forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1670 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1670 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass transforms loops that contain branches on loop-invariant conditions
 | |
| // to multiple loops.  For example, it turns the left into the right code:
 | |
| //
 | |
| //  for (...)                  if (lic)
 | |
| //    A                          for (...)
 | |
| //    if (lic)                     A; B; C
 | |
| //      B                      else
 | |
| //    C                          for (...)
 | |
| //                                 A; C
 | |
| //
 | |
| // This can increase the size of the code exponentially (doubling it every time
 | |
| // a loop is unswitched) so we only unswitch if the resultant code will be
 | |
| // smaller than a threshold.
 | |
| //
 | |
| // This pass expects LICM to be run before it to hoist invariant conditions out
 | |
| // of the loop, to make the unswitching opportunity obvious.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/CodeMetrics.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopIterator.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/MemorySSA.h"
 | |
| #include "llvm/Analysis/MemorySSAUpdater.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Scalar/LoopPassManager.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/Transforms/Utils/ValueMapper.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <map>
 | |
| #include <set>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-unswitch"
 | |
| 
 | |
| STATISTIC(NumBranches, "Number of branches unswitched");
 | |
| STATISTIC(NumSwitches, "Number of switches unswitched");
 | |
| STATISTIC(NumGuards,   "Number of guards unswitched");
 | |
| STATISTIC(NumSelects , "Number of selects unswitched");
 | |
| STATISTIC(NumTrivial , "Number of unswitches that are trivial");
 | |
| STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
 | |
| STATISTIC(TotalInsts,  "Total number of instructions analyzed");
 | |
| 
 | |
| // The specific value of 100 here was chosen based only on intuition and a
 | |
| // few specific examples.
 | |
| static cl::opt<unsigned>
 | |
| Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
 | |
|           cl::init(100), cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class LUAnalysisCache {
 | |
|     using UnswitchedValsMap =
 | |
|         DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>;
 | |
|     using UnswitchedValsIt = UnswitchedValsMap::iterator;
 | |
| 
 | |
|     struct LoopProperties {
 | |
|       unsigned CanBeUnswitchedCount;
 | |
|       unsigned WasUnswitchedCount;
 | |
|       unsigned SizeEstimation;
 | |
|       UnswitchedValsMap UnswitchedVals;
 | |
|     };
 | |
| 
 | |
|     // Here we use std::map instead of DenseMap, since we need to keep valid
 | |
|     // LoopProperties pointer for current loop for better performance.
 | |
|     using LoopPropsMap = std::map<const Loop *, LoopProperties>;
 | |
|     using LoopPropsMapIt = LoopPropsMap::iterator;
 | |
| 
 | |
|     LoopPropsMap LoopsProperties;
 | |
|     UnswitchedValsMap *CurLoopInstructions = nullptr;
 | |
|     LoopProperties *CurrentLoopProperties = nullptr;
 | |
| 
 | |
|     // A loop unswitching with an estimated cost above this threshold
 | |
|     // is not performed. MaxSize is turned into unswitching quota for
 | |
|     // the current loop, and reduced correspondingly, though note that
 | |
|     // the quota is returned by releaseMemory() when the loop has been
 | |
|     // processed, so that MaxSize will return to its previous
 | |
|     // value. So in most cases MaxSize will equal the Threshold flag
 | |
|     // when a new loop is processed. An exception to that is that
 | |
|     // MaxSize will have a smaller value while processing nested loops
 | |
|     // that were introduced due to loop unswitching of an outer loop.
 | |
|     //
 | |
|     // FIXME: The way that MaxSize works is subtle and depends on the
 | |
|     // pass manager processing loops and calling releaseMemory() in a
 | |
|     // specific order. It would be good to find a more straightforward
 | |
|     // way of doing what MaxSize does.
 | |
|     unsigned MaxSize;
 | |
| 
 | |
|   public:
 | |
|     LUAnalysisCache() : MaxSize(Threshold) {}
 | |
| 
 | |
|     // Analyze loop. Check its size, calculate is it possible to unswitch
 | |
|     // it. Returns true if we can unswitch this loop.
 | |
|     bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
 | |
|                    AssumptionCache *AC);
 | |
| 
 | |
|     // Clean all data related to given loop.
 | |
|     void forgetLoop(const Loop *L);
 | |
| 
 | |
|     // Mark case value as unswitched.
 | |
|     // Since SI instruction can be partly unswitched, in order to avoid
 | |
|     // extra unswitching in cloned loops keep track all unswitched values.
 | |
|     void setUnswitched(const SwitchInst *SI, const Value *V);
 | |
| 
 | |
|     // Check was this case value unswitched before or not.
 | |
|     bool isUnswitched(const SwitchInst *SI, const Value *V);
 | |
| 
 | |
|     // Returns true if another unswitching could be done within the cost
 | |
|     // threshold.
 | |
|     bool CostAllowsUnswitching();
 | |
| 
 | |
|     // Clone all loop-unswitch related loop properties.
 | |
|     // Redistribute unswitching quotas.
 | |
|     // Note, that new loop data is stored inside the VMap.
 | |
|     void cloneData(const Loop *NewLoop, const Loop *OldLoop,
 | |
|                    const ValueToValueMapTy &VMap);
 | |
|   };
 | |
| 
 | |
|   class LoopUnswitch : public LoopPass {
 | |
|     LoopInfo *LI;  // Loop information
 | |
|     LPPassManager *LPM;
 | |
|     AssumptionCache *AC;
 | |
| 
 | |
|     // Used to check if second loop needs processing after
 | |
|     // RewriteLoopBodyWithConditionConstant rewrites first loop.
 | |
|     std::vector<Loop*> LoopProcessWorklist;
 | |
| 
 | |
|     LUAnalysisCache BranchesInfo;
 | |
| 
 | |
|     bool OptimizeForSize;
 | |
|     bool redoLoop = false;
 | |
| 
 | |
|     Loop *currentLoop = nullptr;
 | |
|     DominatorTree *DT = nullptr;
 | |
|     MemorySSA *MSSA = nullptr;
 | |
|     std::unique_ptr<MemorySSAUpdater> MSSAU;
 | |
|     BasicBlock *loopHeader = nullptr;
 | |
|     BasicBlock *loopPreheader = nullptr;
 | |
| 
 | |
|     bool SanitizeMemory;
 | |
|     SimpleLoopSafetyInfo SafetyInfo;
 | |
| 
 | |
|     // LoopBlocks contains all of the basic blocks of the loop, including the
 | |
|     // preheader of the loop, the body of the loop, and the exit blocks of the
 | |
|     // loop, in that order.
 | |
|     std::vector<BasicBlock*> LoopBlocks;
 | |
|     // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
 | |
|     std::vector<BasicBlock*> NewBlocks;
 | |
| 
 | |
|     bool hasBranchDivergence;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass ID, replacement for typeid
 | |
| 
 | |
|     explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false)
 | |
|         : LoopPass(ID), OptimizeForSize(Os),
 | |
|           hasBranchDivergence(hasBranchDivergence) {
 | |
|         initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | |
|     bool processCurrentLoop();
 | |
|     bool isUnreachableDueToPreviousUnswitching(BasicBlock *);
 | |
| 
 | |
|     /// This transformation requires natural loop information & requires that
 | |
|     /// loop preheaders be inserted into the CFG.
 | |
|     ///
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addRequired<AssumptionCacheTracker>();
 | |
|       AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|       if (EnableMSSALoopDependency) {
 | |
|         AU.addRequired<MemorySSAWrapperPass>();
 | |
|         AU.addPreserved<MemorySSAWrapperPass>();
 | |
|       }
 | |
|       if (hasBranchDivergence)
 | |
|         AU.addRequired<LegacyDivergenceAnalysis>();
 | |
|       getLoopAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     void releaseMemory() override {
 | |
|       BranchesInfo.forgetLoop(currentLoop);
 | |
|     }
 | |
| 
 | |
|     void initLoopData() {
 | |
|       loopHeader = currentLoop->getHeader();
 | |
|       loopPreheader = currentLoop->getLoopPreheader();
 | |
|     }
 | |
| 
 | |
|     /// Split all of the edges from inside the loop to their exit blocks.
 | |
|     /// Update the appropriate Phi nodes as we do so.
