forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			549 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			549 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass reassociates n-ary add expressions and eliminates the redundancy
 | 
						|
// exposed by the reassociation.
 | 
						|
//
 | 
						|
// A motivating example:
 | 
						|
//
 | 
						|
//   void foo(int a, int b) {
 | 
						|
//     bar(a + b);
 | 
						|
//     bar((a + 2) + b);
 | 
						|
//   }
 | 
						|
//
 | 
						|
// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
 | 
						|
// the above code to
 | 
						|
//
 | 
						|
//   int t = a + b;
 | 
						|
//   bar(t);
 | 
						|
//   bar(t + 2);
 | 
						|
//
 | 
						|
// However, the Reassociate pass is unable to do that because it processes each
 | 
						|
// instruction individually and believes (a + 2) + b is the best form according
 | 
						|
// to its rank system.
 | 
						|
//
 | 
						|
// To address this limitation, NaryReassociate reassociates an expression in a
 | 
						|
// form that reuses existing instructions. As a result, NaryReassociate can
 | 
						|
// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
 | 
						|
// (a + b) is computed before.
 | 
						|
//
 | 
						|
// NaryReassociate works as follows. For every instruction in the form of (a +
 | 
						|
// b) + c, it checks whether a + c or b + c is already computed by a dominating
 | 
						|
// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
 | 
						|
// c) + a and removes the redundancy accordingly. To efficiently look up whether
 | 
						|
// an expression is computed before, we store each instruction seen and its SCEV
 | 
						|
// into an SCEV-to-instruction map.
 | 
						|
//
 | 
						|
// Although the algorithm pattern-matches only ternary additions, it
 | 
						|
// automatically handles many >3-ary expressions by walking through the function
 | 
						|
// in the depth-first order. For example, given
 | 
						|
//
 | 
						|
//   (a + c) + d
 | 
						|
//   ((a + b) + c) + d
 | 
						|
//
 | 
						|
// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
 | 
						|
// ((a + c) + b) + d into ((a + c) + d) + b.
 | 
						|
//
 | 
						|
// Finally, the above dominator-based algorithm may need to be run multiple
 | 
						|
// iterations before emitting optimal code. One source of this need is that we
 | 
						|
// only split an operand when it is used only once. The above algorithm can
 | 
						|
// eliminate an instruction and decrease the usage count of its operands. As a
 | 
						|
// result, an instruction that previously had multiple uses may become a
 | 
						|
// single-use instruction and thus eligible for split consideration. For
 | 
						|
// example,
 | 
						|
//
 | 
						|
//   ac = a + c
 | 
						|
//   ab = a + b
 | 
						|
//   abc = ab + c
 | 
						|
//   ab2 = ab + b
 | 
						|
//   ab2c = ab2 + c
 | 
						|
//
 | 
						|
// In the first iteration, we cannot reassociate abc to ac+b because ab is used
 | 
						|
// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
 | 
						|
// result, ab2 becomes dead and ab will be used only once in the second
 | 
						|
// iteration.
 | 
						|
//
 | 
						|
// Limitations and TODO items:
 | 
						|
//
 | 
						|
// 1) We only considers n-ary adds and muls for now. This should be extended
 | 
						|
// and generalized.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/NaryReassociate.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "nary-reassociate"
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class NaryReassociateLegacyPass : public FunctionPass {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  NaryReassociateLegacyPass() : FunctionPass(ID) {
 | 
						|
    initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool doInitialization(Module &M) override {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
    AU.addPreserved<ScalarEvolutionWrapperPass>();
 | 
						|
    AU.addPreserved<TargetLibraryInfoWrapperPass>();
 | 
						|
    AU.addRequired<AssumptionCacheTracker>();
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<ScalarEvolutionWrapperPass>();
 | 
						|
    AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
    AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
    AU.setPreservesCFG();
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  NaryReassociatePass Impl;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char NaryReassociateLegacyPass::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
 | 
						|
                      "Nary reassociation", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
 | 
						|
                    "Nary reassociation", false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createNaryReassociatePass() {
 | 
						|
  return new NaryReassociateLegacyPass();
 | 
						|
}
 | 
						|
 | 
						|
bool NaryReassociateLegacyPass::runOnFunction(Function &F) {
 | 
						|
  if (skipFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | 
						|
  auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | 
						|
  auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | 
						|
  auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | 
						|
 | 
						|
  return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses NaryReassociatePass::run(Function &F,
 | 
						|
                                           FunctionAnalysisManager &AM) {
 | 
						|
  auto *AC = &AM.getResult<AssumptionAnalysis>(F);
 | 
						|
  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
 | 
						|
  auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
 | 
						|
  auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
 | 
						|
 | 
						|
  if (!runImpl(F, AC, DT, SE, TLI, TTI))
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserveSet<CFGAnalyses>();
 | 
						|
  PA.preserve<ScalarEvolutionAnalysis>();
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_,
 | 
						|
                                  DominatorTree *DT_, ScalarEvolution *SE_,
 | 
						|
                                  TargetLibraryInfo *TLI_,
 | 
						|
                                  TargetTransformInfo *TTI_) {
 | 
						|
  AC = AC_;
 | 
						|
  DT = DT_;
 | 
						|
  SE = SE_;
 | 
						|
  TLI = TLI_;
 | 
						|
  TTI = TTI_;
 | 
						|
  DL = &F.getParent()->getDataLayout();
 | 
						|
 | 
						|
  bool Changed = false, ChangedInThisIteration;
 | 
						|
  do {
 | 
						|
    ChangedInThisIteration = doOneIteration(F);
 | 
						|
    Changed |= ChangedInThisIteration;
 | 
						|
  } while (ChangedInThisIteration);
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// Whitelist the instruction types NaryReassociate handles for now.
