forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2423 lines
		
	
	
		
			91 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2423 lines
		
	
	
		
			91 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass reassociates commutative expressions in an order that is designed
 | |
| // to promote better constant propagation, GCSE, LICM, PRE, etc.
 | |
| //
 | |
| // For example: 4 + (x + 5) -> x + (4 + 5)
 | |
| //
 | |
| // In the implementation of this algorithm, constants are assigned rank = 0,
 | |
| // function arguments are rank = 1, and other values are assigned ranks
 | |
| // corresponding to the reverse post order traversal of current function
 | |
| // (starting at 2), which effectively gives values in deep loops higher rank
 | |
| // than values not in loops.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar/Reassociate.h"
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace reassociate;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "reassociate"
 | |
| 
 | |
| STATISTIC(NumChanged, "Number of insts reassociated");
 | |
| STATISTIC(NumAnnihil, "Number of expr tree annihilated");
 | |
| STATISTIC(NumFactor , "Number of multiplies factored");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// Print out the expression identified in the Ops list.
 | |
| static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
 | |
|   Module *M = I->getModule();
 | |
|   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
 | |
|        << *Ops[0].Op->getType() << '\t';
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|     dbgs() << "[ ";
 | |
|     Ops[i].Op->printAsOperand(dbgs(), false, M);
 | |
|     dbgs() << ", #" << Ops[i].Rank << "] ";
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /// Utility class representing a non-constant Xor-operand. We classify
 | |
| /// non-constant Xor-Operands into two categories:
 | |
| ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
 | |
| ///  C2)
 | |
| ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
 | |
| ///          constant.
 | |
| ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
 | |
| ///          operand as "E | 0"
 | |
| class llvm::reassociate::XorOpnd {
 | |
| public:
 | |
|   XorOpnd(Value *V);
 | |
| 
 | |
|   bool isInvalid() const { return SymbolicPart == nullptr; }
 | |
|   bool isOrExpr() const { return isOr; }
 | |
|   Value *getValue() const { return OrigVal; }
 | |
|   Value *getSymbolicPart() const { return SymbolicPart; }
 | |
|   unsigned getSymbolicRank() const { return SymbolicRank; }
 | |
|   const APInt &getConstPart() const { return ConstPart; }
 | |
| 
 | |
|   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
 | |
|   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
 | |
| 
 | |
| private:
 | |
|   Value *OrigVal;
 | |
|   Value *SymbolicPart;
 | |
|   APInt ConstPart;
 | |
|   unsigned SymbolicRank;
 | |
|   bool isOr;
 | |
| };
 | |
| 
 | |
| XorOpnd::XorOpnd(Value *V) {
 | |
|   assert(!isa<ConstantInt>(V) && "No ConstantInt");
 | |
|   OrigVal = V;
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   SymbolicRank = 0;
 | |
| 
 | |
|   if (I && (I->getOpcode() == Instruction::Or ||
 | |
|             I->getOpcode() == Instruction::And)) {
 | |
|     Value *V0 = I->getOperand(0);
 | |
|     Value *V1 = I->getOperand(1);
 | |
|     const APInt *C;
 | |
|     if (match(V0, m_APInt(C)))
 | |
|       std::swap(V0, V1);
 | |
| 
 | |
|     if (match(V1, m_APInt(C))) {
 | |
|       ConstPart = *C;
 | |
|       SymbolicPart = V0;
 | |
|       isOr = (I->getOpcode() == Instruction::Or);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // view the operand as "V | 0"
 | |
|   SymbolicPart = V;
 | |
|   ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
 | |
|   isOr = true;
 | |
| }
 | |
| 
 | |
| /// Return true if V is an instruction of the specified opcode and if it
 | |
| /// only has one use.
 | |
| static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
 | |
|   auto *I = dyn_cast<Instruction>(V);
 | |
|   if (I && I->hasOneUse() && I->getOpcode() == Opcode)
 | |
|     if (!isa<FPMathOperator>(I) || I->isFast())
 | |
|       return cast<BinaryOperator>(I);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
 | |
|                                         unsigned Opcode2) {
 | |
|   auto *I = dyn_cast<Instruction>(V);
 | |
|   if (I && I->hasOneUse() &&
 | |
|       (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
 | |
|     if (!isa<FPMathOperator>(I) || I->isFast())
 | |
|       return cast<BinaryOperator>(I);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void ReassociatePass::BuildRankMap(Function &F,
 | |
|                                    ReversePostOrderTraversal<Function*> &RPOT) {
 | |
|   unsigned Rank = 2;
 | |
| 
 | |
|   // Assign distinct ranks to function arguments.
 | |
|   for (auto &Arg : F.args()) {
 | |
|     ValueRankMap[&Arg] = ++Rank;
 | |
|     LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
 | |
|                       << "\n");
 | |
|   }
 | |
| 
 | |
|   // Traverse basic blocks in ReversePostOrder
 | |
|   for (BasicBlock *BB : RPOT) {
 | |
|     unsigned BBRank = RankMap[BB] = ++Rank << 16;
 | |
| 
 | |
|     // Walk the basic block, adding precomputed ranks for any instructions that
 | |
|     // we cannot move.  This ensures that the ranks for these instructions are
 | |
|     // all different in the block.
 | |
|     for (Instruction &I : *BB)
 | |
|       if (mayBeMemoryDependent(I))
 | |
|         ValueRankMap[&I] = ++BBRank;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned ReassociatePass::getRank(Value *V) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) {
 | |
|     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
 | |
|     return 0;  // Otherwise it's a global or constant, rank 0.
 | |
|   }
 | |
| 
 | |
|   if (unsigned Rank = ValueRankMap[I])
 | |
|     return Rank;    // Rank already known?
 | |
| 
 | |
|   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
 | |
|   // we can reassociate expressions for code motion!  Since we do not recurse
 | |
|   // for PHI nodes, we cannot have infinite recursion here, because there
 | |
|   // cannot be loops in the value graph that do not go through PHI nodes.
 | |
|   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
 | |
|   for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
 | |
|     Rank = std::max(Rank, getRank(I->getOperand(i)));
 | |
| 
 | |
|   // If this is a 'not' or 'neg' instruction, do not count it for rank. This
 | |
|   // assures us that X and ~X will have the same rank.
 | |
|   if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
 | |
|       !match(I, m_FNeg(m_Value())))
 | |
|     ++Rank;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
 | |
|                     << "\n");
 | |
| 
 | |
|   return ValueRankMap[I] = Rank;
 | |
| }
 | |
| 
 | |
| // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
 | |
| void ReassociatePass::canonicalizeOperands(Instruction *I) {
 | |
|   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
 | |
|   assert(I->isCommutative() && "Expected commutative operator.");
 | |
| 
 | |
|   Value *LHS = I->getOperand(0);
 | |
|   Value *RHS = I->getOperand(1);
 | |
|   if (LHS == RHS || isa<Constant>(RHS))
 | |
|     return;
 | |
|   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
 | |
|     cast<BinaryOperator>(I)->swapOperands();
 | |
| }
 | |
| 
 | |
| static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
 | |
|                                  Instruction *InsertBefore, Value *FlagsOp) {
 | |
|   if (S1->getType()->isIntOrIntVectorTy())
 | |
|     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
 | |
|   else {
 | |
|     BinaryOperator *Res =
 | |
|         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
 | |
|     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
 | |
|     return Res;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
 | |
|                                  Instruction *InsertBefore, Value *FlagsOp) {
 | |
|   if (S1->getType()->isIntOrIntVectorTy())
 | |
|     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
 | |
|   else {
 | |
|     BinaryOperator *Res =
 | |
|       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
 | |
|     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
 | |
|     return Res;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
 | |
|                                  Instruction *InsertBefore, Value *FlagsOp) {
 | |
|   if (S1->getType()->isIntOrIntVectorTy())
 | |
|     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
 | |
|   else {
 | |
|     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
 | |
|     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
 | |
|     return Res;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Replace 0-X with X*-1.
 | |
| static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
 | |
|   Type *Ty = Neg->getType();
 | |
|   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
 | |
|     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
 | |
| 
 | |
|   BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
 | |
|   Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
 | |
|   Res->takeName(Neg);
 | |
|   Neg->replaceAllUsesWith(Res);
 | |
|   Res->setDebugLoc(Neg->getDebugLoc());
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
 | |
| /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
 | |
| /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
 | |
| /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
 | |
| /// even x in Bitwidth-bit arithmetic.
 | |
| static unsigned CarmichaelShift(unsigned Bitwidth) {
 | |
|   if (Bitwidth < 3)
 | |
|     return Bitwidth - 1;
 | |
|   return Bitwidth - 2;
 | |
| }
 | |
| 
 | |
| /// Add the extra weight 'RHS' to the existing weight 'LHS',
 | |
| /// reducing the combined weight using any special properties of the operation.
 | |
| /// The existing weight LHS represents the computation X op X op ... op X where
 | |
| /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
 | |
| /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
 | |
| /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
 | |
| /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
 | |
| static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
 | |
|   // If we were working with infinite precision arithmetic then the combined
 | |
|   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
 | |
|   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
 | |
|   // for nilpotent operations and addition, but not for idempotent operations
 | |
|   // and multiplication), so it is important to correctly reduce the combined
 | |
|   // weight back into range if wrapping would be wrong.
 | |
| 
 | |
|   // If RHS is zero then the weight didn't change.
 | |
|   if (RHS.isMinValue())
 | |
|     return;
 | |
|   // If LHS is zero then the combined weight is RHS.
 | |
|   if (LHS.isMinValue()) {
 | |
|     LHS = RHS;
 | |
|     return;
 | |
|   }
 | |
|   // From this point on we know that neither LHS nor RHS is zero.
 | |
| 
 | |
|   if (Instruction::isIdempotent(Opcode)) {
 | |
|     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
 | |
|     // weight of 1.  Keeping weights at zero or one also means that wrapping is
 | |
|     // not a problem.
 | |
|     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
 | |
|     return; // Return a weight of 1.
 | |
|   }
 | |
|   if (Instruction::isNilpotent(Opcode)) {
 | |
|     // Nilpotent means X op X === 0, so reduce weights modulo 2.
 | |
|     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
 | |
|     LHS = 0; // 1 + 1 === 0 modulo 2.
 | |
|     return;
 | |
|   }
 | |
|   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
 | |
|     // TODO: Reduce the weight by exploiting nsw/nuw?
 | |
|     LHS += RHS;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
 | |
|          "Unknown associative operation!");
 | |
|   unsigned Bitwidth = LHS.getBitWidth();
 | |
|   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
 | |
|   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
 | |
|   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
 | |
|   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
 | |
|   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
 | |
|   // which by a happy accident means that they can always be represented using
 | |
|   // Bitwidth bits.
 | |
|   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
 | |
|   // the Carmichael number).
 | |
|   if (Bitwidth > 3) {
 | |
|     /// CM - The value of Carmichael's lambda function.
 | |
|     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
 | |
|     // Any weight W >= Threshold can be replaced with W - CM.
 | |
|     APInt Threshold = CM + Bitwidth;
 | |
|     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
 | |
|     // For Bitwidth 4 or more the following sum does not overflow.
 | |
|     LHS += RHS;
 | |
|     while (LHS.uge(Threshold))
 | |
|       LHS -= CM;
 | |
|   } else {
 | |
|     // To avoid problems with overflow do everything the same as above but using
 | |
|     // a larger type.