 | |
|     void SplitExitEdges(Loop *L,
 | |
|                         const SmallVectorImpl<BasicBlock *> &ExitBlocks);
 | |
| 
 | |
|     bool TryTrivialLoopUnswitch(bool &Changed);
 | |
| 
 | |
|     bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
 | |
|                               Instruction *TI = nullptr);
 | |
|     void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
 | |
|                                   BasicBlock *ExitBlock, Instruction *TI);
 | |
|     void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
 | |
|                                      Instruction *TI);
 | |
| 
 | |
|     void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
 | |
|                                               Constant *Val, bool isEqual);
 | |
| 
 | |
|     void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
 | |
|                                         BasicBlock *TrueDest,
 | |
|                                         BasicBlock *FalseDest,
 | |
|                                         BranchInst *OldBranch, Instruction *TI);
 | |
| 
 | |
|     void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
 | |
| 
 | |
|     /// Given that the Invariant is not equal to Val. Simplify instructions
 | |
|     /// in the loop.
 | |
|     Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
 | |
|                                            Constant *Val);
 | |
|   };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| // Analyze loop. Check its size, calculate is it possible to unswitch
 | |
| // it. Returns true if we can unswitch this loop.
 | |
| bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
 | |
|                                 AssumptionCache *AC) {
 | |
|   LoopPropsMapIt PropsIt;
 | |
|   bool Inserted;
 | |
|   std::tie(PropsIt, Inserted) =
 | |
|       LoopsProperties.insert(std::make_pair(L, LoopProperties()));
 | |
| 
 | |
|   LoopProperties &Props = PropsIt->second;
 | |
| 
 | |
|   if (Inserted) {
 | |
|     // New loop.
 | |
| 
 | |
|     // Limit the number of instructions to avoid causing significant code
 | |
|     // expansion, and the number of basic blocks, to avoid loops with
 | |
|     // large numbers of branches which cause loop unswitching to go crazy.
 | |
|     // This is a very ad-hoc heuristic.
 | |
| 
 | |
|     SmallPtrSet<const Value *, 32> EphValues;
 | |
|     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
 | |
| 
 | |
|     // FIXME: This is overly conservative because it does not take into
 | |
|     // consideration code simplification opportunities and code that can
 | |
|     // be shared by the resultant unswitched loops.
 | |
|     CodeMetrics Metrics;
 | |
|     for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
 | |
|          ++I)
 | |
|       Metrics.analyzeBasicBlock(*I, TTI, EphValues);
 | |
| 
 | |
|     Props.SizeEstimation = Metrics.NumInsts;
 | |
|     Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
 | |
|     Props.WasUnswitchedCount = 0;
 | |
|     MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
 | |
| 
 | |
|     if (Metrics.notDuplicatable) {
 | |
|       LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName()
 | |
|                         << ", contents cannot be "
 | |
|                         << "duplicated!\n");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Be careful. This links are good only before new loop addition.
 | |
|   CurrentLoopProperties = &Props;
 | |
|   CurLoopInstructions = &Props.UnswitchedVals;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Clean all data related to given loop.
 | |
| void LUAnalysisCache::forgetLoop(const Loop *L) {
 | |
|   LoopPropsMapIt LIt = LoopsProperties.find(L);
 | |
| 
 | |
|   if (LIt != LoopsProperties.end()) {
 | |
|     LoopProperties &Props = LIt->second;
 | |
|     MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
 | |
|                Props.SizeEstimation;
 | |
|     LoopsProperties.erase(LIt);
 | |
|   }
 | |
| 
 | |
|   CurrentLoopProperties = nullptr;
 | |
|   CurLoopInstructions = nullptr;
 | |
| }
 | |
| 
 | |
| // Mark case value as unswitched.
 | |
| // Since SI instruction can be partly unswitched, in order to avoid
 | |
| // extra unswitching in cloned loops keep track all unswitched values.
 | |
| void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
 | |
|   (*CurLoopInstructions)[SI].insert(V);
 | |
| }
 | |
| 
 | |
| // Check was this case value unswitched before or not.
 | |
| bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
 | |
|   return (*CurLoopInstructions)[SI].count(V);
 | |
| }
 | |
| 
 | |
| bool LUAnalysisCache::CostAllowsUnswitching() {
 | |
|   return CurrentLoopProperties->CanBeUnswitchedCount > 0;
 | |
| }
 | |
| 
 | |
| // Clone all loop-unswitch related loop properties.
 | |
| // Redistribute unswitching quotas.
 | |
| // Note, that new loop data is stored inside the VMap.
 | |
| void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
 | |
|                                 const ValueToValueMapTy &VMap) {
 | |
|   LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
 | |
|   LoopProperties &OldLoopProps = *CurrentLoopProperties;
 | |
|   UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
 | |
| 
 | |
|   // Reallocate "can-be-unswitched quota"
 | |
| 
 | |
|   --OldLoopProps.CanBeUnswitchedCount;
 | |
|   ++OldLoopProps.WasUnswitchedCount;
 | |
|   NewLoopProps.WasUnswitchedCount = 0;
 | |
|   unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
 | |
|   NewLoopProps.CanBeUnswitchedCount = Quota / 2;
 | |
|   OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
 | |
| 
 | |
|   NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
 | |
| 
 | |
|   // Clone unswitched values info:
 | |
|   // for new loop switches we clone info about values that was
 | |
|   // already unswitched and has redundant successors.
 | |
|   for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
 | |
|     const SwitchInst *OldInst = I->first;
 | |
|     Value *NewI = VMap.lookup(OldInst);
 | |
|     const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
 | |
|     assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
 | |
| 
 | |
|     NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
 | |
|   }
 | |
| }
 | |
| 
 | |
| char LoopUnswitch::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
 | |
| INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
 | |
|                       false, false)
 | |
| 
 | |
| Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) {
 | |
|   return new LoopUnswitch(Os, hasBranchDivergence);
 | |
| }
 | |
| 
 | |
| /// Operator chain lattice.
 | |
| enum OperatorChain {
 | |
|   OC_OpChainNone,    ///< There is no operator.
 | |
|   OC_OpChainOr,      ///< There are only ORs.
 | |
|   OC_OpChainAnd,     ///< There are only ANDs.
 | |
|   OC_OpChainMixed    ///< There are ANDs and ORs.
 | |
| };
 | |
| 
 | |
| /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
 | |
| /// an invariant piece, return the invariant. Otherwise, return null.
 | |
| //
 | |
| /// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a
 | |
| /// mixed operator chain, as we can not reliably find a value which will simplify
 | |
| /// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0
 | |
| /// to simplify the chain.
 | |
| ///
 | |
| /// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
 | |
| /// simplify the condition itself to a loop variant condition, but at the
 | |
| /// cost of creating an entirely new loop.
 | |
| static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
 | |
|                                    OperatorChain &ParentChain,
 | |
|                                    DenseMap<Value *, Value *> &Cache) {
 | |
|   auto CacheIt = Cache.find(Cond);
 | |
|   if (CacheIt != Cache.end())
 | |
|     return CacheIt->second;
 | |
| 
 | |
|   // We started analyze new instruction, increment scanned instructions counter.
 | |
|   ++TotalInsts;
 | |
| 
 | |
|   // We can never unswitch on vector conditions.
 | |
|   if (Cond->getType()->isVectorTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Constants should be folded, not unswitched on!
 | |
|   if (isa<Constant>(Cond)) return nullptr;
 | |
| 
 | |
|   // TODO: Handle: br (VARIANT|INVARIANT).
 | |
| 
 | |
|   // Hoist simple values out.
 | |
|   if (L->makeLoopInvariant(Cond, Changed)) {
 | |
|     Cache[Cond] = Cond;
 | |
|     return Cond;
 | |
|   }
 | |
| 
 | |
|   // Walk up the operator chain to find partial invariant conditions.
