forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			2827 lines
		
	
	
		
			112 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2827 lines
		
	
	
		
			112 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Rewrite call/invoke instructions so as to make potential relocations
 | |
| // performed by the garbage collector explicit in the IR.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
 | |
| 
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/DomTreeUpdater.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Statepoint.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <set>
 | |
| #include <string>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| #define DEBUG_TYPE "rewrite-statepoints-for-gc"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| // Print the liveset found at the insert location
 | |
| static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
 | |
|                                   cl::init(false));
 | |
| static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
 | |
|                                       cl::init(false));
 | |
| 
 | |
| // Print out the base pointers for debugging
 | |
| static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
 | |
|                                        cl::init(false));
 | |
| 
 | |
| // Cost threshold measuring when it is profitable to rematerialize value instead
 | |
| // of relocating it
 | |
| static cl::opt<unsigned>
 | |
| RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
 | |
|                            cl::init(6));
 | |
| 
 | |
| #ifdef EXPENSIVE_CHECKS
 | |
| static bool ClobberNonLive = true;
 | |
| #else
 | |
| static bool ClobberNonLive = false;
 | |
| #endif
 | |
| 
 | |
| static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
 | |
|                                                   cl::location(ClobberNonLive),
 | |
|                                                   cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
 | |
|                                    cl::Hidden, cl::init(true));
 | |
| 
 | |
| /// The IR fed into RewriteStatepointsForGC may have had attributes and
 | |
| /// metadata implying dereferenceability that are no longer valid/correct after
 | |
| /// RewriteStatepointsForGC has run. This is because semantically, after
 | |
| /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
 | |
| /// heap. stripNonValidData (conservatively) restores
 | |
| /// correctness by erasing all attributes in the module that externally imply
 | |
| /// dereferenceability. Similar reasoning also applies to the noalias
 | |
| /// attributes and metadata. gc.statepoint can touch the entire heap including
 | |
| /// noalias objects.
 | |
| /// Apart from attributes and metadata, we also remove instructions that imply
 | |
| /// constant physical memory: llvm.invariant.start.
 | |
| static void stripNonValidData(Module &M);
 | |
| 
 | |
| static bool shouldRewriteStatepointsIn(Function &F);
 | |
| 
 | |
| PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
 | |
|                                                ModuleAnalysisManager &AM) {
 | |
|   bool Changed = false;
 | |
|   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
 | |
|   for (Function &F : M) {
 | |
|     // Nothing to do for declarations.
 | |
|     if (F.isDeclaration() || F.empty())
 | |
|       continue;
 | |
| 
 | |
|     // Policy choice says not to rewrite - the most common reason is that we're
 | |
|     // compiling code without a GCStrategy.
 | |
|     if (!shouldRewriteStatepointsIn(F))
 | |
|       continue;
 | |
| 
 | |
|     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
 | |
|     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
 | |
|     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
 | |
|     Changed |= runOnFunction(F, DT, TTI, TLI);
 | |
|   }
 | |
|   if (!Changed)
 | |
|     return PreservedAnalyses::all();
 | |
| 
 | |
|   // stripNonValidData asserts that shouldRewriteStatepointsIn
 | |
|   // returns true for at least one function in the module.  Since at least
 | |
|   // one function changed, we know that the precondition is satisfied.
 | |
|   stripNonValidData(M);
 | |
| 
 | |
|   PreservedAnalyses PA;
 | |
|   PA.preserve<TargetIRAnalysis>();
 | |
|   PA.preserve<TargetLibraryAnalysis>();
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class RewriteStatepointsForGCLegacyPass : public ModulePass {
 | |
|   RewriteStatepointsForGC Impl;
 | |
| 
 | |
| public:
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
| 
 | |
|   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
 | |
|     initializeRewriteStatepointsForGCLegacyPassPass(
 | |
|         *PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnModule(Module &M) override {
 | |
|     bool Changed = false;
 | |
|     const TargetLibraryInfo &TLI =
 | |
|         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | |
|     for (Function &F : M) {
 | |
|       // Nothing to do for declarations.
 | |
|       if (F.isDeclaration() || F.empty())
 | |
|         continue;
 | |
| 
 | |
|       // Policy choice says not to rewrite - the most common reason is that
 | |
|       // we're compiling code without a GCStrategy.
 | |
|       if (!shouldRewriteStatepointsIn(F))
 | |
|         continue;
 | |
| 
 | |
|       TargetTransformInfo &TTI =
 | |
|           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
|       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
 | |
| 
 | |
|       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
 | |
|     }
 | |
| 
 | |
|     if (!Changed)
 | |
|       return false;
 | |
| 
 | |
|     // stripNonValidData asserts that shouldRewriteStatepointsIn
 | |
|     // returns true for at least one function in the module.  Since at least
 | |
|     // one function changed, we know that the precondition is satisfied.
 | |
|     stripNonValidData(M);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     // We add and rewrite a bunch of instructions, but don't really do much
 | |
|     // else.  We could in theory preserve a lot more analyses here.
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|     AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char RewriteStatepointsForGCLegacyPass::ID = 0;
 | |
| 
 | |
| ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
 | |
|   return new RewriteStatepointsForGCLegacyPass();
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
 | |
|                       "rewrite-statepoints-for-gc",
 | |
|                       "Make relocations explicit at statepoints", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
 | |
|                     "rewrite-statepoints-for-gc",
 | |
|                     "Make relocations explicit at statepoints", false, false)
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct GCPtrLivenessData {
 | |
|   /// Values defined in this block.
 | |
|   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
 | |
| 
 | |
|   /// Values used in this block (and thus live); does not included values
 | |
|   /// killed within this block.
 | |
|   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
 | |
| 
 | |
|   /// Values live into this basic block (i.e. used by any
 | |
|   /// instruction in this basic block or ones reachable from here)
 | |
|   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
 | |
| 
 | |
|   /// Values live out of this basic block (i.e. live into
 | |
|   /// any successor block)
 | |
|   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
 | |
| };
 | |
| 
 | |
| // The type of the internal cache used inside the findBasePointers family
 | |
| // of functions.  From the callers perspective, this is an opaque type and
 | |
| // should not be inspected.
 | |
| //
 | |
| // In the actual implementation this caches two relations:
 | |
| // - The base relation itself (i.e. this pointer is based on that one)
 | |
| // - The base defining value relation (i.e. before base_phi insertion)
 | |
| // Generally, after the execution of a full findBasePointer call, only the
 | |
| // base relation will remain.  Internally, we add a mixture of the two
 | |
| // types, then update all the second type to the first type
 | |
| using DefiningValueMapTy = MapVector<Value *, Value *>;
 | |
| using StatepointLiveSetTy = SetVector<Value *>;
 | |
| using RematerializedValueMapTy =
 | |
|     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
 | |
| 
 | |
| struct PartiallyConstructedSafepointRecord {
 | |
|   /// The set of values known to be live across this safepoint
 | |
|   StatepointLiveSetTy LiveSet;
 | |
| 
 | |
|   /// Mapping from live pointers to a base-defining-value
 | |
|   MapVector<Value *, Value *> PointerToBase;
 | |
| 
 | |
|   /// The *new* gc.statepoint instruction itself.  This produces the token
 | |
|   /// that normal path gc.relocates and the gc.result are tied to.
 | |
|   Instruction *StatepointToken;
 | |
| 
 | |
|   /// Instruction to which exceptional gc relocates are attached
 | |
|   /// Makes it easier to iterate through them during relocationViaAlloca.
 | |
|   Instruction *UnwindToken;
 | |
| 
 | |
|   /// Record live values we are rematerialized instead of relocating.
 | |
|   /// They are not included into 'LiveSet' field.
 | |
|   /// Maps rematerialized copy to it's original value.
 | |
|   RematerializedValueMapTy RematerializedValues;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
 | |
|   Optional<OperandBundleUse> DeoptBundle =
 | |
|       CS.getOperandBundle(LLVMContext::OB_deopt);
 | |
| 
 | |
|   if (!DeoptBundle.hasValue()) {
 | |
|     assert(AllowStatepointWithNoDeoptInfo &&
 | |
|            "Found non-leaf call without deopt info!");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   return DeoptBundle.getValue().Inputs;
 | |
| }
 | |
| 
 | |
| /// Compute the live-in set for every basic block in the function
 | |
| static void computeLiveInValues(DominatorTree &DT, Function &F,
 | |
|                                 GCPtrLivenessData &Data);
 | |
| 
 | |
| /// Given results from the dataflow liveness computation, find the set of live
 | |
| /// Values at a particular instruction.
 | |
| static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
 | |
|                               StatepointLiveSetTy &out);
 | |
| 
 | |
| // TODO: Once we can get to the GCStrategy, this becomes
 | |
| // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
 | |
| 
 | |
| static bool isGCPointerType(Type *T) {
 | |
|   if (auto *PT = dyn_cast<PointerType>(T))
 | |
|     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
 | |
|     // GC managed heap.  We know that a pointer into this heap needs to be
 | |
|     // updated and that no other pointer does.
 | |
|     return PT->getAddressSpace() == 1;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Return true if this type is one which a) is a gc pointer or contains a GC
 | |
| // pointer and b) is of a type this code expects to encounter as a live value.
 | |
| // (The insertion code will assert that a type which matches (a) and not (b)
 | |
| // is not encountered.)
 | |
| static bool isHandledGCPointerType(Type *T) {
 | |
|   // We fully support gc pointers
 | |
|   if (isGCPointerType(T))
 | |
|     return true;
 | |
|   // We partially support vectors of gc pointers. The code will assert if it
 | |
|   // can't handle something.
 | |
|   if (auto VT = dyn_cast<VectorType>(T))
 | |
|     if (isGCPointerType(VT->getElementType()))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// Returns true if this type contains a gc pointer whether we know how to
 | |
| /// handle that type or not.
 | |
| static bool containsGCPtrType(Type *Ty) {
 | |
|   if (isGCPointerType(Ty))
 | |
|     return true;
 | |
|   if (VectorType *VT = dyn_cast<VectorType>(Ty))
 | |
|     return isGCPointerType(VT->getScalarType());
 | |
|   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
 | |
|     return containsGCPtrType(AT->getElementType());
 | |
|   if (StructType *ST = dyn_cast<StructType>(Ty))
 | |
|     return llvm::any_of(ST->subtypes(), containsGCPtrType);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Returns true if this is a type which a) is a gc pointer or contains a GC
 | |
| // pointer and b) is of a type which the code doesn't expect (i.e. first class
 | |
| // aggregates).  Used to trip assertions.
 | |
| static bool isUnhandledGCPointerType(Type *Ty) {
 | |
|   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // Return the name of the value suffixed with the provided value, or if the
 | |
| // value didn't have a name, the default value specified.
 | |
| static std::string suffixed_name_or(Value *V, StringRef Suffix,
 | |
|                                     StringRef DefaultName) {
 | |
|   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
 | |
| }
 | |
| 
 | |
| // Conservatively identifies any definitions which might be live at the
 | |
| // given instruction. The  analysis is performed immediately before the
 | |
| // given instruction. Values defined by that instruction are not considered
 | |
| // live.  Values used by that instruction are considered live.
 | |
| static void
 | |
| analyzeParsePointLiveness(DominatorTree &DT,
 | |
|                           GCPtrLivenessData &OriginalLivenessData, CallSite CS,
 | |
|                           PartiallyConstructedSafepointRecord &Result) {
 | |
|   Instruction *Inst = CS.getInstruction();
 | |
| 
 | |
|   StatepointLiveSetTy LiveSet;
 | |
|   findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet);
 | |
| 
 | |
|   if (PrintLiveSet) {
 | |
|     dbgs() << "Live Variables:\n";
 | |
|     for (Value *V : LiveSet)
 | |
|       dbgs() << " " << V->getName() << " " << *V << "\n";
 | |
|   }
 | |
|   if (PrintLiveSetSize) {
 | |
|     dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
 | |
|     dbgs() << "Number live values: " << LiveSet.size() << "\n";
 | |
|   }
 | |
|   Result.LiveSet = LiveSet;
 | |
| }
 | |
| 
 | |
| static bool isKnownBaseResult(Value *V);
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// A single base defining value - An immediate base defining value for an
 | |
| /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
 | |
| /// For instructions which have multiple pointer [vector] inputs or that
 | |
| /// transition between vector and scalar types, there is no immediate base
 | |
| /// defining value.  The 'base defining value' for 'Def' is the transitive
 | |
| /// closure of this relation stopping at the first instruction which has no
 | |
| /// immediate base defining value.  The b.d.v. might itself be a base pointer,
 | |
| /// but it can also be an arbitrary derived pointer.
 | |
| struct BaseDefiningValueResult {
 | |
|   /// Contains the value which is the base defining value.
 | |
|   Value * const BDV;
 | |
| 
 | |
|   /// True if the base defining value is also known to be an actual base
 | |
|   /// pointer.
 | |
|   const bool IsKnownBase;
 | |
| 
 | |
|   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
 | |
|     : BDV(BDV), IsKnownBase(IsKnownBase) {
 | |
| #ifndef NDEBUG
 | |
|     // Check consistency between new and old means of checking whether a BDV is
 | |
|     // a base.
 | |
|     bool MustBeBase = isKnownBaseResult(BDV);
 | |
|     assert(!MustBeBase || MustBeBase == IsKnownBase);
 | |
| #endif
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static BaseDefiningValueResult findBaseDefiningValue(Value *I);
 | |
| 
 | |
| /// Return a base defining value for the 'Index' element of the given vector
 | |
| /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
 | |
| /// 'I'.  As an optimization, this method will try to determine when the
 | |
| /// element is known to already be a base pointer.  If this can be established,
 | |
| /// the second value in the returned pair will be true.  Note that either a
 | |
| /// vector or a pointer typed value can be returned.  For the former, the
 | |
| /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
 | |
| /// If the later, the return pointer is a BDV (or possibly a base) for the
 | |
| /// particular element in 'I'.
