forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1666 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1666 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs loop invariant code motion, attempting to remove as much
 | |
| // code from the body of a loop as possible.  It does this by either hoisting
 | |
| // code into the preheader block, or by sinking code to the exit blocks if it is
 | |
| // safe.  This pass also promotes must-aliased memory locations in the loop to
 | |
| // live in registers, thus hoisting and sinking "invariant" loads and stores.
 | |
| //
 | |
| // This pass uses alias analysis for two purposes:
 | |
| //
 | |
| //  1. Moving loop invariant loads and calls out of loops.  If we can determine
 | |
| //     that a load or call inside of a loop never aliases anything stored to,
 | |
| //     we can hoist it or sink it like any other instruction.
 | |
| //  2. Scalar Promotion of Memory - If there is a store instruction inside of
 | |
| //     the loop, we try to move the store to happen AFTER the loop instead of
 | |
| //     inside of the loop.  This can only happen if a few conditions are true:
 | |
| //       A. The pointer stored through is loop invariant
 | |
| //       B. There are no stores or loads in the loop which _may_ alias the
 | |
| //          pointer.  There are no calls in the loop which mod/ref the pointer.
 | |
| //     If these conditions are true, we can promote the loads and stores in the
 | |
| //     loop of the pointer to use a temporary alloca'd variable.  We then use
 | |
| //     the SSAUpdater to construct the appropriate SSA form for the value.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar/LICM.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AliasSetTracker.h"
 | |
| #include "llvm/Analysis/BasicAliasAnalysis.h"
 | |
| #include "llvm/Analysis/CaptureTracking.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/GuardUtils.h"
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/MemorySSA.h"
 | |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/PredIteratorCache.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Scalar/LoopPassManager.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/Transforms/Utils/SSAUpdater.h"
 | |
| #include <algorithm>
 | |
| #include <utility>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "licm"
 | |
| 
 | |
| STATISTIC(NumSunk, "Number of instructions sunk out of loop");
 | |
| STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
 | |
| STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
 | |
| STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
 | |
| STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
 | |
| 
 | |
| /// Memory promotion is enabled by default.
 | |
| static cl::opt<bool>
 | |
|     DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
 | |
|                      cl::desc("Disable memory promotion in LICM pass"));
 | |
| 
 | |
| static cl::opt<uint32_t> MaxNumUsesTraversed(
 | |
|     "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
 | |
|     cl::desc("Max num uses visited for identifying load "
 | |
|              "invariance in loop using invariant start (default = 8)"));
 | |
| 
 | |
| // Default value of zero implies we use the regular alias set tracker mechanism
 | |
| // instead of the cross product using AA to identify aliasing of the memory
 | |
| // location we are interested in.
 | |
| static cl::opt<int>
 | |
| LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
 | |
|                cl::desc("How many instruction to cross product using AA"));
 | |
| 
 | |
| static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
 | |
| static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
 | |
|                                   const LoopSafetyInfo *SafetyInfo,
 | |
|                                   TargetTransformInfo *TTI, bool &FreeInLoop);
 | |
| static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
 | |
|                   ICFLoopSafetyInfo *SafetyInfo,
 | |
|                   OptimizationRemarkEmitter *ORE);
 | |
| static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
 | |
|                  const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
 | |
|                  OptimizationRemarkEmitter *ORE, bool FreeInLoop);
 | |
| static bool isSafeToExecuteUnconditionally(Instruction &Inst,
 | |
|                                            const DominatorTree *DT,
 | |
|                                            const Loop *CurLoop,
 | |
|                                            const LoopSafetyInfo *SafetyInfo,
 | |
|                                            OptimizationRemarkEmitter *ORE,
 | |
|                                            const Instruction *CtxI = nullptr);
 | |
| static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
 | |
|                                      AliasSetTracker *CurAST, Loop *CurLoop,
 | |
|                                      AliasAnalysis *AA);
 | |
| 
 | |
| static Instruction *
 | |
| CloneInstructionInExitBlock(Instruction &I, BasicBlock &ExitBlock, PHINode &PN,
 | |
|                             const LoopInfo *LI,
 | |
|                             const LoopSafetyInfo *SafetyInfo);
 | |
| 
 | |
| static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
 | |
|                              AliasSetTracker *AST);
 | |
| 
 | |
| static void moveInstructionBefore(Instruction &I, Instruction &Dest,
 | |
|                                   ICFLoopSafetyInfo &SafetyInfo);
 | |
| 
 | |
| namespace {
 | |
| struct LoopInvariantCodeMotion {
 | |
|   using ASTrackerMapTy = DenseMap<Loop *, std::unique_ptr<AliasSetTracker>>;
 | |
|   bool runOnLoop(Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
 | |
|                  TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
 | |
|                  ScalarEvolution *SE, MemorySSA *MSSA,
 | |
|                  OptimizationRemarkEmitter *ORE, bool DeleteAST);
 | |
| 
 | |
|   ASTrackerMapTy &getLoopToAliasSetMap() { return LoopToAliasSetMap; }
 | |
| 
 | |
| private:
 | |
|   ASTrackerMapTy LoopToAliasSetMap;
 | |
| 
 | |
|   std::unique_ptr<AliasSetTracker>
 | |
|   collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AliasAnalysis *AA);
 | |
| };
 | |
| 
 | |
| struct LegacyLICMPass : public LoopPass {
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
|   LegacyLICMPass() : LoopPass(ID) {
 | |
|     initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
 | |
|     if (skipLoop(L)) {
 | |
|       // If we have run LICM on a previous loop but now we are skipping
 | |
|       // (because we've hit the opt-bisect limit), we need to clear the
 | |
|       // loop alias information.
 | |
|       LICM.getLoopToAliasSetMap().clear();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
 | |
|     MemorySSA *MSSA = EnableMSSALoopDependency
 | |
|                           ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
 | |
|                           : nullptr;
 | |
|     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
 | |
|     // pass.  Function analyses need to be preserved across loop transformations
 | |
|     // but ORE cannot be preserved (see comment before the pass definition).
 | |
|     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
 | |
|     return LICM.runOnLoop(L,
 | |
|                           &getAnalysis<AAResultsWrapperPass>().getAAResults(),
 | |
|                           &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
 | |
|                           &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
 | |
|                           &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
 | |
|                           &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
 | |
|                               *L->getHeader()->getParent()),
 | |
|                           SE ? &SE->getSE() : nullptr, MSSA, &ORE, false);
 | |
|   }
 | |
| 
 | |
|   /// This transformation requires natural loop information & requires that
 | |
|   /// loop preheaders be inserted into the CFG...
 | |
|   ///
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|     AU.addPreserved<LoopInfoWrapperPass>();
 | |
|     AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|     if (EnableMSSALoopDependency)
 | |
|       AU.addRequired<MemorySSAWrapperPass>();
 | |
|     AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|     getLoopAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   using llvm::Pass::doFinalization;
 | |
| 
 | |
|   bool doFinalization() override {
 | |
|     assert(LICM.getLoopToAliasSetMap().empty() &&
 | |
|            "Didn't free loop alias sets");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   LoopInvariantCodeMotion LICM;
 | |
| 
 | |
|   /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
 | |
|   void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
 | |
|                                Loop *L) override;
 | |
| 
 | |
|   /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
 | |
|   /// set.
 | |
|   void deleteAnalysisValue(Value *V, Loop *L) override;
 | |
| 
 | |
|   /// Simple Analysis hook. Delete loop L from alias set map.
 | |
|   void deleteAnalysisLoop(Loop *L) override;
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
 | |
|                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
 | |
|   const auto &FAM =
 | |
|       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
 | |
|   Function *F = L.getHeader()->getParent();
 | |
| 
 | |
|   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
 | |
|   // FIXME: This should probably be optional rather than required.
 | |
|   if (!ORE)
 | |
|     report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not "
 | |
|                        "cached at a higher level");
 | |
| 
 | |
|   LoopInvariantCodeMotion LICM;
 | |
|   if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE,
 | |
|                       AR.MSSA, ORE, true))
 | |
|     return PreservedAnalyses::all();
 | |
| 
 | |
|   auto PA = getLoopPassPreservedAnalyses();
 | |
| 
 | |
|   PA.preserve<DominatorTreeAnalysis>();
 | |
|   PA.preserve<LoopAnalysis>();
 | |
| 
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| char LegacyLICMPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
 | |
| INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
 | |
|                     false)
 | |
| 
 | |
| Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
 | |
| 
 | |
| /// Hoist expressions out of the specified loop. Note, alias info for inner
 | |
| /// loop is not preserved so it is not a good idea to run LICM multiple
 | |
| /// times on one loop.
 | |
| /// We should delete AST for inner loops in the new pass manager to avoid
 | |
| /// memory leak.
 | |
| ///
 | |
| bool LoopInvariantCodeMotion::runOnLoop(
 | |
|     Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
 | |
|     TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE,
 | |
|     MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool DeleteAST) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
 | |
| 
 | |
|   std::unique_ptr<AliasSetTracker> CurAST = collectAliasInfoForLoop(L, LI, AA);
 | |
| 
 | |
|   // Get the preheader block to move instructions into...