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
 | |
|     if (BO->getOpcode() == Instruction::And ||
 | |
|         BO->getOpcode() == Instruction::Or) {
 | |
|       // Given the previous operator, compute the current operator chain status.
 | |
|       OperatorChain NewChain;
 | |
|       switch (ParentChain) {
 | |
|       case OC_OpChainNone:
 | |
|         NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
 | |
|                                       OC_OpChainOr;
 | |
|         break;
 | |
|       case OC_OpChainOr:
 | |
|         NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
 | |
|                                       OC_OpChainMixed;
 | |
|         break;
 | |
|       case OC_OpChainAnd:
 | |
|         NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
 | |
|                                       OC_OpChainMixed;
 | |
|         break;
 | |
|       case OC_OpChainMixed:
 | |
|         NewChain = OC_OpChainMixed;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // If we reach a Mixed state, we do not want to keep walking up as we can not
 | |
|       // reliably find a value that will simplify the chain. With this check, we
 | |
|       // will return null on the first sight of mixed chain and the caller will
 | |
|       // either backtrack to find partial LIV in other operand or return null.
 | |
|       if (NewChain != OC_OpChainMixed) {
 | |
|         // Update the current operator chain type before we search up the chain.
 | |
|         ParentChain = NewChain;
 | |
|         // If either the left or right side is invariant, we can unswitch on this,
 | |
|         // which will cause the branch to go away in one loop and the condition to
 | |
|         // simplify in the other one.
 | |
|         if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed,
 | |
|                                               ParentChain, Cache)) {
 | |
|           Cache[Cond] = LHS;
 | |
|           return LHS;
 | |
|         }
 | |
|         // We did not manage to find a partial LIV in operand(0). Backtrack and try
 | |
|         // operand(1).
 | |
|         ParentChain = NewChain;
 | |
|         if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed,
 | |
|                                               ParentChain, Cache)) {
 | |
|           Cache[Cond] = RHS;
 | |
|           return RHS;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   Cache[Cond] = nullptr;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
 | |
| /// an invariant piece, return the invariant along with the operator chain type.
 | |
| /// Otherwise, return null.
 | |
| static std::pair<Value *, OperatorChain> FindLIVLoopCondition(Value *Cond,
 | |
|                                                               Loop *L,
 | |
|                                                               bool &Changed) {
 | |
|   DenseMap<Value *, Value *> Cache;
 | |
|   OperatorChain OpChain = OC_OpChainNone;
 | |
|   Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache);
 | |
| 
 | |
|   // In case we do find a LIV, it can not be obtained by walking up a mixed
 | |
|   // operator chain.
 | |
|   assert((!FCond || OpChain != OC_OpChainMixed) &&
 | |
|         "Do not expect a partial LIV with mixed operator chain");
 | |
|   return {FCond, OpChain};
 | |
| }
 | |
| 
 | |
| bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
 | |
|   if (skipLoop(L))
 | |
|     return false;
 | |
| 
 | |
|   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
 | |
|       *L->getHeader()->getParent());
 | |
|   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   LPM = &LPM_Ref;
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   if (EnableMSSALoopDependency) {
 | |
|     MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
 | |
|     MSSAU = make_unique<MemorySSAUpdater>(MSSA);
 | |
|     assert(DT && "Cannot update MemorySSA without a valid DomTree.");
 | |
|   }
 | |
|   currentLoop = L;
 | |
|   Function *F = currentLoop->getHeader()->getParent();
 | |
| 
 | |
|   SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
 | |
|   if (SanitizeMemory)
 | |
|     SafetyInfo.computeLoopSafetyInfo(L);
 | |
| 
 | |
|   if (MSSA && VerifyMemorySSA)
 | |
|     MSSA->verifyMemorySSA();
 | |
| 
 | |
|   bool Changed = false;
 | |
|   do {
 | |
|     assert(currentLoop->isLCSSAForm(*DT));
 | |
|     if (MSSA && VerifyMemorySSA)
 | |
|       MSSA->verifyMemorySSA();
 | |
|     redoLoop = false;
 | |
|     Changed |= processCurrentLoop();
 | |
|   } while(redoLoop);
 | |
| 
 | |
|   if (MSSA && VerifyMemorySSA)
 | |
|     MSSA->verifyMemorySSA();
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // Return true if the BasicBlock BB is unreachable from the loop header.
 | |
| // Return false, otherwise.
 | |
| bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
 | |
|   auto *Node = DT->getNode(BB)->getIDom();
 | |
|   BasicBlock *DomBB = Node->getBlock();
 | |
|   while (currentLoop->contains(DomBB)) {
 | |
|     BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());
 | |
| 
 | |
|     Node = DT->getNode(DomBB)->getIDom();
 | |
|     DomBB = Node->getBlock();
 | |
| 
 | |
|     if (!BInst || !BInst->isConditional())
 | |
|       continue;
 | |
| 
 | |
|     Value *Cond = BInst->getCondition();
 | |
|     if (!isa<ConstantInt>(Cond))
 | |
|       continue;
 | |
| 
 | |
|     BasicBlock *UnreachableSucc =
 | |
|         Cond == ConstantInt::getTrue(Cond->getContext())
 | |
|             ? BInst->getSuccessor(1)
 | |
|             : BInst->getSuccessor(0);
 | |
| 
 | |
|     if (DT->dominates(UnreachableSucc, BB))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FIXME: Remove this workaround when freeze related patches are done.
 | |
| /// LoopUnswitch and Equality propagation in GVN have discrepancy about
 | |
| /// whether branch on undef/poison has undefine behavior. Here it is to
 | |
| /// rule out some common cases that we found such discrepancy already
 | |
| /// causing problems. Detail could be found in PR31652. Note if the
 | |
| /// func returns true, it is unsafe. But if it is false, it doesn't mean
 | |
| /// it is necessarily safe.
 | |
| static bool EqualityPropUnSafe(Value &LoopCond) {
 | |
|   ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond);
 | |
|   if (!CI || !CI->isEquality())
 | |
|     return false;
 | |
| 
 | |
|   Value *LHS = CI->getOperand(0);
 | |
|   Value *RHS = CI->getOperand(1);
 | |
|   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
 | |
|     return true;
 | |
| 
 | |
|   auto hasUndefInPHI = [](PHINode &PN) {
 | |
|     for (Value *Opd : PN.incoming_values()) {
 | |
|       if (isa<UndefValue>(Opd))
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   };
 | |
|   PHINode *LPHI = dyn_cast<PHINode>(LHS);
 | |
|   PHINode *RPHI = dyn_cast<PHINode>(RHS);
 | |
|   if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI)))
 | |
|     return true;
 | |
| 
 | |
|   auto hasUndefInSelect = [](SelectInst &SI) {
 | |
|     if (isa<UndefValue>(SI.getTrueValue()) ||
 | |
|         isa<UndefValue>(SI.getFalseValue()))
 | |
|       return true;
 | |
|     return false;
 | |
|   };
 | |
|   SelectInst *LSI = dyn_cast<SelectInst>(LHS);
 | |
|   SelectInst *RSI = dyn_cast<SelectInst>(RHS);
 | |
|   if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI)))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Do actual work and unswitch loop if possible and profitable.
 | |
| bool LoopUnswitch::processCurrentLoop() {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   initLoopData();
 | |
| 
 | |
|   // If LoopSimplify was unable to form a preheader, don't do any unswitching.
 | |
|   if (!loopPreheader)
 | |
|     return false;
 | |
| 
 | |
|   // Loops with indirectbr cannot be cloned.
 | |
|   if (!currentLoop->isSafeToClone())
 | |
|     return false;
 | |
| 
 | |
|   // Without dedicated exits, splitting the exit edge may fail.
 | |
|   if (!currentLoop->hasDedicatedExits())
 | |
|     return false;
 | |
| 
 | |
|   LLVMContext &Context = loopHeader->getContext();
 | |
| 
 | |
|   // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
 | |
|   if (!BranchesInfo.countLoop(
 | |
|           currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
 | |
|                            *currentLoop->getHeader()->getParent()),
 | |
|           AC))
 | |
|     return false;
 | |
| 
 | |
|   // Try trivial unswitch first before loop over other basic blocks in the loop.
 | |
|   if (TryTrivialLoopUnswitch(Changed)) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Do not do non-trivial unswitch while optimizing for size.
 | |
|   // FIXME: Use Function::optForSize().
 | |
|   if (OptimizeForSize ||
 | |
|       loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
 | |
|     return false;
 | |
| 
 | |
|   // Run through the instructions in the loop, keeping track of three things:
 | |
|   //
 | |
|   //  - That we do not unswitch loops containing convergent operations, as we
 | |
|   //    might be making them control dependent on the unswitch value when they
 | |
|   //    were not before.
 | |
|   //    FIXME: This could be refined to only bail if the convergent operation is
 | |
|   //    not already control-dependent on the unswitch value.
 | |
|   //
 | |
|   //  - That basic blocks in the loop contain invokes whose predecessor edges we
 | |
|   //    cannot split.
 | |
|   //
 | |
|   //  - The set of guard intrinsics encountered (these are non terminator
 | |
|   //    instructions that are also profitable to be unswitched).