 | |
| static BaseDefiningValueResult
 | |
| findBaseDefiningValueOfVector(Value *I) {
 | |
|   // Each case parallels findBaseDefiningValue below, see that code for
 | |
|   // detailed motivation.
 | |
| 
 | |
|   if (isa<Argument>(I))
 | |
|     // An incoming argument to the function is a base pointer
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   if (isa<Constant>(I))
 | |
|     // Base of constant vector consists only of constant null pointers.
 | |
|     // For reasoning see similar case inside 'findBaseDefiningValue' function.
 | |
|     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
 | |
|                                    true);
 | |
| 
 | |
|   if (isa<LoadInst>(I))
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   if (isa<InsertElementInst>(I))
 | |
|     // We don't know whether this vector contains entirely base pointers or
 | |
|     // not.  To be conservatively correct, we treat it as a BDV and will
 | |
|     // duplicate code as needed to construct a parallel vector of bases.
 | |
|     return BaseDefiningValueResult(I, false);
 | |
| 
 | |
|   if (isa<ShuffleVectorInst>(I))
 | |
|     // We don't know whether this vector contains entirely base pointers or
 | |
|     // not.  To be conservatively correct, we treat it as a BDV and will
 | |
|     // duplicate code as needed to construct a parallel vector of bases.
 | |
|     // TODO: There a number of local optimizations which could be applied here
 | |
|     // for particular sufflevector patterns.
 | |
|     return BaseDefiningValueResult(I, false);
 | |
| 
 | |
|   // The behavior of getelementptr instructions is the same for vector and
 | |
|   // non-vector data types.
 | |
|   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
 | |
|     return findBaseDefiningValue(GEP->getPointerOperand());
 | |
| 
 | |
|   // If the pointer comes through a bitcast of a vector of pointers to
 | |
|   // a vector of another type of pointer, then look through the bitcast
 | |
|   if (auto *BC = dyn_cast<BitCastInst>(I))
 | |
|     return findBaseDefiningValue(BC->getOperand(0));
 | |
| 
 | |
|   // We assume that functions in the source language only return base
 | |
|   // pointers.  This should probably be generalized via attributes to support
 | |
|   // both source language and internal functions.
 | |
|   if (isa<CallInst>(I) || isa<InvokeInst>(I))
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   // A PHI or Select is a base defining value.  The outer findBasePointer
 | |
|   // algorithm is responsible for constructing a base value for this BDV.
 | |
|   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
 | |
|          "unknown vector instruction - no base found for vector element");
 | |
|   return BaseDefiningValueResult(I, false);
 | |
| }
 | |
| 
 | |
| /// Helper function for findBasePointer - Will return a value which either a)
 | |
| /// defines the base pointer for the input, b) blocks the simple search
 | |
| /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
 | |
| /// from pointer to vector type or back.
 | |
| static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
 | |
|   assert(I->getType()->isPtrOrPtrVectorTy() &&
 | |
|          "Illegal to ask for the base pointer of a non-pointer type");
 | |
| 
 | |
|   if (I->getType()->isVectorTy())
 | |
|     return findBaseDefiningValueOfVector(I);
 | |
| 
 | |
|   if (isa<Argument>(I))
 | |
|     // An incoming argument to the function is a base pointer
 | |
|     // We should have never reached here if this argument isn't an gc value
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   if (isa<Constant>(I)) {
 | |
|     // We assume that objects with a constant base (e.g. a global) can't move
 | |
|     // and don't need to be reported to the collector because they are always
 | |
|     // live. Besides global references, all kinds of constants (e.g. undef,
 | |
|     // constant expressions, null pointers) can be introduced by the inliner or
 | |
|     // the optimizer, especially on dynamically dead paths.
 | |
|     // Here we treat all of them as having single null base. By doing this we
 | |
|     // trying to avoid problems reporting various conflicts in a form of
 | |
|     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
 | |
|     // See constant.ll file for relevant test cases.
 | |
| 
 | |
|     return BaseDefiningValueResult(
 | |
|         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
 | |
|   }
 | |
| 
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | |
|     Value *Def = CI->stripPointerCasts();
 | |
|     // If stripping pointer casts changes the address space there is an
 | |
|     // addrspacecast in between.
 | |
|     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
 | |
|                cast<PointerType>(CI->getType())->getAddressSpace() &&
 | |
|            "unsupported addrspacecast");
 | |
|     // If we find a cast instruction here, it means we've found a cast which is
 | |
|     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
 | |
|     // handle int->ptr conversion.
 | |
|     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
 | |
|     return findBaseDefiningValue(Def);
 | |
|   }
 | |
| 
 | |
|   if (isa<LoadInst>(I))
 | |
|     // The value loaded is an gc base itself
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
 | |
|     // The base of this GEP is the base
 | |
|     return findBaseDefiningValue(GEP->getPointerOperand());
 | |
| 
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default:
 | |
|       // fall through to general call handling
 | |
|       break;
 | |
|     case Intrinsic::experimental_gc_statepoint:
 | |
|       llvm_unreachable("statepoints don't produce pointers");
 | |
|     case Intrinsic::experimental_gc_relocate:
 | |
|       // Rerunning safepoint insertion after safepoints are already
 | |
|       // inserted is not supported.  It could probably be made to work,
 | |
|       // but why are you doing this?  There's no good reason.
 | |
|       llvm_unreachable("repeat safepoint insertion is not supported");
 | |
|     case Intrinsic::gcroot:
 | |
|       // Currently, this mechanism hasn't been extended to work with gcroot.
 | |
|       // There's no reason it couldn't be, but I haven't thought about the
 | |
|       // implications much.
 | |
|       llvm_unreachable(
 | |
|           "interaction with the gcroot mechanism is not supported");
 | |
|     }
 | |
|   }
 | |
|   // We assume that functions in the source language only return base
 | |
|   // pointers.  This should probably be generalized via attributes to support
 | |
|   // both source language and internal functions.
 | |
|   if (isa<CallInst>(I) || isa<InvokeInst>(I))
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   // TODO: I have absolutely no idea how to implement this part yet.  It's not
 | |
|   // necessarily hard, I just haven't really looked at it yet.
 | |
|   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
 | |
| 
 | |
|   if (isa<AtomicCmpXchgInst>(I))
 | |
|     // A CAS is effectively a atomic store and load combined under a
 | |
|     // predicate.  From the perspective of base pointers, we just treat it
 | |
|     // like a load.
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
 | |
|                                    "binary ops which don't apply to pointers");
 | |
| 
 | |
|   // The aggregate ops.  Aggregates can either be in the heap or on the
 | |
|   // stack, but in either case, this is simply a field load.  As a result,
 | |
|   // this is a defining definition of the base just like a load is.
 | |
|   if (isa<ExtractValueInst>(I))
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   // We should never see an insert vector since that would require we be
 | |
|   // tracing back a struct value not a pointer value.
 | |
|   assert(!isa<InsertValueInst>(I) &&
 | |
|          "Base pointer for a struct is meaningless");
 | |
| 
 | |
|   // An extractelement produces a base result exactly when it's input does.
 | |
|   // We may need to insert a parallel instruction to extract the appropriate
 | |
|   // element out of the base vector corresponding to the input. Given this,
 | |
|   // it's analogous to the phi and select case even though it's not a merge.
 | |
|   if (isa<ExtractElementInst>(I))
 | |
|     // Note: There a lot of obvious peephole cases here.  This are deliberately
 | |
|     // handled after the main base pointer inference algorithm to make writing
 | |
|     // test cases to exercise that code easier.
 | |
|     return BaseDefiningValueResult(I, false);
 | |
| 
 | |
|   // The last two cases here don't return a base pointer.  Instead, they
 | |
|   // return a value which dynamically selects from among several base
 | |
|   // derived pointers (each with it's own base potentially).  It's the job of
 | |
|   // the caller to resolve these.
 | |
|   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
 | |
|          "missing instruction case in findBaseDefiningValing");
 | |
|   return BaseDefiningValueResult(I, false);
 | |
| }
 | |
| 
 | |
| /// Returns the base defining value for this value.
 | |
| static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
 | |
|   Value *&Cached = Cache[I];
 | |
|   if (!Cached) {
 | |
|     Cached = findBaseDefiningValue(I).BDV;
 | |
|     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
 | |
|                       << Cached->getName() << "\n");
 | |
|   }
 | |
|   assert(Cache[I] != nullptr);
 | |
|   return Cached;
 | |
| }
 | |
| 
 | |
| /// Return a base pointer for this value if known.  Otherwise, return it's
 | |
| /// base defining value.
 | |
| static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
 | |
|   Value *Def = findBaseDefiningValueCached(I, Cache);
 | |
|   auto Found = Cache.find(Def);
 | |
|   if (Found != Cache.end()) {
 | |
|     // Either a base-of relation, or a self reference.  Caller must check.
 | |
|     return Found->second;
 | |
|   }
 | |
|   // Only a BDV available
 | |
|   return Def;
 | |
| }
 | |
| 
 | |
| /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
 | |
| /// is it known to be a base pointer?  Or do we need to continue searching.
 | |
| static bool isKnownBaseResult(Value *V) {
 | |
|   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
 | |
|       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
 | |
|       !isa<ShuffleVectorInst>(V)) {
 | |
|     // no recursion possible
 | |
|     return true;
 | |
|   }
 | |
|   if (isa<Instruction>(V) &&
 | |
|       cast<Instruction>(V)->getMetadata("is_base_value")) {
 | |
|     // This is a previously inserted base phi or select.  We know
 | |
|     // that this is a base value.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // We need to keep searching
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Models the state of a single base defining value in the findBasePointer
 | |
| /// algorithm for determining where a new instruction is needed to propagate
 | |
| /// the base of this BDV.
 | |
| class BDVState {
 | |
| public:
 | |
|   enum Status { Unknown, Base, Conflict };
 | |
| 
 | |
|   BDVState() : BaseValue(nullptr) {}
 | |
| 
 | |
|   explicit BDVState(Status Status, Value *BaseValue = nullptr)
 | |
|       : Status(Status), BaseValue(BaseValue) {
 | |
|     assert(Status != Base || BaseValue);
 | |
|   }
 | |
| 
 | |
|   explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
 | |
| 
 | |
|   Status getStatus() const { return Status; }
 | |
|   Value *getBaseValue() const { return BaseValue; }
 | |
| 
 | |
|   bool isBase() const { return getStatus() == Base; }
 | |
|   bool isUnknown() const { return getStatus() == Unknown; }
 | |
|   bool isConflict() const { return getStatus() == Conflict; }
 | |
| 
 | |
|   bool operator==(const BDVState &Other) const {
 | |
|     return BaseValue == Other.BaseValue && Status == Other.Status;
 | |
|   }
 | |
| 
 | |
|   bool operator!=(const BDVState &other) const { return !(*this == other); }
 | |
| 
 | |
|   LLVM_DUMP_METHOD
 | |
|   void dump() const {
 | |
|     print(dbgs());
 | |
|     dbgs() << '\n';
 | |
|   }
 | |
| 
 | |
|   void print(raw_ostream &OS) const {
 | |
|     switch (getStatus()) {
 | |
|     case Unknown:
 | |
|       OS << "U";
 | |
|       break;
 | |
|     case Base:
 | |
|       OS << "B";
 | |
|       break;
 | |
|     case Conflict:
 | |
|       OS << "C";
 | |
|       break;
 | |
|     }
 | |
|     OS << " (" << getBaseValue() << " - "
 | |
|        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   Status Status = Unknown;
 | |
|   AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
 | |
|   State.print(OS);
 | |
|   return OS;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
 | |
|   switch (LHS.getStatus()) {
 | |
|   case BDVState::Unknown:
 | |
|     return RHS;
 | |
| 
 | |
|   case BDVState::Base:
 | |
|     assert(LHS.getBaseValue() && "can't be null");
 | |
|     if (RHS.isUnknown())
 | |
|       return LHS;
 | |
| 
 | |
|     if (RHS.isBase()) {
 | |
|       if (LHS.getBaseValue() == RHS.getBaseValue()) {
 | |
|         assert(LHS == RHS && "equality broken!");
 | |
|         return LHS;
 | |
|       }
 | |
|       return BDVState(BDVState::Conflict);
 | |
|     }
 | |
|     assert(RHS.isConflict() && "only three states!");
 | |
|     return BDVState(BDVState::Conflict);
 | |
| 
 | |
|   case BDVState::Conflict:
 | |
|     return LHS;
 | |
|   }
 | |
|   llvm_unreachable("only three states!");
 | |
| }
 | |
| 
 | |
| // Values of type BDVState form a lattice, and this function implements the meet
 | |
| // operation.
 | |
| static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
 | |
|   BDVState Result = meetBDVStateImpl(LHS, RHS);
 | |
|   assert(Result == meetBDVStateImpl(RHS, LHS) &&
 | |
|          "Math is wrong: meet does not commute!");
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// For a given value or instruction, figure out what base ptr its derived from.
 | |
| /// For gc objects, this is simply itself.  On success, returns a value which is
 | |
| /// the base pointer.  (This is reliable and can be used for relocation.)  On
 | |
| /// failure, returns nullptr.
 | |
| static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
 | |
|   Value *Def = findBaseOrBDV(I, Cache);
 | |
| 
 | |
|   if (isKnownBaseResult(Def))
 | |
|     return Def;
 | |
| 
 | |
|   // Here's the rough algorithm:
 | |
|   // - For every SSA value, construct a mapping to either an actual base
 | |
|   //   pointer or a PHI which obscures the base pointer.
 | |
|   // - Construct a mapping from PHI to unknown TOP state.  Use an
 | |
|   //   optimistic algorithm to propagate base pointer information.  Lattice
 | |
|   //   looks like:
 | |
|   //   UNKNOWN
 | |
|   //   b1 b2 b3 b4
 | |
|   //   CONFLICT
 | |
|   //   When algorithm terminates, all PHIs will either have a single concrete
 | |
|   //   base or be in a conflict state.
 | |
|   // - For every conflict, insert a dummy PHI node without arguments.  Add
 | |
|   //   these to the base[Instruction] = BasePtr mapping.  For every
 | |
|   //   non-conflict, add the actual base.
 | |
|   //  - For every conflict, add arguments for the base[a] of each input
 | |
|   //   arguments.
 | |
|   //
 | |
|   // Note: A simpler form of this would be to add the conflict form of all
 | |
|   // PHIs without running the optimistic algorithm.  This would be
 | |
|   // analogous to pessimistic data flow and would likely lead to an
 | |
|   // overall worse solution.