 | |
|     unsigned CM = 1U << CarmichaelShift(Bitwidth);
 | |
|     unsigned Threshold = CM + Bitwidth;
 | |
|     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
 | |
|            "Weights not reduced!");
 | |
|     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
 | |
|     while (Total >= Threshold)
 | |
|       Total -= CM;
 | |
|     LHS = Total;
 | |
|   }
 | |
| }
 | |
| 
 | |
| using RepeatedValue = std::pair<Value*, APInt>;
 | |
| 
 | |
| /// Given an associative binary expression, return the leaf
 | |
| /// nodes in Ops along with their weights (how many times the leaf occurs).  The
 | |
| /// original expression is the same as
 | |
| ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
 | |
| /// op
 | |
| ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
 | |
| /// op
 | |
| ///   ...
 | |
| /// op
 | |
| ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
 | |
| ///
 | |
| /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
 | |
| ///
 | |
| /// This routine may modify the function, in which case it returns 'true'.  The
 | |
| /// changes it makes may well be destructive, changing the value computed by 'I'
 | |
| /// to something completely different.  Thus if the routine returns 'true' then
 | |
| /// you MUST either replace I with a new expression computed from the Ops array,
 | |
| /// or use RewriteExprTree to put the values back in.
 | |
| ///
 | |
| /// A leaf node is either not a binary operation of the same kind as the root
 | |
| /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
 | |
| /// opcode), or is the same kind of binary operator but has a use which either
 | |
| /// does not belong to the expression, or does belong to the expression but is
 | |
| /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
 | |
| /// of the expression, while for non-leaf nodes (except for the root 'I') every
 | |
| /// use is a non-leaf node of the expression.
 | |
| ///
 | |
| /// For example:
 | |
| ///           expression graph        node names
 | |
| ///
 | |
| ///                     +        |        I
 | |
| ///                    / \       |
 | |
| ///                   +   +      |      A,  B
 | |
| ///                  / \ / \     |
 | |
| ///                 *   +   *    |    C,  D,  E
 | |
| ///                / \ / \ / \   |
 | |
| ///                   +   *      |      F,  G
 | |
| ///
 | |
| /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
 | |
| /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
 | |
| ///
 | |
| /// The expression is maximal: if some instruction is a binary operator of the
 | |
| /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
 | |
| /// then the instruction also belongs to the expression, is not a leaf node of
 | |
| /// it, and its operands also belong to the expression (but may be leaf nodes).
 | |
| ///
 | |
| /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
 | |
| /// order to ensure that every non-root node in the expression has *exactly one*
 | |
| /// use by a non-leaf node of the expression.  This destruction means that the
 | |
| /// caller MUST either replace 'I' with a new expression or use something like
 | |
| /// RewriteExprTree to put the values back in if the routine indicates that it
 | |
| /// made a change by returning 'true'.
 | |
| ///
 | |
| /// In the above example either the right operand of A or the left operand of B
 | |
| /// will be replaced by undef.  If it is B's operand then this gives:
 | |
| ///
 | |
| ///                     +        |        I
 | |
| ///                    / \       |
 | |
| ///                   +   +      |      A,  B - operand of B replaced with undef
 | |
| ///                  / \   \     |
 | |
| ///                 *   +   *    |    C,  D,  E
 | |
| ///                / \ / \ / \   |
 | |
| ///                   +   *      |      F,  G
 | |
| ///
 | |
| /// Note that such undef operands can only be reached by passing through 'I'.
 | |
| /// For example, if you visit operands recursively starting from a leaf node
 | |
| /// then you will never see such an undef operand unless you get back to 'I',
 | |
| /// which requires passing through a phi node.
 | |
| ///
 | |
| /// Note that this routine may also mutate binary operators of the wrong type
 | |
| /// that have all uses inside the expression (i.e. only used by non-leaf nodes
 | |
| /// of the expression) if it can turn them into binary operators of the right
 | |
| /// type and thus make the expression bigger.
 | |
| static bool LinearizeExprTree(BinaryOperator *I,
 | |
|                               SmallVectorImpl<RepeatedValue> &Ops) {
 | |
|   LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
 | |
|   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
 | |
|   unsigned Opcode = I->getOpcode();
 | |
|   assert(I->isAssociative() && I->isCommutative() &&
 | |
|          "Expected an associative and commutative operation!");
 | |
| 
 | |
|   // Visit all operands of the expression, keeping track of their weight (the
 | |
|   // number of paths from the expression root to the operand, or if you like
 | |
|   // the number of times that operand occurs in the linearized expression).
 | |
|   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
 | |
|   // while A has weight two.
 | |
| 
 | |
|   // Worklist of non-leaf nodes (their operands are in the expression too) along
 | |
|   // with their weights, representing a certain number of paths to the operator.
 | |
|   // If an operator occurs in the worklist multiple times then we found multiple
 | |
|   // ways to get to it.
 | |
|   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
 | |
|   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Leaves of the expression are values that either aren't the right kind of
 | |
|   // operation (eg: a constant, or a multiply in an add tree), or are, but have
 | |
|   // some uses that are not inside the expression.  For example, in I = X + X,
 | |
|   // X = A + B, the value X has two uses (by I) that are in the expression.  If
 | |
|   // X has any other uses, for example in a return instruction, then we consider
 | |
|   // X to be a leaf, and won't analyze it further.  When we first visit a value,
 | |
|   // if it has more than one use then at first we conservatively consider it to
 | |
|   // be a leaf.  Later, as the expression is explored, we may discover some more
 | |
|   // uses of the value from inside the expression.  If all uses turn out to be
 | |
|   // from within the expression (and the value is a binary operator of the right
 | |
|   // kind) then the value is no longer considered to be a leaf, and its operands
 | |
|   // are explored.
 | |
| 
 | |
|   // Leaves - Keeps track of the set of putative leaves as well as the number of
 | |
|   // paths to each leaf seen so far.
 | |
|   using LeafMap = DenseMap<Value *, APInt>;
 | |
|   LeafMap Leaves; // Leaf -> Total weight so far.
 | |
|   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
 | |
| #endif
 | |
|   while (!Worklist.empty()) {
 | |
|     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
 | |
|     I = P.first; // We examine the operands of this binary operator.
 | |
| 
 | |
|     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
 | |
|       Value *Op = I->getOperand(OpIdx);
 | |
|       APInt Weight = P.second; // Number of paths to this operand.
 | |
|       LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
 | |
|       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
 | |
| 
 | |
|       // If this is a binary operation of the right kind with only one use then
 | |
|       // add its operands to the expression.
 | |
|       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
 | |
|         assert(Visited.insert(Op).second && "Not first visit!");
 | |
|         LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
 | |
|         Worklist.push_back(std::make_pair(BO, Weight));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Appears to be a leaf.  Is the operand already in the set of leaves?
 | |
|       LeafMap::iterator It = Leaves.find(Op);
 | |
|       if (It == Leaves.end()) {
 | |
|         // Not in the leaf map.  Must be the first time we saw this operand.
 | |
|         assert(Visited.insert(Op).second && "Not first visit!");
 | |
|         if (!Op->hasOneUse()) {
 | |
|           // This value has uses not accounted for by the expression, so it is
 | |
|           // not safe to modify.  Mark it as being a leaf.
 | |
|           LLVM_DEBUG(dbgs()
 | |
|                      << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
 | |
|           LeafOrder.push_back(Op);
 | |
|           Leaves[Op] = Weight;
 | |
|           continue;
 | |
|         }
 | |
|         // No uses outside the expression, try morphing it.
 | |
|       } else {
 | |
|         // Already in the leaf map.
 | |
|         assert(It != Leaves.end() && Visited.count(Op) &&
 | |
|                "In leaf map but not visited!");
 | |
| 
 | |
|         // Update the number of paths to the leaf.
 | |
|         IncorporateWeight(It->second, Weight, Opcode);
 | |
| 
 | |
| #if 0   // TODO: Re-enable once PR13021 is fixed.
 | |
|         // The leaf already has one use from inside the expression.  As we want
 | |
|         // exactly one such use, drop this new use of the leaf.
 | |
|         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
 | |
|         I->setOperand(OpIdx, UndefValue::get(I->getType()));
 | |
|         Changed = true;
 | |
| 
 | |
|         // If the leaf is a binary operation of the right kind and we now see
 | |
|         // that its multiple original uses were in fact all by nodes belonging
 | |
|         // to the expression, then no longer consider it to be a leaf and add
 | |
|         // its operands to the expression.
 | |
|         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
 | |
|           LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
 | |
|           Worklist.push_back(std::make_pair(BO, It->second));
 | |
|           Leaves.erase(It);
 | |
|           continue;
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         // If we still have uses that are not accounted for by the expression
 | |
|         // then it is not safe to modify the value.
 | |
|         if (!Op->hasOneUse())
 | |
|           continue;
 | |
| 
 | |
|         // No uses outside the expression, try morphing it.
 | |
|         Weight = It->second;
 | |
|         Leaves.erase(It); // Since the value may be morphed below.
 | |
|       }
 | |
| 
 | |
|       // At this point we have a value which, first of all, is not a binary
 | |
|       // expression of the right kind, and secondly, is only used inside the
 | |
|       // expression.  This means that it can safely be modified.  See if we
 | |
|       // can usefully morph it into an expression of the right kind.
 | |
|       assert((!isa<Instruction>(Op) ||
 | |
|               cast<Instruction>(Op)->getOpcode() != Opcode
 | |
|               || (isa<FPMathOperator>(Op) &&
 | |
|                   !cast<Instruction>(Op)->isFast())) &&
 | |
|              "Should have been handled above!");
 | |
|       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
 | |
| 
 | |
|       // If this is a multiply expression, turn any internal negations into
 | |
|       // multiplies by -1 so they can be reassociated.
 | |
|       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
 | |
|         if ((Opcode == Instruction::Mul && match(BO, m_Neg(m_Value()))) ||
 | |
|             (Opcode == Instruction::FMul && match(BO, m_FNeg(m_Value())))) {
 | |
|           LLVM_DEBUG(dbgs()
 | |
|                      << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
 | |
|           BO = LowerNegateToMultiply(BO);
 | |
|           LLVM_DEBUG(dbgs() << *BO << '\n');
 | |
|           Worklist.push_back(std::make_pair(BO, Weight));
 | |
|           Changed = true;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|       // Failed to morph into an expression of the right type.  This really is
 | |
|       // a leaf.
 | |
|       LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
 | |
|       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
 | |
|       LeafOrder.push_back(Op);
 | |
|       Leaves[Op] = Weight;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The leaves, repeated according to their weights, represent the linearized
 | |
|   // form of the expression.
 | |
|   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
 | |
|     Value *V = LeafOrder[i];
 | |
|     LeafMap::iterator It = Leaves.find(V);
 | |
|     if (It == Leaves.end())
 | |
|       // Node initially thought to be a leaf wasn't.
 | |
|       continue;
 | |
|     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
 | |
|     APInt Weight = It->second;
 | |
|     if (Weight.isMinValue())
 | |
|       // Leaf already output or weight reduction eliminated it.
 | |
|       continue;
 | |
|     // Ensure the leaf is only output once.
 | |
|     It->second = 0;
 | |
|     Ops.push_back(std::make_pair(V, Weight));
 | |
|   }
 | |
| 
 | |
|   // For nilpotent operations or addition there may be no operands, for example
 | |
|   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
 | |
|   // in both cases the weight reduces to 0 causing the value to be skipped.
 | |
|   if (Ops.empty()) {
 | |
|     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
 | |
|     assert(Identity && "Associative operation without identity!");
 | |
|     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Now that the operands for this expression tree are
 | |
| /// linearized and optimized, emit them in-order.
 | |
| void ReassociatePass::RewriteExprTree(BinaryOperator *I,
 | |
|                                       SmallVectorImpl<ValueEntry> &Ops) {
 | |
|   assert(Ops.size() > 1 && "Single values should be used directly!");
 | |
| 
 | |
|   // Since our optimizations should never increase the number of operations, the
 | |
|   // new expression can usually be written reusing the existing binary operators
 | |
|   // from the original expression tree, without creating any new instructions,
 | |
|   // though the rewritten expression may have a completely different topology.