 | 
						|
static bool isPotentiallyNaryReassociable(Instruction *I) {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
  case Instruction::Mul:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool NaryReassociatePass::doOneIteration(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
  SeenExprs.clear();
 | 
						|
  // Process the basic blocks in a depth first traversal of the dominator
 | 
						|
  // tree. This order ensures that all bases of a candidate are in Candidates
 | 
						|
  // when we process it.
 | 
						|
  for (const auto Node : depth_first(DT)) {
 | 
						|
    BasicBlock *BB = Node->getBlock();
 | 
						|
    for (auto I = BB->begin(); I != BB->end(); ++I) {
 | 
						|
      if (SE->isSCEVable(I->getType()) && isPotentiallyNaryReassociable(&*I)) {
 | 
						|
        const SCEV *OldSCEV = SE->getSCEV(&*I);
 | 
						|
        if (Instruction *NewI = tryReassociate(&*I)) {
 | 
						|
          Changed = true;
 | 
						|
          SE->forgetValue(&*I);
 | 
						|
          I->replaceAllUsesWith(NewI);
 | 
						|
          WeakVH NewIExist = NewI;
 | 
						|
          // If SeenExprs/NewIExist contains I's WeakTrackingVH/WeakVH, that
 | 
						|
          // entry will be replaced with nullptr if deleted.
 | 
						|
          RecursivelyDeleteTriviallyDeadInstructions(&*I, TLI);
 | 
						|
          if (!NewIExist) {
 | 
						|
            // Rare occation where the new instruction (NewI) have been removed,
 | 
						|
            // probably due to parts of the input code was dead from the
 | 
						|
            // beginning, reset the iterator and start over from the beginning
 | 
						|
            I = BB->begin();
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          I = NewI->getIterator();
 | 
						|
        }
 | 
						|
        // Add the rewritten instruction to SeenExprs; the original instruction
 | 
						|
        // is deleted.
 | 
						|
        const SCEV *NewSCEV = SE->getSCEV(&*I);
 | 
						|
        SeenExprs[NewSCEV].push_back(WeakTrackingVH(&*I));
 | 
						|
        // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
 | 
						|
        // is equivalent to I. However, ScalarEvolution::getSCEV may
 | 
						|
        // weaken nsw causing NewSCEV not to equal OldSCEV. For example, suppose
 | 
						|
        // we reassociate
 | 
						|
        //   I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
 | 
						|
        // to
 | 
						|
        //   NewI = &a[sext(i)] + sext(j).
 | 
						|
        //
 | 
						|
        // ScalarEvolution computes
 | 
						|
        //   getSCEV(I)    = a + 4 * sext(i + j)
 | 
						|
        //   getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
 | 
						|
        // which are different SCEVs.
 | 
						|
        //
 | 
						|
        // To alleviate this issue of ScalarEvolution not always capturing
 | 
						|
        // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
 | 
						|
        // map both SCEV before and after tryReassociate(I) to I.
 | 
						|
        //
 | 
						|
        // This improvement is exercised in @reassociate_gep_nsw in nary-gep.ll.
 | 
						|
        if (NewSCEV != OldSCEV)
 | 
						|
          SeenExprs[OldSCEV].push_back(WeakTrackingVH(&*I));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *NaryReassociatePass::tryReassociate(Instruction *I) {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Mul:
 | 
						|
    return tryReassociateBinaryOp(cast<BinaryOperator>(I));
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    return tryReassociateGEP(cast<GetElementPtrInst>(I));
 | 
						|
  default:
 | 
						|
    llvm_unreachable("should be filtered out by isPotentiallyNaryReassociable");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isGEPFoldable(GetElementPtrInst *GEP,
 | 
						|
                          const TargetTransformInfo *TTI) {
 | 
						|
  SmallVector<const Value*, 4> Indices;
 | 
						|
  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
 | 
						|
    Indices.push_back(*I);
 | 
						|
  return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
 | 
						|
                         Indices) == TargetTransformInfo::TCC_Free;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
 | 
						|
  // Not worth reassociating GEP if it is foldable.