 | |
| 
 | |
|   SmallVector<IntrinsicInst *, 4> Guards;
 | |
| 
 | |
|   for (const auto BB : currentLoop->blocks()) {
 | |
|     for (auto &I : *BB) {
 | |
|       auto CS = CallSite(&I);
 | |
|       if (!CS) continue;
 | |
|       if (CS.hasFnAttr(Attribute::Convergent))
 | |
|         return false;
 | |
|       if (auto *II = dyn_cast<InvokeInst>(&I))
 | |
|         if (!II->getUnwindDest()->canSplitPredecessors())
 | |
|           return false;
 | |
|       if (auto *II = dyn_cast<IntrinsicInst>(&I))
 | |
|         if (II->getIntrinsicID() == Intrinsic::experimental_guard)
 | |
|           Guards.push_back(II);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (IntrinsicInst *Guard : Guards) {
 | |
|     Value *LoopCond =
 | |
|         FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed).first;
 | |
|     if (LoopCond &&
 | |
|         UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
 | |
|       // NB! Unswitching (if successful) could have erased some of the
 | |
|       // instructions in Guards leaving dangling pointers there.  This is fine
 | |
|       // because we're returning now, and won't look at Guards again.
 | |
|       ++NumGuards;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Loop over all of the basic blocks in the loop.  If we find an interior
 | |
|   // block that is branching on a loop-invariant condition, we can unswitch this
 | |
|   // loop.
 | |
|   for (Loop::block_iterator I = currentLoop->block_begin(),
 | |
|          E = currentLoop->block_end(); I != E; ++I) {
 | |
|     Instruction *TI = (*I)->getTerminator();
 | |
| 
 | |
|     // Unswitching on a potentially uninitialized predicate is not
 | |
|     // MSan-friendly. Limit this to the cases when the original predicate is
 | |
|     // guaranteed to execute, to avoid creating a use-of-uninitialized-value
 | |
|     // in the code that did not have one.
 | |
|     // This is a workaround for the discrepancy between LLVM IR and MSan
 | |
|     // semantics. See PR28054 for more details.
 | |
|     if (SanitizeMemory &&
 | |
|         !SafetyInfo.isGuaranteedToExecute(*TI, DT, currentLoop))
 | |
|       continue;
 | |
| 
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|       // Some branches may be rendered unreachable because of previous
 | |
|       // unswitching.
 | |
|       // Unswitch only those branches that are reachable.
 | |
|       if (isUnreachableDueToPreviousUnswitching(*I))
 | |
|         continue;
 | |
| 
 | |
|       // If this isn't branching on an invariant condition, we can't unswitch
 | |
|       // it.
 | |
|       if (BI->isConditional()) {
 | |
|         // See if this, or some part of it, is loop invariant.  If so, we can
 | |
|         // unswitch on it if we desire.
 | |
|         Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
 | |
|                                                currentLoop, Changed).first;
 | |
|         if (LoopCond && !EqualityPropUnSafe(*LoopCond) &&
 | |
|             UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
 | |
|           ++NumBranches;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|       Value *SC = SI->getCondition();
 | |
|       Value *LoopCond;
 | |
|       OperatorChain OpChain;
 | |
|       std::tie(LoopCond, OpChain) =
 | |
|         FindLIVLoopCondition(SC, currentLoop, Changed);
 | |
| 
 | |
|       unsigned NumCases = SI->getNumCases();
 | |
|       if (LoopCond && NumCases) {
 | |
|         // Find a value to unswitch on:
 | |
|         // FIXME: this should chose the most expensive case!
 | |
|         // FIXME: scan for a case with a non-critical edge?
 | |
|         Constant *UnswitchVal = nullptr;
 | |
|         // Find a case value such that at least one case value is unswitched
 | |
|         // out.
 | |
|         if (OpChain == OC_OpChainAnd) {
 | |
|           // If the chain only has ANDs and the switch has a case value of 0.
 | |
|           // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
 | |
|           auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
 | |
|           if (BranchesInfo.isUnswitched(SI, AllZero))
 | |
|             continue;
 | |
|           // We are unswitching 0 out.
 | |
|           UnswitchVal = AllZero;
 | |
|         } else if (OpChain == OC_OpChainOr) {
 | |
|           // If the chain only has ORs and the switch has a case value of ~0.
 | |
|           // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
 | |
|           auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
 | |
|           if (BranchesInfo.isUnswitched(SI, AllOne))
 | |
|             continue;
 | |
|           // We are unswitching ~0 out.
 | |
|           UnswitchVal = AllOne;
 | |
|         } else {
 | |
|           assert(OpChain == OC_OpChainNone &&
 | |
|                  "Expect to unswitch on trivial chain");
 | |
|           // Do not process same value again and again.
 | |
|           // At this point we have some cases already unswitched and
 | |
|           // some not yet unswitched. Let's find the first not yet unswitched one.
 | |
|           for (auto Case : SI->cases()) {
 | |
|             Constant *UnswitchValCandidate = Case.getCaseValue();
 | |
|             if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
 | |
|               UnswitchVal = UnswitchValCandidate;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (!UnswitchVal)
 | |
|           continue;
 | |
| 
 | |
|         if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
 | |
|           ++NumSwitches;
 | |
|           // In case of a full LIV, UnswitchVal is the value we unswitched out.
 | |
|           // In case of a partial LIV, we only unswitch when its an AND-chain
 | |
|           // or OR-chain. In both cases switch input value simplifies to
 | |
|           // UnswitchVal.
 | |
|           BranchesInfo.setUnswitched(SI, UnswitchVal);
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Scan the instructions to check for unswitchable values.
 | |
|     for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
 | |
|          BBI != E; ++BBI)
 | |
|       if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
 | |
|         Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
 | |
|                                                currentLoop, Changed).first;
 | |
|         if (LoopCond && UnswitchIfProfitable(LoopCond,
 | |
|                                              ConstantInt::getTrue(Context))) {
 | |
|           ++NumSelects;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Check to see if all paths from BB exit the loop with no side effects
 | |
| /// (including infinite loops).
 | |
| ///
 | |
| /// If true, we return true and set ExitBB to the block we
 | |
| /// exit through.
 | |
| ///
 | |
| static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
 | |
|                                          BasicBlock *&ExitBB,
 | |
|                                          std::set<BasicBlock*> &Visited) {
 | |
|   if (!Visited.insert(BB).second) {
 | |
|     // Already visited. Without more analysis, this could indicate an infinite
 | |
|     // loop.
 | |
|     return false;
 | |
|   }
 | |
|   if (!L->contains(BB)) {
 | |
|     // Otherwise, this is a loop exit, this is fine so long as this is the
 | |
|     // first exit.
 | |
|     if (ExitBB) return false;
 | |
|     ExitBB = BB;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, this is an unvisited intra-loop node.  Check all successors.
 | |
|   for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
 | |
|     // Check to see if the successor is a trivial loop exit.
 | |
|     if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Okay, everything after this looks good, check to make sure that this block
 | |
|   // doesn't include any side effects.
 | |
|   for (Instruction &I : *BB)
 | |
|     if (I.mayHaveSideEffects())
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return true if the specified block unconditionally leads to an exit from
 | |
| /// the specified loop, and has no side-effects in the process. If so, return
 | |
| /// the block that is exited to, otherwise return null.
 | |
| static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
 | |
|   std::set<BasicBlock*> Visited;
 | |
|   Visited.insert(L->getHeader());  // Branches to header make infinite loops.
 | |
|   BasicBlock *ExitBB = nullptr;
 | |
|   if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
 | |
|     return ExitBB;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// We have found that we can unswitch currentLoop when LoopCond == Val to
 | |
| /// simplify the loop.  If we decide that this is profitable,
 | |
| /// unswitch the loop, reprocess the pieces, then return true.
 | |
| bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
 | |
|                                         Instruction *TI) {
 | |
|   // Check to see if it would be profitable to unswitch current loop.
 | |
|   if (!BranchesInfo.CostAllowsUnswitching()) {
 | |
|     LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
 | |
|                       << currentLoop->getHeader()->getName()
 | |
|                       << " at non-trivial condition '" << *Val
 | |
|                       << "' == " << *LoopCond << "\n"
 | |
|                       << ". Cost too high.\n");
 | |
|     return false;
 | |
|   }
 | |
|   if (hasBranchDivergence &&
 | |
|       getAnalysis<LegacyDivergenceAnalysis>().isDivergent(LoopCond)) {
 | |
|     LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
 | |
|                       << currentLoop->getHeader()->getName()
 | |
|                       << " at non-trivial condition '" << *Val
 | |
|                       << "' == " << *LoopCond << "\n"
 | |
|                       << ". Condition is divergent.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Recursively clone the specified loop and all of its children,
 | |
| /// mapping the blocks with the specified map.