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
| 
 | |
|   // Compute loop safety information.
 | |
|   ICFLoopSafetyInfo SafetyInfo(DT);
 | |
|   SafetyInfo.computeLoopSafetyInfo(L);
 | |
| 
 | |
|   // We want to visit all of the instructions in this loop... that are not parts
 | |
|   // of our subloops (they have already had their invariants hoisted out of
 | |
|   // their loop, into this loop, so there is no need to process the BODIES of
 | |
|   // the subloops).
 | |
|   //
 | |
|   // Traverse the body of the loop in depth first order on the dominator tree so
 | |
|   // that we are guaranteed to see definitions before we see uses.  This allows
 | |
|   // us to sink instructions in one pass, without iteration.  After sinking
 | |
|   // instructions, we perform another pass to hoist them out of the loop.
 | |
|   //
 | |
|   if (L->hasDedicatedExits())
 | |
|     Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
 | |
|                           CurAST.get(), &SafetyInfo, ORE);
 | |
|   if (Preheader)
 | |
|     Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L,
 | |
|                            CurAST.get(), &SafetyInfo, ORE);
 | |
| 
 | |
|   // Now that all loop invariants have been removed from the loop, promote any
 | |
|   // memory references to scalars that we can.
 | |
|   // Don't sink stores from loops without dedicated block exits. Exits
 | |
|   // containing indirect branches are not transformed by loop simplify,
 | |
|   // make sure we catch that. An additional load may be generated in the
 | |
|   // preheader for SSA updater, so also avoid sinking when no preheader
 | |
|   // is available.
 | |
|   if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
 | |
|     // Figure out the loop exits and their insertion points
 | |
|     SmallVector<BasicBlock *, 8> ExitBlocks;
 | |
|     L->getUniqueExitBlocks(ExitBlocks);
 | |
| 
 | |
|     // We can't insert into a catchswitch.
 | |
|     bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
 | |
|       return isa<CatchSwitchInst>(Exit->getTerminator());
 | |
|     });
 | |
| 
 | |
|     if (!HasCatchSwitch) {
 | |
|       SmallVector<Instruction *, 8> InsertPts;
 | |
|       InsertPts.reserve(ExitBlocks.size());
 | |
|       for (BasicBlock *ExitBlock : ExitBlocks)
 | |
|         InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
 | |
| 
 | |
|       PredIteratorCache PIC;
 | |
| 
 | |
|       bool Promoted = false;
 | |
| 
 | |
|       // Loop over all of the alias sets in the tracker object.
 | |
|       for (AliasSet &AS : *CurAST) {
 | |
|         // We can promote this alias set if it has a store, if it is a "Must"
 | |
|         // alias set, if the pointer is loop invariant, and if we are not
 | |
|         // eliminating any volatile loads or stores.
 | |
|         if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
 | |
|             !L->isLoopInvariant(AS.begin()->getValue()))
 | |
|           continue;
 | |
| 
 | |
|         assert(
 | |
|             !AS.empty() &&
 | |
|             "Must alias set should have at least one pointer element in it!");
 | |
| 
 | |
|         SmallSetVector<Value *, 8> PointerMustAliases;
 | |
|         for (const auto &ASI : AS)
 | |
|           PointerMustAliases.insert(ASI.getValue());
 | |
| 
 | |
|         Promoted |= promoteLoopAccessesToScalars(
 | |
|             PointerMustAliases, ExitBlocks, InsertPts, PIC, LI, DT, TLI, L,
 | |
|             CurAST.get(), &SafetyInfo, ORE);
 | |
|       }
 | |
| 
 | |
|       // Once we have promoted values across the loop body we have to
 | |
|       // recursively reform LCSSA as any nested loop may now have values defined
 | |
|       // within the loop used in the outer loop.
 | |
|       // FIXME: This is really heavy handed. It would be a bit better to use an
 | |
|       // SSAUpdater strategy during promotion that was LCSSA aware and reformed
 | |
|       // it as it went.
 | |
|       if (Promoted)
 | |
|         formLCSSARecursively(*L, *DT, LI, SE);
 | |
| 
 | |
|       Changed |= Promoted;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that neither this loop nor its parent have had LCSSA broken. LICM is
 | |
|   // specifically moving instructions across the loop boundary and so it is
 | |
|   // especially in need of sanity checking here.
 | |
|   assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
 | |
|   assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) &&
 | |
|          "Parent loop not left in LCSSA form after LICM!");
 | |
| 
 | |
|   // If this loop is nested inside of another one, save the alias information
 | |
|   // for when we process the outer loop.
 | |
|   if (L->getParentLoop() && !DeleteAST)
 | |
|     LoopToAliasSetMap[L] = std::move(CurAST);
 | |
| 
 | |
|   if (Changed && SE)
 | |
|     SE->forgetLoopDispositions(L);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Walk the specified region of the CFG (defined by all blocks dominated by
 | |
| /// the specified block, and that are in the current loop) in reverse depth
 | |
| /// first order w.r.t the DominatorTree.  This allows us to visit uses before
 | |
| /// definitions, allowing us to sink a loop body in one pass without iteration.
 | |
| ///
 | |
| bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
 | |
|                       DominatorTree *DT, TargetLibraryInfo *TLI,
 | |
|                       TargetTransformInfo *TTI, Loop *CurLoop,
 | |
|                       AliasSetTracker *CurAST, ICFLoopSafetyInfo *SafetyInfo,
 | |
|                       OptimizationRemarkEmitter *ORE) {
 | |
| 
 | |
|   // Verify inputs.
 | |
|   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
 | |
|          CurLoop != nullptr && CurAST && SafetyInfo != nullptr &&
 | |
|          "Unexpected input to sinkRegion");
 | |
| 
 | |
|   // We want to visit children before parents. We will enque all the parents
 | |
|   // before their children in the worklist and process the worklist in reverse
 | |
|   // order.
 | |
|   SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (DomTreeNode *DTN : reverse(Worklist)) {
 | |
|     BasicBlock *BB = DTN->getBlock();
 | |
|     // Only need to process the contents of this block if it is not part of a
 | |
|     // subloop (which would already have been processed).
 | |
|     if (inSubLoop(BB, CurLoop, LI))
 | |
|       continue;
 | |
| 
 | |
|     for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
 | |
|       Instruction &I = *--II;
 | |
| 
 | |
|       // If the instruction is dead, we would try to sink it because it isn't
 | |
|       // used in the loop, instead, just delete it.
 | |
|       if (isInstructionTriviallyDead(&I, TLI)) {
 | |
|         LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
 | |
|         salvageDebugInfo(I);
 | |
|         ++II;
 | |
|         eraseInstruction(I, *SafetyInfo, CurAST);
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Check to see if we can sink this instruction to the exit blocks
 | |
|       // of the loop.  We can do this if the all users of the instruction are
 | |
|       // outside of the loop.  In this case, it doesn't even matter if the
 | |
|       // operands of the instruction are loop invariant.
 | |
|       //
 | |
|       bool FreeInLoop = false;
 | |
|       if (isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
 | |
|           canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, true, ORE) &&
 | |
|           !I.mayHaveSideEffects()) {
 | |
|         if (sink(I, LI, DT, CurLoop, SafetyInfo, ORE, FreeInLoop)) {
 | |
|           if (!FreeInLoop) {
 | |
|             ++II;
 | |
|             eraseInstruction(I, *SafetyInfo, CurAST);
 | |
|           }
 | |
|           Changed = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Walk the specified region of the CFG (defined by all blocks dominated by
 | |
| /// the specified block, and that are in the current loop) in depth first
 | |
| /// order w.r.t the DominatorTree.  This allows us to visit definitions before
 | |
| /// uses, allowing us to hoist a loop body in one pass without iteration.
 | |
| ///
 | |
| bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
 | |
|                        DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
 | |
|                        AliasSetTracker *CurAST, ICFLoopSafetyInfo *SafetyInfo,
 | |
|                        OptimizationRemarkEmitter *ORE) {
 | |
|   // Verify inputs.
 | |
|   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
 | |
|          CurLoop != nullptr && CurAST != nullptr && SafetyInfo != nullptr &&
 | |
|          "Unexpected input to hoistRegion");
 | |
| 
 | |
|   // We want to visit parents before children. We will enque all the parents
 | |
|   // before their children in the worklist and process the worklist in order.
 | |
|   SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (DomTreeNode *DTN : Worklist) {
 | |
|     BasicBlock *BB = DTN->getBlock();
 | |
|     // Only need to process the contents of this block if it is not part of a
 | |
|     // subloop (which would already have been processed).