 | 
						|
  if (isGEPFoldable(GEP, TTI))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  gep_type_iterator GTI = gep_type_begin(*GEP);
 | 
						|
  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
 | 
						|
    if (GTI.isSequential()) {
 | 
						|
      if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1,
 | 
						|
                                                  GTI.getIndexedType())) {
 | 
						|
        return NewGEP;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool NaryReassociatePass::requiresSignExtension(Value *Index,
 | 
						|
                                                GetElementPtrInst *GEP) {
 | 
						|
  unsigned PointerSizeInBits =
 | 
						|
      DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
 | 
						|
  return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
 | 
						|
}
 | 
						|
 | 
						|
GetElementPtrInst *
 | 
						|
NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
 | 
						|
                                              unsigned I, Type *IndexedType) {
 | 
						|
  Value *IndexToSplit = GEP->getOperand(I + 1);
 | 
						|
  if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
 | 
						|
    IndexToSplit = SExt->getOperand(0);
 | 
						|
  } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
 | 
						|
    // zext can be treated as sext if the source is non-negative.
 | 
						|
    if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT))
 | 
						|
      IndexToSplit = ZExt->getOperand(0);
 | 
						|
  }
 | 
						|
 | 
						|
  if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
 | 
						|
    // If the I-th index needs sext and the underlying add is not equipped with
 | 
						|
    // nsw, we cannot split the add because
 | 
						|
    //   sext(LHS + RHS) != sext(LHS) + sext(RHS).
 | 
						|
    if (requiresSignExtension(IndexToSplit, GEP) &&
 | 
						|
        computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) !=
 | 
						|
            OverflowResult::NeverOverflows)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
 | 
						|
    // IndexToSplit = LHS + RHS.
 | 
						|
    if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
 | 
						|
      return NewGEP;
 | 
						|
    // Symmetrically, try IndexToSplit = RHS + LHS.
 | 
						|
    if (LHS != RHS) {
 | 
						|
      if (auto *NewGEP =
 | 
						|
              tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
 | 
						|
        return NewGEP;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
GetElementPtrInst *
 | 
						|
NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
 | 
						|
                                              unsigned I, Value *LHS,
 | 
						|
                                              Value *RHS, Type *IndexedType) {
 | 
						|
  // Look for GEP's closest dominator that has the same SCEV as GEP except that
 | 
						|
  // the I-th index is replaced with LHS.
 | 
						|
  SmallVector<const SCEV *, 4> IndexExprs;
 | 
						|
  for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
 | 
						|
    IndexExprs.push_back(SE->getSCEV(*Index));
 | 
						|
  // Replace the I-th index with LHS.
 | 
						|
  IndexExprs[I] = SE->getSCEV(LHS);
 | 
						|
  if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) &&
 | 
						|
      DL->getTypeSizeInBits(LHS->getType()) <
 | 
						|
          DL->getTypeSizeInBits(GEP->getOperand(I)->getType())) {
 | 
						|
    // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
 | 
						|
    // zext if the source operand is proved non-negative. We should do that
 | 
						|
    // consistently so that CandidateExpr more likely appears before. See
 | 
						|
    // @reassociate_gep_assume for an example of this canonicalization.
 | 
						|
    IndexExprs[I] =
 | 
						|
        SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType());
 | 
						|
  }
 | 
						|
  const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP),
 | 
						|
                                             IndexExprs);
 | 
						|
 | 
						|
  Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
 | 
						|
  if (Candidate == nullptr)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  IRBuilder<> Builder(GEP);
 | 
						|
  // Candidate does not necessarily have the same pointer type as GEP. Use
 | 
						|
  // bitcast or pointer cast to make sure they have the same type, so that the
 | 
						|
  // later RAUW doesn't complain.
 | 
						|
  Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType());
 | 
						|
  assert(Candidate->getType() == GEP->getType());
 | 
						|
 | 
						|
  // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
 | 
						|
  uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
 | 
						|
  Type *ElementType = GEP->getResultElementType();
 | 
						|
  uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
 | 
						|
  // Another less rare case: because I is not necessarily the last index of the
 | 
						|
  // GEP, the size of the type at the I-th index (IndexedSize) is not
 | 
						|
  // necessarily divisible by ElementSize. For example,
 | 
						|
  //
 | 
						|
  // #pragma pack(1)
 | 
						|
  // struct S {
 | 
						|
  //   int a[3];
 | 
						|
  //   int64 b[8];
 | 
						|
  // };
 | 
						|
  // #pragma pack()
 | 
						|
  //
 | 
						|
  // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
 | 
						|
  //
 | 
						|
  // TODO: bail out on this case for now. We could emit uglygep.