 | |
| static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
 | |
|                        LoopInfo *LI, LPPassManager *LPM) {
 | |
|   Loop &New = *LI->AllocateLoop();
 | |
|   if (PL)
 | |
|     PL->addChildLoop(&New);
 | |
|   else
 | |
|     LI->addTopLevelLoop(&New);
 | |
|   LPM->addLoop(New);
 | |
| 
 | |
|   // Add all of the blocks in L to the new loop.
 | |
|   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | |
|        I != E; ++I)
 | |
|     if (LI->getLoopFor(*I) == L)
 | |
|       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
 | |
| 
 | |
|   // Add all of the subloops to the new loop.
 | |
|   for (Loop *I : *L)
 | |
|     CloneLoop(I, &New, VM, LI, LPM);
 | |
| 
 | |
|   return &New;
 | |
| }
 | |
| 
 | |
| /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
 | |
| /// otherwise branch to FalseDest. Insert the code immediately before OldBranch
 | |
| /// and remove (but not erase!) it from the function.
 | |
| void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
 | |
|                                                   BasicBlock *TrueDest,
 | |
|                                                   BasicBlock *FalseDest,
 | |
|                                                   BranchInst *OldBranch,
 | |
|                                                   Instruction *TI) {
 | |
|   assert(OldBranch->isUnconditional() && "Preheader is not split correctly");
 | |
|   assert(TrueDest != FalseDest && "Branch targets should be different");
 | |
|   // Insert a conditional branch on LIC to the two preheaders.  The original
 | |
|   // code is the true version and the new code is the false version.
 | |
|   Value *BranchVal = LIC;
 | |
|   bool Swapped = false;
 | |
|   if (!isa<ConstantInt>(Val) ||
 | |
|       Val->getType() != Type::getInt1Ty(LIC->getContext()))
 | |
|     BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val);
 | |
|   else if (Val != ConstantInt::getTrue(Val->getContext())) {
 | |
|     // We want to enter the new loop when the condition is true.
 | |
|     std::swap(TrueDest, FalseDest);
 | |
|     Swapped = true;
 | |
|   }
 | |
| 
 | |
|   // Old branch will be removed, so save its parent and successor to update the
 | |
|   // DomTree.
 | |
|   auto *OldBranchSucc = OldBranch->getSuccessor(0);
 | |
|   auto *OldBranchParent = OldBranch->getParent();
 | |
| 
 | |
|   // Insert the new branch.
 | |
|   BranchInst *BI =
 | |
|       IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
 | |
|   if (Swapped)
 | |
|     BI->swapProfMetadata();
 | |
| 
 | |
|   // Remove the old branch so there is only one branch at the end. This is
 | |
|   // needed to perform DomTree's internal DFS walk on the function's CFG.
 | |
|   OldBranch->removeFromParent();
 | |
| 
 | |
|   // Inform the DT about the new branch.
 | |
|   if (DT) {
 | |
|     // First, add both successors.
 | |
|     SmallVector<DominatorTree::UpdateType, 3> Updates;
 | |
|     if (TrueDest != OldBranchSucc)
 | |
|       Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest});
 | |
|     if (FalseDest != OldBranchSucc)
 | |
|       Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest});
 | |
|     // If both of the new successors are different from the old one, inform the
 | |
|     // DT that the edge was deleted.
 | |
|     if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) {
 | |
|       Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc});
 | |
|     }
 | |
|     DT->applyUpdates(Updates);
 | |
| 
 | |
|     if (MSSAU)
 | |
|       MSSAU->applyUpdates(Updates, *DT);
 | |
|   }
 | |
| 
 | |
|   // If either edge is critical, split it. This helps preserve LoopSimplify
 | |
|   // form for enclosing loops.
 | |
|   auto Options =
 | |
|       CriticalEdgeSplittingOptions(DT, LI, MSSAU.get()).setPreserveLCSSA();
 | |
|   SplitCriticalEdge(BI, 0, Options);
 | |
|   SplitCriticalEdge(BI, 1, Options);
 | |
| }
 | |
| 
 | |
| /// Given a loop that has a trivial unswitchable condition in it (a cond branch
 | |
| /// from its header block to its latch block, where the path through the loop
 | |
| /// that doesn't execute its body has no side-effects), unswitch it. This
 | |
| /// doesn't involve any code duplication, just moving the conditional branch
 | |
| /// outside of the loop and updating loop info.
 | |
| void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
 | |
|                                             BasicBlock *ExitBlock,
 | |
|                                             Instruction *TI) {
 | |
|   LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
 | |
|                     << loopHeader->getName() << " [" << L->getBlocks().size()
 | |
|                     << " blocks] in Function "
 | |
|                     << L->getHeader()->getParent()->getName()
 | |
|                     << " on cond: " << *Val << " == " << *Cond << "\n");
 | |
|   // We are going to make essential changes to CFG. This may invalidate cached
 | |
|   // information for L or one of its parent loops in SCEV.
 | |
|   if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
 | |
|     SEWP->getSE().forgetTopmostLoop(L);
 | |
| 
 | |
|   // First step, split the preheader, so that we know that there is a safe place
 | |
|   // to insert the conditional branch.  We will change loopPreheader to have a
 | |
|   // conditional branch on Cond.
 | |
|   BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());
 | |
| 
 | |
|   // Now that we have a place to insert the conditional branch, create a place
 | |
|   // to branch to: this is the exit block out of the loop that we should
 | |
|   // short-circuit to.
 | |
| 
 | |
|   // Split this block now, so that the loop maintains its exit block, and so
 | |
|   // that the jump from the preheader can execute the contents of the exit block
 | |
|   // without actually branching to it (the exit block should be dominated by the
 | |
|   // loop header, not the preheader).
 | |
|   assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
 | |
|   BasicBlock *NewExit =
 | |
|       SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI, MSSAU.get());
 | |
| 
 | |
|   // Okay, now we have a position to branch from and a position to branch to,
 | |
|   // insert the new conditional branch.
 | |
|   auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator());
 | |
|   assert(OldBranch && "Failed to split the preheader");
 | |
|   EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI);
 | |
|   LPM->deleteSimpleAnalysisValue(OldBranch, L);
 | |
| 
 | |
|   // EmitPreheaderBranchOnCondition removed the OldBranch from the function.
 | |
|   // Delete it, as it is no longer needed.
 | |
|   delete OldBranch;
 | |
| 
 | |
|   // We need to reprocess this loop, it could be unswitched again.
 | |
|   redoLoop = true;
 | |
| 
 | |
|   // Now that we know that the loop is never entered when this condition is a
 | |
|   // particular value, rewrite the loop with this info.  We know that this will
 | |
|   // at least eliminate the old branch.
 | |
|   RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
 | |
| 
 | |
|   ++NumTrivial;
 | |
| }
 | |
| 
 | |
| /// Check if the first non-constant condition starting from the loop header is
 | |
| /// a trivial unswitch condition: that is, a condition controls whether or not
 | |
| /// the loop does anything at all. If it is a trivial condition, unswitching
 | |
| /// produces no code duplications (equivalently, it produces a simpler loop and
 | |
| /// a new empty loop, which gets deleted). Therefore always unswitch trivial
 | |
| /// condition.
 | |
| bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
 | |
|   BasicBlock *CurrentBB = currentLoop->getHeader();
 | |
|   Instruction *CurrentTerm = CurrentBB->getTerminator();
 | |
|   LLVMContext &Context = CurrentBB->getContext();
 | |
| 
 | |
|   // If loop header has only one reachable successor (currently via an
 | |
|   // unconditional branch or constant foldable conditional branch, but
 | |
|   // should also consider adding constant foldable switch instruction in
 | |
|   // future), we should keep looking for trivial condition candidates in
 | |
|   // the successor as well. An alternative is to constant fold conditions
 | |
|   // and merge successors into loop header (then we only need to check header's
 | |
|   // terminator). The reason for not doing this in LoopUnswitch pass is that
 | |
|   // it could potentially break LoopPassManager's invariants. Folding dead
 | |
|   // branches could either eliminate the current loop or make other loops
 | |
|   // unreachable. LCSSA form might also not be preserved after deleting
 | |
|   // branches. The following code keeps traversing loop header's successors
 | |
|   // until it finds the trivial condition candidate (condition that is not a
 | |
|   // constant). Since unswitching generates branches with constant conditions,
 | |
|   // this scenario could be very common in practice.