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   auto isExpectedBDVType = [](Value *BDV) {
 | |
|     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
 | |
|            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
 | |
|            isa<ShuffleVectorInst>(BDV);
 | |
|   };
 | |
| #endif
 | |
| 
 | |
|   // Once populated, will contain a mapping from each potentially non-base BDV
 | |
|   // to a lattice value (described above) which corresponds to that BDV.
 | |
|   // We use the order of insertion (DFS over the def/use graph) to provide a
 | |
|   // stable deterministic ordering for visiting DenseMaps (which are unordered)
 | |
|   // below.  This is important for deterministic compilation.
 | |
|   MapVector<Value *, BDVState> States;
 | |
| 
 | |
|   // Recursively fill in all base defining values reachable from the initial
 | |
|   // one for which we don't already know a definite base value for
 | |
|   /* scope */ {
 | |
|     SmallVector<Value*, 16> Worklist;
 | |
|     Worklist.push_back(Def);
 | |
|     States.insert({Def, BDVState()});
 | |
|     while (!Worklist.empty()) {
 | |
|       Value *Current = Worklist.pop_back_val();
 | |
|       assert(!isKnownBaseResult(Current) && "why did it get added?");
 | |
| 
 | |
|       auto visitIncomingValue = [&](Value *InVal) {
 | |
|         Value *Base = findBaseOrBDV(InVal, Cache);
 | |
|         if (isKnownBaseResult(Base))
 | |
|           // Known bases won't need new instructions introduced and can be
 | |
|           // ignored safely
 | |
|           return;
 | |
|         assert(isExpectedBDVType(Base) && "the only non-base values "
 | |
|                "we see should be base defining values");
 | |
|         if (States.insert(std::make_pair(Base, BDVState())).second)
 | |
|           Worklist.push_back(Base);
 | |
|       };
 | |
|       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
 | |
|         for (Value *InVal : PN->incoming_values())
 | |
|           visitIncomingValue(InVal);
 | |
|       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
 | |
|         visitIncomingValue(SI->getTrueValue());
 | |
|         visitIncomingValue(SI->getFalseValue());
 | |
|       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
 | |
|         visitIncomingValue(EE->getVectorOperand());
 | |
|       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
 | |
|         visitIncomingValue(IE->getOperand(0)); // vector operand
 | |
|         visitIncomingValue(IE->getOperand(1)); // scalar operand
 | |
|       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
 | |
|         visitIncomingValue(SV->getOperand(0));
 | |
|         visitIncomingValue(SV->getOperand(1));
 | |
|       }
 | |
|       else {
 | |
|         llvm_unreachable("Unimplemented instruction case");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   LLVM_DEBUG(dbgs() << "States after initialization:\n");
 | |
|   for (auto Pair : States) {
 | |
|     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Return a phi state for a base defining value.  We'll generate a new
 | |
|   // base state for known bases and expect to find a cached state otherwise.
 | |
|   auto getStateForBDV = [&](Value *baseValue) {
 | |
|     if (isKnownBaseResult(baseValue))
 | |
|       return BDVState(baseValue);
 | |
|     auto I = States.find(baseValue);
 | |
|     assert(I != States.end() && "lookup failed!");
 | |
|     return I->second;
 | |
|   };
 | |
| 
 | |
|   bool Progress = true;
 | |
|   while (Progress) {
 | |
| #ifndef NDEBUG
 | |
|     const size_t OldSize = States.size();
 | |
| #endif
 | |
|     Progress = false;
 | |
|     // We're only changing values in this loop, thus safe to keep iterators.
 | |
|     // Since this is computing a fixed point, the order of visit does not
 | |
|     // effect the result.  TODO: We could use a worklist here and make this run
 | |
|     // much faster.
 | |
|     for (auto Pair : States) {
 | |
|       Value *BDV = Pair.first;
 | |
|       assert(!isKnownBaseResult(BDV) && "why did it get added?");
 | |
| 
 | |
|       // Given an input value for the current instruction, return a BDVState
 | |
|       // instance which represents the BDV of that value.
 | |
|       auto getStateForInput = [&](Value *V) mutable {
 | |
|         Value *BDV = findBaseOrBDV(V, Cache);
 | |
|         return getStateForBDV(BDV);
 | |
|       };
 | |
| 
 | |
|       BDVState NewState;
 | |
|       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
 | |
|         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
 | |
|         NewState =
 | |
|             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
 | |
|       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
 | |
|         for (Value *Val : PN->incoming_values())
 | |
|           NewState = meetBDVState(NewState, getStateForInput(Val));
 | |
|       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
 | |
|         // The 'meet' for an extractelement is slightly trivial, but it's still
 | |
|         // useful in that it drives us to conflict if our input is.
 | |
|         NewState =
 | |
|             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
 | |
|       } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
 | |
|         // Given there's a inherent type mismatch between the operands, will
 | |
|         // *always* produce Conflict.
 | |
|         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
 | |
|         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
 | |
|       } else {
 | |
|         // The only instance this does not return a Conflict is when both the
 | |
|         // vector operands are the same vector.
 | |
|         auto *SV = cast<ShuffleVectorInst>(BDV);
 | |
|         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
 | |
|         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
 | |
|       }
 | |
| 
 | |
|       BDVState OldState = States[BDV];
 | |
|       if (OldState != NewState) {
 | |
|         Progress = true;
 | |
|         States[BDV] = NewState;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     assert(OldSize == States.size() &&
 | |
|            "fixed point shouldn't be adding any new nodes to state");
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
 | |
|   for (auto Pair : States) {
 | |
|     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Insert Phis for all conflicts
 | |
|   // TODO: adjust naming patterns to avoid this order of iteration dependency
 | |
|   for (auto Pair : States) {
 | |
|     Instruction *I = cast<Instruction>(Pair.first);
 | |
|     BDVState State = Pair.second;
 | |
|     assert(!isKnownBaseResult(I) && "why did it get added?");
 | |
|     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
 | |
| 
 | |
|     // extractelement instructions are a bit special in that we may need to
 | |
|     // insert an extract even when we know an exact base for the instruction.
 | |
|     // The problem is that we need to convert from a vector base to a scalar
 | |
|     // base for the particular indice we're interested in.
 | |
|     if (State.isBase() && isa<ExtractElementInst>(I) &&
 | |
|         isa<VectorType>(State.getBaseValue()->getType())) {
 | |
|       auto *EE = cast<ExtractElementInst>(I);
 | |
|       // TODO: In many cases, the new instruction is just EE itself.  We should
 | |
|       // exploit this, but can't do it here since it would break the invariant
 | |
|       // about the BDV not being known to be a base.
 | |
|       auto *BaseInst = ExtractElementInst::Create(
 | |
|           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
 | |
|       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
 | |
|       States[I] = BDVState(BDVState::Base, BaseInst);
 | |
|     }
 | |
| 
 | |
|     // Since we're joining a vector and scalar base, they can never be the
 | |
|     // same.  As a result, we should always see insert element having reached
 | |
|     // the conflict state.
 | |
|     assert(!isa<InsertElementInst>(I) || State.isConflict());
 | |
| 
 | |
|     if (!State.isConflict())
 | |
|       continue;
 | |
| 
 | |
|     /// Create and insert a new instruction which will represent the base of
 | |
|     /// the given instruction 'I'.
 | |
|     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
 | |
|       if (isa<PHINode>(I)) {
 | |
|         BasicBlock *BB = I->getParent();
 | |
|         int NumPreds = pred_size(BB);
 | |
|         assert(NumPreds > 0 && "how did we reach here");
 | |
|         std::string Name = suffixed_name_or(I, ".base", "base_phi");
 | |
|         return PHINode::Create(I->getType(), NumPreds, Name, I);
 | |
|       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
 | |
|         // The undef will be replaced later
 | |
|         UndefValue *Undef = UndefValue::get(SI->getType());
 | |
|         std::string Name = suffixed_name_or(I, ".base", "base_select");
 | |
|         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
 | |
|       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
 | |
|         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
 | |
|         std::string Name = suffixed_name_or(I, ".base", "base_ee");
 | |
|         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
 | |
|                                           EE);
 | |
|       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
 | |
|         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
 | |
|         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
 | |
|         std::string Name = suffixed_name_or(I, ".base", "base_ie");
 | |
|         return InsertElementInst::Create(VecUndef, ScalarUndef,
 | |
|                                          IE->getOperand(2), Name, IE);
 | |
|       } else {
 | |
|         auto *SV = cast<ShuffleVectorInst>(I);
 | |
|         UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
 | |
|         std::string Name = suffixed_name_or(I, ".base", "base_sv");
 | |
|         return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2),
 | |
|                                      Name, SV);
 | |
|       }
 | |
|     };
 | |
|     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
 | |
|     // Add metadata marking this as a base value
 | |
|     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
 | |
|     States[I] = BDVState(BDVState::Conflict, BaseInst);
 | |
|   }
 | |
| 
 | |
|   // Returns a instruction which produces the base pointer for a given
 | |
|   // instruction.  The instruction is assumed to be an input to one of the BDVs
 | |
|   // seen in the inference algorithm above.  As such, we must either already
 | |
|   // know it's base defining value is a base, or have inserted a new
 | |
|   // instruction to propagate the base of it's BDV and have entered that newly
 | |
|   // introduced instruction into the state table.  In either case, we are
 | |
|   // assured to be able to determine an instruction which produces it's base
 | |
|   // pointer.
 | |
|   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
 | |
|     Value *BDV = findBaseOrBDV(Input, Cache);
 | |
|     Value *Base = nullptr;
 | |
|     if (isKnownBaseResult(BDV)) {
 | |
|       Base = BDV;
 | |
|     } else {
 | |
|       // Either conflict or base.
 | |
|       assert(States.count(BDV));
 | |
|       Base = States[BDV].getBaseValue();
 | |
|     }
 | |
|     assert(Base && "Can't be null");
 | |
|     // The cast is needed since base traversal may strip away bitcasts
 | |
|     if (Base->getType() != Input->getType() && InsertPt)
 | |
|       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
 | |
|     return Base;
 | |
|   };
 | |
| 
 | |
|   // Fixup all the inputs of the new PHIs.  Visit order needs to be
 | |
|   // deterministic and predictable because we're naming newly created
 | |
|   // instructions.
 | |
|   for (auto Pair : States) {
 | |
|     Instruction *BDV = cast<Instruction>(Pair.first);
 | |
|     BDVState State = Pair.second;
 | |
| 
 | |
|     assert(!isKnownBaseResult(BDV) && "why did it get added?");
 | |
|     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
 | |
|     if (!State.isConflict())
 | |
|       continue;
 | |
| 
 | |
|     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
 | |
|       PHINode *PN = cast<PHINode>(BDV);
 | |
|       unsigned NumPHIValues = PN->getNumIncomingValues();
 | |
|       for (unsigned i = 0; i < NumPHIValues; i++) {
 | |
|         Value *InVal = PN->getIncomingValue(i);
 | |
|         BasicBlock *InBB = PN->getIncomingBlock(i);
 | |
| 
 | |
|         // If we've already seen InBB, add the same incoming value
 | |
|         // we added for it earlier.  The IR verifier requires phi
 | |
|         // nodes with multiple entries from the same basic block
 | |
|         // to have the same incoming value for each of those
 | |
|         // entries.  If we don't do this check here and basephi
 | |
|         // has a different type than base, we'll end up adding two
 | |
|         // bitcasts (and hence two distinct values) as incoming
 | |
|         // values for the same basic block.
 | |
| 
 | |
|         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
 | |
|         if (BlockIndex != -1) {
 | |
|           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
 | |
|           BasePHI->addIncoming(OldBase, InBB);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|           Value *Base = getBaseForInput(InVal, nullptr);
 | |
|           // In essence this assert states: the only way two values
 | |
|           // incoming from the same basic block may be different is by
 | |
|           // being different bitcasts of the same value.  A cleanup
 | |
|           // that remains TODO is changing findBaseOrBDV to return an
 | |
|           // llvm::Value of the correct type (and still remain pure).
 | |
|           // This will remove the need to add bitcasts.
 | |
|           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
 | |
|                  "Sanity -- findBaseOrBDV should be pure!");
 | |
| #endif
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Find the instruction which produces the base for each input.  We may
 | |
|         // need to insert a bitcast in the incoming block.
 | |
|         // TODO: Need to split critical edges if insertion is needed
 | |
|         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
 | |
|         BasePHI->addIncoming(Base, InBB);
 | |
|       }
 | |
|       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
 | |
|     } else if (SelectInst *BaseSI =
 | |
|                    dyn_cast<SelectInst>(State.getBaseValue())) {
 | |
|       SelectInst *SI = cast<SelectInst>(BDV);
 | |
| 
 | |
|       // Find the instruction which produces the base for each input.
 | |
|       // We may need to insert a bitcast.
 | |
|       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
 | |
|       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
 | |
|     } else if (auto *BaseEE =
 | |
|                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
 | |
|       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
 | |
|       // Find the instruction which produces the base for each input.  We may
 | |
|       // need to insert a bitcast.