 | |
|     if (inSubLoop(BB, CurLoop, LI))
 | |
|       continue;
 | |
| 
 | |
|     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
 | |
|       Instruction &I = *II++;
 | |
|       // Try constant folding this instruction.  If all the operands are
 | |
|       // constants, it is technically hoistable, but it would be better to
 | |
|       // just fold it.
 | |
|       if (Constant *C = ConstantFoldInstruction(
 | |
|               &I, I.getModule()->getDataLayout(), TLI)) {
 | |
|         LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C
 | |
|                           << '\n');
 | |
|         CurAST->copyValue(&I, C);
 | |
|         I.replaceAllUsesWith(C);
 | |
|         if (isInstructionTriviallyDead(&I, TLI))
 | |
|           eraseInstruction(I, *SafetyInfo, CurAST);
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Try hoisting the instruction out to the preheader.  We can only do
 | |
|       // this if all of the operands of the instruction are loop invariant and
 | |
|       // if it is safe to hoist the instruction.
 | |
|       //
 | |
|       if (CurLoop->hasLoopInvariantOperands(&I) &&
 | |
|           canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, true, ORE) &&
 | |
|           isSafeToExecuteUnconditionally(
 | |
|               I, DT, CurLoop, SafetyInfo, ORE,
 | |
|               CurLoop->getLoopPreheader()->getTerminator())) {
 | |
|         hoist(I, DT, CurLoop, SafetyInfo, ORE);
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Attempt to remove floating point division out of the loop by
 | |
|       // converting it to a reciprocal multiplication.
 | |
|       if (I.getOpcode() == Instruction::FDiv &&
 | |
|           CurLoop->isLoopInvariant(I.getOperand(1)) &&
 | |
|           I.hasAllowReciprocal()) {
 | |
|         auto Divisor = I.getOperand(1);
 | |
|         auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
 | |
|         auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
 | |
|         ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
 | |
|         SafetyInfo->insertInstructionTo(I.getParent());
 | |
|         ReciprocalDivisor->insertBefore(&I);
 | |
| 
 | |
|         auto Product =
 | |
|             BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
 | |
|         Product->setFastMathFlags(I.getFastMathFlags());
 | |
|         SafetyInfo->insertInstructionTo(I.getParent());
 | |
|         Product->insertAfter(&I);
 | |
|         I.replaceAllUsesWith(Product);
 | |
|         eraseInstruction(I, *SafetyInfo, CurAST);
 | |
| 
 | |
|         hoist(*ReciprocalDivisor, DT, CurLoop, SafetyInfo, ORE);
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       using namespace PatternMatch;
 | |
|       if (((I.use_empty() &&
 | |
|             match(&I, m_Intrinsic<Intrinsic::invariant_start>())) ||
 | |
|            isGuard(&I)) &&
 | |
|           CurLoop->hasLoopInvariantOperands(&I) &&
 | |
|           SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
 | |
|           SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop)) {
 | |
|         hoist(I, DT, CurLoop, SafetyInfo, ORE);
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // Return true if LI is invariant within scope of the loop. LI is invariant if
 | |
| // CurLoop is dominated by an invariant.start representing the same memory
 | |
| // location and size as the memory location LI loads from, and also the
 | |
| // invariant.start has no uses.
 | |
| static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
 | |
|                                   Loop *CurLoop) {
 | |
|   Value *Addr = LI->getOperand(0);
 | |
|   const DataLayout &DL = LI->getModule()->getDataLayout();
 | |
|   const uint32_t LocSizeInBits = DL.getTypeSizeInBits(
 | |
|       cast<PointerType>(Addr->getType())->getElementType());
 | |
| 
 | |
|   // if the type is i8 addrspace(x)*, we know this is the type of
 | |
|   // llvm.invariant.start operand
 | |
|   auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
 | |
|                                      LI->getPointerAddressSpace());
 | |
|   unsigned BitcastsVisited = 0;
 | |
|   // Look through bitcasts until we reach the i8* type (this is invariant.start
 | |
|   // operand type).
 | |
|   while (Addr->getType() != PtrInt8Ty) {
 | |
|     auto *BC = dyn_cast<BitCastInst>(Addr);
 | |
|     // Avoid traversing high number of bitcast uses.
 | |
|     if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
 | |
|       return false;
 | |
|     Addr = BC->getOperand(0);
 | |
|   }
 | |
| 
 | |
|   unsigned UsesVisited = 0;
 | |
|   // Traverse all uses of the load operand value, to see if invariant.start is
 | |
|   // one of the uses, and whether it dominates the load instruction.
 | |
|   for (auto *U : Addr->users()) {
 | |
|     // Avoid traversing for Load operand with high number of users.
 | |
|     if (++UsesVisited > MaxNumUsesTraversed)
 | |
|       return false;
 | |
|     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
 | |
|     // If there are escaping uses of invariant.start instruction, the load maybe
 | |
|     // non-invariant.
 | |
|     if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
 | |
|         !II->use_empty())
 | |
|       continue;
 | |
|     unsigned InvariantSizeInBits =
 | |
|         cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8;
 | |
|     // Confirm the invariant.start location size contains the load operand size
 | |
|     // in bits. Also, the invariant.start should dominate the load, and we
 | |
|     // should not hoist the load out of a loop that contains this dominating
 | |
|     // invariant.start.
 | |
|     if (LocSizeInBits <= InvariantSizeInBits &&
 | |
|         DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// Return true if-and-only-if we know how to (mechanically) both hoist and
 | |
| /// sink a given instruction out of a loop.  Does not address legality
 | |
| /// concerns such as aliasing or speculation safety.  
 | |
| bool isHoistableAndSinkableInst(Instruction &I) {
 | |
|   // Only these instructions are hoistable/sinkable.
 | |
|   return (isa<LoadInst>(I) || isa<StoreInst>(I) ||
 | |
|           isa<CallInst>(I) || isa<FenceInst>(I) || 
 | |
|           isa<BinaryOperator>(I) || isa<CastInst>(I) ||
 | |
|           isa<SelectInst>(I) || isa<GetElementPtrInst>(I) ||
 | |
|           isa<CmpInst>(I) || isa<InsertElementInst>(I) ||
 | |
|           isa<ExtractElementInst>(I) || isa<ShuffleVectorInst>(I) ||
 | |
|           isa<ExtractValueInst>(I) || isa<InsertValueInst>(I));
 | |
| }
 | |
| /// Return true if all of the alias sets within this AST are known not to
 | |
| /// contain a Mod.
 | |
| bool isReadOnly(AliasSetTracker *CurAST) {
 | |
|   for (AliasSet &AS : *CurAST) {
 | |
|     if (!AS.isForwardingAliasSet() && AS.isMod()) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| }
 | |
| 
 | |
| bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
 | |
|                               Loop *CurLoop, AliasSetTracker *CurAST,
 | |
|                               bool TargetExecutesOncePerLoop,
 | |
|                               OptimizationRemarkEmitter *ORE) {
 | |
|   // If we don't understand the instruction, bail early.
 | |
|   if (!isHoistableAndSinkableInst(I))
 | |
|     return false;
 | |
|   
 | |
|   // Loads have extra constraints we have to verify before we can hoist them.
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
 | |
|     if (!LI->isUnordered())
 | |
|       return false; // Don't sink/hoist volatile or ordered atomic loads!
 | |
| 
 | |
|     // Loads from constant memory are always safe to move, even if they end up
 | |
|     // in the same alias set as something that ends up being modified.
 | |
|     if (AA->pointsToConstantMemory(LI->getOperand(0)))
 | |
|       return true;
 | |
|     if (LI->getMetadata(LLVMContext::MD_invariant_load))
 | |
|       return true;
 | |
| 
 | |
|     if (LI->isAtomic() && !TargetExecutesOncePerLoop)
 | |
|       return false; // Don't risk duplicating unordered loads
 | |
| 
 | |
|     // This checks for an invariant.start dominating the load.
 | |
|     if (isLoadInvariantInLoop(LI, DT, CurLoop))
 | |
|       return true;
 | |
| 
 | |
|     bool Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI),
 | |
|                                                 CurAST, CurLoop, AA);
 | |
|     // Check loop-invariant address because this may also be a sinkable load
 | |
|     // whose address is not necessarily loop-invariant.
 | |
|     if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
 | |
|       ORE->emit([&]() {
 | |
|         return OptimizationRemarkMissed(
 | |
|                    DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
 | |
|                << "failed to move load with loop-invariant address "
 | |
|                   "because the loop may invalidate its value";
 | |
|       });
 | |
| 
 | |
|     return !Invalidated;
 | |
|   } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
 | |
|     // Don't sink or hoist dbg info; it's legal, but not useful.
 | |
|     if (isa<DbgInfoIntrinsic>(I))
 | |
|       return false;
 | |
| 
 | |
|     // Don't sink calls which can throw.
 | |
|     if (CI->mayThrow())
 | |
|       return false;
 | |
| 
 | |
|     using namespace PatternMatch;
 | |
|     if (match(CI, m_Intrinsic<Intrinsic::assume>()))
 | |
|       // Assumes don't actually alias anything or throw
 | |
|       return true;
 | |
|     
 | |
|     // Handle simple cases by querying alias analysis.
