |
| 
 | |
|     if (Dest == OldV)
 | |
|       Dest = NewV;
 | |
| 
 | |
|     if (isa<MemCpyInst>(MTI)) {
 | |
|       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
 | |
|       B.CreateMemCpy(Dest, MTI->getDestAlignment(),
 | |
|                      Src, MTI->getSourceAlignment(),
 | |
|                      MTI->getLength(),
 | |
|                      false, // isVolatile
 | |
|                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
 | |
|     } else {
 | |
|       assert(isa<MemMoveInst>(MTI));
 | |
|       B.CreateMemMove(Dest, MTI->getDestAlignment(),
 | |
|                       Src, MTI->getSourceAlignment(),
 | |
|                       MTI->getLength(),
 | |
|                       false, // isVolatile
 | |
|                       TBAA, ScopeMD, NoAliasMD);
 | |
|     }
 | |
|   } else
 | |
|     llvm_unreachable("unhandled MemIntrinsic");
 | |
| 
 | |
|   MI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // \p returns true if it is OK to change the address space of constant \p C with
 | |
| // a ConstantExpr addrspacecast.
 | |
| bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
 | |
|   assert(NewAS != UninitializedAddressSpace);
 | |
| 
 | |
|   unsigned SrcAS = C->getType()->getPointerAddressSpace();
 | |
|   if (SrcAS == NewAS || isa<UndefValue>(C))
 | |
|     return true;
 | |
| 
 | |
|   // Prevent illegal casts between different non-flat address spaces.
 | |
|   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
 | |
|     return false;
 | |
| 
 | |
|   if (isa<ConstantPointerNull>(C))
 | |
|     return true;
 | |
| 
 | |
|   if (auto *Op = dyn_cast<Operator>(C)) {
 | |
|     // If we already have a constant addrspacecast, it should be safe to cast it
 | |
|     // off.
 | |
|     if (Op->getOpcode() == Instruction::AddrSpaceCast)
 | |
|       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
 | |
| 
 | |
|     if (Op->getOpcode() == Instruction::IntToPtr &&
 | |
|         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static Value::use_iterator skipToNextUser(Value::use_iterator I,
 | |
|                                           Value::use_iterator End) {
 | |
|   User *CurUser = I->getUser();
 | |
|   ++I;
 | |
| 
 | |
|   while (I != End && I->getUser() == CurUser)
 | |
|     ++I;
 | |
| 
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| bool InferAddressSpaces::rewriteWithNewAddressSpaces(
 | |
|     const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
 | |
|     const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
 | |
|   // For each address expression to be modified, creates a clone of it with its
 | |
|   // pointer operands converted to the new address space. Since the pointer
 | |
|   // operands are converted, the clone is naturally in the new address space by
 | |
|   // construction.
 | |
|   ValueToValueMapTy ValueWithNewAddrSpace;
 | |
|   SmallVector<const Use *, 32> UndefUsesToFix;
 | |
|   for (Value* V : Postorder) {
 | |
|     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
 | |
|     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
 | |
|       ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
 | |
|         V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ValueWithNewAddrSpace.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
 | |
|   for (const Use *UndefUse : UndefUsesToFix) {
 | |
|     User *V = UndefUse->getUser();
 | |
|     User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
 | |
|     unsigned OperandNo = UndefUse->getOperandNo();
 | |
|     assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
 | |
|     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
 | |
|   }
 | |
| 
 | |
|   SmallVector<Instruction *, 16> DeadInstructions;
 | |
| 
 | |
|   // Replaces the uses of the old address expressions with the new ones.
 | |
|   for (const WeakTrackingVH &WVH : Postorder) {
 | |
|     assert(WVH && "value was unexpectedly deleted");
 | |
|     Value *V = WVH;
 | |
|     Value *NewV = ValueWithNewAddrSpace.lookup(V);
 | |
|     if (NewV == nullptr)
 | |
|       continue;
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  "
 | |
|                       << *NewV << '\n');
 | |
| 
 | |
|     if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|       Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
 | |
|                                                          C->getType());
 | |
|       if (C != Replace) {
 | |
|         LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
 | |
|                           << ": " << *Replace << '\n');
 | |
|         C->replaceAllUsesWith(Replace);
 | |
|         V = Replace;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Value::use_iterator I, E, Next;
 | |
|     for (I = V->use_begin(), E = V->use_end(); I != E; ) {
 | |
|       Use &U = *I;
 | |
| 
 | |
|       // Some users may see the same pointer operand in multiple operands. Skip
 | |
|       // to the next instruction.
 | |
|       I = skipToNextUser(I, E);
 | |
| 
 | |
|       if (isSimplePointerUseValidToReplace(
 | |
|               TTI, U, V->getType()->getPointerAddressSpace())) {
 | |
|         // If V is used as the pointer operand of a compatible memory operation,
 | |
|         // sets the pointer operand to NewV. This replacement does not change
 | |
|         // the element type, so the resultant load/store is still valid.
 | |
|         U.set(NewV);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       User *CurUser = U.getUser();
 | |
|       // Handle more complex cases like intrinsic that need to be remangled.
 | |
|       if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
 | |
|         if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
 | |
|         if (rewriteIntrinsicOperands(II, V, NewV))
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       if (isa<Instruction>(CurUser)) {
 | |
|         if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
 | |
|           // If we can infer that both pointers are in the same addrspace,
 | |
|           // transform e.g.
 | |
|           //   %cmp = icmp eq float* %p, %q
 | |
|           // into
 | |
|           //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
 | |
| 
 | |
|           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
 | |
|           int SrcIdx = U.getOperandNo();
 | |
|           int OtherIdx = (SrcIdx == 0) ? 1 : 0;
 | |
|           Value *OtherSrc = Cmp->getOperand(OtherIdx);
 | |
| 
 | |
|           if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
 | |
|             if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
 | |
|               Cmp->setOperand(OtherIdx, OtherNewV);
 | |
|               Cmp->setOperand(SrcIdx, NewV);
 | |
|               continue;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           // Even if the type mismatches, we can cast the constant.
 | |
|           if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
 | |
|             if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
 | |
|               Cmp->setOperand(SrcIdx, NewV);
 | |
|               Cmp->setOperand(OtherIdx,
 | |
|                 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
 | |
|               continue;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
 | |
|           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
 | |
|           if (ASC->getDestAddressSpace() == NewAS) {
 | |
|             if (ASC->getType()->getPointerElementType() !=
 | |
|                 NewV->getType()->getPointerElementType()) {
 | |
|               NewV = CastInst::Create(Instruction::BitCast, NewV,
 | |
|                                       ASC->getType(), "", ASC);
 | |
|             }
 | |
|             ASC->replaceAllUsesWith(NewV);
 | |
|             DeadInstructions.push_back(ASC);
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Otherwise, replaces the use with flat(NewV).
 | |
|         if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|           BasicBlock::iterator InsertPos = std::next(I->getIterator());
 | |
|           while (isa<PHINode>(InsertPos))
 | |
|             ++InsertPos;
 | |
|           U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
 | |
|         } else {
 | |
|           U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
 | |
|                                                V->getType()));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (V->use_empty()) {
 | |
|       if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|         DeadInstructions.push_back(I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (Instruction *I : DeadInstructions)
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(I);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createInferAddressSpacesPass() {
 | |
|   return new InferAddressSpaces();
 | |
| }
 |