 | |
|       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
 | |
|     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
 | |
|       auto *BdvIE = cast<InsertElementInst>(BDV);
 | |
|       auto UpdateOperand = [&](int OperandIdx) {
 | |
|         Value *InVal = BdvIE->getOperand(OperandIdx);
 | |
|         Value *Base = getBaseForInput(InVal, BaseIE);
 | |
|         BaseIE->setOperand(OperandIdx, Base);
 | |
|       };
 | |
|       UpdateOperand(0); // vector operand
 | |
|       UpdateOperand(1); // scalar operand
 | |
|     } else {
 | |
|       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
 | |
|       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
 | |
|       auto UpdateOperand = [&](int OperandIdx) {
 | |
|         Value *InVal = BdvSV->getOperand(OperandIdx);
 | |
|         Value *Base = getBaseForInput(InVal, BaseSV);
 | |
|         BaseSV->setOperand(OperandIdx, Base);
 | |
|       };
 | |
|       UpdateOperand(0); // vector operand
 | |
|       UpdateOperand(1); // vector operand
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Cache all of our results so we can cheaply reuse them
 | |
|   // NOTE: This is actually two caches: one of the base defining value
 | |
|   // relation and one of the base pointer relation!  FIXME
 | |
|   for (auto Pair : States) {
 | |
|     auto *BDV = Pair.first;
 | |
|     Value *Base = Pair.second.getBaseValue();
 | |
|     assert(BDV && Base);
 | |
|     assert(!isKnownBaseResult(BDV) && "why did it get added?");
 | |
| 
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "Updating base value cache"
 | |
|                << " for: " << BDV->getName() << " from: "
 | |
|                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
 | |
|                << " to: " << Base->getName() << "\n");
 | |
| 
 | |
|     if (Cache.count(BDV)) {
 | |
|       assert(isKnownBaseResult(Base) &&
 | |
|              "must be something we 'know' is a base pointer");
 | |
|       // Once we transition from the BDV relation being store in the Cache to
 | |
|       // the base relation being stored, it must be stable
 | |
|       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
 | |
|              "base relation should be stable");
 | |
|     }
 | |
|     Cache[BDV] = Base;
 | |
|   }
 | |
|   assert(Cache.count(Def));
 | |
|   return Cache[Def];
 | |
| }
 | |
| 
 | |
| // For a set of live pointers (base and/or derived), identify the base
 | |
| // pointer of the object which they are derived from.  This routine will
 | |
| // mutate the IR graph as needed to make the 'base' pointer live at the
 | |
| // definition site of 'derived'.  This ensures that any use of 'derived' can
 | |
| // also use 'base'.  This may involve the insertion of a number of
 | |
| // additional PHI nodes.
 | |
| //
 | |
| // preconditions: live is a set of pointer type Values
 | |
| //
 | |
| // side effects: may insert PHI nodes into the existing CFG, will preserve
 | |
| // CFG, will not remove or mutate any existing nodes
 | |
| //
 | |
| // post condition: PointerToBase contains one (derived, base) pair for every
 | |
| // pointer in live.  Note that derived can be equal to base if the original
 | |
| // pointer was a base pointer.
 | |
| static void
 | |
| findBasePointers(const StatepointLiveSetTy &live,
 | |
|                  MapVector<Value *, Value *> &PointerToBase,
 | |
|                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
 | |
|   for (Value *ptr : live) {
 | |
|     Value *base = findBasePointer(ptr, DVCache);
 | |
|     assert(base && "failed to find base pointer");
 | |
|     PointerToBase[ptr] = base;
 | |
|     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
 | |
|             DT->dominates(cast<Instruction>(base)->getParent(),
 | |
|                           cast<Instruction>(ptr)->getParent())) &&
 | |
|            "The base we found better dominate the derived pointer");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Find the required based pointers (and adjust the live set) for the given
 | |
| /// parse point.
 | |
| static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
 | |
|                              CallSite CS,
 | |
|                              PartiallyConstructedSafepointRecord &result) {
 | |
|   MapVector<Value *, Value *> PointerToBase;
 | |
|   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
 | |
| 
 | |
|   if (PrintBasePointers) {
 | |
|     errs() << "Base Pairs (w/o Relocation):\n";
 | |
|     for (auto &Pair : PointerToBase) {
 | |
|       errs() << " derived ";
 | |
|       Pair.first->printAsOperand(errs(), false);
 | |
|       errs() << " base ";
 | |
|       Pair.second->printAsOperand(errs(), false);
 | |
|       errs() << "\n";;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   result.PointerToBase = PointerToBase;
 | |
| }
 | |
| 
 | |
| /// Given an updated version of the dataflow liveness results, update the
 | |
| /// liveset and base pointer maps for the call site CS.
 | |
| static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
 | |
|                                   CallSite CS,
 | |
|                                   PartiallyConstructedSafepointRecord &result);
 | |
| 
 | |
| static void recomputeLiveInValues(
 | |
|     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
 | |
|     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
 | |
|   // TODO-PERF: reuse the original liveness, then simply run the dataflow
 | |
|   // again.  The old values are still live and will help it stabilize quickly.
 | |
|   GCPtrLivenessData RevisedLivenessData;
 | |
|   computeLiveInValues(DT, F, RevisedLivenessData);
 | |
|   for (size_t i = 0; i < records.size(); i++) {
 | |
|     struct PartiallyConstructedSafepointRecord &info = records[i];
 | |
|     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // When inserting gc.relocate and gc.result calls, we need to ensure there are
 | |
| // no uses of the original value / return value between the gc.statepoint and
 | |
| // the gc.relocate / gc.result call.  One case which can arise is a phi node
 | |
| // starting one of the successor blocks.  We also need to be able to insert the
 | |
| // gc.relocates only on the path which goes through the statepoint.  We might
 | |
| // need to split an edge to make this possible.
 | |
| static BasicBlock *
 | |
| normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
 | |
|                             DominatorTree &DT) {
 | |
|   BasicBlock *Ret = BB;
 | |
|   if (!BB->getUniquePredecessor())
 | |
|     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
 | |
| 
 | |
|   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
 | |
|   // from it
 | |
|   FoldSingleEntryPHINodes(Ret);
 | |
|   assert(!isa<PHINode>(Ret->begin()) &&
 | |
|          "All PHI nodes should have been removed!");
 | |
| 
 | |
|   // At this point, we can safely insert a gc.relocate or gc.result as the first
 | |
|   // instruction in Ret if needed.
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| // Create new attribute set containing only attributes which can be transferred
 | |
| // from original call to the safepoint.
 | |
| static AttributeList legalizeCallAttributes(AttributeList AL) {
 | |
|   if (AL.isEmpty())
 | |
|     return AL;
 | |
| 
 | |
|   // Remove the readonly, readnone, and statepoint function attributes.
 | |
|   AttrBuilder FnAttrs = AL.getFnAttributes();
 | |
|   FnAttrs.removeAttribute(Attribute::ReadNone);
 | |
|   FnAttrs.removeAttribute(Attribute::ReadOnly);
 | |
|   for (Attribute A : AL.getFnAttributes()) {
 | |
|     if (isStatepointDirectiveAttr(A))
 | |
|       FnAttrs.remove(A);
 | |
|   }
 | |
| 
 | |
|   // Just skip parameter and return attributes for now
 | |
|   LLVMContext &Ctx = AL.getContext();
 | |
|   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
 | |
|                             AttributeSet::get(Ctx, FnAttrs));
 | |
| }
 | |
| 
 | |
| /// Helper function to place all gc relocates necessary for the given
 | |
| /// statepoint.
 | |
| /// Inputs:
 | |
| ///   liveVariables - list of variables to be relocated.
 | |
| ///   liveStart - index of the first live variable.
 | |
| ///   basePtrs - base pointers.
 | |
| ///   statepointToken - statepoint instruction to which relocates should be
 | |
| ///   bound.
 | |
| ///   Builder - Llvm IR builder to be used to construct new calls.
 | |
| static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
 | |
|                               const int LiveStart,
 | |
|                               ArrayRef<Value *> BasePtrs,
 | |
|                               Instruction *StatepointToken,
 | |
|                               IRBuilder<> Builder) {
 | |
|   if (LiveVariables.empty())
 | |
|     return;
 | |
| 
 | |
|   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
 | |
|     auto ValIt = llvm::find(LiveVec, Val);
 | |
|     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
 | |
|     size_t Index = std::distance(LiveVec.begin(), ValIt);
 | |
|     assert(Index < LiveVec.size() && "Bug in std::find?");
 | |
|     return Index;
 | |
|   };
 | |
|   Module *M = StatepointToken->getModule();
 | |
| 
 | |
|   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
 | |
|   // element type is i8 addrspace(1)*). We originally generated unique
 | |
|   // declarations for each pointer type, but this proved problematic because
 | |
|   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
 | |
|   // towards a single unified pointer type anyways, we can just cast everything
 | |
|   // to an i8* of the right address space.  A bitcast is added later to convert
 | |
|   // gc_relocate to the actual value's type.
 | |
|   auto getGCRelocateDecl = [&] (Type *Ty) {
 | |
|     assert(isHandledGCPointerType(Ty));
 | |
|     auto AS = Ty->getScalarType()->getPointerAddressSpace();
 | |
|     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
 | |
|     if (auto *VT = dyn_cast<VectorType>(Ty))
 | |
|       NewTy = VectorType::get(NewTy, VT->getNumElements());
 | |
|     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
 | |
|                                      {NewTy});
 | |
|   };
 | |
| 
 | |
|   // Lazily populated map from input types to the canonicalized form mentioned
 | |
|   // in the comment above.  This should probably be cached somewhere more
 | |
|   // broadly.
 | |
|   DenseMap<Type*, Value*> TypeToDeclMap;
 | |
| 
 | |
|   for (unsigned i = 0; i < LiveVariables.size(); i++) {
 | |
|     // Generate the gc.relocate call and save the result
 | |
|     Value *BaseIdx =
 | |
|       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
 | |
|     Value *LiveIdx = Builder.getInt32(LiveStart + i);
 | |
| 
 | |
|     Type *Ty = LiveVariables[i]->getType();
 | |
|     if (!TypeToDeclMap.count(Ty))
 | |
|       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
 | |
|     Value *GCRelocateDecl = TypeToDeclMap[Ty];
 | |
| 
 | |
|     // only specify a debug name if we can give a useful one
 | |
|     CallInst *Reloc = Builder.CreateCall(
 | |
|         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
 | |
|         suffixed_name_or(LiveVariables[i], ".relocated", ""));
 | |
|     // Trick CodeGen into thinking there are lots of free registers at this
 | |
|     // fake call.
 | |
|     Reloc->setCallingConv(CallingConv::Cold);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
 | |
| /// avoids having to worry about keeping around dangling pointers to Values.
 | |
| class DeferredReplacement {
 | |
|   AssertingVH<Instruction> Old;
 | |
|   AssertingVH<Instruction> New;
 | |
|   bool IsDeoptimize = false;
 | |
| 
 | |
|   DeferredReplacement() = default;
 | |
| 
 | |
| public:
 | |
|   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
 | |
|     assert(Old != New && Old && New &&
 | |
|            "Cannot RAUW equal values or to / from null!");
 | |
| 
 | |
|     DeferredReplacement D;
 | |
|     D.Old = Old;
 | |
|     D.New = New;
 | |
|     return D;
 | |
|   }
 | |
| 
 | |
|   static DeferredReplacement createDelete(Instruction *ToErase) {
 | |
|     DeferredReplacement D;
 | |
|     D.Old = ToErase;
 | |
|     return D;
 | |
|   }
 | |
| 
 | |
|   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
 | |
| #ifndef NDEBUG
 | |
|     auto *F = cast<CallInst>(Old)->getCalledFunction();
 | |
|     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
 | |
|            "Only way to construct a deoptimize deferred replacement");
 | |
| #endif
 | |
|     DeferredReplacement D;
 | |
|     D.Old = Old;
 | |
|     D.IsDeoptimize = true;
 | |
|     return D;
 | |
|   }
 | |
| 
 | |
|   /// Does the task represented by this instance.
 | |
|   void doReplacement() {
 | |
|     Instruction *OldI = Old;
 | |
|     Instruction *NewI = New;
 | |
| 
 | |
|     assert(OldI != NewI && "Disallowed at construction?!");
 | |
|     assert((!IsDeoptimize || !New) &&
 | |
|            "Deoptimize intrinsics are not replaced!");
 | |
| 
 | |
|     Old = nullptr;
 | |
|     New = nullptr;
 | |
| 
 | |
|     if (NewI)
 | |
|       OldI->replaceAllUsesWith(NewI);
 | |
| 
 | |
|     if (IsDeoptimize) {
 | |
|       // Note: we've inserted instructions, so the call to llvm.deoptimize may
 | |
|       // not necessarily be followed by the matching return.
 | |
|       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
 | |
|       new UnreachableInst(RI->getContext(), RI);
 | |
|       RI->eraseFromParent();
 | |
|     }
 | |
| 
 | |
|     OldI->eraseFromParent();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static StringRef getDeoptLowering(CallSite CS) {
 | |
|   const char *DeoptLowering = "deopt-lowering";
 | |
|   if (CS.hasFnAttr(DeoptLowering)) {
 | |
|     // FIXME: CallSite has a *really* confusing interface around attributes
 | |
|     // with values.
 | |
|     const AttributeList &CSAS = CS.getAttributes();
 | |
|     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
 | |
|       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
 | |
|           .getValueAsString();
 | |
|     Function *F = CS.getCalledFunction();
 | |
|     assert(F && F->hasFnAttribute(DeoptLowering));
 | |
|     return F->getFnAttribute(DeoptLowering).getValueAsString();
 | |
|   }
 | |
|   return "live-through";
 | |
| }
 | |
| 
 | |
| static void
 | |
| makeStatepointExplicitImpl(const CallSite CS, /* to replace */
 | |
|                            const SmallVectorImpl<Value *> &BasePtrs,
 | |
|                            const SmallVectorImpl<Value *> &LiveVariables,
 | |
|                            PartiallyConstructedSafepointRecord &Result,
 | |
|                            std::vector<DeferredReplacement> &Replacements) {
 | |
|   assert(BasePtrs.size() == LiveVariables.size());
 | |
| 
 | |
|   // Then go ahead and use the builder do actually do the inserts.  We insert
 | |
|   // immediately before the previous instruction under the assumption that all
 | |
|   // arguments will be available here.  We can't insert afterwards since we may
 | |
|   // be replacing a terminator.