 | |
|   // We take care to not change anything if the new expression will be the same
 | |
|   // as the original.  If more than trivial changes (like commuting operands)
 | |
|   // were made then we are obliged to clear out any optional subclass data like
 | |
|   // nsw flags.
 | |
| 
 | |
|   /// NodesToRewrite - Nodes from the original expression available for writing
 | |
|   /// the new expression into.
 | |
|   SmallVector<BinaryOperator*, 8> NodesToRewrite;
 | |
|   unsigned Opcode = I->getOpcode();
 | |
|   BinaryOperator *Op = I;
 | |
| 
 | |
|   /// NotRewritable - The operands being written will be the leaves of the new
 | |
|   /// expression and must not be used as inner nodes (via NodesToRewrite) by
 | |
|   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
 | |
|   /// (if they were they would have been incorporated into the expression and so
 | |
|   /// would not be leaves), so most of the time there is no danger of this.  But
 | |
|   /// in rare cases a leaf may become reassociable if an optimization kills uses
 | |
|   /// of it, or it may momentarily become reassociable during rewriting (below)
 | |
|   /// due it being removed as an operand of one of its uses.  Ensure that misuse
 | |
|   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
 | |
|   /// leaves and refusing to reuse any of them as inner nodes.
 | |
|   SmallPtrSet<Value*, 8> NotRewritable;
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     NotRewritable.insert(Ops[i].Op);
 | |
| 
 | |
|   // ExpressionChanged - Non-null if the rewritten expression differs from the
 | |
|   // original in some non-trivial way, requiring the clearing of optional flags.
 | |
|   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
 | |
|   BinaryOperator *ExpressionChanged = nullptr;
 | |
|   for (unsigned i = 0; ; ++i) {
 | |
|     // The last operation (which comes earliest in the IR) is special as both
 | |
|     // operands will come from Ops, rather than just one with the other being
 | |
|     // a subexpression.
 | |
|     if (i+2 == Ops.size()) {
 | |
|       Value *NewLHS = Ops[i].Op;
 | |
|       Value *NewRHS = Ops[i+1].Op;
 | |
|       Value *OldLHS = Op->getOperand(0);
 | |
|       Value *OldRHS = Op->getOperand(1);
 | |
| 
 | |
|       if (NewLHS == OldLHS && NewRHS == OldRHS)
 | |
|         // Nothing changed, leave it alone.
 | |
|         break;
 | |
| 
 | |
|       if (NewLHS == OldRHS && NewRHS == OldLHS) {
 | |
|         // The order of the operands was reversed.  Swap them.
 | |
|         LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
 | |
|         Op->swapOperands();
 | |
|         LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
 | |
|         MadeChange = true;
 | |
|         ++NumChanged;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // The new operation differs non-trivially from the original. Overwrite
 | |
|       // the old operands with the new ones.
 | |
|       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
 | |
|       if (NewLHS != OldLHS) {
 | |
|         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
 | |
|         if (BO && !NotRewritable.count(BO))
 | |
|           NodesToRewrite.push_back(BO);
 | |
|         Op->setOperand(0, NewLHS);
 | |
|       }
 | |
|       if (NewRHS != OldRHS) {
 | |
|         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
 | |
|         if (BO && !NotRewritable.count(BO))
 | |
|           NodesToRewrite.push_back(BO);
 | |
|         Op->setOperand(1, NewRHS);
 | |
|       }
 | |
|       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
 | |
| 
 | |
|       ExpressionChanged = Op;
 | |
|       MadeChange = true;
 | |
|       ++NumChanged;
 | |
| 
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Not the last operation.  The left-hand side will be a sub-expression
 | |
|     // while the right-hand side will be the current element of Ops.
 | |
|     Value *NewRHS = Ops[i].Op;
 | |
|     if (NewRHS != Op->getOperand(1)) {
 | |
|       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
 | |
|       if (NewRHS == Op->getOperand(0)) {
 | |
|         // The new right-hand side was already present as the left operand.  If
 | |
|         // we are lucky then swapping the operands will sort out both of them.
 | |
|         Op->swapOperands();
 | |
|       } else {
 | |
|         // Overwrite with the new right-hand side.
 | |
|         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
 | |
|         if (BO && !NotRewritable.count(BO))
 | |
|           NodesToRewrite.push_back(BO);
 | |
|         Op->setOperand(1, NewRHS);
 | |
|         ExpressionChanged = Op;
 | |
|       }
 | |
|       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
 | |
|       MadeChange = true;
 | |
|       ++NumChanged;
 | |
|     }
 | |
| 
 | |
|     // Now deal with the left-hand side.  If this is already an operation node
 | |
|     // from the original expression then just rewrite the rest of the expression
 | |
|     // into it.
 | |
|     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
 | |
|     if (BO && !NotRewritable.count(BO)) {
 | |
|       Op = BO;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, grab a spare node from the original expression and use that as
 | |
|     // the left-hand side.  If there are no nodes left then the optimizers made
 | |
|     // an expression with more nodes than the original!  This usually means that
 | |
|     // they did something stupid but it might mean that the problem was just too
 | |
|     // hard (finding the mimimal number of multiplications needed to realize a
 | |
|     // multiplication expression is NP-complete).  Whatever the reason, smart or
 | |
|     // stupid, create a new node if there are none left.
 | |
|     BinaryOperator *NewOp;
 | |
|     if (NodesToRewrite.empty()) {
 | |
|       Constant *Undef = UndefValue::get(I->getType());
 | |
|       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
 | |
|                                      Undef, Undef, "", I);
 | |
|       if (NewOp->getType()->isFPOrFPVectorTy())
 | |
|         NewOp->setFastMathFlags(I->getFastMathFlags());
 | |
|     } else {
 | |
|       NewOp = NodesToRewrite.pop_back_val();
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
 | |
|     Op->setOperand(0, NewOp);
 | |
|     LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
 | |
|     ExpressionChanged = Op;
 | |
|     MadeChange = true;
 | |
|     ++NumChanged;
 | |
|     Op = NewOp;
 | |
|   }
 | |
| 
 | |
|   // If the expression changed non-trivially then clear out all subclass data
 | |
|   // starting from the operator specified in ExpressionChanged, and compactify
 | |
|   // the operators to just before the expression root to guarantee that the
 | |
|   // expression tree is dominated by all of Ops.
 | |
|   if (ExpressionChanged)
 | |
|     do {
 | |
|       // Preserve FastMathFlags.
 | |
|       if (isa<FPMathOperator>(I)) {
 | |
|         FastMathFlags Flags = I->getFastMathFlags();
 | |
|         ExpressionChanged->clearSubclassOptionalData();
 | |
|         ExpressionChanged->setFastMathFlags(Flags);
 | |
|       } else
 | |
|         ExpressionChanged->clearSubclassOptionalData();
 | |
| 
 | |
|       if (ExpressionChanged == I)
 | |
|         break;
 | |
| 
 | |
|       // Discard any debug info related to the expressions that has changed (we
 | |
|       // can leave debug infor related to the root, since the result of the
 | |
|       // expression tree should be the same even after reassociation).
 | |
|       SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
 | |
|       findDbgUsers(DbgUsers, ExpressionChanged);
 | |
|       for (auto *DII : DbgUsers) {
 | |
|         Value *Undef = UndefValue::get(ExpressionChanged->getType());
 | |
|         DII->setOperand(0, MetadataAsValue::get(DII->getContext(),
 | |
|                                                 ValueAsMetadata::get(Undef)));
 | |
|       }
 | |
| 
 | |
|       ExpressionChanged->moveBefore(I);
 | |
|       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
 | |
|     } while (true);
 | |
| 
 | |
|   // Throw away any left over nodes from the original expression.
 | |
|   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
 | |
|     RedoInsts.insert(NodesToRewrite[i]);
 | |
| }
 | |
| 
 | |
| /// Insert instructions before the instruction pointed to by BI,
 | |
| /// that computes the negative version of the value specified.  The negative
 | |
| /// version of the value is returned, and BI is left pointing at the instruction
 | |
| /// that should be processed next by the reassociation pass.
 | |
| /// Also add intermediate instructions to the redo list that are modified while
 | |
| /// pushing the negates through adds.  These will be revisited to see if
 | |
| /// additional opportunities have been exposed.
 | |
| static Value *NegateValue(Value *V, Instruction *BI,
 | |
|                           ReassociatePass::OrderedSet &ToRedo) {
 | |
|   if (auto *C = dyn_cast<Constant>(V))
 | |
|     return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
 | |
|                                               ConstantExpr::getNeg(C);
 | |
| 
 | |
|   // We are trying to expose opportunity for reassociation.  One of the things
 | |
|   // that we want to do to achieve this is to push a negation as deep into an
 | |
|   // expression chain as possible, to expose the add instructions.  In practice,
 | |
|   // this means that we turn this:
 | |
|   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
 | |
|   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
 | |
|   // the constants.  We assume that instcombine will clean up the mess later if
 | |
|   // we introduce tons of unnecessary negation instructions.
 | |
|   //
 | |
|   if (BinaryOperator *I =
 | |
|           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
 | |
|     // Push the negates through the add.
 | |
|     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
 | |
|     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
 | |
|     if (I->getOpcode() == Instruction::Add) {
 | |
|       I->setHasNoUnsignedWrap(false);
 | |
|       I->setHasNoSignedWrap(false);
 | |
|     }
 | |
| 
 | |
|     // We must move the add instruction here, because the neg instructions do
 | |
|     // not dominate the old add instruction in general.  By moving it, we are
 | |
|     // assured that the neg instructions we just inserted dominate the
 | |
|     // instruction we are about to insert after them.
 | |
|     //
 | |
|     I->moveBefore(BI);
 | |
|     I->setName(I->getName()+".neg");
 | |
| 
 | |
|     // Add the intermediate negates to the redo list as processing them later
 | |
|     // could expose more reassociating opportunities.
 | |
|     ToRedo.insert(I);
 | |
|     return I;
 | |
|   }
 | |
| 
 | |
|   // Okay, we need to materialize a negated version of V with an instruction.
 | |
|   // Scan the use lists of V to see if we have one already.
 | |
|   for (User *U : V->users()) {
 | |
|     if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
 | |
|       continue;
 | |
| 
 | |
|     // We found one!  Now we have to make sure that the definition dominates
 | |
|     // this use.  We do this by moving it to the entry block (if it is a
 | |
|     // non-instruction value) or right after the definition.  These negates will
 | |
|     // be zapped by reassociate later, so we don't need much finesse here.
 | |
|     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
 | |
| 
 | |
|     // Verify that the negate is in this function, V might be a constant expr.
 | |
|     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
 | |
|       continue;
 | |
| 
 | |
|     BasicBlock::iterator InsertPt;
 | |
|     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
 | |
|         InsertPt = II->getNormalDest()->begin();
 | |
|       } else {
 | |
|         InsertPt = ++InstInput->getIterator();
 | |
|       }
 | |
|       while (isa<PHINode>(InsertPt)) ++InsertPt;
 | |
|     } else {
 | |
|       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
 | |
|     }
 | |
|     TheNeg->moveBefore(&*InsertPt);
 | |
|     if (TheNeg->getOpcode() == Instruction::Sub) {
 | |
|       TheNeg->setHasNoUnsignedWrap(false);
 | |
|       TheNeg->setHasNoSignedWrap(false);
 | |
|     } else {
 | |
|       TheNeg->andIRFlags(BI);
 | |
|     }
 | |
|     ToRedo.insert(TheNeg);
 | |
|     return TheNeg;
 | |
|   }
 | |
| 
 | |
|   // Insert a 'neg' instruction that subtracts the value from zero to get the
 | |
|   // negation.