 | |
|   SmallPtrSet<BasicBlock*, 8> Visited;
 | |
| 
 | |
|   while (true) {
 | |
|     // If we exit loop or reach a previous visited block, then
 | |
|     // we can not reach any trivial condition candidates (unfoldable
 | |
|     // branch instructions or switch instructions) and no unswitch
 | |
|     // can happen. Exit and return false.
 | |
|     if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
 | |
|       return false;
 | |
| 
 | |
|     // Check if this loop will execute any side-effecting instructions (e.g.
 | |
|     // stores, calls, volatile loads) in the part of the loop that the code
 | |
|     // *would* execute. Check the header first.
 | |
|     for (Instruction &I : *CurrentBB)
 | |
|       if (I.mayHaveSideEffects())
 | |
|         return false;
 | |
| 
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
 | |
|       if (BI->isUnconditional()) {
 | |
|         CurrentBB = BI->getSuccessor(0);
 | |
|       } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
 | |
|         CurrentBB = BI->getSuccessor(0);
 | |
|       } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
 | |
|         CurrentBB = BI->getSuccessor(1);
 | |
|       } else {
 | |
|         // Found a trivial condition candidate: non-foldable conditional branch.
 | |
|         break;
 | |
|       }
 | |
|     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
 | |
|       // At this point, any constant-foldable instructions should have probably
 | |
|       // been folded.
 | |
|       ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
 | |
|       if (!Cond)
 | |
|         break;
 | |
|       // Find the target block we are definitely going to.
 | |
|       CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
 | |
|     } else {
 | |
|       // We do not understand these terminator instructions.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     CurrentTerm = CurrentBB->getTerminator();
 | |
|   }
 | |
| 
 | |
|   // CondVal is the condition that controls the trivial condition.
 | |
|   // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
 | |
|   Constant *CondVal = nullptr;
 | |
|   BasicBlock *LoopExitBB = nullptr;
 | |
| 
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
 | |
|     // If this isn't branching on an invariant condition, we can't unswitch it.
 | |
|     if (!BI->isConditional())
 | |
|       return false;
 | |
| 
 | |
|     Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
 | |
|                                            currentLoop, Changed).first;
 | |
| 
 | |
|     // Unswitch only if the trivial condition itself is an LIV (not
 | |
|     // partial LIV which could occur in and/or)
 | |
|     if (!LoopCond || LoopCond != BI->getCondition())
 | |
|       return false;
 | |
| 
 | |
|     // Check to see if a successor of the branch is guaranteed to
 | |
|     // exit through a unique exit block without having any
 | |
|     // side-effects.  If so, determine the value of Cond that causes
 | |
|     // it to do this.
 | |
|     if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
 | |
|                                              BI->getSuccessor(0)))) {
 | |
|       CondVal = ConstantInt::getTrue(Context);
 | |
|     } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
 | |
|                                                     BI->getSuccessor(1)))) {
 | |
|       CondVal = ConstantInt::getFalse(Context);
 | |
|     }
 | |
| 
 | |
|     // If we didn't find a single unique LoopExit block, or if the loop exit
 | |
|     // block contains phi nodes, this isn't trivial.
 | |
|     if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
 | |
|       return false;   // Can't handle this.
 | |
| 
 | |
|     if (EqualityPropUnSafe(*LoopCond))
 | |
|       return false;
 | |
| 
 | |
|     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
 | |
|                              CurrentTerm);
 | |
|     ++NumBranches;
 | |
|     return true;
 | |
|   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
 | |
|     // If this isn't switching on an invariant condition, we can't unswitch it.
 | |
|     Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
 | |
|                                            currentLoop, Changed).first;
 | |
| 
 | |
|     // Unswitch only if the trivial condition itself is an LIV (not
 | |
|     // partial LIV which could occur in and/or)
 | |
|     if (!LoopCond || LoopCond != SI->getCondition())
 | |
|       return false;
 | |
| 
 | |
|     // Check to see if a successor of the switch is guaranteed to go to the
 | |
|     // latch block or exit through a one exit block without having any
 | |
|     // side-effects.  If so, determine the value of Cond that causes it to do
 | |
|     // this.
 | |
|     // Note that we can't trivially unswitch on the default case or
 | |
|     // on already unswitched cases.
 | |
|     for (auto Case : SI->cases()) {
 | |
|       BasicBlock *LoopExitCandidate;
 | |
|       if ((LoopExitCandidate =
 | |
|                isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) {
 | |
|         // Okay, we found a trivial case, remember the value that is trivial.
 | |
|         ConstantInt *CaseVal = Case.getCaseValue();
 | |
| 
 | |
|         // Check that it was not unswitched before, since already unswitched
 | |
|         // trivial vals are looks trivial too.
 | |
|         if (BranchesInfo.isUnswitched(SI, CaseVal))
 | |
|           continue;
 | |
|         LoopExitBB = LoopExitCandidate;
 | |
|         CondVal = CaseVal;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we didn't find a single unique LoopExit block, or if the loop exit
 | |
|     // block contains phi nodes, this isn't trivial.
 | |
|     if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
 | |
|       return false;   // Can't handle this.
 | |
| 
 | |
|     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
 | |
|                              nullptr);
 | |
| 
 | |
|     // We are only unswitching full LIV.
 | |
|     BranchesInfo.setUnswitched(SI, CondVal);
 | |
|     ++NumSwitches;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Split all of the edges from inside the loop to their exit blocks.
 | |
| /// Update the appropriate Phi nodes as we do so.
 | |
| void LoopUnswitch::SplitExitEdges(Loop *L,
 | |
|                                const SmallVectorImpl<BasicBlock *> &ExitBlocks){
 | |
| 
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *ExitBlock = ExitBlocks[i];
 | |
|     SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
 | |
|                                        pred_end(ExitBlock));
 | |
| 
 | |
|     // Although SplitBlockPredecessors doesn't preserve loop-simplify in
 | |
|     // general, if we call it on all predecessors of all exits then it does.
 | |
|     SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI, MSSAU.get(),
 | |
|                            /*PreserveLCSSA*/ true);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// We determined that the loop is profitable to unswitch when LIC equal Val.
 | |
| /// Split it into loop versions and test the condition outside of either loop.
 | |
| /// Return the loops created as Out1/Out2.
 | |
| void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
 | |
|                                                Loop *L, Instruction *TI) {
 | |
|   Function *F = loopHeader->getParent();
 | |
|   LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
 | |
|                     << loopHeader->getName() << " [" << L->getBlocks().size()
 | |
|                     << " blocks] in Function " << F->getName() << " when '"
 | |
|                     << *Val << "' == " << *LIC << "\n");
 | |
| 
 | |
|   // We are going to make essential changes to CFG. This may invalidate cached
 | |
|   // information for L or one of its parent loops in SCEV.
 | |
|   if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
 | |
|     SEWP->getSE().forgetTopmostLoop(L);
 | |
| 
 | |
|   LoopBlocks.clear();
 | |
|   NewBlocks.clear();
 | |
| 
 | |
|   // First step, split the preheader and exit blocks, and add these blocks to
 | |
|   // the LoopBlocks list.
 | |
|   BasicBlock *NewPreheader =
 | |
|       SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());
 | |
|   LoopBlocks.push_back(NewPreheader);
 | |
| 
 | |
|   // We want the loop to come after the preheader, but before the exit blocks.
 | |
|   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
 | |
| 
 | |
|   SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|   L->getUniqueExitBlocks(ExitBlocks);
 | |
| 
 | |
|   // Split all of the edges from inside the loop to their exit blocks.  Update
 | |
|   // the appropriate Phi nodes as we do so.
 | |
|   SplitExitEdges(L, ExitBlocks);
 | |
| 
 | |
|   // The exit blocks may have been changed due to edge splitting, recompute.
 | |
|   ExitBlocks.clear();
 | |
|   L->getUniqueExitBlocks(ExitBlocks);
 | |
| 
 | |
|   // Add exit blocks to the loop blocks.
 | |
|   LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
 | |
| 
 | |
|   // Next step, clone all of the basic blocks that make up the loop (including
 | |
|   // the loop preheader and exit blocks), keeping track of the mapping between
 | |
|   // the instructions and blocks.
 | |
|   NewBlocks.reserve(LoopBlocks.size());
 | |
|   ValueToValueMapTy VMap;
 | |
|   for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
 | |
| 
 | |
|     NewBlocks.push_back(NewBB);
 | |
|     VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
 | |
|     LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
 | |
|   }
 | |
| 
 | |
|   // Splice the newly inserted blocks into the function right before the
 | |
|   // original preheader.