 | |
|   Instruction *InsertBefore = CS.getInstruction();
 | |
|   IRBuilder<> Builder(InsertBefore);
 | |
| 
 | |
|   ArrayRef<Value *> GCArgs(LiveVariables);
 | |
|   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
 | |
|   uint32_t NumPatchBytes = 0;
 | |
|   uint32_t Flags = uint32_t(StatepointFlags::None);
 | |
| 
 | |
|   ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
 | |
|   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
 | |
|   ArrayRef<Use> TransitionArgs;
 | |
|   if (auto TransitionBundle =
 | |
|       CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
 | |
|     Flags |= uint32_t(StatepointFlags::GCTransition);
 | |
|     TransitionArgs = TransitionBundle->Inputs;
 | |
|   }
 | |
| 
 | |
|   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
 | |
|   // with a return value, we lower then as never returning calls to
 | |
|   // __llvm_deoptimize that are followed by unreachable to get better codegen.
 | |
|   bool IsDeoptimize = false;
 | |
| 
 | |
|   StatepointDirectives SD =
 | |
|       parseStatepointDirectivesFromAttrs(CS.getAttributes());
 | |
|   if (SD.NumPatchBytes)
 | |
|     NumPatchBytes = *SD.NumPatchBytes;
 | |
|   if (SD.StatepointID)
 | |
|     StatepointID = *SD.StatepointID;
 | |
| 
 | |
|   // Pass through the requested lowering if any.  The default is live-through.
 | |
|   StringRef DeoptLowering = getDeoptLowering(CS);
 | |
|   if (DeoptLowering.equals("live-in"))
 | |
|     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
 | |
|   else {
 | |
|     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
 | |
|   }
 | |
| 
 | |
|   Value *CallTarget = CS.getCalledValue();
 | |
|   if (Function *F = dyn_cast<Function>(CallTarget)) {
 | |
|     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
 | |
|       // Calls to llvm.experimental.deoptimize are lowered to calls to the
 | |
|       // __llvm_deoptimize symbol.  We want to resolve this now, since the
 | |
|       // verifier does not allow taking the address of an intrinsic function.
 | |
| 
 | |
|       SmallVector<Type *, 8> DomainTy;
 | |
|       for (Value *Arg : CallArgs)
 | |
|         DomainTy.push_back(Arg->getType());
 | |
|       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
 | |
|                                     /* isVarArg = */ false);
 | |
| 
 | |
|       // Note: CallTarget can be a bitcast instruction of a symbol if there are
 | |
|       // calls to @llvm.experimental.deoptimize with different argument types in
 | |
|       // the same module.  This is fine -- we assume the frontend knew what it
 | |
|       // was doing when generating this kind of IR.
 | |
|       CallTarget =
 | |
|           F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
 | |
| 
 | |
|       IsDeoptimize = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create the statepoint given all the arguments
 | |
|   Instruction *Token = nullptr;
 | |
|   if (CS.isCall()) {
 | |
|     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
 | |
|     CallInst *Call = Builder.CreateGCStatepointCall(
 | |
|         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
 | |
|         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
 | |
| 
 | |
|     Call->setTailCallKind(ToReplace->getTailCallKind());
 | |
|     Call->setCallingConv(ToReplace->getCallingConv());
 | |
| 
 | |
|     // Currently we will fail on parameter attributes and on certain
 | |
|     // function attributes.  In case if we can handle this set of attributes -
 | |
|     // set up function attrs directly on statepoint and return attrs later for
 | |
|     // gc_result intrinsic.
 | |
|     Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes()));
 | |
| 
 | |
|     Token = Call;
 | |
| 
 | |
|     // Put the following gc_result and gc_relocate calls immediately after the
 | |
|     // the old call (which we're about to delete)
 | |
|     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
 | |
|     Builder.SetInsertPoint(ToReplace->getNextNode());
 | |
|     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
 | |
|   } else {
 | |
|     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
 | |
| 
 | |
|     // Insert the new invoke into the old block.  We'll remove the old one in a
 | |
|     // moment at which point this will become the new terminator for the
 | |
|     // original block.
 | |
|     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
 | |
|         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
 | |
|         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
 | |
|         GCArgs, "statepoint_token");
 | |
| 
 | |
|     Invoke->setCallingConv(ToReplace->getCallingConv());
 | |
| 
 | |
|     // Currently we will fail on parameter attributes and on certain
 | |
|     // function attributes.  In case if we can handle this set of attributes -
 | |
|     // set up function attrs directly on statepoint and return attrs later for
 | |
|     // gc_result intrinsic.
 | |
|     Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes()));
 | |
| 
 | |
|     Token = Invoke;
 | |
| 
 | |
|     // Generate gc relocates in exceptional path
 | |
|     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
 | |
|     assert(!isa<PHINode>(UnwindBlock->begin()) &&
 | |
|            UnwindBlock->getUniquePredecessor() &&
 | |
|            "can't safely insert in this block!");
 | |
| 
 | |
|     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
 | |
|     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
 | |
| 
 | |
|     // Attach exceptional gc relocates to the landingpad.
 | |
|     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
 | |
|     Result.UnwindToken = ExceptionalToken;
 | |
| 
 | |
|     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
 | |
|     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
 | |
|                       Builder);
 | |
| 
 | |
|     // Generate gc relocates and returns for normal block
 | |
|     BasicBlock *NormalDest = ToReplace->getNormalDest();
 | |
|     assert(!isa<PHINode>(NormalDest->begin()) &&
 | |
|            NormalDest->getUniquePredecessor() &&
 | |
|            "can't safely insert in this block!");
 | |
| 
 | |
|     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
 | |
| 
 | |
|     // gc relocates will be generated later as if it were regular call
 | |
|     // statepoint
 | |
|   }
 | |
|   assert(Token && "Should be set in one of the above branches!");
 | |
| 
 | |
|   if (IsDeoptimize) {
 | |
|     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
 | |
|     // transform the tail-call like structure to a call to a void function
 | |
|     // followed by unreachable to get better codegen.
 | |
|     Replacements.push_back(
 | |
|         DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
 | |
|   } else {
 | |
|     Token->setName("statepoint_token");
 | |
|     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
 | |
|       StringRef Name =
 | |
|           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
 | |
|       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
 | |
|       GCResult->setAttributes(
 | |
|           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
 | |
|                              CS.getAttributes().getRetAttributes()));
 | |
| 
 | |
|       // We cannot RAUW or delete CS.getInstruction() because it could be in the
 | |
|       // live set of some other safepoint, in which case that safepoint's
 | |
|       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
 | |
|       // llvm::Instruction.  Instead, we defer the replacement and deletion to
 | |
|       // after the live sets have been made explicit in the IR, and we no longer
 | |
|       // have raw pointers to worry about.
 | |
|       Replacements.emplace_back(
 | |
|           DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
 | |
|     } else {
 | |
|       Replacements.emplace_back(
 | |
|           DeferredReplacement::createDelete(CS.getInstruction()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Result.StatepointToken = Token;
 | |
| 
 | |
|   // Second, create a gc.relocate for every live variable
 | |
|   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
 | |
|   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
 | |
| }
 | |
| 
 | |
| // Replace an existing gc.statepoint with a new one and a set of gc.relocates
 | |
| // which make the relocations happening at this safepoint explicit.
 | |
| //
 | |
| // WARNING: Does not do any fixup to adjust users of the original live
 | |
| // values.  That's the callers responsibility.
 | |
| static void
 | |
| makeStatepointExplicit(DominatorTree &DT, CallSite CS,
 | |
|                        PartiallyConstructedSafepointRecord &Result,
 | |
|                        std::vector<DeferredReplacement> &Replacements) {
 | |
|   const auto &LiveSet = Result.LiveSet;
 | |
|   const auto &PointerToBase = Result.PointerToBase;
 | |
| 
 | |
|   // Convert to vector for efficient cross referencing.
 | |
|   SmallVector<Value *, 64> BaseVec, LiveVec;
 | |
|   LiveVec.reserve(LiveSet.size());
 | |
|   BaseVec.reserve(LiveSet.size());
 | |
|   for (Value *L : LiveSet) {
 | |
|     LiveVec.push_back(L);
 | |
|     assert(PointerToBase.count(L));
 | |
|     Value *Base = PointerToBase.find(L)->second;
 | |
|     BaseVec.push_back(Base);
 | |
|   }
 | |
|   assert(LiveVec.size() == BaseVec.size());
 | |
| 
 | |
|   // Do the actual rewriting and delete the old statepoint
 | |
|   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
 | |
| }
 | |
| 
 | |
| // Helper function for the relocationViaAlloca.
 | |
| //
 | |
| // It receives iterator to the statepoint gc relocates and emits a store to the
 | |
| // assigned location (via allocaMap) for the each one of them.  It adds the
 | |
| // visited values into the visitedLiveValues set, which we will later use them
 | |
| // for sanity checking.
 | |
| static void
 | |
| insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
 | |
|                        DenseMap<Value *, Value *> &AllocaMap,
 | |
|                        DenseSet<Value *> &VisitedLiveValues) {
 | |
|   for (User *U : GCRelocs) {
 | |
|     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
 | |
|     if (!Relocate)
 | |
|       continue;
 | |
| 
 | |
|     Value *OriginalValue = Relocate->getDerivedPtr();
 | |
|     assert(AllocaMap.count(OriginalValue));
 | |
|     Value *Alloca = AllocaMap[OriginalValue];
 | |
| 
 | |
|     // Emit store into the related alloca
 | |
|     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
 | |
|     // the correct type according to alloca.
 | |
|     assert(Relocate->getNextNode() &&
 | |
|            "Should always have one since it's not a terminator");
 | |
|     IRBuilder<> Builder(Relocate->getNextNode());
 | |
|     Value *CastedRelocatedValue =
 | |
|       Builder.CreateBitCast(Relocate,
 | |
|                             cast<AllocaInst>(Alloca)->getAllocatedType(),
 | |
|                             suffixed_name_or(Relocate, ".casted", ""));
 | |
| 
 | |
|     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
 | |
|     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     VisitedLiveValues.insert(OriginalValue);
 | |
| #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Helper function for the "relocationViaAlloca". Similar to the
 | |
| // "insertRelocationStores" but works for rematerialized values.
 | |
| static void insertRematerializationStores(
 | |
|     const RematerializedValueMapTy &RematerializedValues,
 | |
|     DenseMap<Value *, Value *> &AllocaMap,
 | |
|     DenseSet<Value *> &VisitedLiveValues) {
 | |
|   for (auto RematerializedValuePair: RematerializedValues) {
 | |
|     Instruction *RematerializedValue = RematerializedValuePair.first;
 | |
|     Value *OriginalValue = RematerializedValuePair.second;
 | |
| 
 | |
|     assert(AllocaMap.count(OriginalValue) &&
 | |
|            "Can not find alloca for rematerialized value");
 | |
|     Value *Alloca = AllocaMap[OriginalValue];
 | |
| 
 | |
|     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
 | |
|     Store->insertAfter(RematerializedValue);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     VisitedLiveValues.insert(OriginalValue);
 | |
| #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Do all the relocation update via allocas and mem2reg
 | |
| static void relocationViaAlloca(
 | |
|     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
 | |
|     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
 | |
| #ifndef NDEBUG
 | |
|   // record initial number of (static) allocas; we'll check we have the same
 | |
|   // number when we get done.
 | |
|   int InitialAllocaNum = 0;
 | |
|   for (Instruction &I : F.getEntryBlock())
 | |
|     if (isa<AllocaInst>(I))
 | |
|       InitialAllocaNum++;
 | |
| #endif
 | |
| 
 | |
|   // TODO-PERF: change data structures, reserve
 | |
|   DenseMap<Value *, Value *> AllocaMap;
 | |
|   SmallVector<AllocaInst *, 200> PromotableAllocas;
 | |
|   // Used later to chack that we have enough allocas to store all values
 | |
|   std::size_t NumRematerializedValues = 0;
 | |
|   PromotableAllocas.reserve(Live.size());
 | |
| 
 | |
|   // Emit alloca for "LiveValue" and record it in "allocaMap" and
 | |
|   // "PromotableAllocas"
 | |
|   const DataLayout &DL = F.getParent()->getDataLayout();
 | |
|   auto emitAllocaFor = [&](Value *LiveValue) {
 | |
|     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
 | |
|                                         DL.getAllocaAddrSpace(), "",
 | |
|                                         F.getEntryBlock().getFirstNonPHI());
 | |
|     AllocaMap[LiveValue] = Alloca;
 | |
|     PromotableAllocas.push_back(Alloca);
 | |
|   };
 | |
| 
 | |
|   // Emit alloca for each live gc pointer
 | |
|   for (Value *V : Live)
 | |
|     emitAllocaFor(V);
 | |
| 
 | |
|   // Emit allocas for rematerialized values
 | |
|   for (const auto &Info : Records)
 | |
|     for (auto RematerializedValuePair : Info.RematerializedValues) {
 | |
|       Value *OriginalValue = RematerializedValuePair.second;
 | |
|       if (AllocaMap.count(OriginalValue) != 0)
 | |
|         continue;
 | |
| 
 | |
|       emitAllocaFor(OriginalValue);
 | |
|       ++NumRematerializedValues;
 | |
|     }
 | |
| 
 | |
|   // The next two loops are part of the same conceptual operation.  We need to
 | |
|   // insert a store to the alloca after the original def and at each
 | |
|   // redefinition.  We need to insert a load before each use.  These are split
 | |
|   // into distinct loops for performance reasons.