 | |
|     FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
 | |
|     if (Behavior == FMRB_DoesNotAccessMemory)
 | |
|       return true;
 | |
|     if (AliasAnalysis::onlyReadsMemory(Behavior)) {
 | |
|       // A readonly argmemonly function only reads from memory pointed to by
 | |
|       // it's arguments with arbitrary offsets.  If we can prove there are no
 | |
|       // writes to this memory in the loop, we can hoist or sink.
 | |
|       if (AliasAnalysis::onlyAccessesArgPointees(Behavior)) {
 | |
|         // TODO: expand to writeable arguments
 | |
|         for (Value *Op : CI->arg_operands())
 | |
|           if (Op->getType()->isPointerTy() &&
 | |
|               pointerInvalidatedByLoop(
 | |
|                   MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()),
 | |
|                   CurAST, CurLoop, AA))
 | |
|             return false;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // If this call only reads from memory and there are no writes to memory
 | |
|       // in the loop, we can hoist or sink the call as appropriate.
 | |
|       if (isReadOnly(CurAST))
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // FIXME: This should use mod/ref information to see if we can hoist or
 | |
|     // sink the call.
 | |
| 
 | |
|     return false;
 | |
|   } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
 | |
|     // Fences alias (most) everything to provide ordering.  For the moment,
 | |
|     // just give up if there are any other memory operations in the loop.
 | |
|     auto Begin = CurAST->begin();
 | |
|     assert(Begin != CurAST->end() && "must contain FI");
 | |
|     if (std::next(Begin) != CurAST->end())
 | |
|       // constant memory for instance, TODO: handle better
 | |
|       return false;
 | |
|     auto *UniqueI = Begin->getUniqueInstruction();
 | |
|     if (!UniqueI)
 | |
|       // other memory op, give up
 | |
|       return false;
 | |
|     (void)FI; //suppress unused variable warning
 | |
|     assert(UniqueI == FI && "AS must contain FI");
 | |
|     return true;
 | |
|   } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
 | |
|     if (!SI->isUnordered())
 | |
|       return false; // Don't sink/hoist volatile or ordered atomic store!
 | |
| 
 | |
|     // We can only hoist a store that we can prove writes a value which is not
 | |
|     // read or overwritten within the loop.  For those cases, we fallback to
 | |
|     // load store promotion instead.  TODO: We can extend this to cases where
 | |
|     // there is exactly one write to the location and that write dominates an
 | |
|     // arbitrary number of reads in the loop.
 | |
|     auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
 | |
| 
 | |
|     if (AS.isRef() || !AS.isMustAlias())
 | |
|       // Quick exit test, handled by the full path below as well.
 | |
|       return false;
 | |
|     auto *UniqueI = AS.getUniqueInstruction();
 | |
|     if (!UniqueI)
 | |
|       // other memory op, give up
 | |
|       return false;
 | |
|     assert(UniqueI == SI && "AS must contain SI");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
 | |
| 
 | |
|   // We've established mechanical ability and aliasing, it's up to the caller
 | |
|   // to check fault safety
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Returns true if a PHINode is a trivially replaceable with an
 | |
| /// Instruction.
 | |
| /// This is true when all incoming values are that instruction.
 | |
| /// This pattern occurs most often with LCSSA PHI nodes.
 | |
| ///
 | |
| static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
 | |
|   for (const Value *IncValue : PN.incoming_values())
 | |
|     if (IncValue != &I)
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return true if the instruction is free in the loop.
 | |
| static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
 | |
|                          const TargetTransformInfo *TTI) {
 | |
| 
 | |
|   if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
 | |
|     if (TTI->getUserCost(GEP) != TargetTransformInfo::TCC_Free)
 | |
|       return false;
 | |
|     // For a GEP, we cannot simply use getUserCost because currently it
 | |
|     // optimistically assume that a GEP will fold into addressing mode
 | |
|     // regardless of its users.
 | |
|     const BasicBlock *BB = GEP->getParent();
 | |
|     for (const User *U : GEP->users()) {
 | |
|       const Instruction *UI = cast<Instruction>(U);
 | |
|       if (CurLoop->contains(UI) &&
 | |
|           (BB != UI->getParent() ||
 | |
|            (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   } else
 | |
|     return TTI->getUserCost(&I) == TargetTransformInfo::TCC_Free;
 | |
| }
 | |
| 
 | |
| /// Return true if the only users of this instruction are outside of
 | |
| /// the loop. If this is true, we can sink the instruction to the exit
 | |
| /// blocks of the loop.
 | |
| ///
 | |
| /// We also return true if the instruction could be folded away in lowering.
 | |
| /// (e.g.,  a GEP can be folded into a load as an addressing mode in the loop).
 | |
| static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
 | |
|                                   const LoopSafetyInfo *SafetyInfo,
 | |
|                                   TargetTransformInfo *TTI, bool &FreeInLoop) {
 | |
|   const auto &BlockColors = SafetyInfo->getBlockColors();
 | |
|   bool IsFree = isFreeInLoop(I, CurLoop, TTI);
 | |
|   for (const User *U : I.users()) {
 | |
|     const Instruction *UI = cast<Instruction>(U);
 | |
|     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
 | |
|       const BasicBlock *BB = PN->getParent();
 | |
|       // We cannot sink uses in catchswitches.
 | |
|       if (isa<CatchSwitchInst>(BB->getTerminator()))
 | |
|         return false;
 | |
| 
 | |
|       // We need to sink a callsite to a unique funclet.  Avoid sinking if the
 | |
|       // phi use is too muddled.
 | |
|       if (isa<CallInst>(I))
 | |
|         if (!BlockColors.empty() &&
 | |
|             BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
 | |
|           return false;
 | |
|     }
 | |
| 
 | |
|     if (CurLoop->contains(UI)) {
 | |
|       if (IsFree) {
 | |
|         FreeInLoop = true;
 | |
|         continue;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static Instruction *
 | |
| CloneInstructionInExitBlock(Instruction &I, BasicBlock &ExitBlock, PHINode &PN,
 | |
|                             const LoopInfo *LI,
 | |
|                             const LoopSafetyInfo *SafetyInfo) {
 | |
|   Instruction *New;
 | |
|   if (auto *CI = dyn_cast<CallInst>(&I)) {
 | |
|     const auto &BlockColors = SafetyInfo->getBlockColors();
 | |
| 
 | |
|     // Sinking call-sites need to be handled differently from other
 | |
|     // instructions.  The cloned call-site needs a funclet bundle operand
 | |
|     // appropriate for it's location in the CFG.
 | |
|     SmallVector<OperandBundleDef, 1> OpBundles;
 | |
|     for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
 | |
|          BundleIdx != BundleEnd; ++BundleIdx) {
 | |
|       OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
 | |
|       if (Bundle.getTagID() == LLVMContext::OB_funclet)
 | |
|         continue;
 | |
| 
 | |
|       OpBundles.emplace_back(Bundle);
 | |
|     }
 | |
| 
 | |
|     if (!BlockColors.empty()) {
 | |
|       const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
 | |
|       assert(CV.size() == 1 && "non-unique color for exit block!");
 | |
|       BasicBlock *BBColor = CV.front();
 | |
|       Instruction *EHPad = BBColor->getFirstNonPHI();
 | |
|       if (EHPad->isEHPad())
 | |
|         OpBundles.emplace_back("funclet", EHPad);
 | |
|     }
 | |
| 
 | |
|     New = CallInst::Create(CI, OpBundles);
 | |
|   } else {
 | |
|     New = I.clone();
 | |
|   }
 | |
| 
 | |
|   ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
 | |
|   if (!I.getName().empty())
 | |
|     New->setName(I.getName() + ".le");
 | |
| 
 | |
|   // Build LCSSA PHI nodes for any in-loop operands. Note that this is
 | |
|   // particularly cheap because we can rip off the PHI node that we're
 | |
|   // replacing for the number and blocks of the predecessors.
 | |
|   // OPT: If this shows up in a profile, we can instead finish sinking all
 | |
|   // invariant instructions, and then walk their operands to re-establish
 | |
|   // LCSSA. That will eliminate creating PHI nodes just to nuke them when
 | |
|   // sinking bottom-up.