 | 
						|
  if (IndexedSize % ElementSize != 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
 | 
						|
  Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
 | 
						|
  if (RHS->getType() != IntPtrTy)
 | 
						|
    RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
 | 
						|
  if (IndexedSize != ElementSize) {
 | 
						|
    RHS = Builder.CreateMul(
 | 
						|
        RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
 | 
						|
  }
 | 
						|
  GetElementPtrInst *NewGEP =
 | 
						|
      cast<GetElementPtrInst>(Builder.CreateGEP(Candidate, RHS));
 | 
						|
  NewGEP->setIsInBounds(GEP->isInBounds());
 | 
						|
  NewGEP->takeName(GEP);
 | 
						|
  return NewGEP;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
 | 
						|
  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
 | 
						|
  // There is no need to reassociate 0.
 | 
						|
  if (SE->getSCEV(I)->isZero())
 | 
						|
    return nullptr;
 | 
						|
  if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
 | 
						|
    return NewI;
 | 
						|
  if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
 | 
						|
    return NewI;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
 | 
						|
                                                         BinaryOperator *I) {
 | 
						|
  Value *A = nullptr, *B = nullptr;
 | 
						|
  // To be conservative, we reassociate I only when it is the only user of (A op
 | 
						|
  // B).
 | 
						|
  if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
 | 
						|
    // I = (A op B) op RHS
 | 
						|
    //   = (A op RHS) op B or (B op RHS) op A
 | 
						|
    const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
 | 
						|
    const SCEV *RHSExpr = SE->getSCEV(RHS);
 | 
						|
    if (BExpr != RHSExpr) {
 | 
						|
      if (auto *NewI =
 | 
						|
              tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
 | 
						|
        return NewI;
 | 
						|
    }
 | 
						|
    if (AExpr != RHSExpr) {
 | 
						|
      if (auto *NewI =
 | 
						|
              tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
 | 
						|
        return NewI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
 | 
						|
                                                          Value *RHS,
 | 
						|
                                                          BinaryOperator *I) {
 | 
						|
  // Look for the closest dominator LHS of I that computes LHSExpr, and replace
 | 
						|
  // I with LHS op RHS.
 | 
						|
  auto *LHS = findClosestMatchingDominator(LHSExpr, I);
 | 
						|
  if (LHS == nullptr)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Instruction *NewI = nullptr;
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::Add:
 | 
						|
    NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
 | 
						|
    break;
 | 
						|
  case Instruction::Mul:
 | 
						|
    NewI = BinaryOperator::CreateMul(LHS, RHS, "", I);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected instruction.");
 | 
						|
  }
 | 
						|
  NewI->takeName(I);
 | 
						|
  return NewI;
 | 
						|
}
 | 
						|
 | 
						|
bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
 | 
						|
                                         Value *&Op1, Value *&Op2) {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::Add:
 | 
						|
    return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
 | 
						|
  case Instruction::Mul:
 | 
						|
    return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected instruction.");
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
 | 
						|
                                               const SCEV *LHS,
 | 
						|
                                               const SCEV *RHS) {
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  case Instruction::Add:
 | 
						|
    return SE->getAddExpr(LHS, RHS);
 | 
						|
  case Instruction::Mul:
 | 
						|
    return SE->getMulExpr(LHS, RHS);
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected instruction.");
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *
 | 
						|
NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
 | 
						|
                                                  Instruction *Dominatee) {
 | 
						|
  auto Pos = SeenExprs.find(CandidateExpr);
 | 
						|
  if (Pos == SeenExprs.end())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto &Candidates = Pos->second;
 | 
						|
  // Because we process the basic blocks in pre-order of the dominator tree, a
 | 
						|
  // candidate that doesn't dominate the current instruction won't dominate any
 | 
						|
  // future instruction either. Therefore, we pop it out of the stack. This
 | 
						|
  // optimization makes the algorithm O(n).
 | 
						|
  while (!Candidates.empty()) {
 | 
						|
    // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
 | 
						|
    // removed
 | 
						|
    // during rewriting.
 | 
						|
    if (Value *Candidate = Candidates.back()) {
 | 
						|
      Instruction *CandidateInstruction = cast<Instruction>(Candidate);
 | 
						|
      if (DT->dominates(CandidateInstruction, Dominatee))
 | 
						|
        return CandidateInstruction;
 | 
						|
    }
 | 
						|
    Candidates.pop_back();
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 |