 | |
| 
 | |
|   // Update gc pointer after each statepoint: either store a relocated value or
 | |
|   // null (if no relocated value was found for this gc pointer and it is not a
 | |
|   // gc_result).  This must happen before we update the statepoint with load of
 | |
|   // alloca otherwise we lose the link between statepoint and old def.
 | |
|   for (const auto &Info : Records) {
 | |
|     Value *Statepoint = Info.StatepointToken;
 | |
| 
 | |
|     // This will be used for consistency check
 | |
|     DenseSet<Value *> VisitedLiveValues;
 | |
| 
 | |
|     // Insert stores for normal statepoint gc relocates
 | |
|     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
 | |
| 
 | |
|     // In case if it was invoke statepoint
 | |
|     // we will insert stores for exceptional path gc relocates.
 | |
|     if (isa<InvokeInst>(Statepoint)) {
 | |
|       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
 | |
|                              VisitedLiveValues);
 | |
|     }
 | |
| 
 | |
|     // Do similar thing with rematerialized values
 | |
|     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
 | |
|                                   VisitedLiveValues);
 | |
| 
 | |
|     if (ClobberNonLive) {
 | |
|       // As a debugging aid, pretend that an unrelocated pointer becomes null at
 | |
|       // the gc.statepoint.  This will turn some subtle GC problems into
 | |
|       // slightly easier to debug SEGVs.  Note that on large IR files with
 | |
|       // lots of gc.statepoints this is extremely costly both memory and time
 | |
|       // wise.
 | |
|       SmallVector<AllocaInst *, 64> ToClobber;
 | |
|       for (auto Pair : AllocaMap) {
 | |
|         Value *Def = Pair.first;
 | |
|         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
 | |
| 
 | |
|         // This value was relocated
 | |
|         if (VisitedLiveValues.count(Def)) {
 | |
|           continue;
 | |
|         }
 | |
|         ToClobber.push_back(Alloca);
 | |
|       }
 | |
| 
 | |
|       auto InsertClobbersAt = [&](Instruction *IP) {
 | |
|         for (auto *AI : ToClobber) {
 | |
|           auto PT = cast<PointerType>(AI->getAllocatedType());
 | |
|           Constant *CPN = ConstantPointerNull::get(PT);
 | |
|           StoreInst *Store = new StoreInst(CPN, AI);
 | |
|           Store->insertBefore(IP);
 | |
|         }
 | |
|       };
 | |
| 
 | |
|       // Insert the clobbering stores.  These may get intermixed with the
 | |
|       // gc.results and gc.relocates, but that's fine.
 | |
|       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
 | |
|         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
 | |
|         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
 | |
|       } else {
 | |
|         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update use with load allocas and add store for gc_relocated.
 | |
|   for (auto Pair : AllocaMap) {
 | |
|     Value *Def = Pair.first;
 | |
|     Value *Alloca = Pair.second;
 | |
| 
 | |
|     // We pre-record the uses of allocas so that we dont have to worry about
 | |
|     // later update that changes the user information..
 | |
| 
 | |
|     SmallVector<Instruction *, 20> Uses;
 | |
|     // PERF: trade a linear scan for repeated reallocation
 | |
|     Uses.reserve(Def->getNumUses());
 | |
|     for (User *U : Def->users()) {
 | |
|       if (!isa<ConstantExpr>(U)) {
 | |
|         // If the def has a ConstantExpr use, then the def is either a
 | |
|         // ConstantExpr use itself or null.  In either case
 | |
|         // (recursively in the first, directly in the second), the oop
 | |
|         // it is ultimately dependent on is null and this particular
 | |
|         // use does not need to be fixed up.
 | |
|         Uses.push_back(cast<Instruction>(U));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     llvm::sort(Uses);
 | |
|     auto Last = std::unique(Uses.begin(), Uses.end());
 | |
|     Uses.erase(Last, Uses.end());
 | |
| 
 | |
|     for (Instruction *Use : Uses) {
 | |
|       if (isa<PHINode>(Use)) {
 | |
|         PHINode *Phi = cast<PHINode>(Use);
 | |
|         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
 | |
|           if (Def == Phi->getIncomingValue(i)) {
 | |
|             LoadInst *Load = new LoadInst(
 | |
|                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
 | |
|             Phi->setIncomingValue(i, Load);
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         LoadInst *Load = new LoadInst(Alloca, "", Use);
 | |
|         Use->replaceUsesOfWith(Def, Load);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Emit store for the initial gc value.  Store must be inserted after load,
 | |
|     // otherwise store will be in alloca's use list and an extra load will be
 | |
|     // inserted before it.
 | |
|     StoreInst *Store = new StoreInst(Def, Alloca);
 | |
|     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
 | |
|       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
 | |
|         // InvokeInst is a terminator so the store need to be inserted into its
 | |
|         // normal destination block.
 | |
|         BasicBlock *NormalDest = Invoke->getNormalDest();
 | |
|         Store->insertBefore(NormalDest->getFirstNonPHI());
 | |
|       } else {
 | |
|         assert(!Inst->isTerminator() &&
 | |
|                "The only terminator that can produce a value is "
 | |
|                "InvokeInst which is handled above.");
 | |
|         Store->insertAfter(Inst);
 | |
|       }
 | |
|     } else {
 | |
|       assert(isa<Argument>(Def));
 | |
|       Store->insertAfter(cast<Instruction>(Alloca));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
 | |
|          "we must have the same allocas with lives");
 | |
|   if (!PromotableAllocas.empty()) {
 | |
|     // Apply mem2reg to promote alloca to SSA
 | |
|     PromoteMemToReg(PromotableAllocas, DT);
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (auto &I : F.getEntryBlock())
 | |
|     if (isa<AllocaInst>(I))
 | |
|       InitialAllocaNum--;
 | |
|   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// Implement a unique function which doesn't require we sort the input
 | |
| /// vector.  Doing so has the effect of changing the output of a couple of
 | |
| /// tests in ways which make them less useful in testing fused safepoints.
 | |
| template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
 | |
|   SmallSet<T, 8> Seen;
 | |
|   Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
 | |
|             Vec.end());
 | |
| }
 | |
| 
 | |
| /// Insert holders so that each Value is obviously live through the entire
 | |
| /// lifetime of the call.
 | |
| static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
 | |
|                                  SmallVectorImpl<CallInst *> &Holders) {
 | |
|   if (Values.empty())
 | |
|     // No values to hold live, might as well not insert the empty holder
 | |
|     return;
 | |
| 
 | |
|   Module *M = CS.getInstruction()->getModule();
 | |
|   // Use a dummy vararg function to actually hold the values live
 | |
|   Function *Func = cast<Function>(M->getOrInsertFunction(
 | |
|       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
 | |
|   if (CS.isCall()) {
 | |
|     // For call safepoints insert dummy calls right after safepoint
 | |
|     Holders.push_back(CallInst::Create(Func, Values, "",
 | |
|                                        &*++CS.getInstruction()->getIterator()));
 | |
|     return;
 | |
|   }
 | |
|   // For invoke safepooints insert dummy calls both in normal and
 | |
|   // exceptional destination blocks
 | |
|   auto *II = cast<InvokeInst>(CS.getInstruction());
 | |
|   Holders.push_back(CallInst::Create(
 | |
|       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
 | |
|   Holders.push_back(CallInst::Create(
 | |
|       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
 | |
| }
 | |
| 
 | |
| static void findLiveReferences(
 | |
|     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
 | |
|     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
 | |
|   GCPtrLivenessData OriginalLivenessData;
 | |
|   computeLiveInValues(DT, F, OriginalLivenessData);
 | |
|   for (size_t i = 0; i < records.size(); i++) {
 | |
|     struct PartiallyConstructedSafepointRecord &info = records[i];
 | |
|     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Helper function for the "rematerializeLiveValues". It walks use chain
 | |
| // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
 | |
| // the base or a value it cannot process. Only "simple" values are processed
 | |
| // (currently it is GEP's and casts). The returned root is  examined by the
 | |
| // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
 | |
| // with all visited values.
 | |
| static Value* findRematerializableChainToBasePointer(
 | |
|   SmallVectorImpl<Instruction*> &ChainToBase,
 | |
|   Value *CurrentValue) {
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
 | |
|     ChainToBase.push_back(GEP);
 | |
|     return findRematerializableChainToBasePointer(ChainToBase,
 | |
|                                                   GEP->getPointerOperand());
 | |
|   }
 | |
| 
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
 | |
|     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
 | |
|       return CI;
 | |
| 
 | |
|     ChainToBase.push_back(CI);
 | |
|     return findRematerializableChainToBasePointer(ChainToBase,
 | |
|                                                   CI->getOperand(0));
 | |
|   }
 | |
| 
 | |
|   // We have reached the root of the chain, which is either equal to the base or
 | |
|   // is the first unsupported value along the use chain.
 | |
|   return CurrentValue;
 | |
| }
 | |
| 
 | |
| // Helper function for the "rematerializeLiveValues". Compute cost of the use
 | |
| // chain we are going to rematerialize.
 | |
| static unsigned
 | |
| chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
 | |
|                        TargetTransformInfo &TTI) {
 | |
|   unsigned Cost = 0;
 | |
| 
 | |
|   for (Instruction *Instr : Chain) {
 | |
|     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
 | |
|       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
 | |
|              "non noop cast is found during rematerialization");
 | |
| 
 | |
|       Type *SrcTy = CI->getOperand(0)->getType();
 | |
|       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);
 | |
| 
 | |
|     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
 | |
|       // Cost of the address calculation
 | |
|       Type *ValTy = GEP->getSourceElementType();
 | |
|       Cost += TTI.getAddressComputationCost(ValTy);
 | |
| 
 | |
|       // And cost of the GEP itself
 | |
|       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
 | |
|       //       allowed for the external usage)
 | |
|       if (!GEP->hasAllConstantIndices())
 | |
|         Cost += 2;
 | |
| 
 | |
|     } else {
 | |
|       llvm_unreachable("unsupported instruction type during rematerialization");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
 | |
|   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
 | |
|   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
 | |
|       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
 | |
|     return false;
 | |
|   // Map of incoming values and their corresponding basic blocks of
 | |
|   // OrigRootPhi.
 | |
|   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
 | |
|   for (unsigned i = 0; i < PhiNum; i++)
 | |
|     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
 | |
|         OrigRootPhi.getIncomingBlock(i);
 | |
| 
 | |
|   // Both current and base PHIs should have same incoming values and
 | |
|   // the same basic blocks corresponding to the incoming values.
 | |
|   for (unsigned i = 0; i < PhiNum; i++) {
 | |
|     auto CIVI =
 | |
|         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
 | |
|     if (CIVI == CurrentIncomingValues.end())
 | |
|       return false;
 | |
|     BasicBlock *CurrentIncomingBB = CIVI->second;
 | |
|     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // From the statepoint live set pick values that are cheaper to recompute then
 | |
| // to relocate. Remove this values from the live set, rematerialize them after
 | |
| // statepoint and record them in "Info" structure. Note that similar to
 | |
| // relocated values we don't do any user adjustments here.
 | |
| static void rematerializeLiveValues(CallSite CS,
 | |
|                                     PartiallyConstructedSafepointRecord &Info,
 | |
|                                     TargetTransformInfo &TTI) {
 | |
|   const unsigned int ChainLengthThreshold = 10;
 | |
| 
 | |
|   // Record values we are going to delete from this statepoint live set.
 | |
|   // We can not di this in following loop due to iterator invalidation.
 | |
|   SmallVector<Value *, 32> LiveValuesToBeDeleted;
 | |
| 
 | |
|   for (Value *LiveValue: Info.LiveSet) {
 | |
|     // For each live pointer find its defining chain
 | |
|     SmallVector<Instruction *, 3> ChainToBase;
 | |
|     assert(Info.PointerToBase.count(LiveValue));
 | |
|     Value *RootOfChain =
 | |
|       findRematerializableChainToBasePointer(ChainToBase,
 | |
|                                              LiveValue);
 | |
| 
 | |
|     // Nothing to do, or chain is too long
 | |
|     if ( ChainToBase.size() == 0 ||
 | |
|         ChainToBase.size() > ChainLengthThreshold)
 | |
|       continue;
 | |
| 
 | |
|     // Handle the scenario where the RootOfChain is not equal to the
 | |
|     // Base Value, but they are essentially the same phi values.
 | |
|     if (RootOfChain != Info.PointerToBase[LiveValue]) {
 | |
|       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
 | |
|       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
 | |
|       if (!OrigRootPhi || !AlternateRootPhi)
 | |
|         continue;
 | |
|       // PHI nodes that have the same incoming values, and belonging to the same
 | |
|       // basic blocks are essentially the same SSA value.  When the original phi
 | |
|       // has incoming values with different base pointers, the original phi is
 | |
|       // marked as conflict, and an additional `AlternateRootPhi` with the same
 | |
|       // incoming values get generated by the findBasePointer function. We need
 | |
|       // to identify the newly generated AlternateRootPhi (.base version of phi)
 | |
|       // and RootOfChain (the original phi node itself) are the same, so that we
 | |
|       // can rematerialize the gep and casts. This is a workaround for the
 | |
|       // deficiency in the findBasePointer algorithm.
 | |
|       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
 | |
|         continue;
 | |
|       // Now that the phi nodes are proved to be the same, assert that
 | |
|       // findBasePointer's newly generated AlternateRootPhi is present in the
 | |
|       // liveset of the call.
 | |
|       assert(Info.LiveSet.count(AlternateRootPhi));
 | |
|     }
 | |
|     // Compute cost of this chain
 | |
|     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
 | |
|     // TODO: We can also account for cases when we will be able to remove some
 | |
|     //       of the rematerialized values by later optimization passes. I.e if
 | |
|     //       we rematerialized several intersecting chains. Or if original values
 | |
|     //       don't have any uses besides this statepoint.