 | |
|   for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
 | |
|        ++OI)
 | |
|     if (Instruction *OInst = dyn_cast<Instruction>(*OI))
 | |
|       if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
 | |
|         if (!OLoop->contains(&PN)) {
 | |
|           PHINode *OpPN =
 | |
|               PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
 | |
|                               OInst->getName() + ".lcssa", &ExitBlock.front());
 | |
|           for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | |
|             OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
 | |
|           *OI = OpPN;
 | |
|         }
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
 | |
|                              AliasSetTracker *AST) {
 | |
|   if (AST)
 | |
|     AST->deleteValue(&I);
 | |
|   SafetyInfo.removeInstruction(&I);
 | |
|   I.eraseFromParent();
 | |
| }
 | |
| 
 | |
| static void moveInstructionBefore(Instruction &I, Instruction &Dest,
 | |
|                                   ICFLoopSafetyInfo &SafetyInfo) {
 | |
|   SafetyInfo.removeInstruction(&I);
 | |
|   SafetyInfo.insertInstructionTo(Dest.getParent());
 | |
|   I.moveBefore(&Dest);
 | |
| }
 | |
| 
 | |
| static Instruction *sinkThroughTriviallyReplaceablePHI(
 | |
|     PHINode *TPN, Instruction *I, LoopInfo *LI,
 | |
|     SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
 | |
|     const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop) {
 | |
|   assert(isTriviallyReplaceablePHI(*TPN, *I) &&
 | |
|          "Expect only trivially replaceable PHI");
 | |
|   BasicBlock *ExitBlock = TPN->getParent();
 | |
|   Instruction *New;
 | |
|   auto It = SunkCopies.find(ExitBlock);
 | |
|   if (It != SunkCopies.end())
 | |
|     New = It->second;
 | |
|   else
 | |
|     New = SunkCopies[ExitBlock] =
 | |
|         CloneInstructionInExitBlock(*I, *ExitBlock, *TPN, LI, SafetyInfo);
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
 | |
|   BasicBlock *BB = PN->getParent();
 | |
|   if (!BB->canSplitPredecessors())
 | |
|     return false;
 | |
|   // It's not impossible to split EHPad blocks, but if BlockColors already exist
 | |
|   // it require updating BlockColors for all offspring blocks accordingly. By
 | |
|   // skipping such corner case, we can make updating BlockColors after splitting
 | |
|   // predecessor fairly simple.
 | |
|   if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
 | |
|     return false;
 | |
|   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|     BasicBlock *BBPred = *PI;
 | |
|     if (isa<IndirectBrInst>(BBPred->getTerminator()))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
 | |
|                                         LoopInfo *LI, const Loop *CurLoop,
 | |
|                                         LoopSafetyInfo *SafetyInfo) {
 | |
| #ifndef NDEBUG
 | |
|   SmallVector<BasicBlock *, 32> ExitBlocks;
 | |
|   CurLoop->getUniqueExitBlocks(ExitBlocks);
 | |
|   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
 | |
|                                              ExitBlocks.end());
 | |
| #endif
 | |
|   BasicBlock *ExitBB = PN->getParent();
 | |
|   assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
 | |
| 
 | |
|   // Split predecessors of the loop exit to make instructions in the loop are
 | |
|   // exposed to exit blocks through trivially replaceable PHIs while keeping the
 | |
|   // loop in the canonical form where each predecessor of each exit block should
 | |
|   // be contained within the loop. For example, this will convert the loop below
 | |
|   // from
 | |
|   //
 | |
|   // LB1:
 | |
|   //   %v1 =
 | |
|   //   br %LE, %LB2
 | |
|   // LB2:
 | |
|   //   %v2 =
 | |
|   //   br %LE, %LB1
 | |
|   // LE:
 | |
|   //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
 | |
|   //
 | |
|   // to
 | |
|   //
 | |
|   // LB1:
 | |
|   //   %v1 =
 | |
|   //   br %LE.split, %LB2
 | |
|   // LB2:
 | |
|   //   %v2 =
 | |
|   //   br %LE.split2, %LB1
 | |
|   // LE.split:
 | |
|   //   %p1 = phi [%v1, %LB1]  <-- trivially replaceable
 | |
|   //   br %LE
 | |
|   // LE.split2:
 | |
|   //   %p2 = phi [%v2, %LB2]  <-- trivially replaceable
 | |
|   //   br %LE
 | |
|   // LE:
 | |
|   //   %p = phi [%p1, %LE.split], [%p2, %LE.split2]
 | |
|   //
 | |
|   const auto &BlockColors = SafetyInfo->getBlockColors();
 | |
|   SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
 | |
|   while (!PredBBs.empty()) {
 | |
|     BasicBlock *PredBB = *PredBBs.begin();
 | |
|     assert(CurLoop->contains(PredBB) &&
 | |
|            "Expect all predecessors are in the loop");
 | |
|     if (PN->getBasicBlockIndex(PredBB) >= 0) {
 | |
|       BasicBlock *NewPred = SplitBlockPredecessors(
 | |
|           ExitBB, PredBB, ".split.loop.exit", DT, LI, nullptr, true);
 | |
|       // Since we do not allow splitting EH-block with BlockColors in
 | |
|       // canSplitPredecessors(), we can simply assign predecessor's color to
 | |
|       // the new block.
 | |
|       if (!BlockColors.empty())
 | |
|         // Grab a reference to the ColorVector to be inserted before getting the
 | |
|         // reference to the vector we are copying because inserting the new
 | |
|         // element in BlockColors might cause the map to be reallocated.
 | |
|         SafetyInfo->copyColors(NewPred, PredBB);
 | |
|     }
 | |
|     PredBBs.remove(PredBB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// When an instruction is found to only be used outside of the loop, this
 | |
| /// function moves it to the exit blocks and patches up SSA form as needed.
 | |
| /// This method is guaranteed to remove the original instruction from its
 | |
| /// position, and may either delete it or move it to outside of the loop.
 | |
| ///
 | |
| static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
 | |
|                  const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
 | |
|                  OptimizationRemarkEmitter *ORE, bool FreeInLoop) {
 | |
|   LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
 | |
|   ORE->emit([&]() {
 | |
|     return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
 | |
|            << "sinking " << ore::NV("Inst", &I);
 | |
|   });
 | |
|   bool Changed = false;
 | |
|   if (isa<LoadInst>(I))
 | |
|     ++NumMovedLoads;
 | |
|   else if (isa<CallInst>(I))
 | |
|     ++NumMovedCalls;
 | |
|   ++NumSunk;
 | |
| 
 | |
|   // Iterate over users to be ready for actual sinking. Replace users via
 | |
|   // unrechable blocks with undef and make all user PHIs trivially replcable.
 | |
|   SmallPtrSet<Instruction *, 8> VisitedUsers;
 | |
|   for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
 | |
|     auto *User = cast<Instruction>(*UI);
 | |
|     Use &U = UI.getUse();
 | |
|     ++UI;
 | |
| 
 | |
|     if (VisitedUsers.count(User) || CurLoop->contains(User))
 | |
|       continue;
 | |
| 
 | |
|     if (!DT->isReachableFromEntry(User->getParent())) {
 | |
|       U = UndefValue::get(I.getType());
 | |
|       Changed = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // The user must be a PHI node.
 | |
|     PHINode *PN = cast<PHINode>(User);
 | |
| 
 | |
|     // Surprisingly, instructions can be used outside of loops without any
 | |
|     // exits.  This can only happen in PHI nodes if the incoming block is
 | |
|     // unreachable.
 | |
|     BasicBlock *BB = PN->getIncomingBlock(U);
 | |
|     if (!DT->isReachableFromEntry(BB)) {
 | |
|       U = UndefValue::get(I.getType());
 | |
|       Changed = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     VisitedUsers.insert(PN);
 | |
|     if (isTriviallyReplaceablePHI(*PN, I))
 | |
|       continue;
 | |
| 
 | |
|     if (!canSplitPredecessors(PN, SafetyInfo))
 | |
|       return Changed;
 | |
| 
 | |
|     // Split predecessors of the PHI so that we can make users trivially
 | |
|     // replaceable.
 | |
|     splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo);
 | |
| 
 | |
|     // Should rebuild the iterators, as they may be invalidated by
 | |
|     // splitPredecessorsOfLoopExit().
 | |
|     UI = I.user_begin();
 | |
|     UE = I.user_end();
 | |
|   }
 | |
| 
 | |
|   if (VisitedUsers.empty())
 | |
|     return Changed;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   SmallVector<BasicBlock *, 32> ExitBlocks;
 | |
|   CurLoop->getUniqueExitBlocks(ExitBlocks);
 | |
|   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
 | |
|                                              ExitBlocks.end());
 | |
| #endif
 | |
| 
 | |
|   // Clones of this instruction. Don't create more than one per exit block!
 | |
|   SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
 | |
| 
 | |
|   // If this instruction is only used outside of the loop, then all users are
 | |
|   // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
 | |
|   // the instruction.
 | |
|   SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
 | |
|   for (auto *UI : Users) {
 | |
|     auto *User = cast<Instruction>(UI);
 | |
| 
 | |
|     if (CurLoop->contains(User))
 | |
|       continue;
 | |
| 
 | |
|     PHINode *PN = cast<PHINode>(User);
 | |
|     assert(ExitBlockSet.count(PN->getParent()) &&
 | |
|            "The LCSSA PHI is not in an exit block!");
 | |
|     // The PHI must be trivially replaceable.