 | |
|   F->getBasicBlockList().splice(NewPreheader->getIterator(),
 | |
|                                 F->getBasicBlockList(),
 | |
|                                 NewBlocks[0]->getIterator(), F->end());
 | |
| 
 | |
|   // Now we create the new Loop object for the versioned loop.
 | |
|   Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
 | |
| 
 | |
|   // Recalculate unswitching quota, inherit simplified switches info for NewBB,
 | |
|   // Probably clone more loop-unswitch related loop properties.
 | |
|   BranchesInfo.cloneData(NewLoop, L, VMap);
 | |
| 
 | |
|   Loop *ParentLoop = L->getParentLoop();
 | |
|   if (ParentLoop) {
 | |
|     // Make sure to add the cloned preheader and exit blocks to the parent loop
 | |
|     // as well.
 | |
|     ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
 | |
|     // The new exit block should be in the same loop as the old one.
 | |
|     if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
 | |
|       ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
 | |
| 
 | |
|     assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
 | |
|            "Exit block should have been split to have one successor!");
 | |
|     BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
 | |
| 
 | |
|     // If the successor of the exit block had PHI nodes, add an entry for
 | |
|     // NewExit.
 | |
|     for (PHINode &PN : ExitSucc->phis()) {
 | |
|       Value *V = PN.getIncomingValueForBlock(ExitBlocks[i]);
 | |
|       ValueToValueMapTy::iterator It = VMap.find(V);
 | |
|       if (It != VMap.end()) V = It->second;
 | |
|       PN.addIncoming(V, NewExit);
 | |
|     }
 | |
| 
 | |
|     if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
 | |
|       PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
 | |
|                                     &*ExitSucc->getFirstInsertionPt());
 | |
| 
 | |
|       for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
 | |
|            I != E; ++I) {
 | |
|         BasicBlock *BB = *I;
 | |
|         LandingPadInst *LPI = BB->getLandingPadInst();
 | |
|         LPI->replaceAllUsesWith(PN);
 | |
|         PN->addIncoming(LPI, BB);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Rewrite the code to refer to itself.
 | |
|   for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
 | |
|     for (Instruction &I : *NewBlocks[i]) {
 | |
|       RemapInstruction(&I, VMap,
 | |
|                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
 | |
|       if (auto *II = dyn_cast<IntrinsicInst>(&I))
 | |
|         if (II->getIntrinsicID() == Intrinsic::assume)
 | |
|           AC->registerAssumption(II);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Rewrite the original preheader to select between versions of the loop.
 | |
|   BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
 | |
|   assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
 | |
|          "Preheader splitting did not work correctly!");
 | |
| 
 | |
|   if (MSSAU) {
 | |
|     // Update MemorySSA after cloning, and before splitting to unreachables,
 | |
|     // since that invalidates the 1:1 mapping of clones in VMap.
 | |
|     LoopBlocksRPO LBRPO(L);
 | |
|     LBRPO.perform(LI);
 | |
|     MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, VMap);
 | |
|   }
 | |
| 
 | |
|   // Emit the new branch that selects between the two versions of this loop.
 | |
|   EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
 | |
|                                  TI);
 | |
|   LPM->deleteSimpleAnalysisValue(OldBR, L);
 | |
|   if (MSSAU) {
 | |
|     // Update MemoryPhis in Exit blocks.
 | |
|     MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMap, *DT);
 | |
|     if (VerifyMemorySSA)
 | |
|       MSSA->verifyMemorySSA();
 | |
|   }
 | |
| 
 | |
|   // The OldBr was replaced by a new one and removed (but not erased) by
 | |
|   // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it.
 | |
|   delete OldBR;
 | |
| 
 | |
|   LoopProcessWorklist.push_back(NewLoop);
 | |
|   redoLoop = true;
 | |
| 
 | |
|   // Keep a WeakTrackingVH holding onto LIC.  If the first call to
 | |
|   // RewriteLoopBody
 | |
|   // deletes the instruction (for example by simplifying a PHI that feeds into
 | |
|   // the condition that we're unswitching on), we don't rewrite the second
 | |
|   // iteration.
 | |
|   WeakTrackingVH LICHandle(LIC);
 | |
| 
 | |
|   // Now we rewrite the original code to know that the condition is true and the
 | |
|   // new code to know that the condition is false.
 | |
|   RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
 | |
| 
 | |
|   // It's possible that simplifying one loop could cause the other to be
 | |
|   // changed to another value or a constant.  If its a constant, don't simplify
 | |
|   // it.
 | |
|   if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
 | |
|       LICHandle && !isa<Constant>(LICHandle))
 | |
|     RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
 | |
| 
 | |
|   if (MSSA && VerifyMemorySSA)
 | |
|     MSSA->verifyMemorySSA();
 | |
| }
 | |
| 
 | |
| /// Remove all instances of I from the worklist vector specified.
 | |
| static void RemoveFromWorklist(Instruction *I,
 | |
|                                std::vector<Instruction*> &Worklist) {
 | |
| 
 | |
|   Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
 | |
|                  Worklist.end());
 | |
| }
 | |
| 
 | |
| /// When we find that I really equals V, remove I from the
 | |
| /// program, replacing all uses with V and update the worklist.
 | |
| static void ReplaceUsesOfWith(Instruction *I, Value *V,
 | |
|                               std::vector<Instruction*> &Worklist,
 | |
|                               Loop *L, LPPassManager *LPM) {
 | |
|   LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");
 | |
| 
 | |
|   // Add uses to the worklist, which may be dead now.
 | |
|   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|     if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|       Worklist.push_back(Use);
 | |
| 
 | |
|   // Add users to the worklist which may be simplified now.
 | |
|   for (User *U : I->users())
 | |
|     Worklist.push_back(cast<Instruction>(U));
 | |
|   LPM->deleteSimpleAnalysisValue(I, L);
 | |
|   RemoveFromWorklist(I, Worklist);
 | |
|   I->replaceAllUsesWith(V);
 | |
|   if (!I->mayHaveSideEffects())
 | |
|     I->eraseFromParent();
 | |
|   ++NumSimplify;
 | |
| }
 | |
| 
 | |
| /// We know either that the value LIC has the value specified by Val in the
 | |
| /// specified loop, or we know it does NOT have that value.
 | |
| /// Rewrite any uses of LIC or of properties correlated to it.
 | |
| void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
 | |
|                                                         Constant *Val,
 | |
|                                                         bool IsEqual) {
 | |
|   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
 | |
| 
 | |
|   // FIXME: Support correlated properties, like:
 | |
|   //  for (...)
 | |
|   //    if (li1 < li2)
 | |
|   //      ...
 | |
|   //    if (li1 > li2)
 | |
|   //      ...
 | |
| 
 | |
|   // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
 | |
|   // selects, switches.
 | |
|   std::vector<Instruction*> Worklist;
 | |
|   LLVMContext &Context = Val->getContext();
 | |
| 
 | |
|   // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
 | |
|   // in the loop with the appropriate one directly.
 | |
|   if (IsEqual || (isa<ConstantInt>(Val) &&
 | |
|       Val->getType()->isIntegerTy(1))) {
 | |
|     Value *Replacement;
 | |
|     if (IsEqual)
 | |
|       Replacement = Val;
 | |
|     else
 | |
|       Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
 | |
|                                      !cast<ConstantInt>(Val)->getZExtValue());
 | |
| 
 | |
|     for (User *U : LIC->users()) {
 | |
|       Instruction *UI = dyn_cast<Instruction>(U);
 | |
|       if (!UI || !L->contains(UI))
 | |
|         continue;
 | |
|       Worklist.push_back(UI);
 | |
|     }
 | |
| 
 | |
|     for (Instruction *UI : Worklist)
 | |
|       UI->replaceUsesOfWith(LIC, Replacement);
 | |
| 
 | |
|     SimplifyCode(Worklist, L);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we don't know the precise value of LIC, but we do know that it
 | |
|   // is certainly NOT "Val".  As such, simplify any uses in the loop that we
 | |
|   // can.  This case occurs when we unswitch switch statements.
 | |
|   for (User *U : LIC->users()) {
 | |
|     Instruction *UI = dyn_cast<Instruction>(U);
 | |
|     if (!UI || !L->contains(UI))
 | |
|       continue;
 | |
| 
 | |
|     // At this point, we know LIC is definitely not Val. Try to use some simple
 | |
|     // logic to simplify the user w.r.t. to the context.