 | |
| 
 | |
|     // For invokes we need to rematerialize each chain twice - for normal and
 | |
|     // for unwind basic blocks. Model this by multiplying cost by two.
 | |
|     if (CS.isInvoke()) {
 | |
|       Cost *= 2;
 | |
|     }
 | |
|     // If it's too expensive - skip it
 | |
|     if (Cost >= RematerializationThreshold)
 | |
|       continue;
 | |
| 
 | |
|     // Remove value from the live set
 | |
|     LiveValuesToBeDeleted.push_back(LiveValue);
 | |
| 
 | |
|     // Clone instructions and record them inside "Info" structure
 | |
| 
 | |
|     // Walk backwards to visit top-most instructions first
 | |
|     std::reverse(ChainToBase.begin(), ChainToBase.end());
 | |
| 
 | |
|     // Utility function which clones all instructions from "ChainToBase"
 | |
|     // and inserts them before "InsertBefore". Returns rematerialized value
 | |
|     // which should be used after statepoint.
 | |
|     auto rematerializeChain = [&ChainToBase](
 | |
|         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
 | |
|       Instruction *LastClonedValue = nullptr;
 | |
|       Instruction *LastValue = nullptr;
 | |
|       for (Instruction *Instr: ChainToBase) {
 | |
|         // Only GEP's and casts are supported as we need to be careful to not
 | |
|         // introduce any new uses of pointers not in the liveset.
 | |
|         // Note that it's fine to introduce new uses of pointers which were
 | |
|         // otherwise not used after this statepoint.
 | |
|         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
 | |
| 
 | |
|         Instruction *ClonedValue = Instr->clone();
 | |
|         ClonedValue->insertBefore(InsertBefore);
 | |
|         ClonedValue->setName(Instr->getName() + ".remat");
 | |
| 
 | |
|         // If it is not first instruction in the chain then it uses previously
 | |
|         // cloned value. We should update it to use cloned value.
 | |
|         if (LastClonedValue) {
 | |
|           assert(LastValue);
 | |
|           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
 | |
| #ifndef NDEBUG
 | |
|           for (auto OpValue : ClonedValue->operand_values()) {
 | |
|             // Assert that cloned instruction does not use any instructions from
 | |
|             // this chain other than LastClonedValue
 | |
|             assert(!is_contained(ChainToBase, OpValue) &&
 | |
|                    "incorrect use in rematerialization chain");
 | |
|             // Assert that the cloned instruction does not use the RootOfChain
 | |
|             // or the AlternateLiveBase.
 | |
|             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
 | |
|           }
 | |
| #endif
 | |
|         } else {
 | |
|           // For the first instruction, replace the use of unrelocated base i.e.
 | |
|           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
 | |
|           // live set. They have been proved to be the same PHI nodes.  Note
 | |
|           // that the *only* use of the RootOfChain in the ChainToBase list is
 | |
|           // the first Value in the list.
 | |
|           if (RootOfChain != AlternateLiveBase)
 | |
|             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
 | |
|         }
 | |
| 
 | |
|         LastClonedValue = ClonedValue;
 | |
|         LastValue = Instr;
 | |
|       }
 | |
|       assert(LastClonedValue);
 | |
|       return LastClonedValue;
 | |
|     };
 | |
| 
 | |
|     // Different cases for calls and invokes. For invokes we need to clone
 | |
|     // instructions both on normal and unwind path.
 | |
|     if (CS.isCall()) {
 | |
|       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
 | |
|       assert(InsertBefore);
 | |
|       Instruction *RematerializedValue = rematerializeChain(
 | |
|           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
 | |
|       Info.RematerializedValues[RematerializedValue] = LiveValue;
 | |
|     } else {
 | |
|       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
 | |
| 
 | |
|       Instruction *NormalInsertBefore =
 | |
|           &*Invoke->getNormalDest()->getFirstInsertionPt();
 | |
|       Instruction *UnwindInsertBefore =
 | |
|           &*Invoke->getUnwindDest()->getFirstInsertionPt();
 | |
| 
 | |
|       Instruction *NormalRematerializedValue = rematerializeChain(
 | |
|           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
 | |
|       Instruction *UnwindRematerializedValue = rematerializeChain(
 | |
|           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
 | |
| 
 | |
|       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
 | |
|       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remove rematerializaed values from the live set
 | |
|   for (auto LiveValue: LiveValuesToBeDeleted) {
 | |
|     Info.LiveSet.remove(LiveValue);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool insertParsePoints(Function &F, DominatorTree &DT,
 | |
|                               TargetTransformInfo &TTI,
 | |
|                               SmallVectorImpl<CallSite> &ToUpdate) {
 | |
| #ifndef NDEBUG
 | |
|   // sanity check the input
 | |
|   std::set<CallSite> Uniqued;
 | |
|   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
 | |
|   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
 | |
| 
 | |
|   for (CallSite CS : ToUpdate)
 | |
|     assert(CS.getInstruction()->getFunction() == &F);
 | |
| #endif
 | |
| 
 | |
|   // When inserting gc.relocates for invokes, we need to be able to insert at
 | |
|   // the top of the successor blocks.  See the comment on
 | |
|   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
 | |
|   // may restructure the CFG.
 | |
|   for (CallSite CS : ToUpdate) {
 | |
|     if (!CS.isInvoke())
 | |
|       continue;
 | |
|     auto *II = cast<InvokeInst>(CS.getInstruction());
 | |
|     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
 | |
|     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
 | |
|   }
 | |
| 
 | |
|   // A list of dummy calls added to the IR to keep various values obviously
 | |
|   // live in the IR.  We'll remove all of these when done.
 | |
|   SmallVector<CallInst *, 64> Holders;
 | |
| 
 | |
|   // Insert a dummy call with all of the deopt operands we'll need for the
 | |
|   // actual safepoint insertion as arguments.  This ensures reference operands
 | |
|   // in the deopt argument list are considered live through the safepoint (and
 | |
|   // thus makes sure they get relocated.)
 | |
|   for (CallSite CS : ToUpdate) {
 | |
|     SmallVector<Value *, 64> DeoptValues;
 | |
| 
 | |
|     for (Value *Arg : GetDeoptBundleOperands(CS)) {
 | |
|       assert(!isUnhandledGCPointerType(Arg->getType()) &&
 | |
|              "support for FCA unimplemented");
 | |
|       if (isHandledGCPointerType(Arg->getType()))
 | |
|         DeoptValues.push_back(Arg);
 | |
|     }
 | |
| 
 | |
|     insertUseHolderAfter(CS, DeoptValues, Holders);
 | |
|   }
 | |
| 
 | |
|   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
 | |
| 
 | |
|   // A) Identify all gc pointers which are statically live at the given call
 | |
|   // site.
 | |
|   findLiveReferences(F, DT, ToUpdate, Records);
 | |
| 
 | |
|   // B) Find the base pointers for each live pointer
 | |
|   /* scope for caching */ {
 | |
|     // Cache the 'defining value' relation used in the computation and
 | |
|     // insertion of base phis and selects.  This ensures that we don't insert
 | |
|     // large numbers of duplicate base_phis.
 | |
|     DefiningValueMapTy DVCache;
 | |
| 
 | |
|     for (size_t i = 0; i < Records.size(); i++) {
 | |
|       PartiallyConstructedSafepointRecord &info = Records[i];
 | |
|       findBasePointers(DT, DVCache, ToUpdate[i], info);
 | |
|     }
 | |
|   } // end of cache scope
 | |
| 
 | |
|   // The base phi insertion logic (for any safepoint) may have inserted new
 | |
|   // instructions which are now live at some safepoint.  The simplest such
 | |
|   // example is:
 | |
|   // loop:
 | |
|   //   phi a  <-- will be a new base_phi here
 | |
|   //   safepoint 1 <-- that needs to be live here
 | |
|   //   gep a + 1
 | |
|   //   safepoint 2
 | |
|   //   br loop
 | |
|   // We insert some dummy calls after each safepoint to definitely hold live
 | |
|   // the base pointers which were identified for that safepoint.  We'll then
 | |
|   // ask liveness for _every_ base inserted to see what is now live.  Then we
 | |
|   // remove the dummy calls.
 | |
|   Holders.reserve(Holders.size() + Records.size());
 | |
|   for (size_t i = 0; i < Records.size(); i++) {
 | |
|     PartiallyConstructedSafepointRecord &Info = Records[i];
 | |
| 
 | |
|     SmallVector<Value *, 128> Bases;
 | |
|     for (auto Pair : Info.PointerToBase)
 | |
|       Bases.push_back(Pair.second);
 | |
| 
 | |
|     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
 | |
|   }
 | |
| 
 | |
|   // By selecting base pointers, we've effectively inserted new uses. Thus, we
 | |
|   // need to rerun liveness.  We may *also* have inserted new defs, but that's
 | |
|   // not the key issue.
 | |
|   recomputeLiveInValues(F, DT, ToUpdate, Records);
 | |
| 
 | |
|   if (PrintBasePointers) {
 | |
|     for (auto &Info : Records) {
 | |
|       errs() << "Base Pairs: (w/Relocation)\n";
 | |
|       for (auto Pair : Info.PointerToBase) {
 | |
|         errs() << " derived ";
 | |
|         Pair.first->printAsOperand(errs(), false);
 | |
|         errs() << " base ";
 | |
|         Pair.second->printAsOperand(errs(), false);
 | |
|         errs() << "\n";
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // It is possible that non-constant live variables have a constant base.  For
 | |
|   // example, a GEP with a variable offset from a global.  In this case we can
 | |
|   // remove it from the liveset.  We already don't add constants to the liveset
 | |
|   // because we assume they won't move at runtime and the GC doesn't need to be
 | |
|   // informed about them.  The same reasoning applies if the base is constant.
 | |
|   // Note that the relocation placement code relies on this filtering for
 | |
|   // correctness as it expects the base to be in the liveset, which isn't true
 | |
|   // if the base is constant.
 | |
|   for (auto &Info : Records)
 | |
|     for (auto &BasePair : Info.PointerToBase)
 | |
|       if (isa<Constant>(BasePair.second))
 | |
|         Info.LiveSet.remove(BasePair.first);
 | |
| 
 | |
|   for (CallInst *CI : Holders)
 | |
|     CI->eraseFromParent();
 | |
| 
 | |
|   Holders.clear();
 | |
| 
 | |
|   // In order to reduce live set of statepoint we might choose to rematerialize
 | |
|   // some values instead of relocating them. This is purely an optimization and
 | |
|   // does not influence correctness.
 | |
|   for (size_t i = 0; i < Records.size(); i++)
 | |
|     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
 | |
| 
 | |
|   // We need this to safely RAUW and delete call or invoke return values that
 | |
|   // may themselves be live over a statepoint.  For details, please see usage in
 | |
|   // makeStatepointExplicitImpl.
 | |
|   std::vector<DeferredReplacement> Replacements;
 | |
| 
 | |
|   // Now run through and replace the existing statepoints with new ones with
 | |
|   // the live variables listed.  We do not yet update uses of the values being
 | |
|   // relocated. We have references to live variables that need to
 | |
|   // survive to the last iteration of this loop.  (By construction, the
 | |
|   // previous statepoint can not be a live variable, thus we can and remove
 | |
|   // the old statepoint calls as we go.)
 | |
|   for (size_t i = 0; i < Records.size(); i++)
 | |
|     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
 | |
| 
 | |
|   ToUpdate.clear(); // prevent accident use of invalid CallSites
 | |
| 
 | |
|   for (auto &PR : Replacements)
 | |
|     PR.doReplacement();
 | |
| 
 | |
|   Replacements.clear();
 | |
| 
 | |
|   for (auto &Info : Records) {
 | |
|     // These live sets may contain state Value pointers, since we replaced calls
 | |
|     // with operand bundles with calls wrapped in gc.statepoint, and some of
 | |
|     // those calls may have been def'ing live gc pointers.  Clear these out to
 | |
|     // avoid accidentally using them.
 | |
|     //
 | |
|     // TODO: We should create a separate data structure that does not contain
 | |
|     // these live sets, and migrate to using that data structure from this point
 | |
|     // onward.
 | |
|     Info.LiveSet.clear();
 | |
|     Info.PointerToBase.clear();
 | |
|   }
 | |
| 
 | |
|   // Do all the fixups of the original live variables to their relocated selves
 | |
|   SmallVector<Value *, 128> Live;
 | |
|   for (size_t i = 0; i < Records.size(); i++) {
 | |
|     PartiallyConstructedSafepointRecord &Info = Records[i];
 | |
| 
 | |
|     // We can't simply save the live set from the original insertion.  One of
 | |
|     // the live values might be the result of a call which needs a safepoint.
 | |
|     // That Value* no longer exists and we need to use the new gc_result.
 | |
|     // Thankfully, the live set is embedded in the statepoint (and updated), so
 | |
|     // we just grab that.
 | |
|     Statepoint Statepoint(Info.StatepointToken);
 | |
|     Live.insert(Live.end(), Statepoint.gc_args_begin(),
 | |
|                 Statepoint.gc_args_end());
 | |
| #ifndef NDEBUG
 | |
|     // Do some basic sanity checks on our liveness results before performing
 | |
|     // relocation.  Relocation can and will turn mistakes in liveness results
 | |
|     // into non-sensical code which is must harder to debug.