 | |
|     Instruction *New = sinkThroughTriviallyReplaceablePHI(PN, &I, LI, SunkCopies,
 | |
|                                                           SafetyInfo, CurLoop);
 | |
|     PN->replaceAllUsesWith(New);
 | |
|     eraseInstruction(*PN, *SafetyInfo, nullptr);
 | |
|     Changed = true;
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// When an instruction is found to only use loop invariant operands that
 | |
| /// is safe to hoist, this instruction is called to do the dirty work.
 | |
| ///
 | |
| static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
 | |
|                   ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
 | |
|   auto *Preheader = CurLoop->getLoopPreheader();
 | |
|   LLVM_DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": " << I
 | |
|                     << "\n");
 | |
|   ORE->emit([&]() {
 | |
|     return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
 | |
|                                                          << ore::NV("Inst", &I);
 | |
|   });
 | |
| 
 | |
|   // Metadata can be dependent on conditions we are hoisting above.
 | |
|   // Conservatively strip all metadata on the instruction unless we were
 | |
|   // guaranteed to execute I if we entered the loop, in which case the metadata
 | |
|   // is valid in the loop preheader.
 | |
|   if (I.hasMetadataOtherThanDebugLoc() &&
 | |
|       // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
 | |
|       // time in isGuaranteedToExecute if we don't actually have anything to
 | |
|       // drop.  It is a compile time optimization, not required for correctness.
 | |
|       !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
 | |
|     I.dropUnknownNonDebugMetadata();
 | |
| 
 | |
|   // Move the new node to the Preheader, before its terminator.
 | |
|   moveInstructionBefore(I, *Preheader->getTerminator(), *SafetyInfo);
 | |
| 
 | |
|   // Do not retain debug locations when we are moving instructions to different
 | |
|   // basic blocks, because we want to avoid jumpy line tables. Calls, however,
 | |
|   // need to retain their debug locs because they may be inlined.
 | |
|   // FIXME: How do we retain source locations without causing poor debugging
 | |
|   // behavior?
 | |
|   if (!isa<CallInst>(I))
 | |
|     I.setDebugLoc(DebugLoc());
 | |
| 
 | |
|   if (isa<LoadInst>(I))
 | |
|     ++NumMovedLoads;
 | |
|   else if (isa<CallInst>(I))
 | |
|     ++NumMovedCalls;
 | |
|   ++NumHoisted;
 | |
| }
 | |
| 
 | |
| /// Only sink or hoist an instruction if it is not a trapping instruction,
 | |
| /// or if the instruction is known not to trap when moved to the preheader.
 | |
| /// or if it is a trapping instruction and is guaranteed to execute.
 | |
| static bool isSafeToExecuteUnconditionally(Instruction &Inst,
 | |
|                                            const DominatorTree *DT,
 | |
|                                            const Loop *CurLoop,
 | |
|                                            const LoopSafetyInfo *SafetyInfo,
 | |
|                                            OptimizationRemarkEmitter *ORE,
 | |
|                                            const Instruction *CtxI) {
 | |
|   if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
 | |
|     return true;
 | |
| 
 | |
|   bool GuaranteedToExecute =
 | |
|       SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
 | |
| 
 | |
|   if (!GuaranteedToExecute) {
 | |
|     auto *LI = dyn_cast<LoadInst>(&Inst);
 | |
|     if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
 | |
|       ORE->emit([&]() {
 | |
|         return OptimizationRemarkMissed(
 | |
|                    DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
 | |
|                << "failed to hoist load with loop-invariant address "
 | |
|                   "because load is conditionally executed";
 | |
|       });
 | |
|   }
 | |
| 
 | |
|   return GuaranteedToExecute;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class LoopPromoter : public LoadAndStorePromoter {
 | |
|   Value *SomePtr; // Designated pointer to store to.
 | |
|   const SmallSetVector<Value *, 8> &PointerMustAliases;
 | |
|   SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
 | |
|   SmallVectorImpl<Instruction *> &LoopInsertPts;
 | |
|   PredIteratorCache &PredCache;
 | |
|   AliasSetTracker &AST;
 | |
|   LoopInfo &LI;
 | |
|   DebugLoc DL;
 | |
|   int Alignment;
 | |
|   bool UnorderedAtomic;
 | |
|   AAMDNodes AATags;
 | |
|   ICFLoopSafetyInfo &SafetyInfo;
 | |
| 
 | |
|   Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
 | |
|     if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|       if (Loop *L = LI.getLoopFor(I->getParent()))
 | |
|         if (!L->contains(BB)) {
 | |
|           // We need to create an LCSSA PHI node for the incoming value and
 | |
|           // store that.
 | |
|           PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
 | |
|                                         I->getName() + ".lcssa", &BB->front());
 | |
|           for (BasicBlock *Pred : PredCache.get(BB))
 | |
|             PN->addIncoming(I, Pred);
 | |
|           return PN;
 | |
|         }
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
 | |
|                const SmallSetVector<Value *, 8> &PMA,
 | |
|                SmallVectorImpl<BasicBlock *> &LEB,
 | |
|                SmallVectorImpl<Instruction *> &LIP, PredIteratorCache &PIC,
 | |
|                AliasSetTracker &ast, LoopInfo &li, DebugLoc dl, int alignment,
 | |
|                bool UnorderedAtomic, const AAMDNodes &AATags,
 | |
|                ICFLoopSafetyInfo &SafetyInfo)
 | |
|       : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
 | |
|         LoopExitBlocks(LEB), LoopInsertPts(LIP), PredCache(PIC), AST(ast),
 | |
|         LI(li), DL(std::move(dl)), Alignment(alignment),
 | |
|         UnorderedAtomic(UnorderedAtomic), AATags(AATags), SafetyInfo(SafetyInfo)
 | |
|       {}
 | |
| 
 | |
|   bool isInstInList(Instruction *I,
 | |
|                     const SmallVectorImpl<Instruction *> &) const override {
 | |
|     Value *Ptr;
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|       Ptr = LI->getOperand(0);
 | |
|     else
 | |
|       Ptr = cast<StoreInst>(I)->getPointerOperand();
 | |
|     return PointerMustAliases.count(Ptr);
 | |
|   }
 | |
| 
 | |
|   void doExtraRewritesBeforeFinalDeletion() const override {
 | |
|     // Insert stores after in the loop exit blocks.  Each exit block gets a
 | |
|     // store of the live-out values that feed them.  Since we've already told
 | |
|     // the SSA updater about the defs in the loop and the preheader
 | |
|     // definition, it is all set and we can start using it.
 | |
|     for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
 | |
|       BasicBlock *ExitBlock = LoopExitBlocks[i];
 | |
|       Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
 | |
|       LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
 | |
|       Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
 | |
|       Instruction *InsertPos = LoopInsertPts[i];
 | |
|       StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
 | |
|       if (UnorderedAtomic)
 | |
|         NewSI->setOrdering(AtomicOrdering::Unordered);
 | |
|       NewSI->setAlignment(Alignment);
 | |
|       NewSI->setDebugLoc(DL);
 | |
|       if (AATags)
 | |
|         NewSI->setAAMetadata(AATags);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
 | |
|     // Update alias analysis.
 | |
|     AST.copyValue(LI, V);
 | |
|   }
 | |
|   void instructionDeleted(Instruction *I) const override {
 | |
|     SafetyInfo.removeInstruction(I);
 | |
|     AST.deleteValue(I);
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// Return true iff we can prove that a caller of this function can not inspect
 | |
| /// the contents of the provided object in a well defined program.
 | |
| bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
 | |
|   if (isa<AllocaInst>(Object))
 | |
|     // Since the alloca goes out of scope, we know the caller can't retain a
 | |
|     // reference to it and be well defined.  Thus, we don't need to check for
 | |
|     // capture.
 | |
|     return true;
 | |
| 
 | |
|   // For all other objects we need to know that the caller can't possibly
 | |
|   // have gotten a reference to the object.  There are two components of
 | |
|   // that:
 | |
|   //   1) Object can't be escaped by this function.  This is what
 | |
|   //      PointerMayBeCaptured checks.
 | |
|   //   2) Object can't have been captured at definition site.  For this, we
 | |
|   //      need to know the return value is noalias.  At the moment, we use a
 | |
|   //      weaker condition and handle only AllocLikeFunctions (which are
 | |
|   //      known to be noalias).  TODO
 | |
|   return isAllocLikeFn(Object, TLI) &&
 | |
|     !PointerMayBeCaptured(Object, true, true);
 | |
| }
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| /// Try to promote memory values to scalars by sinking stores out of the
 | |
| /// loop and moving loads to before the loop.  We do this by looping over
 | |
| /// the stores in the loop, looking for stores to Must pointers which are
 | |
| /// loop invariant.