 | |
|   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
 | |
|   ToRedo.insert(NewNeg);
 | |
|   return NewNeg;
 | |
| }
 | |
| 
 | |
| /// Return true if we should break up this subtract of X-Y into (X + -Y).
 | |
| static bool ShouldBreakUpSubtract(Instruction *Sub) {
 | |
|   // If this is a negation, we can't split it up!
 | |
|   if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value()))) 
 | |
|     return false;
 | |
| 
 | |
|   // Don't breakup X - undef.
 | |
|   if (isa<UndefValue>(Sub->getOperand(1)))
 | |
|     return false;
 | |
| 
 | |
|   // Don't bother to break this up unless either the LHS is an associable add or
 | |
|   // subtract or if this is only used by one.
 | |
|   Value *V0 = Sub->getOperand(0);
 | |
|   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
 | |
|       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
 | |
|     return true;
 | |
|   Value *V1 = Sub->getOperand(1);
 | |
|   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
 | |
|       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
 | |
|     return true;
 | |
|   Value *VB = Sub->user_back();
 | |
|   if (Sub->hasOneUse() &&
 | |
|       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
 | |
|        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// If we have (X-Y), and if either X is an add, or if this is only used by an
 | |
| /// add, transform this into (X+(0-Y)) to promote better reassociation.
 | |
| static BinaryOperator *BreakUpSubtract(Instruction *Sub,
 | |
|                                        ReassociatePass::OrderedSet &ToRedo) {
 | |
|   // Convert a subtract into an add and a neg instruction. This allows sub
 | |
|   // instructions to be commuted with other add instructions.
 | |
|   //
 | |
|   // Calculate the negative value of Operand 1 of the sub instruction,
 | |
|   // and set it as the RHS of the add instruction we just made.
 | |
|   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
 | |
|   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
 | |
|   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
 | |
|   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
 | |
|   New->takeName(Sub);
 | |
| 
 | |
|   // Everyone now refers to the add instruction.
 | |
|   Sub->replaceAllUsesWith(New);
 | |
|   New->setDebugLoc(Sub->getDebugLoc());
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// If this is a shift of a reassociable multiply or is used by one, change
 | |
| /// this into a multiply by a constant to assist with further reassociation.
 | |
| static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
 | |
|   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
 | |
|   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
 | |
| 
 | |
|   BinaryOperator *Mul =
 | |
|     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
 | |
|   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
 | |
|   Mul->takeName(Shl);
 | |
| 
 | |
|   // Everyone now refers to the mul instruction.
 | |
|   Shl->replaceAllUsesWith(Mul);
 | |
|   Mul->setDebugLoc(Shl->getDebugLoc());
 | |
| 
 | |
|   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
 | |
|   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
 | |
|   // handling.
 | |
|   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
 | |
|   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
 | |
|   if (NSW && NUW)
 | |
|     Mul->setHasNoSignedWrap(true);
 | |
|   Mul->setHasNoUnsignedWrap(NUW);
 | |
|   return Mul;
 | |
| }
 | |
| 
 | |
| /// Scan backwards and forwards among values with the same rank as element i
 | |
| /// to see if X exists.  If X does not exist, return i.  This is useful when
 | |
| /// scanning for 'x' when we see '-x' because they both get the same rank.
 | |
| static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
 | |
|                                   unsigned i, Value *X) {
 | |
|   unsigned XRank = Ops[i].Rank;
 | |
|   unsigned e = Ops.size();
 | |
|   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
 | |
|     if (Ops[j].Op == X)
 | |
|       return j;
 | |
|     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
 | |
|       if (Instruction *I2 = dyn_cast<Instruction>(X))
 | |
|         if (I1->isIdenticalTo(I2))
 | |
|           return j;
 | |
|   }
 | |
|   // Scan backwards.
 | |
|   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
 | |
|     if (Ops[j].Op == X)
 | |
|       return j;
 | |
|     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
 | |
|       if (Instruction *I2 = dyn_cast<Instruction>(X))
 | |
|         if (I1->isIdenticalTo(I2))
 | |
|           return j;
 | |
|   }
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| /// Emit a tree of add instructions, summing Ops together
 | |
| /// and returning the result.  Insert the tree before I.
 | |
| static Value *EmitAddTreeOfValues(Instruction *I,
 | |
|                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
 | |
|   if (Ops.size() == 1) return Ops.back();
 | |
| 
 | |
|   Value *V1 = Ops.back();
 | |
|   Ops.pop_back();
 | |
|   Value *V2 = EmitAddTreeOfValues(I, Ops);
 | |
|   return CreateAdd(V2, V1, "reass.add", I, I);
 | |
| }
 | |
| 
 | |
| /// If V is an expression tree that is a multiplication sequence,
 | |
| /// and if this sequence contains a multiply by Factor,
 | |
| /// remove Factor from the tree and return the new tree.
 | |
| Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
 | |
|   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
 | |
|   if (!BO)
 | |
|     return nullptr;
 | |
| 
 | |
|   SmallVector<RepeatedValue, 8> Tree;
 | |
|   MadeChange |= LinearizeExprTree(BO, Tree);
 | |
|   SmallVector<ValueEntry, 8> Factors;
 | |
|   Factors.reserve(Tree.size());
 | |
|   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
 | |
|     RepeatedValue E = Tree[i];
 | |
|     Factors.append(E.second.getZExtValue(),
 | |
|                    ValueEntry(getRank(E.first), E.first));
 | |
|   }
 | |
| 
 | |
|   bool FoundFactor = false;
 | |
|   bool NeedsNegate = false;
 | |
|   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
 | |
|     if (Factors[i].Op == Factor) {
 | |
|       FoundFactor = true;
 | |
|       Factors.erase(Factors.begin()+i);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If this is a negative version of this factor, remove it.
 | |
|     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
 | |
|       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
 | |
|         if (FC1->getValue() == -FC2->getValue()) {
 | |
|           FoundFactor = NeedsNegate = true;
 | |
|           Factors.erase(Factors.begin()+i);
 | |
|           break;
 | |
|         }
 | |
|     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
 | |
|       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
 | |
|         const APFloat &F1 = FC1->getValueAPF();
 | |
|         APFloat F2(FC2->getValueAPF());
 | |
|         F2.changeSign();
 | |
|         if (F1.compare(F2) == APFloat::cmpEqual) {
 | |
|           FoundFactor = NeedsNegate = true;
 | |
|           Factors.erase(Factors.begin() + i);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!FoundFactor) {
 | |
|     // Make sure to restore the operands to the expression tree.
 | |
|     RewriteExprTree(BO, Factors);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   BasicBlock::iterator InsertPt = ++BO->getIterator();
 | |
| 
 | |
|   // If this was just a single multiply, remove the multiply and return the only
 | |
|   // remaining operand.
 | |
|   if (Factors.size() == 1) {
 | |
|     RedoInsts.insert(BO);
 | |
|     V = Factors[0].Op;
 | |
|   } else {
 | |
|     RewriteExprTree(BO, Factors);
 | |
|     V = BO;
 | |
|   }
 | |
| 
 | |
|   if (NeedsNegate)
 | |
|     V = CreateNeg(V, "neg", &*InsertPt, BO);
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// If V is a single-use multiply, recursively add its operands as factors,
 | |
| /// otherwise add V to the list of factors.
 | |
| ///
 | |
| /// Ops is the top-level list of add operands we're trying to factor.
 | |
| static void FindSingleUseMultiplyFactors(Value *V,
 | |
|                                          SmallVectorImpl<Value*> &Factors) {
 | |
|   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
 | |
|   if (!BO) {
 | |
|     Factors.push_back(V);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, add the LHS and RHS to the list of factors.
 | |
|   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
 | |
|   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
 | |
| }
 | |
| 
 | |
| /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
 | |
| /// This optimizes based on identities.  If it can be reduced to a single Value,
 | |
| /// it is returned, otherwise the Ops list is mutated as necessary.
 | |
| static Value *OptimizeAndOrXor(unsigned Opcode,
 | |
|                                SmallVectorImpl<ValueEntry> &Ops) {
 | |
|   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
 | |
|   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|     // First, check for X and ~X in the operand list.
 | |
|     assert(i < Ops.size());
 | |
|     Value *X;
 | |
|     if (match(Ops[i].Op, m_Not(m_Value(X)))) {    // Cannot occur for ^.
 | |
|       unsigned FoundX = FindInOperandList(Ops, i, X);
 | |
|       if (FoundX != i) {
 | |
|         if (Opcode == Instruction::And)   // ...&X&~X = 0
 | |
|           return Constant::getNullValue(X->getType());
 | |
| 
 | |
|         if (Opcode == Instruction::Or)    // ...|X|~X = -1
 | |
|           return Constant::getAllOnesValue(X->getType());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Next, check for duplicate pairs of values, which we assume are next to
 | |
|     // each other, due to our sorting criteria.
 | |
|     assert(i < Ops.size());
 | |
|     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
 | |
|       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
 | |
|         // Drop duplicate values for And and Or.
 | |
|         Ops.erase(Ops.begin()+i);
 | |
|         --i; --e;
 | |
|         ++NumAnnihil;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Drop pairs of values for Xor.
 | |
|       assert(Opcode == Instruction::Xor);
 | |
|       if (e == 2)
 | |
|         return Constant::getNullValue(Ops[0].Op->getType());
 | |
| 
 | |
|       // Y ^ X^X -> Y
 | |
|       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
 | |
|       i -= 1; e -= 2;
 | |
|       ++NumAnnihil;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Helper function of CombineXorOpnd(). It creates a bitwise-and
 | |
| /// instruction with the given two operands, and return the resulting
 | |
| /// instruction. There are two special cases: 1) if the constant operand is 0,
 | |
| /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
 | |
| /// be returned.
 | |
| static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
 | |
|                              const APInt &ConstOpnd) {
 | |
|   if (ConstOpnd.isNullValue())
 | |
|     return nullptr;
 | |
| 
 | |
|   if (ConstOpnd.isAllOnesValue())
 | |
|     return Opnd;
 | |
| 
 | |
|   Instruction *I = BinaryOperator::CreateAnd(
 | |
|       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
 | |
|       InsertBefore);
 | |
|   I->setDebugLoc(InsertBefore->getDebugLoc());
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
 | |
| // into "R ^ C", where C would be 0, and R is a symbolic value.
 | |
| //
 | |
| // If it was successful, true is returned, and the "R" and "C" is returned
 | |
| // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
 | |
| // and both "Res" and "ConstOpnd" remain unchanged.
 | |
| bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
 | |
|                                      APInt &ConstOpnd, Value *&Res) {
 | |
|   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
 | |
|   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
 | |
|   //                       = (x & ~c1) ^ (c1 ^ c2)
 | |
|   // It is useful only when c1 == c2.
 | |
|   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
 | |
|     return false;
 | |
| 
 | |
|   if (!Opnd1->getValue()->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   const APInt &C1 = Opnd1->getConstPart();
 | |
|   if (C1 != ConstOpnd)
 | |
|     return false;
 | |
| 
 | |
|   Value *X = Opnd1->getSymbolicPart();
 | |
|   Res = createAndInstr(I, X, ~C1);
 | |
|   // ConstOpnd was C2, now C1 ^ C2.
 | |
|   ConstOpnd ^= C1;
 | |
| 
 | |
|   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
 | |
|     RedoInsts.insert(T);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Helper function of OptimizeXor(). It tries to simplify
 | |
| // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
 | |
| // symbolic value.
 | |
| //
 | |
| // If it was successful, true is returned, and the "R" and "C" is returned
 | |
| // via "Res" and "ConstOpnd", respectively (If the entire expression is
 | |
| // evaluated to a constant, the Res is set to NULL); otherwise, false is
 | |
| // returned, and both "Res" and "ConstOpnd" remain unchanged.