 | |
|     if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) {
 | |
|       if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
 | |
|         // This in-loop instruction has been simplified w.r.t. its context,
 | |
|         // i.e. LIC != Val, make sure we propagate its replacement value to
 | |
|         // all its users.
 | |
|         //
 | |
|         // We can not yet delete UI, the LIC user, yet, because that would invalidate
 | |
|         // the LIC->users() iterator !. However, we can make this instruction
 | |
|         // dead by replacing all its users and push it onto the worklist so that
 | |
|         // it can be properly deleted and its operands simplified.
 | |
|         UI->replaceAllUsesWith(Replacement);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // This is a LIC user, push it into the worklist so that SimplifyCode can
 | |
|     // attempt to simplify it.
 | |
|     Worklist.push_back(UI);
 | |
| 
 | |
|     // If we know that LIC is not Val, use this info to simplify code.
 | |
|     SwitchInst *SI = dyn_cast<SwitchInst>(UI);
 | |
|     if (!SI || !isa<ConstantInt>(Val)) continue;
 | |
| 
 | |
|     // NOTE: if a case value for the switch is unswitched out, we record it
 | |
|     // after the unswitch finishes. We can not record it here as the switch
 | |
|     // is not a direct user of the partial LIV.
 | |
|     SwitchInst::CaseHandle DeadCase =
 | |
|         *SI->findCaseValue(cast<ConstantInt>(Val));
 | |
|     // Default case is live for multiple values.
 | |
|     if (DeadCase == *SI->case_default())
 | |
|       continue;
 | |
| 
 | |
|     // Found a dead case value.  Don't remove PHI nodes in the
 | |
|     // successor if they become single-entry, those PHI nodes may
 | |
|     // be in the Users list.
 | |
| 
 | |
|     BasicBlock *Switch = SI->getParent();
 | |
|     BasicBlock *SISucc = DeadCase.getCaseSuccessor();
 | |
|     BasicBlock *Latch = L->getLoopLatch();
 | |
| 
 | |
|     if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
 | |
|     // If the DeadCase successor dominates the loop latch, then the
 | |
|     // transformation isn't safe since it will delete the sole predecessor edge
 | |
|     // to the latch.
 | |
|     if (Latch && DT->dominates(SISucc, Latch))
 | |
|       continue;
 | |
| 
 | |
|     // FIXME: This is a hack.  We need to keep the successor around
 | |
|     // and hooked up so as to preserve the loop structure, because
 | |
|     // trying to update it is complicated.  So instead we preserve the
 | |
|     // loop structure and put the block on a dead code path.
 | |
|     SplitEdge(Switch, SISucc, DT, LI, MSSAU.get());
 | |
|     // Compute the successors instead of relying on the return value
 | |
|     // of SplitEdge, since it may have split the switch successor
 | |
|     // after PHI nodes.
 | |
|     BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
 | |
|     BasicBlock *OldSISucc = *succ_begin(NewSISucc);
 | |
|     // Create an "unreachable" destination.
 | |
|     BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
 | |
|                                            Switch->getParent(),
 | |
|                                            OldSISucc);
 | |
|     new UnreachableInst(Context, Abort);
 | |
|     // Force the new case destination to branch to the "unreachable"
 | |
|     // block while maintaining a (dead) CFG edge to the old block.
 | |
|     NewSISucc->getTerminator()->eraseFromParent();
 | |
|     BranchInst::Create(Abort, OldSISucc,
 | |
|                        ConstantInt::getTrue(Context), NewSISucc);
 | |
|     // Release the PHI operands for this edge.
 | |
|     for (PHINode &PN : NewSISucc->phis())
 | |
|       PN.setIncomingValue(PN.getBasicBlockIndex(Switch),
 | |
|                           UndefValue::get(PN.getType()));
 | |
|     // Tell the domtree about the new block. We don't fully update the
 | |
|     // domtree here -- instead we force it to do a full recomputation
 | |
|     // after the pass is complete -- but we do need to inform it of
 | |
|     // new blocks.
 | |
|     DT->addNewBlock(Abort, NewSISucc);
 | |
|   }
 | |
| 
 | |
|   SimplifyCode(Worklist, L);
 | |
| }
 | |
| 
 | |
| /// Now that we have simplified some instructions in the loop, walk over it and
 | |
| /// constant prop, dce, and fold control flow where possible. Note that this is
 | |
| /// effectively a very simple loop-structure-aware optimizer. During processing
 | |
| /// of this loop, L could very well be deleted, so it must not be used.
 | |
| ///
 | |
| /// FIXME: When the loop optimizer is more mature, separate this out to a new
 | |
| /// pass.
 | |
| ///
 | |
| void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
 | |
|   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *I = Worklist.back();
 | |
|     Worklist.pop_back();
 | |
| 
 | |
|     // Simple DCE.
 | |
|     if (isInstructionTriviallyDead(I)) {
 | |
|       LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");
 | |
| 
 | |
|       // Add uses to the worklist, which may be dead now.
 | |
|       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|         if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|           Worklist.push_back(Use);
 | |
|       LPM->deleteSimpleAnalysisValue(I, L);
 | |
|       RemoveFromWorklist(I, Worklist);
 | |
|       if (MSSAU)
 | |
|         MSSAU->removeMemoryAccess(I);
 | |
|       I->eraseFromParent();
 | |
|       ++NumSimplify;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // See if instruction simplification can hack this up.  This is common for
 | |
|     // things like "select false, X, Y" after unswitching made the condition be
 | |
|     // 'false'.  TODO: update the domtree properly so we can pass it here.
 | |
|     if (Value *V = SimplifyInstruction(I, DL))
 | |
|       if (LI->replacementPreservesLCSSAForm(I, V)) {
 | |
|         ReplaceUsesOfWith(I, V, Worklist, L, LPM);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|     // Special case hacks that appear commonly in unswitched code.
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
 | |
|       if (BI->isUnconditional()) {
 | |
|         // If BI's parent is the only pred of the successor, fold the two blocks
 | |
|         // together.
 | |
|         BasicBlock *Pred = BI->getParent();
 | |
|         BasicBlock *Succ = BI->getSuccessor(0);
 | |
|         BasicBlock *SinglePred = Succ->getSinglePredecessor();
 | |
|         if (!SinglePred) continue;  // Nothing to do.
 | |
|         assert(SinglePred == Pred && "CFG broken");
 | |
| 
 | |
|         LLVM_DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
 | |
|                           << Succ->getName() << "\n");
 | |
| 
 | |
|         // Resolve any single entry PHI nodes in Succ.
 | |
|         while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
 | |
|           ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
 | |
| 
 | |
|         // If Succ has any successors with PHI nodes, update them to have
 | |
|         // entries coming from Pred instead of Succ.
 | |
|         Succ->replaceAllUsesWith(Pred);
 | |
| 
 | |
|         // Move all of the successor contents from Succ to Pred.
 | |
|         Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
 | |
|                                    Succ->begin(), Succ->end());
 | |
|         if (MSSAU)
 | |
|           MSSAU->moveAllAfterMergeBlocks(Succ, Pred, BI);
 | |
|         LPM->deleteSimpleAnalysisValue(BI, L);
 | |
|         RemoveFromWorklist(BI, Worklist);
 | |
|         BI->eraseFromParent();
 | |
| 
 | |
|         // Remove Succ from the loop tree.
 | |
|         LI->removeBlock(Succ);
 | |
|         LPM->deleteSimpleAnalysisValue(Succ, L);
 | |
|         Succ->eraseFromParent();
 | |
|         ++NumSimplify;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Simple simplifications we can do given the information that Cond is
 | |
| /// definitely not equal to Val.
 | |
| Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst,
 | |
|                                                      Value *Invariant,
 | |
|                                                      Constant *Val) {
 | |
|   // icmp eq cond, val -> false
 | |
|   ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
 | |
|   if (CI && CI->isEquality()) {
 | |
|     Value *Op0 = CI->getOperand(0);
 | |
|     Value *Op1 = CI->getOperand(1);
 | |
|     if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
 | |
|       LLVMContext &Ctx = Inst->getContext();
 | |
|       if (CI->getPredicate() == CmpInst::ICMP_EQ)
 | |
|         return ConstantInt::getFalse(Ctx);
 | |
|       else
 | |
|         return ConstantInt::getTrue(Ctx);
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   // FIXME: there may be other opportunities, e.g. comparison with floating
 | |
|   // point, or Invariant - Val != 0, etc.
 | |
|   return nullptr;
 | |
| }
 |