 | |
| ///
 | |
| bool llvm::promoteLoopAccessesToScalars(
 | |
|     const SmallSetVector<Value *, 8> &PointerMustAliases,
 | |
|     SmallVectorImpl<BasicBlock *> &ExitBlocks,
 | |
|     SmallVectorImpl<Instruction *> &InsertPts, PredIteratorCache &PIC,
 | |
|     LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
 | |
|     Loop *CurLoop, AliasSetTracker *CurAST, ICFLoopSafetyInfo *SafetyInfo,
 | |
|     OptimizationRemarkEmitter *ORE) {
 | |
|   // Verify inputs.
 | |
|   assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
 | |
|          CurAST != nullptr && SafetyInfo != nullptr &&
 | |
|          "Unexpected Input to promoteLoopAccessesToScalars");
 | |
| 
 | |
|   Value *SomePtr = *PointerMustAliases.begin();
 | |
|   BasicBlock *Preheader = CurLoop->getLoopPreheader();
 | |
| 
 | |
|   // It is not safe to promote a load/store from the loop if the load/store is
 | |
|   // conditional.  For example, turning:
 | |
|   //
 | |
|   //    for () { if (c) *P += 1; }
 | |
|   //
 | |
|   // into:
 | |
|   //
 | |
|   //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
 | |
|   //
 | |
|   // is not safe, because *P may only be valid to access if 'c' is true.
 | |
|   //
 | |
|   // The safety property divides into two parts:
 | |
|   // p1) The memory may not be dereferenceable on entry to the loop.  In this
 | |
|   //    case, we can't insert the required load in the preheader.
 | |
|   // p2) The memory model does not allow us to insert a store along any dynamic
 | |
|   //    path which did not originally have one.
 | |
|   //
 | |
|   // If at least one store is guaranteed to execute, both properties are
 | |
|   // satisfied, and promotion is legal.
 | |
|   //
 | |
|   // This, however, is not a necessary condition. Even if no store/load is
 | |
|   // guaranteed to execute, we can still establish these properties.
 | |
|   // We can establish (p1) by proving that hoisting the load into the preheader
 | |
|   // is safe (i.e. proving dereferenceability on all paths through the loop). We
 | |
|   // can use any access within the alias set to prove dereferenceability,
 | |
|   // since they're all must alias.
 | |
|   //
 | |
|   // There are two ways establish (p2):
 | |
|   // a) Prove the location is thread-local. In this case the memory model
 | |
|   // requirement does not apply, and stores are safe to insert.
 | |
|   // b) Prove a store dominates every exit block. In this case, if an exit
 | |
|   // blocks is reached, the original dynamic path would have taken us through
 | |
|   // the store, so inserting a store into the exit block is safe. Note that this
 | |
|   // is different from the store being guaranteed to execute. For instance,
 | |
|   // if an exception is thrown on the first iteration of the loop, the original
 | |
|   // store is never executed, but the exit blocks are not executed either.
 | |
| 
 | |
|   bool DereferenceableInPH = false;
 | |
|   bool SafeToInsertStore = false;
 | |
| 
 | |
|   SmallVector<Instruction *, 64> LoopUses;
 | |
| 
 | |
|   // We start with an alignment of one and try to find instructions that allow
 | |
|   // us to prove better alignment.
 | |
|   unsigned Alignment = 1;
 | |
|   // Keep track of which types of access we see
 | |
|   bool SawUnorderedAtomic = false;
 | |
|   bool SawNotAtomic = false;
 | |
|   AAMDNodes AATags;
 | |
| 
 | |
|   const DataLayout &MDL = Preheader->getModule()->getDataLayout();
 | |
| 
 | |
|   bool IsKnownThreadLocalObject = false;
 | |
|   if (SafetyInfo->anyBlockMayThrow()) {
 | |
|     // If a loop can throw, we have to insert a store along each unwind edge.
 | |
|     // That said, we can't actually make the unwind edge explicit. Therefore,
 | |
|     // we have to prove that the store is dead along the unwind edge.  We do
 | |
|     // this by proving that the caller can't have a reference to the object
 | |
|     // after return and thus can't possibly load from the object.
 | |
|     Value *Object = GetUnderlyingObject(SomePtr, MDL);
 | |
|     if (!isKnownNonEscaping(Object, TLI))
 | |
|       return false;
 | |
|     // Subtlety: Alloca's aren't visible to callers, but *are* potentially
 | |
|     // visible to other threads if captured and used during their lifetimes.
 | |
|     IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
 | |
|   }
 | |
| 
 | |
|   // Check that all of the pointers in the alias set have the same type.  We
 | |
|   // cannot (yet) promote a memory location that is loaded and stored in
 | |
|   // different sizes.  While we are at it, collect alignment and AA info.
 | |
|   for (Value *ASIV : PointerMustAliases) {
 | |
|     // Check that all of the pointers in the alias set have the same type.  We
 | |
|     // cannot (yet) promote a memory location that is loaded and stored in
 | |
|     // different sizes.
 | |
|     if (SomePtr->getType() != ASIV->getType())
 | |
|       return false;
 | |
| 
 | |
|     for (User *U : ASIV->users()) {
 | |
|       // Ignore instructions that are outside the loop.
 | |
|       Instruction *UI = dyn_cast<Instruction>(U);
 | |
|       if (!UI || !CurLoop->contains(UI))
 | |
|         continue;
 | |
| 
 | |
|       // If there is an non-load/store instruction in the loop, we can't promote
 | |
|       // it.
 | |
|       if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
 | |
|         if (!Load->isUnordered())
 | |
|           return false;
 | |
| 
 | |
|         SawUnorderedAtomic |= Load->isAtomic();
 | |
|         SawNotAtomic |= !Load->isAtomic();
 | |
| 
 | |
|         if (!DereferenceableInPH)
 | |
|           DereferenceableInPH = isSafeToExecuteUnconditionally(
 | |
|               *Load, DT, CurLoop, SafetyInfo, ORE, Preheader->getTerminator());
 | |
|       } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
 | |
|         // Stores *of* the pointer are not interesting, only stores *to* the
 | |
|         // pointer.
 | |
|         if (UI->getOperand(1) != ASIV)
 | |
|           continue;
 | |
|         if (!Store->isUnordered())
 | |
|           return false;
 | |
| 
 | |
|         SawUnorderedAtomic |= Store->isAtomic();
 | |
|         SawNotAtomic |= !Store->isAtomic();
 | |
| 
 | |
|         // If the store is guaranteed to execute, both properties are satisfied.
 | |
|         // We may want to check if a store is guaranteed to execute even if we
 | |
|         // already know that promotion is safe, since it may have higher
 | |
|         // alignment than any other guaranteed stores, in which case we can
 | |
|         // raise the alignment on the promoted store.
 | |
|         unsigned InstAlignment = Store->getAlignment();
 | |
|         if (!InstAlignment)
 | |
|           InstAlignment =
 | |
|               MDL.getABITypeAlignment(Store->getValueOperand()->getType());
 | |
| 
 | |
|         if (!DereferenceableInPH || !SafeToInsertStore ||
 | |
|             (InstAlignment > Alignment)) {
 | |
|           if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
 | |
|             DereferenceableInPH = true;
 | |
|             SafeToInsertStore = true;
 | |
|             Alignment = std::max(Alignment, InstAlignment);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // If a store dominates all exit blocks, it is safe to sink.
 | |
|         // As explained above, if an exit block was executed, a dominating
 | |
|         // store must have been executed at least once, so we are not
 | |
|         // introducing stores on paths that did not have them.
 | |
|         // Note that this only looks at explicit exit blocks. If we ever
 | |
|         // start sinking stores into unwind edges (see above), this will break.
 | |
|         if (!SafeToInsertStore)
 | |
|           SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
 | |
|             return DT->dominates(Store->getParent(), Exit);
 | |
|           });
 | |
| 
 | |
|         // If the store is not guaranteed to execute, we may still get
 | |
|         // deref info through it.
 | |
|         if (!DereferenceableInPH) {
 | |
|           DereferenceableInPH = isDereferenceableAndAlignedPointer(
 | |
|               Store->getPointerOperand(), Store->getAlignment(), MDL,
 | |
|               Preheader->getTerminator(), DT);
 | |
|         }
 | |
|       } else
 | |
|         return false; // Not a load or store.
 | |
| 
 | |
|       // Merge the AA tags.
 | |
|       if (LoopUses.empty()) {
 | |
|         // On the first load/store, just take its AA tags.
 | |
|         UI->getAAMetadata(AATags);
 | |
|       } else if (AATags) {
 | |
|         UI->getAAMetadata(AATags, /* Merge = */ true);
 | |
|       }
 | |
| 
 | |
|       LoopUses.push_back(UI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we found both an unordered atomic instruction and a non-atomic memory
 | |
|   // access, bail.  We can't blindly promote non-atomic to atomic since we
 | |
|   // might not be able to lower the result.  We can't downgrade since that
 | |
|   // would violate memory model.  Also, align 0 is an error for atomics.
 | |
|   if (SawUnorderedAtomic && SawNotAtomic)
 | |
|     return false;
 | |
| 
 | |
|   // If we couldn't prove we can hoist the load, bail.