 | |
| bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
 | |
|                                      XorOpnd *Opnd2, APInt &ConstOpnd,
 | |
|                                      Value *&Res) {
 | |
|   Value *X = Opnd1->getSymbolicPart();
 | |
|   if (X != Opnd2->getSymbolicPart())
 | |
|     return false;
 | |
| 
 | |
|   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
 | |
|   int DeadInstNum = 1;
 | |
|   if (Opnd1->getValue()->hasOneUse())
 | |
|     DeadInstNum++;
 | |
|   if (Opnd2->getValue()->hasOneUse())
 | |
|     DeadInstNum++;
 | |
| 
 | |
|   // Xor-Rule 2:
 | |
|   //  (x | c1) ^ (x & c2)
 | |
|   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
 | |
|   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
 | |
|   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
 | |
|   //
 | |
|   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
 | |
|     if (Opnd2->isOrExpr())
 | |
|       std::swap(Opnd1, Opnd2);
 | |
| 
 | |
|     const APInt &C1 = Opnd1->getConstPart();
 | |
|     const APInt &C2 = Opnd2->getConstPart();
 | |
|     APInt C3((~C1) ^ C2);
 | |
| 
 | |
|     // Do not increase code size!
 | |
|     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
 | |
|       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
 | |
|       if (NewInstNum > DeadInstNum)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     Res = createAndInstr(I, X, C3);
 | |
|     ConstOpnd ^= C1;
 | |
|   } else if (Opnd1->isOrExpr()) {
 | |
|     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
 | |
|     //
 | |
|     const APInt &C1 = Opnd1->getConstPart();
 | |
|     const APInt &C2 = Opnd2->getConstPart();
 | |
|     APInt C3 = C1 ^ C2;
 | |
| 
 | |
|     // Do not increase code size
 | |
|     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
 | |
|       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
 | |
|       if (NewInstNum > DeadInstNum)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     Res = createAndInstr(I, X, C3);
 | |
|     ConstOpnd ^= C3;
 | |
|   } else {
 | |
|     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
 | |
|     //
 | |
|     const APInt &C1 = Opnd1->getConstPart();
 | |
|     const APInt &C2 = Opnd2->getConstPart();
 | |
|     APInt C3 = C1 ^ C2;
 | |
|     Res = createAndInstr(I, X, C3);
 | |
|   }
 | |
| 
 | |
|   // Put the original operands in the Redo list; hope they will be deleted
 | |
|   // as dead code.
 | |
|   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
 | |
|     RedoInsts.insert(T);
 | |
|   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
 | |
|     RedoInsts.insert(T);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
 | |
| /// to a single Value, it is returned, otherwise the Ops list is mutated as
 | |
| /// necessary.
 | |
| Value *ReassociatePass::OptimizeXor(Instruction *I,
 | |
|                                     SmallVectorImpl<ValueEntry> &Ops) {
 | |
|   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
 | |
|     return V;
 | |
| 
 | |
|   if (Ops.size() == 1)
 | |
|     return nullptr;
 | |
| 
 | |
|   SmallVector<XorOpnd, 8> Opnds;
 | |
|   SmallVector<XorOpnd*, 8> OpndPtrs;
 | |
|   Type *Ty = Ops[0].Op->getType();
 | |
|   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
 | |
| 
 | |
|   // Step 1: Convert ValueEntry to XorOpnd
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|     Value *V = Ops[i].Op;
 | |
|     const APInt *C;
 | |
|     // TODO: Support non-splat vectors.
 | |
|     if (match(V, m_APInt(C))) {
 | |
|       ConstOpnd ^= *C;
 | |
|     } else {
 | |
|       XorOpnd O(V);
 | |
|       O.setSymbolicRank(getRank(O.getSymbolicPart()));
 | |
|       Opnds.push_back(O);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
 | |
|   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
 | |
|   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
 | |
|   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
 | |
|   //  when new elements are added to the vector.
 | |
|   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
 | |
|     OpndPtrs.push_back(&Opnds[i]);
 | |
| 
 | |
|   // Step 2: Sort the Xor-Operands in a way such that the operands containing
 | |
|   //  the same symbolic value cluster together. For instance, the input operand
 | |
|   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
 | |
|   //  ("x | 123", "x & 789", "y & 456").
 | |
|   //
 | |
|   //  The purpose is twofold:
 | |
|   //  1) Cluster together the operands sharing the same symbolic-value.
 | |
|   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
 | |
|   //     could potentially shorten crital path, and expose more loop-invariants.
 | |
|   //     Note that values' rank are basically defined in RPO order (FIXME).
 | |
|   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
 | |
|   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
 | |
|   //     "z" in the order of X-Y-Z is better than any other orders.
 | |
|   std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
 | |
|                    [](XorOpnd *LHS, XorOpnd *RHS) {
 | |
|     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
 | |
|   });
 | |
| 
 | |
|   // Step 3: Combine adjacent operands
 | |
|   XorOpnd *PrevOpnd = nullptr;
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
 | |
|     XorOpnd *CurrOpnd = OpndPtrs[i];
 | |
|     // The combined value
 | |
|     Value *CV;
 | |
| 
 | |
|     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
 | |
|     if (!ConstOpnd.isNullValue() &&
 | |
|         CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
 | |
|       Changed = true;
 | |
|       if (CV)
 | |
|         *CurrOpnd = XorOpnd(CV);
 | |
|       else {
 | |
|         CurrOpnd->Invalidate();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
 | |
|       PrevOpnd = CurrOpnd;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // step 3.2: When previous and current operands share the same symbolic
 | |
|     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
 | |
|     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
 | |
|       // Remove previous operand
 | |
|       PrevOpnd->Invalidate();
 | |
|       if (CV) {
 | |
|         *CurrOpnd = XorOpnd(CV);
 | |
|         PrevOpnd = CurrOpnd;
 | |
|       } else {
 | |
|         CurrOpnd->Invalidate();
 | |
|         PrevOpnd = nullptr;
 | |
|       }
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Step 4: Reassemble the Ops
 | |
|   if (Changed) {
 | |
|     Ops.clear();
 | |
|     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
 | |
|       XorOpnd &O = Opnds[i];
 | |
|       if (O.isInvalid())
 | |
|         continue;
 | |
|       ValueEntry VE(getRank(O.getValue()), O.getValue());
 | |
|       Ops.push_back(VE);
 | |
|     }
 | |
|     if (!ConstOpnd.isNullValue()) {
 | |
|       Value *C = ConstantInt::get(Ty, ConstOpnd);
 | |
|       ValueEntry VE(getRank(C), C);
 | |
|       Ops.push_back(VE);
 | |
|     }
 | |
|     unsigned Sz = Ops.size();
 | |
|     if (Sz == 1)
 | |
|       return Ops.back().Op;
 | |
|     if (Sz == 0) {
 | |
|       assert(ConstOpnd.isNullValue());
 | |
|       return ConstantInt::get(Ty, ConstOpnd);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Optimize a series of operands to an 'add' instruction.  This
 | |
| /// optimizes based on identities.  If it can be reduced to a single Value, it
 | |
| /// is returned, otherwise the Ops list is mutated as necessary.
 | |
| Value *ReassociatePass::OptimizeAdd(Instruction *I,
 | |
|                                     SmallVectorImpl<ValueEntry> &Ops) {
 | |
|   // Scan the operand lists looking for X and -X pairs.  If we find any, we
 | |
|   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
 | |
|   // scan for any
 | |
|   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
 | |
| 
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|     Value *TheOp = Ops[i].Op;
 | |
|     // Check to see if we've seen this operand before.  If so, we factor all
 | |
|     // instances of the operand together.  Due to our sorting criteria, we know
 | |
|     // that these need to be next to each other in the vector.
 | |
|     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
 | |
|       // Rescan the list, remove all instances of this operand from the expr.
 | |
|       unsigned NumFound = 0;
 | |
|       do {
 | |
|         Ops.erase(Ops.begin()+i);
 | |
|         ++NumFound;
 | |
|       } while (i != Ops.size() && Ops[i].Op == TheOp);
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
 | |
|                         << '\n');
 | |
|       ++NumFactor;
 | |
| 
 | |
|       // Insert a new multiply.
 | |
|       Type *Ty = TheOp->getType();
 | |
|       Constant *C = Ty->isIntOrIntVectorTy() ?
 | |
|         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
 | |
|       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
 | |
| 
 | |
|       // Now that we have inserted a multiply, optimize it. This allows us to
 | |
|       // handle cases that require multiple factoring steps, such as this:
 | |
|       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
 | |
|       RedoInsts.insert(Mul);
 | |
| 
 | |
|       // If every add operand was a duplicate, return the multiply.
 | |
|       if (Ops.empty())
 | |
|         return Mul;
 | |
| 
 | |
|       // Otherwise, we had some input that didn't have the dupe, such as
 | |
|       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
 | |
|       // things being added by this operation.
 | |
|       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
 | |
| 
 | |
|       --i;
 | |
|       e = Ops.size();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check for X and -X or X and ~X in the operand list.
 | |
|     Value *X;
 | |
|     if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
 | |
|         !match(TheOp, m_FNeg(m_Value(X))))
 | |
|       continue;
 | |
| 
 | |
|     unsigned FoundX = FindInOperandList(Ops, i, X);
 | |
|     if (FoundX == i)
 | |
|       continue;
 | |
| 
 | |
|     // Remove X and -X from the operand list.
 | |
|     if (Ops.size() == 2 &&
 | |
|         (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
 | |
|       return Constant::getNullValue(X->getType());
 | |
| 
 | |
|     // Remove X and ~X from the operand list.
 | |
|     if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
 | |
|       return Constant::getAllOnesValue(X->getType());
 | |
| 
 | |
|     Ops.erase(Ops.begin()+i);
 | |
|     if (i < FoundX)
 | |
|       --FoundX;
 | |
|     else
 | |
|       --i;   // Need to back up an extra one.
 | |
|     Ops.erase(Ops.begin()+FoundX);
 | |
|     ++NumAnnihil;
 | |
|     --i;     // Revisit element.
 | |
|     e -= 2;  // Removed two elements.
 | |
| 
 | |
|     // if X and ~X we append -1 to the operand list.
 | |
|     if (match(TheOp, m_Not(m_Value()))) {
 | |
|       Value *V = Constant::getAllOnesValue(X->getType());
 | |
|       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
 | |
|       e += 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Scan the operand list, checking to see if there are any common factors
 | |
|   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
 | |
|   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
 | |
|   // To efficiently find this, we count the number of times a factor occurs
 | |
|   // for any ADD operands that are MULs.
 | |
|   DenseMap<Value*, unsigned> FactorOccurrences;
 | |
| 
 | |
|   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
 | |
|   // where they are actually the same multiply.
 | |
|   unsigned MaxOcc = 0;
 | |
|   Value *MaxOccVal = nullptr;
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|     BinaryOperator *BOp =
 | |
|         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
 | |
|     if (!BOp)
 | |
|       continue;
 | |
| 
 | |
|     // Compute all of the factors of this added value.
 | |
|     SmallVector<Value*, 8> Factors;
 | |
|     FindSingleUseMultiplyFactors(BOp, Factors);
 | |
|     assert(Factors.size() > 1 && "Bad linearize!");
 | |
| 
 | |
|     // Add one to FactorOccurrences for each unique factor in this op.
 | |
|     SmallPtrSet<Value*, 8> Duplicates;
 | |
|     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
 | |
|       Value *Factor = Factors[i];
 | |
|       if (!Duplicates.insert(Factor).second)
 | |
|         continue;
 | |
| 
 | |
|       unsigned Occ = ++FactorOccurrences[Factor];
 | |
|       if (Occ > MaxOcc) {
 | |
|         MaxOcc = Occ;
 | |
|         MaxOccVal = Factor;
 | |
|       }
 | |
| 
 | |
|       // If Factor is a negative constant, add the negated value as a factor
 | |
|       // because we can percolate the negate out.  Watch for minint, which
 | |
|       // cannot be positivified.