 | |
|   if (!DereferenceableInPH)
 | |
|     return false;
 | |
| 
 | |
|   // We know we can hoist the load, but don't have a guaranteed store.
 | |
|   // Check whether the location is thread-local. If it is, then we can insert
 | |
|   // stores along paths which originally didn't have them without violating the
 | |
|   // memory model.
 | |
|   if (!SafeToInsertStore) {
 | |
|     if (IsKnownThreadLocalObject)
 | |
|       SafeToInsertStore = true;
 | |
|     else {
 | |
|       Value *Object = GetUnderlyingObject(SomePtr, MDL);
 | |
|       SafeToInsertStore =
 | |
|           (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
 | |
|           !PointerMayBeCaptured(Object, true, true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we've still failed to prove we can sink the store, give up.
 | |
|   if (!SafeToInsertStore)
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, this is safe to promote, lets do it!
 | |
|   LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr
 | |
|                     << '\n');
 | |
|   ORE->emit([&]() {
 | |
|     return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
 | |
|                               LoopUses[0])
 | |
|            << "Moving accesses to memory location out of the loop";
 | |
|   });
 | |
|   ++NumPromoted;
 | |
| 
 | |
|   // Grab a debug location for the inserted loads/stores; given that the
 | |
|   // inserted loads/stores have little relation to the original loads/stores,
 | |
|   // this code just arbitrarily picks a location from one, since any debug
 | |
|   // location is better than none.
 | |
|   DebugLoc DL = LoopUses[0]->getDebugLoc();
 | |
| 
 | |
|   // We use the SSAUpdater interface to insert phi nodes as required.
 | |
|   SmallVector<PHINode *, 16> NewPHIs;
 | |
|   SSAUpdater SSA(&NewPHIs);
 | |
|   LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
 | |
|                         InsertPts, PIC, *CurAST, *LI, DL, Alignment,
 | |
|                         SawUnorderedAtomic, AATags, *SafetyInfo);
 | |
| 
 | |
|   // Set up the preheader to have a definition of the value.  It is the live-out
 | |
|   // value from the preheader that uses in the loop will use.
 | |
|   LoadInst *PreheaderLoad = new LoadInst(
 | |
|       SomePtr, SomePtr->getName() + ".promoted", Preheader->getTerminator());
 | |
|   if (SawUnorderedAtomic)
 | |
|     PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
 | |
|   PreheaderLoad->setAlignment(Alignment);
 | |
|   PreheaderLoad->setDebugLoc(DL);
 | |
|   if (AATags)
 | |
|     PreheaderLoad->setAAMetadata(AATags);
 | |
|   SSA.AddAvailableValue(Preheader, PreheaderLoad);
 | |
| 
 | |
|   // Rewrite all the loads in the loop and remember all the definitions from
 | |
|   // stores in the loop.
 | |
|   Promoter.run(LoopUses);
 | |
| 
 | |
|   // If the SSAUpdater didn't use the load in the preheader, just zap it now.
 | |
|   if (PreheaderLoad->use_empty())
 | |
|     eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Returns an owning pointer to an alias set which incorporates aliasing info
 | |
| /// from L and all subloops of L.
 | |
| /// FIXME: In new pass manager, there is no helper function to handle loop
 | |
| /// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed
 | |
| /// from scratch for every loop. Hook up with the helper functions when
 | |
| /// available in the new pass manager to avoid redundant computation.
 | |
| std::unique_ptr<AliasSetTracker>
 | |
| LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
 | |
|                                                  AliasAnalysis *AA) {
 | |
|   std::unique_ptr<AliasSetTracker> CurAST;
 | |
|   SmallVector<Loop *, 4> RecomputeLoops;
 | |
|   for (Loop *InnerL : L->getSubLoops()) {
 | |
|     auto MapI = LoopToAliasSetMap.find(InnerL);
 | |
|     // If the AST for this inner loop is missing it may have been merged into
 | |
|     // some other loop's AST and then that loop unrolled, and so we need to
 | |
|     // recompute it.
 | |
|     if (MapI == LoopToAliasSetMap.end()) {
 | |
|       RecomputeLoops.push_back(InnerL);
 | |
|       continue;
 | |
|     }
 | |
|     std::unique_ptr<AliasSetTracker> InnerAST = std::move(MapI->second);
 | |
| 
 | |
|     if (CurAST) {
 | |
|       // What if InnerLoop was modified by other passes ?
 | |
|       // Once we've incorporated the inner loop's AST into ours, we don't need
 | |
|       // the subloop's anymore.
 | |
|       CurAST->add(*InnerAST);
 | |
|     } else {
 | |
|       CurAST = std::move(InnerAST);
 | |
|     }
 | |
|     LoopToAliasSetMap.erase(MapI);
 | |
|   }
 | |
|   if (!CurAST)
 | |
|     CurAST = make_unique<AliasSetTracker>(*AA);
 | |
| 
 | |
|   // Add everything from the sub loops that are no longer directly available.
 | |
|   for (Loop *InnerL : RecomputeLoops)
 | |
|     for (BasicBlock *BB : InnerL->blocks())
 | |
|       CurAST->add(*BB);
 | |
| 
 | |
|   // And merge in this loop (without anything from inner loops).
 | |
|   for (BasicBlock *BB : L->blocks())
 | |
|     if (LI->getLoopFor(BB) == L)
 | |
|       CurAST->add(*BB);
 | |
| 
 | |
|   return CurAST;
 | |
| }
 | |
| 
 | |
| /// Simple analysis hook. Clone alias set info.
 | |
| ///
 | |
| void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
 | |
|                                              Loop *L) {
 | |
|   auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
 | |
|   if (ASTIt == LICM.getLoopToAliasSetMap().end())
 | |
|     return;
 | |
| 
 | |
|   ASTIt->second->copyValue(From, To);
 | |
| }
 | |
| 
 | |
| /// Simple Analysis hook. Delete value V from alias set
 | |
| ///
 | |
| void LegacyLICMPass::deleteAnalysisValue(Value *V, Loop *L) {
 | |
|   auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
 | |
|   if (ASTIt == LICM.getLoopToAliasSetMap().end())
 | |
|     return;
 | |
| 
 | |
|   ASTIt->second->deleteValue(V);
 | |
| }
 | |
| 
 | |
| /// Simple Analysis hook. Delete value L from alias set map.
 | |
| ///
 | |
| void LegacyLICMPass::deleteAnalysisLoop(Loop *L) {
 | |
|   if (!LICM.getLoopToAliasSetMap().count(L))
 | |
|     return;
 | |
| 
 | |
|   LICM.getLoopToAliasSetMap().erase(L);
 | |
| }
 | |
| 
 | |
| static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
 | |
|                                      AliasSetTracker *CurAST, Loop *CurLoop,
 | |
|                                      AliasAnalysis *AA) {
 | |
|   // First check to see if any of the basic blocks in CurLoop invalidate *V.
 | |
|   bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
 | |
| 
 | |
|   if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
 | |
|     return isInvalidatedAccordingToAST;
 | |
| 
 | |
|   // Check with a diagnostic analysis if we can refine the information above.
 | |
|   // This is to identify the limitations of using the AST.
 | |
|   // The alias set mechanism used by LICM has a major weakness in that it
 | |
|   // combines all things which may alias into a single set *before* asking
 | |
|   // modref questions. As a result, a single readonly call within a loop will
 | |
|   // collapse all loads and stores into a single alias set and report
 | |
|   // invalidation if the loop contains any store. For example, readonly calls
 | |
|   // with deopt states have this form and create a general alias set with all
 | |
|   // loads and stores.  In order to get any LICM in loops containing possible
 | |
|   // deopt states we need a more precise invalidation of checking the mod ref
 | |
|   // info of each instruction within the loop and LI. This has a complexity of
 | |
|   // O(N^2), so currently, it is used only as a diagnostic tool since the
 | |
|   // default value of LICMN2Threshold is zero.
 | |
| 
 | |
|   // Don't look at nested loops.
 | |
|   if (CurLoop->begin() != CurLoop->end())
 | |
|     return true;
 | |
| 
 | |
|   int N = 0;
 | |
|   for (BasicBlock *BB : CurLoop->getBlocks())
 | |
|     for (Instruction &I : *BB) {
 | |
|       if (N >= LICMN2Theshold) {
 | |
|         LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "
 | |
|                           << *(MemLoc.Ptr) << "\n");
 | |
|         return true;
 | |
|       }
 | |
|       N++;
 | |
|       auto Res = AA->getModRefInfo(&I, MemLoc);
 | |
|       if (isModSet(Res)) {
 | |
|         LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "
 | |
|                           << *(MemLoc.Ptr) << "\n");
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Little predicate that returns true if the specified basic block is in
 | |
| /// a subloop of the current one, not the current one itself.
 | |
| ///
 | |
| static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
 | |
|   assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
 | |
|   return LI->getLoopFor(BB) != CurLoop;
 | |
| }
 |