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
 | |
|         if (CI->isNegative() && !CI->isMinValue(true)) {
 | |
|           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
 | |
|           if (!Duplicates.insert(Factor).second)
 | |
|             continue;
 | |
|           unsigned Occ = ++FactorOccurrences[Factor];
 | |
|           if (Occ > MaxOcc) {
 | |
|             MaxOcc = Occ;
 | |
|             MaxOccVal = Factor;
 | |
|           }
 | |
|         }
 | |
|       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
 | |
|         if (CF->isNegative()) {
 | |
|           APFloat F(CF->getValueAPF());
 | |
|           F.changeSign();
 | |
|           Factor = ConstantFP::get(CF->getContext(), F);
 | |
|           if (!Duplicates.insert(Factor).second)
 | |
|             continue;
 | |
|           unsigned Occ = ++FactorOccurrences[Factor];
 | |
|           if (Occ > MaxOcc) {
 | |
|             MaxOcc = Occ;
 | |
|             MaxOccVal = Factor;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If any factor occurred more than one time, we can pull it out.
 | |
|   if (MaxOcc > 1) {
 | |
|     LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
 | |
|                       << '\n');
 | |
|     ++NumFactor;
 | |
| 
 | |
|     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
 | |
|     // this, we could otherwise run into situations where removing a factor
 | |
|     // from an expression will drop a use of maxocc, and this can cause
 | |
|     // RemoveFactorFromExpression on successive values to behave differently.
 | |
|     Instruction *DummyInst =
 | |
|         I->getType()->isIntOrIntVectorTy()
 | |
|             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
 | |
|             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
 | |
| 
 | |
|     SmallVector<WeakTrackingVH, 4> NewMulOps;
 | |
|     for (unsigned i = 0; i != Ops.size(); ++i) {
 | |
|       // Only try to remove factors from expressions we're allowed to.
 | |
|       BinaryOperator *BOp =
 | |
|           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
 | |
|       if (!BOp)
 | |
|         continue;
 | |
| 
 | |
|       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
 | |
|         // The factorized operand may occur several times.  Convert them all in
 | |
|         // one fell swoop.
 | |
|         for (unsigned j = Ops.size(); j != i;) {
 | |
|           --j;
 | |
|           if (Ops[j].Op == Ops[i].Op) {
 | |
|             NewMulOps.push_back(V);
 | |
|             Ops.erase(Ops.begin()+j);
 | |
|           }
 | |
|         }
 | |
|         --i;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // No need for extra uses anymore.
 | |
|     DummyInst->deleteValue();
 | |
| 
 | |
|     unsigned NumAddedValues = NewMulOps.size();
 | |
|     Value *V = EmitAddTreeOfValues(I, NewMulOps);
 | |
| 
 | |
|     // Now that we have inserted the add tree, optimize it. This allows us to
 | |
|     // handle cases that require multiple factoring steps, such as this:
 | |
|     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
 | |
|     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
 | |
|     (void)NumAddedValues;
 | |
|     if (Instruction *VI = dyn_cast<Instruction>(V))
 | |
|       RedoInsts.insert(VI);
 | |
| 
 | |
|     // Create the multiply.
 | |
|     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
 | |
| 
 | |
|     // Rerun associate on the multiply in case the inner expression turned into
 | |
|     // a multiply.  We want to make sure that we keep things in canonical form.
 | |
|     RedoInsts.insert(V2);
 | |
| 
 | |
|     // If every add operand included the factor (e.g. "A*B + A*C"), then the
 | |
|     // entire result expression is just the multiply "A*(B+C)".
 | |
|     if (Ops.empty())
 | |
|       return V2;
 | |
| 
 | |
|     // Otherwise, we had some input that didn't have the factor, such as
 | |
|     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
 | |
|     // things being added by this operation.
 | |
|     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Build up a vector of value/power pairs factoring a product.
 | |
| ///
 | |
| /// Given a series of multiplication operands, build a vector of factors and
 | |
| /// the powers each is raised to when forming the final product. Sort them in
 | |
| /// the order of descending power.
 | |
| ///
 | |
| ///      (x*x)          -> [(x, 2)]
 | |
| ///     ((x*x)*x)       -> [(x, 3)]
 | |
| ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
 | |
| ///
 | |
| /// \returns Whether any factors have a power greater than one.
 | |
| static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
 | |
|                                    SmallVectorImpl<Factor> &Factors) {
 | |
|   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
 | |
|   // Compute the sum of powers of simplifiable factors.
 | |
|   unsigned FactorPowerSum = 0;
 | |
|   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
 | |
|     Value *Op = Ops[Idx-1].Op;
 | |
| 
 | |
|     // Count the number of occurrences of this value.
 | |
|     unsigned Count = 1;
 | |
|     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
 | |
|       ++Count;
 | |
|     // Track for simplification all factors which occur 2 or more times.
 | |
|     if (Count > 1)
 | |
|       FactorPowerSum += Count;
 | |
|   }
 | |
| 
 | |
|   // We can only simplify factors if the sum of the powers of our simplifiable
 | |
|   // factors is 4 or higher. When that is the case, we will *always* have
 | |
|   // a simplification. This is an important invariant to prevent cyclicly
 | |
|   // trying to simplify already minimal formations.
 | |
|   if (FactorPowerSum < 4)
 | |
|     return false;
 | |
| 
 | |
|   // Now gather the simplifiable factors, removing them from Ops.
 | |
|   FactorPowerSum = 0;
 | |
|   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
 | |
|     Value *Op = Ops[Idx-1].Op;
 | |
| 
 | |
|     // Count the number of occurrences of this value.
 | |
|     unsigned Count = 1;
 | |
|     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
 | |
|       ++Count;
 | |
|     if (Count == 1)
 | |
|       continue;
 | |
|     // Move an even number of occurrences to Factors.
 | |
|     Count &= ~1U;
 | |
|     Idx -= Count;
 | |
|     FactorPowerSum += Count;
 | |
|     Factors.push_back(Factor(Op, Count));
 | |
|     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
 | |
|   }
 | |
| 
 | |
|   // None of the adjustments above should have reduced the sum of factor powers
 | |
|   // below our mininum of '4'.
 | |
|   assert(FactorPowerSum >= 4);
 | |
| 
 | |
|   std::stable_sort(Factors.begin(), Factors.end(),
 | |
|                    [](const Factor &LHS, const Factor &RHS) {
 | |
|     return LHS.Power > RHS.Power;
 | |
|   });
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Build a tree of multiplies, computing the product of Ops.
 | |
| static Value *buildMultiplyTree(IRBuilder<> &Builder,
 | |
|                                 SmallVectorImpl<Value*> &Ops) {
 | |
|   if (Ops.size() == 1)
 | |
|     return Ops.back();
 | |
| 
 | |
|   Value *LHS = Ops.pop_back_val();
 | |
|   do {
 | |
|     if (LHS->getType()->isIntOrIntVectorTy())
 | |
|       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
 | |
|     else
 | |
|       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
 | |
|   } while (!Ops.empty());
 | |
| 
 | |
|   return LHS;
 | |
| }
 | |
| 
 | |
| /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
 | |
| ///
 | |
| /// Given a vector of values raised to various powers, where no two values are
 | |
| /// equal and the powers are sorted in decreasing order, compute the minimal
 | |
| /// DAG of multiplies to compute the final product, and return that product
 | |
| /// value.
 | |
| Value *
 | |
| ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
 | |
|                                          SmallVectorImpl<Factor> &Factors) {
 | |
|   assert(Factors[0].Power);
 | |
|   SmallVector<Value *, 4> OuterProduct;
 | |
|   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
 | |
|        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
 | |
|     if (Factors[Idx].Power != Factors[LastIdx].Power) {
 | |
|       LastIdx = Idx;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // We want to multiply across all the factors with the same power so that
 | |
|     // we can raise them to that power as a single entity. Build a mini tree
 | |
|     // for that.
 | |
|     SmallVector<Value *, 4> InnerProduct;
 | |
|     InnerProduct.push_back(Factors[LastIdx].Base);
 | |
|     do {
 | |
|       InnerProduct.push_back(Factors[Idx].Base);
 | |
|       ++Idx;
 | |
|     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
 | |
| 
 | |
|     // Reset the base value of the first factor to the new expression tree.
 | |
|     // We'll remove all the factors with the same power in a second pass.
 | |
|     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
 | |
|     if (Instruction *MI = dyn_cast<Instruction>(M))
 | |
|       RedoInsts.insert(MI);
 | |
| 
 | |
|     LastIdx = Idx;
 | |
|   }
 | |
|   // Unique factors with equal powers -- we've folded them into the first one's
 | |
|   // base.
 | |
|   Factors.erase(std::unique(Factors.begin(), Factors.end(),
 | |
|                             [](const Factor &LHS, const Factor &RHS) {
 | |
|                               return LHS.Power == RHS.Power;
 | |
|                             }),
 | |
|                 Factors.end());
 | |
| 
 | |
|   // Iteratively collect the base of each factor with an add power into the
 | |
|   // outer product, and halve each power in preparation for squaring the
 | |
|   // expression.
 | |
|   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
 | |
|     if (Factors[Idx].Power & 1)
 | |
|       OuterProduct.push_back(Factors[Idx].Base);
 | |
|     Factors[Idx].Power >>= 1;
 | |
|   }
 | |
|   if (Factors[0].Power) {
 | |
|     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
 | |
|     OuterProduct.push_back(SquareRoot);
 | |
|     OuterProduct.push_back(SquareRoot);
 | |
|   }
 | |
|   if (OuterProduct.size() == 1)
 | |
|     return OuterProduct.front();
 | |
| 
 | |
|   Value *V = buildMultiplyTree(Builder, OuterProduct);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
 | |
|                                     SmallVectorImpl<ValueEntry> &Ops) {
 | |
|   // We can only optimize the multiplies when there is a chain of more than
 | |
|   // three, such that a balanced tree might require fewer total multiplies.
 | |
|   if (Ops.size() < 4)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Try to turn linear trees of multiplies without other uses of the
 | |
|   // intermediate stages into minimal multiply DAGs with perfect sub-expression
 | |
|   // re-use.
 | |
|   SmallVector<Factor, 4> Factors;
 | |
|   if (!collectMultiplyFactors(Ops, Factors))
 | |
|     return nullptr; // All distinct factors, so nothing left for us to do.
 | |
| 
 | |
|   IRBuilder<> Builder(I);
 | |
|   // The reassociate transformation for FP operations is performed only
 | |
|   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
 | |
|   // to the newly generated operations.
 | |
|   if (auto FPI = dyn_cast<FPMathOperator>(I))
 | |
|     Builder.setFastMathFlags(FPI->getFastMathFlags());
 | |
| 
 | |
|   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
 | |
|   if (Ops.empty())
 | |
|     return V;
 | |
| 
 | |
|   ValueEntry NewEntry = ValueEntry(getRank(V), V);
 | |
|   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
 | |
|                                            SmallVectorImpl<ValueEntry> &Ops) {
 | |
|   // Now that we have the linearized expression tree, try to optimize it.
 | |
|   // Start by folding any constants that we found.
 | |
|   Constant *Cst = nullptr;
 | |
|   unsigned Opcode = I->getOpcode();
 | |
|   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
 | |
|     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
 | |
|     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
 | |
|   }
 | |
|   // If there was nothing but constants then we are done.
 | |
|   if (Ops.empty())
 | |
|     return Cst;
 | |
| 
 | |
|   // Put the combined constant back at the end of the operand list, except if
 | |
|   // there is no point.  For example, an add of 0 gets dropped here, while a
 | |
|   // multiplication by zero turns the whole expression into zero.
 | |
|   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
 | |
|     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
 | |
|       return Cst;
 | |
|     Ops.push_back(ValueEntry(0, Cst));
 | |
|   }
 | |
| 
 | |
|   if (Ops.size() == 1) return Ops[0].Op;
 | |
| 
 | |
|   // Handle destructive annihilation due to identities between elements in the
 | |
|   // argument list here.
 | |
|   unsigned NumOps = Ops.size();
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
 | |
|       return Result;
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Xor:
 | |
|     if (Value *Result = OptimizeXor(I, Ops))
 | |
|       return Result;
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Add:
 | |
|   case Instruction::FAdd:
 | |
|     if (Value *Result = OptimizeAdd(I, Ops))
 | |
|       return Result;
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::FMul:
 | |
|     if (Value *Result = OptimizeMul(I, Ops))
 | |
|       return Result;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Ops.size() != NumOps)
 | |
|     return OptimizeExpression(I, Ops);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Remove dead instructions and if any operands are trivially dead add them to
 | |
| // Insts so they will be removed as well.
 | |
| void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
 | |
|                                                 OrderedSet &Insts) {
 | |
|   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
 | |
|   SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
 | |
|   ValueRankMap.erase(I);
 | |
|   Insts.remove(I);
 | |
|   RedoInsts.remove(I);
 | |
|   I->eraseFromParent();
 | |
|   for (auto Op : Ops)
 | |
|     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
 | |
|       if (OpInst->use_empty())
 | |
|         Insts.insert(OpInst);
 | |
| }
 | |
| 
 | |
| /// Zap the given instruction, adding interesting operands to the work list.
 | |
| void ReassociatePass::EraseInst(Instruction *I) {
 | |
|   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
 | |
|   LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
 | |
| 
 | |
|   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
 | |
|   // Erase the dead instruction.
 | |
|   ValueRankMap.erase(I);
 | |
|   RedoInsts.remove(I);
 | |
|   I->eraseFromParent();
 | |
|   // Optimize its operands.
 | |
|   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
 | |
|       // If this is a node in an expression tree, climb to the expression root
 | |
|       // and add that since that's where optimization actually happens.
 | |
|       unsigned Opcode = Op->getOpcode();
 | |
|       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
 | |
|              Visited.insert(Op).second)
 | |
|         Op = Op->user_back();
 | |
| 
 | |
|       // The instruction we're going to push may be coming from a
 | |
|       // dead block, and Reassociate skips the processing of unreachable
 | |
|       // blocks because it's a waste of time and also because it can
 | |
|       // lead to infinite loop due to LLVM's non-standard definition
 | |
|       // of dominance.
 | |
|       if (ValueRankMap.find(Op) != ValueRankMap.end())
 | |
|         RedoInsts.insert(Op);
 | |
|     }
 | |
| 
 | |
|   MadeChange = true;
 | |
| }
 | |
| 
 | |
| // Canonicalize expressions of the following form:
 | |
| //  x + (-Constant * y) -> x - (Constant * y)
 | |
| //  x - (-Constant * y) -> x + (Constant * y)
 | |
| Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
 | |
|   if (!I->hasOneUse() || I->getType()->isVectorTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Must be a fmul or fdiv instruction.
 | |
|   unsigned Opcode = I->getOpcode();
 | |
|   if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
 | |
|     return nullptr;
 | |
| 
 | |
|   auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
 | |
|   auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
 | |
| 
 | |
|   // Both operands are constant, let it get constant folded away.
 | |
|   if (C0 && C1)
 | |
|     return nullptr;
 | |
| 
 | |
|   ConstantFP *CF = C0 ? C0 : C1;
 | |
| 
 | |
|   // Must have one constant operand.
 | |
|   if (!CF)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Must be a negative ConstantFP.
 | |
|   if (!CF->isNegative())
 | |
|     return nullptr;
 | |
| 
 | |
|   // User must be a binary operator with one or more uses.
 | |
|   Instruction *User = I->user_back();
 | |
|   if (!isa<BinaryOperator>(User) || User->use_empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned UserOpcode = User->getOpcode();
 | |
|   if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Subtraction is not commutative. Explicitly, the following transform is
 | |
|   // not valid: (-Constant * y) - x  -> x + (Constant * y)
 | |
|   if (!User->isCommutative() && User->getOperand(1) != I)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
 | |
|   // resulting subtract will be broken up later.  This can get us into an
 | |
|   // infinite loop during reassociation.
 | |
|   if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Change the sign of the constant.
 | |
|   APFloat Val = CF->getValueAPF();
 | |
|   Val.changeSign();
 | |
|   I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
 | |
| 
 | |
|   // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
 | |
|   // ((-Const*y) + x) -> (x + (-Const*y)).
 | |
|   if (User->getOperand(0) == I && User->isCommutative())
 | |
|     cast<BinaryOperator>(User)->swapOperands();
 | |
| 
 | |
|   Value *Op0 = User->getOperand(0);
 | |
|   Value *Op1 = User->getOperand(1);
 | |
|   BinaryOperator *NI;
 | |
|   switch (UserOpcode) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected Opcode!");
 | |
|   case Instruction::FAdd:
 | |
|     NI = BinaryOperator::CreateFSub(Op0, Op1);
 | |
|     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
 | |
|     break;
 | |
|   case Instruction::FSub:
 | |
|     NI = BinaryOperator::CreateFAdd(Op0, Op1);
 | |
|     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   NI->insertBefore(User);
 | |
|   NI->setName(User->getName());
 | |
|   User->replaceAllUsesWith(NI);
 | |
|   NI->setDebugLoc(I->getDebugLoc());
 | |
|   RedoInsts.insert(I);
 | |
|   MadeChange = true;
 | |
|   return NI;
 | |
| }
 | |
| 
 | |
| /// Inspect and optimize the given instruction. Note that erasing
 | |
| /// instructions is not allowed.
 | |
| void ReassociatePass::OptimizeInst(Instruction *I) {
 | |
|   // Only consider operations that we understand.
 | |
|   if (!isa<BinaryOperator>(I))
 | |
|     return;
 | |
| 
 | |
|   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
 | |
|     // If an operand of this shift is a reassociable multiply, or if the shift
 | |
|     // is used by a reassociable multiply or add, turn into a multiply.
 | |
|     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
 | |
|         (I->hasOneUse() &&
 | |
|          (isReassociableOp(I->user_back(), Instruction::Mul) ||
 | |
|           isReassociableOp(I->user_back(), Instruction::Add)))) {
 | |
|       Instruction *NI = ConvertShiftToMul(I);
 | |
|       RedoInsts.insert(I);
 | |
|       MadeChange = true;
 | |
|       I = NI;
 | |
|     }
 | |
| 
 | |
|   // Canonicalize negative constants out of expressions.
 | |
|   if (Instruction *Res = canonicalizeNegConstExpr(I))
 | |
|     I = Res;
 | |
| 
 | |
|   // Commute binary operators, to canonicalize the order of their operands.
 | |
|   // This can potentially expose more CSE opportunities, and makes writing other
 | |
|   // transformations simpler.
 | |
|   if (I->isCommutative())
 | |
|     canonicalizeOperands(I);
 | |
| 
 | |
|   // Don't optimize floating-point instructions unless they are 'fast'.
 | |
|   if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
 | |
|     return;
 | |
| 
 | |
|   // Do not reassociate boolean (i1) expressions.  We want to preserve the
 | |
|   // original order of evaluation for short-circuited comparisons that
 | |
|   // SimplifyCFG has folded to AND/OR expressions.  If the expression
 | |
|   // is not further optimized, it is likely to be transformed back to a
 | |
|   // short-circuited form for code gen, and the source order may have been
 | |
|   // optimized for the most likely conditions.
 | |
|   if (I->getType()->isIntegerTy(1))
 | |
|     return;
 | |
| 
 | |
|   // If this is a subtract instruction which is not already in negate form,
 | |
|   // see if we can convert it to X+-Y.
 | |
|   if (I->getOpcode() == Instruction::Sub) {
 | |
|     if (ShouldBreakUpSubtract(I)) {
 | |
|       Instruction *NI = BreakUpSubtract(I, RedoInsts);
 | |
|       RedoInsts.insert(I);
 | |
|       MadeChange = true;
 | |
|       I = NI;
 | |
|     } else if (match(I, m_Neg(m_Value()))) {
 | |
|       // Otherwise, this is a negation.  See if the operand is a multiply tree
 | |
|       // and if this is not an inner node of a multiply tree.
 | |
|       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
 | |
|           (!I->hasOneUse() ||
 | |
|            !isReassociableOp(I->user_back(), Instruction::Mul))) {
 | |
|         Instruction *NI = LowerNegateToMultiply(I);
 | |
|         // If the negate was simplified, revisit the users to see if we can
 | |
|         // reassociate further.
 | |
|         for (User *U : NI->users()) {
 | |
|           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
 | |
|             RedoInsts.insert(Tmp);
 | |
|         }
 | |
|         RedoInsts.insert(I);
 | |
|         MadeChange = true;
 | |
|         I = NI;
 | |
|       }
 | |
|     }
 | |
|   } else if (I->getOpcode() == Instruction::FSub) {
 | |
|     if (ShouldBreakUpSubtract(I)) {
 | |
|       Instruction *NI = BreakUpSubtract(I, RedoInsts);
 | |
|       RedoInsts.insert(I);
 | |
|       MadeChange = true;
 | |
|       I = NI;
 | |
|     } else if (match(I, m_FNeg(m_Value()))) {
 | |
|       // Otherwise, this is a negation.  See if the operand is a multiply tree
 | |
|       // and if this is not an inner node of a multiply tree.
 | |
|       if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
 | |
|           (!I->hasOneUse() ||
 | |
|            !isReassociableOp(I->user_back(), Instruction::FMul))) {
 | |
|         // If the negate was simplified, revisit the users to see if we can
 | |
|         // reassociate further.
 | |
|         Instruction *NI = LowerNegateToMultiply(I);
 | |
|         for (User *U : NI->users()) {
 | |
|           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
 | |
|             RedoInsts.insert(Tmp);
 | |
|         }
 | |
|         RedoInsts.insert(I);
 | |
|         MadeChange = true;
 | |
|         I = NI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this instruction is an associative binary operator, process it.
 | |
|   if (!I->isAssociative()) return;
 | |
|   BinaryOperator *BO = cast<BinaryOperator>(I);
 | |
| 
 | |
|   // If this is an interior node of a reassociable tree, ignore it until we
 | |
|   // get to the root of the tree, to avoid N^2 analysis.
 | |
|   unsigned Opcode = BO->getOpcode();
 | |
|   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
 | |
|     // During the initial run we will get to the root of the tree.
 | |
|     // But if we get here while we are redoing instructions, there is no
 | |
|     // guarantee that the root will be visited. So Redo later
 | |
|     if (BO->user_back() != BO &&
 | |
|         BO->getParent() == BO->user_back()->getParent())
 | |
|       RedoInsts.insert(BO->user_back());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If this is an add tree that is used by a sub instruction, ignore it
 | |
|   // until we process the subtract.
 | |
|   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
 | |
|       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
 | |
|     return;
 | |
|   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
 | |
|       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
 | |
|     return;
 | |
| 
 | |
|   ReassociateExpression(BO);
 | |
| }
 | |
| 
 | |
| void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
 | |
|   // First, walk the expression tree, linearizing the tree, collecting the
 | |
|   // operand information.
 | |
|   SmallVector<RepeatedValue, 8> Tree;
 | |
|   MadeChange |= LinearizeExprTree(I, Tree);
 | |
|   SmallVector<ValueEntry, 8> Ops;
 | |
|   Ops.reserve(Tree.size());
 | |
|   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
 | |
|     RepeatedValue E = Tree[i];
 | |
|     Ops.append(E.second.getZExtValue(),
 | |
|                ValueEntry(getRank(E.first), E.first));
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
 | |
| 
 | |
|   // Now that we have linearized the tree to a list and have gathered all of
 | |
|   // the operands and their ranks, sort the operands by their rank.  Use a
 | |
|   // stable_sort so that values with equal ranks will have their relative
 | |
|   // positions maintained (and so the compiler is deterministic).  Note that
 | |
|   // this sorts so that the highest ranking values end up at the beginning of
 | |
|   // the vector.
 | |
|   std::stable_sort(Ops.begin(), Ops.end());
 | |
| 
 | |
|   // Now that we have the expression tree in a convenient
 | |
|   // sorted form, optimize it globally if possible.
 | |
|   if (Value *V = OptimizeExpression(I, Ops)) {
 | |
|     if (V == I)
 | |
|       // Self-referential expression in unreachable code.
 | |
|       return;
 | |
|     // This expression tree simplified to something that isn't a tree,
 | |
|     // eliminate it.
 | |
|     LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
 | |
|     I->replaceAllUsesWith(V);
 | |
|     if (Instruction *VI = dyn_cast<Instruction>(V))
 | |
|       if (I->getDebugLoc())
 | |
|         VI->setDebugLoc(I->getDebugLoc());
 | |
|     RedoInsts.insert(I);
 | |
|     ++NumAnnihil;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We want to sink immediates as deeply as possible except in the case where
 | |
|   // this is a multiply tree used only by an add, and the immediate is a -1.
 | |
|   // In this case we reassociate to put the negation on the outside so that we
 | |
|   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
 | |
|   if (I->hasOneUse()) {
 | |
|     if (I->getOpcode() == Instruction::Mul &&
 | |
|         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
 | |
|         isa<ConstantInt>(Ops.back().Op) &&
 | |
|         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
 | |
|       ValueEntry Tmp = Ops.pop_back_val();
 | |
|       Ops.insert(Ops.begin(), Tmp);
 | |
|     } else if (I->getOpcode() == Instruction::FMul &&
 | |
|                cast<Instruction>(I->user_back())->getOpcode() ==
 | |
|                    Instruction::FAdd &&
 | |
|                isa<ConstantFP>(Ops.back().Op) &&
 | |
|                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
 | |
|       ValueEntry Tmp = Ops.pop_back_val();
 | |
|       Ops.insert(Ops.begin(), Tmp);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
 | |
| 
 | |
|   if (Ops.size() == 1) {
 | |
|     if (Ops[0].Op == I)
 | |
|       // Self-referential expression in unreachable code.
 | |
|       return;
 | |
| 
 | |
|     // This expression tree simplified to something that isn't a tree,
 | |
|     // eliminate it.
 | |
|     I->replaceAllUsesWith(Ops[0].Op);
 | |
|     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
 | |
|       OI->setDebugLoc(I->getDebugLoc());
 | |
|     RedoInsts.insert(I);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
 | |
|     // Find the pair with the highest count in the pairmap and move it to the
 | |
|     // back of the list so that it can later be CSE'd.
 | |
|     // example:
 | |
|     //   a*b*c*d*e
 | |
|     // if c*e is the most "popular" pair, we can express this as
 | |
|     //   (((c*e)*d)*b)*a
 | |
|     unsigned Max = 1;
 | |
|     unsigned BestRank = 0;
 | |
|     std::pair<unsigned, unsigned> BestPair;
 | |
|     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
 | |
|     for (unsigned i = 0; i < Ops.size() - 1; ++i)
 | |
|       for (unsigned j = i + 1; j < Ops.size(); ++j) {
 | |
|         unsigned Score = 0;
 | |
|         Value *Op0 = Ops[i].Op;
 | |
|         Value *Op1 = Ops[j].Op;
 | |
|         if (std::less<Value *>()(Op1, Op0))
 | |
|           std::swap(Op0, Op1);
 | |
|         auto it = PairMap[Idx].find({Op0, Op1});
 | |
|         if (it != PairMap[Idx].end())
 | |
|           Score += it->second;
 | |
| 
 | |
|         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
 | |
|         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
 | |
|           BestPair = {i, j};
 | |
|           Max = Score;
 | |
|           BestRank = MaxRank;
 | |
|         }
 | |
|       }
 | |
|     if (Max > 1) {
 | |
|       auto Op0 = Ops[BestPair.first];
 | |
|       auto Op1 = Ops[BestPair.second];
 | |
|       Ops.erase(&Ops[BestPair.second]);
 | |
|       Ops.erase(&Ops[BestPair.first]);
 | |
|       Ops.push_back(Op0);
 | |
|       Ops.push_back(Op1);
 | |
|     }
 | |
|   }
 | |
|   // Now that we ordered and optimized the expressions, splat them back into
 | |
|   // the expression tree, removing any unneeded nodes.
 | |
|   RewriteExprTree(I, Ops);
 | |
| }
 | |
| 
 | |
| void
 | |
| ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
 | |
|   // Make a "pairmap" of how often each operand pair occurs.
 | |
|   for (BasicBlock *BI : RPOT) {
 | |
|     for (Instruction &I : *BI) {
 | |
|       if (!I.isAssociative())
 | |
|         continue;
 | |
| 
 | |
|       // Ignore nodes that aren't at the root of trees.
 | |
|       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
 | |
|         continue;
 | |
| 
 | |
|       // Collect all operands in a single reassociable expression.
 | |
|       // Since Reassociate has already been run once, we can assume things
 | |
|       // are already canonical according to Reassociation's regime.
 | |
|       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
 | |
|       SmallVector<Value *, 8> Ops;
 | |
|       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
 | |
|         Value *Op = Worklist.pop_back_val();
 | |
|         Instruction *OpI = dyn_cast<Instruction>(Op);
 | |
|         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
 | |
|           Ops.push_back(Op);
 | |
|           continue;
 | |
|         }
 | |
|         // Be paranoid about self-referencing expressions in unreachable code.
 | |
|         if (OpI->getOperand(0) != OpI)
 | |
|           Worklist.push_back(OpI->getOperand(0));
 | |
|         if (OpI->getOperand(1) != OpI)
 | |
|           Worklist.push_back(OpI->getOperand(1));
 | |
|       }
 | |
|       // Skip extremely long expressions.
 | |
|       if (Ops.size() > GlobalReassociateLimit)
 | |
|         continue;
 | |
| 
 | |
|       // Add all pairwise combinations of operands to the pair map.
 | |
|       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
 | |
|       SmallSet<std::pair<Value *, Value*>, 32> Visited;
 | |
|       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
 | |
|         for (unsigned j = i + 1; j < Ops.size(); ++j) {
 | |
|           // Canonicalize operand orderings.
 | |
|           Value *Op0 = Ops[i];
 | |
|           Value *Op1 = Ops[j];
 | |
|           if (std::less<Value *>()(Op1, Op0))
 | |
|             std::swap(Op0, Op1);
 | |
|           if (!Visited.insert({Op0, Op1}).second)
 | |
|             continue;
 | |
|           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, 1});
 | |
|           if (!res.second)
 | |
|             ++res.first->second;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
 | |
|   // Get the functions basic blocks in Reverse Post Order. This order is used by
 | |
|   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
 | |
|   // blocks (it has been seen that the analysis in this pass could hang when
 | |
|   // analysing dead basic blocks).
 | |
|   ReversePostOrderTraversal<Function *> RPOT(&F);
 | |
| 
 | |
|   // Calculate the rank map for F.
 | |
|   BuildRankMap(F, RPOT);
 | |
| 
 | |
|   // Build the pair map before running reassociate.
 | |
|   // Technically this would be more accurate if we did it after one round
 | |
|   // of reassociation, but in practice it doesn't seem to help much on
 | |
|   // real-world code, so don't waste the compile time running reassociate
 | |
|   // twice.
 | |
|   // If a user wants, they could expicitly run reassociate twice in their
 | |
|   // pass pipeline for further potential gains.
 | |
|   // It might also be possible to update the pair map during runtime, but the
 | |
|   // overhead of that may be large if there's many reassociable chains.
 | |
|   BuildPairMap(RPOT);
 | |
| 
 | |
|   MadeChange = false;
 | |
| 
 | |
|   // Traverse the same blocks that were analysed by BuildRankMap.
 | |
|   for (BasicBlock *BI : RPOT) {
 | |
|     assert(RankMap.count(&*BI) && "BB should be ranked.");
 | |
|     // Optimize every instruction in the basic block.
 | |
|     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
 | |
|       if (isInstructionTriviallyDead(&*II)) {
 | |
|         EraseInst(&*II++);
 | |
|       } else {
 | |
|         OptimizeInst(&*II);
 | |
|         assert(II->getParent() == &*BI && "Moved to a different block!");
 | |
|         ++II;
 | |
|       }
 | |
| 
 | |
|     // Make a copy of all the instructions to be redone so we can remove dead
 | |
|     // instructions.
 | |
|     OrderedSet ToRedo(RedoInsts);
 | |
|     // Iterate over all instructions to be reevaluated and remove trivially dead
 | |
|     // instructions. If any operand of the trivially dead instruction becomes
 | |
|     // dead mark it for deletion as well. Continue this process until all
 | |
|     // trivially dead instructions have been removed.
 | |
|     while (!ToRedo.empty()) {
 | |
|       Instruction *I = ToRedo.pop_back_val();
 | |
|       if (isInstructionTriviallyDead(I)) {
 | |
|         RecursivelyEraseDeadInsts(I, ToRedo);
 | |
|         MadeChange = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now that we have removed dead instructions, we can reoptimize the
 | |
|     // remaining instructions.
 | |
|     while (!RedoInsts.empty()) {
 | |
|       Instruction *I = RedoInsts.front();
 | |
|       RedoInsts.erase(RedoInsts.begin());
 | |
|       if (isInstructionTriviallyDead(I))
 | |
|         EraseInst(I);
 | |
|       else
 | |
|         OptimizeInst(I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We are done with the rank map and pair map.
 | |
|   RankMap.clear();
 | |
|   ValueRankMap.clear();
 | |
|   for (auto &Entry : PairMap)
 | |
|     Entry.clear();
 | |
| 
 | |
|   if (MadeChange) {
 | |
|     PreservedAnalyses PA;
 | |
|     PA.preserveSet<CFGAnalyses>();
 | |
|     PA.preserve<GlobalsAA>();
 | |
|     return PA;
 | |
|   }
 | |
| 
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class ReassociateLegacyPass : public FunctionPass {
 | |
|     ReassociatePass Impl;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
| 
 | |
|     ReassociateLegacyPass() : FunctionPass(ID) {
 | |
|       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) override {
 | |
|       if (skipFunction(F))
 | |
|         return false;
 | |
| 
 | |
|       FunctionAnalysisManager DummyFAM;
 | |
|       auto PA = Impl.run(F, DummyFAM);
 | |
|       return !PA.areAllPreserved();
 | |
|     }
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addPreserved<GlobalsAAWrapperPass>();
 | |
|     }
 | |
|   };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char ReassociateLegacyPass::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
 | |
|                 "Reassociate expressions", false, false)
 | |
| 
 | |
| // Public interface to the Reassociate pass
 | |
| FunctionPass *llvm::createReassociatePass() {
 | |
|   return new ReassociateLegacyPass();
 | |
| }
 |