 | |
|     // TODO: It would be nice to test consistency as well
 | |
|     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
 | |
|            "statepoint must be reachable or liveness is meaningless");
 | |
|     for (Value *V : Statepoint.gc_args()) {
 | |
|       if (!isa<Instruction>(V))
 | |
|         // Non-instruction values trivial dominate all possible uses
 | |
|         continue;
 | |
|       auto *LiveInst = cast<Instruction>(V);
 | |
|       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
 | |
|              "unreachable values should never be live");
 | |
|       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
 | |
|              "basic SSA liveness expectation violated by liveness analysis");
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   unique_unsorted(Live);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // sanity check
 | |
|   for (auto *Ptr : Live)
 | |
|     assert(isHandledGCPointerType(Ptr->getType()) &&
 | |
|            "must be a gc pointer type");
 | |
| #endif
 | |
| 
 | |
|   relocationViaAlloca(F, DT, Live, Records);
 | |
|   return !Records.empty();
 | |
| }
 | |
| 
 | |
| // Handles both return values and arguments for Functions and CallSites.
 | |
| template <typename AttrHolder>
 | |
| static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
 | |
|                                       unsigned Index) {
 | |
|   AttrBuilder R;
 | |
|   if (AH.getDereferenceableBytes(Index))
 | |
|     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
 | |
|                                   AH.getDereferenceableBytes(Index)));
 | |
|   if (AH.getDereferenceableOrNullBytes(Index))
 | |
|     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
 | |
|                                   AH.getDereferenceableOrNullBytes(Index)));
 | |
|   if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
 | |
|     R.addAttribute(Attribute::NoAlias);
 | |
| 
 | |
|   if (!R.empty())
 | |
|     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
 | |
| }
 | |
| 
 | |
| static void stripNonValidAttributesFromPrototype(Function &F) {
 | |
|   LLVMContext &Ctx = F.getContext();
 | |
| 
 | |
|   for (Argument &A : F.args())
 | |
|     if (isa<PointerType>(A.getType()))
 | |
|       RemoveNonValidAttrAtIndex(Ctx, F,
 | |
|                                 A.getArgNo() + AttributeList::FirstArgIndex);
 | |
| 
 | |
|   if (isa<PointerType>(F.getReturnType()))
 | |
|     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
 | |
| }
 | |
| 
 | |
| /// Certain metadata on instructions are invalid after running RS4GC.
 | |
| /// Optimizations that run after RS4GC can incorrectly use this metadata to
 | |
| /// optimize functions. We drop such metadata on the instruction.
 | |
| static void stripInvalidMetadataFromInstruction(Instruction &I) {
 | |
|   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
 | |
|     return;
 | |
|   // These are the attributes that are still valid on loads and stores after
 | |
|   // RS4GC.
 | |
|   // The metadata implying dereferenceability and noalias are (conservatively)
 | |
|   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
 | |
|   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
 | |
|   // touch the entire heap including noalias objects. Note: The reasoning is
 | |
|   // same as stripping the dereferenceability and noalias attributes that are
 | |
|   // analogous to the metadata counterparts.
 | |
|   // We also drop the invariant.load metadata on the load because that metadata
 | |
|   // implies the address operand to the load points to memory that is never
 | |
|   // changed once it became dereferenceable. This is no longer true after RS4GC.
 | |
|   // Similar reasoning applies to invariant.group metadata, which applies to
 | |
|   // loads within a group.
 | |
|   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
 | |
|                          LLVMContext::MD_range,
 | |
|                          LLVMContext::MD_alias_scope,
 | |
|                          LLVMContext::MD_nontemporal,
 | |
|                          LLVMContext::MD_nonnull,
 | |
|                          LLVMContext::MD_align,
 | |
|                          LLVMContext::MD_type};
 | |
| 
 | |
|   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
 | |
|   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
 | |
| }
 | |
| 
 | |
| static void stripNonValidDataFromBody(Function &F) {
 | |
|   if (F.empty())
 | |
|     return;
 | |
| 
 | |
|   LLVMContext &Ctx = F.getContext();
 | |
|   MDBuilder Builder(Ctx);
 | |
| 
 | |
|   // Set of invariantstart instructions that we need to remove.
 | |
|   // Use this to avoid invalidating the instruction iterator.
 | |
|   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
 | |
| 
 | |
|   for (Instruction &I : instructions(F)) {
 | |
|     // invariant.start on memory location implies that the referenced memory
 | |
|     // location is constant and unchanging. This is no longer true after
 | |
|     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
 | |
|     // which frees the entire heap and the presence of invariant.start allows
 | |
|     // the optimizer to sink the load of a memory location past a statepoint,
 | |
|     // which is incorrect.
 | |
|     if (auto *II = dyn_cast<IntrinsicInst>(&I))
 | |
|       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
 | |
|         InvariantStartInstructions.push_back(II);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
 | |
|       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
 | |
|       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
 | |
|     }
 | |
| 
 | |
|     stripInvalidMetadataFromInstruction(I);
 | |
| 
 | |
|     if (CallSite CS = CallSite(&I)) {
 | |
|       for (int i = 0, e = CS.arg_size(); i != e; i++)
 | |
|         if (isa<PointerType>(CS.getArgument(i)->getType()))
 | |
|           RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex);
 | |
|       if (isa<PointerType>(CS.getType()))
 | |
|         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Delete the invariant.start instructions and RAUW undef.
 | |
|   for (auto *II : InvariantStartInstructions) {
 | |
|     II->replaceAllUsesWith(UndefValue::get(II->getType()));
 | |
|     II->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Returns true if this function should be rewritten by this pass.  The main
 | |
| /// point of this function is as an extension point for custom logic.
 | |
| static bool shouldRewriteStatepointsIn(Function &F) {
 | |
|   // TODO: This should check the GCStrategy
 | |
|   if (F.hasGC()) {
 | |
|     const auto &FunctionGCName = F.getGC();
 | |
|     const StringRef StatepointExampleName("statepoint-example");
 | |
|     const StringRef CoreCLRName("coreclr");
 | |
|     return (StatepointExampleName == FunctionGCName) ||
 | |
|            (CoreCLRName == FunctionGCName);
 | |
|   } else
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static void stripNonValidData(Module &M) {
 | |
| #ifndef NDEBUG
 | |
|   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
 | |
| #endif
 | |
| 
 | |
|   for (Function &F : M)
 | |
|     stripNonValidAttributesFromPrototype(F);
 | |
| 
 | |
|   for (Function &F : M)
 | |
|     stripNonValidDataFromBody(F);
 | |
| }
 | |
| 
 | |
| bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
 | |
|                                             TargetTransformInfo &TTI,
 | |
|                                             const TargetLibraryInfo &TLI) {
 | |
|   assert(!F.isDeclaration() && !F.empty() &&
 | |
|          "need function body to rewrite statepoints in");
 | |
|   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
 | |
| 
 | |
|   auto NeedsRewrite = [&TLI](Instruction &I) {
 | |
|     if (ImmutableCallSite CS = ImmutableCallSite(&I))
 | |
|       return !callsGCLeafFunction(CS, TLI) && !isStatepoint(CS);
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
| 
 | |
|   // Delete any unreachable statepoints so that we don't have unrewritten
 | |
|   // statepoints surviving this pass.  This makes testing easier and the
 | |
|   // resulting IR less confusing to human readers.
 | |
|   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
 | |
|   bool MadeChange = removeUnreachableBlocks(F, nullptr, &DTU);
 | |
|   // Flush the Dominator Tree.
 | |
|   DTU.getDomTree();
 | |
| 
 | |
|   // Gather all the statepoints which need rewritten.  Be careful to only
 | |
|   // consider those in reachable code since we need to ask dominance queries
 | |
|   // when rewriting.  We'll delete the unreachable ones in a moment.
 | |
|   SmallVector<CallSite, 64> ParsePointNeeded;
 | |
|   for (Instruction &I : instructions(F)) {
 | |
|     // TODO: only the ones with the flag set!
 | |
|     if (NeedsRewrite(I)) {
 | |
|       // NOTE removeUnreachableBlocks() is stronger than
 | |
|       // DominatorTree::isReachableFromEntry(). In other words
 | |
|       // removeUnreachableBlocks can remove some blocks for which
 | |
|       // isReachableFromEntry() returns true.
 | |
|       assert(DT.isReachableFromEntry(I.getParent()) &&
 | |
|             "no unreachable blocks expected");
 | |
|       ParsePointNeeded.push_back(CallSite(&I));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Return early if no work to do.
 | |
|   if (ParsePointNeeded.empty())
 | |
|     return MadeChange;
 | |
| 
 | |
|   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
 | |
|   // These are created by LCSSA.  They have the effect of increasing the size
 | |
|   // of liveness sets for no good reason.  It may be harder to do this post
 | |
|   // insertion since relocations and base phis can confuse things.
 | |
|   for (BasicBlock &BB : F)
 | |
|     if (BB.getUniquePredecessor()) {
 | |
|       MadeChange = true;
 | |
|       FoldSingleEntryPHINodes(&BB);
 | |
|     }
 | |
| 
 | |
|   // Before we start introducing relocations, we want to tweak the IR a bit to
 | |
|   // avoid unfortunate code generation effects.  The main example is that we
 | |
|   // want to try to make sure the comparison feeding a branch is after any
 | |
|   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
 | |
|   // values feeding a branch after relocation.  This is semantically correct,
 | |
|   // but results in extra register pressure since both the pre-relocation and
 | |
|   // post-relocation copies must be available in registers.  For code without
 | |
|   // relocations this is handled elsewhere, but teaching the scheduler to
 | |
|   // reverse the transform we're about to do would be slightly complex.
 | |
|   // Note: This may extend the live range of the inputs to the icmp and thus
 | |
|   // increase the liveset of any statepoint we move over.  This is profitable
 | |
|   // as long as all statepoints are in rare blocks.  If we had in-register
 | |
|   // lowering for live values this would be a much safer transform.
 | |
|   auto getConditionInst = [](Instruction *TI) -> Instruction * {
 | |
|     if (auto *BI = dyn_cast<BranchInst>(TI))
 | |
|       if (BI->isConditional())
 | |
|         return dyn_cast<Instruction>(BI->getCondition());
 | |
|     // TODO: Extend this to handle switches
 | |
|     return nullptr;
 | |
|   };
 | |
|   for (BasicBlock &BB : F) {
 | |
|     Instruction *TI = BB.getTerminator();
 | |
|     if (auto *Cond = getConditionInst(TI))
 | |
|       // TODO: Handle more than just ICmps here.  We should be able to move
 | |
|       // most instructions without side effects or memory access.
 | |
|       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
 | |
|         MadeChange = true;
 | |
|         Cond->moveBefore(TI);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| // liveness computation via standard dataflow
 | |
| // -------------------------------------------------------------------
 | |
| 
 | |
| // TODO: Consider using bitvectors for liveness, the set of potentially
 | |
| // interesting values should be small and easy to pre-compute.
 | |
| 
 | |
| /// Compute the live-in set for the location rbegin starting from
 | |
| /// the live-out set of the basic block
 | |
| static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
 | |
|                                 BasicBlock::reverse_iterator End,
 | |
|                                 SetVector<Value *> &LiveTmp) {
 | |
|   for (auto &I : make_range(Begin, End)) {
 | |
|     // KILL/Def - Remove this definition from LiveIn
 | |
|     LiveTmp.remove(&I);
 | |
| 
 | |
|     // Don't consider *uses* in PHI nodes, we handle their contribution to
 | |
|     // predecessor blocks when we seed the LiveOut sets
 | |
|     if (isa<PHINode>(I))
 | |
|       continue;
 | |
| 
 | |
|     // USE - Add to the LiveIn set for this instruction
 | |
|     for (Value *V : I.operands()) {
 | |
|       assert(!isUnhandledGCPointerType(V->getType()) &&
 | |
|              "support for FCA unimplemented");
 | |
|       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
 | |
|         // The choice to exclude all things constant here is slightly subtle.
 | |
|         // There are two independent reasons:
 | |
|         // - We assume that things which are constant (from LLVM's definition)
 | |
|         // do not move at runtime.  For example, the address of a global
 | |
|         // variable is fixed, even though it's contents may not be.
 | |
|         // - Second, we can't disallow arbitrary inttoptr constants even
 | |
|         // if the language frontend does.  Optimization passes are free to
 | |
|         // locally exploit facts without respect to global reachability.  This
 | |
|         // can create sections of code which are dynamically unreachable and
 | |
|         // contain just about anything.  (see constants.ll in tests)
 | |
|         LiveTmp.insert(V);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
 | |
|   for (BasicBlock *Succ : successors(BB)) {
 | |
|     for (auto &I : *Succ) {
 | |
|       PHINode *PN = dyn_cast<PHINode>(&I);
 | |
|       if (!PN)
 | |
|         break;
 | |
| 
 | |
|       Value *V = PN->getIncomingValueForBlock(BB);
 | |
|       assert(!isUnhandledGCPointerType(V->getType()) &&
 | |
|              "support for FCA unimplemented");
 | |
|       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
 | |
|         LiveTmp.insert(V);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static SetVector<Value *> computeKillSet(BasicBlock *BB) {
 | |
|   SetVector<Value *> KillSet;
 | |
|   for (Instruction &I : *BB)
 | |
|     if (isHandledGCPointerType(I.getType()))
 | |
|       KillSet.insert(&I);
 | |
|   return KillSet;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
 | |
| /// sanity check for the liveness computation.
 | |
| static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
 | |
|                           Instruction *TI, bool TermOkay = false) {
 | |
|   for (Value *V : Live) {
 | |
|     if (auto *I = dyn_cast<Instruction>(V)) {
 | |
|       // The terminator can be a member of the LiveOut set.  LLVM's definition
 | |
|       // of instruction dominance states that V does not dominate itself.  As
 | |
|       // such, we need to special case this to allow it.
 | |
|       if (TermOkay && TI == I)
 | |
|         continue;
 | |
|       assert(DT.dominates(I, TI) &&
 | |
|              "basic SSA liveness expectation violated by liveness analysis");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Check that all the liveness sets used during the computation of liveness
 | |
| /// obey basic SSA properties.  This is useful for finding cases where we miss
 | |
| /// a def.
 | |
| static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
 | |
|                           BasicBlock &BB) {
 | |
|   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
 | |
|   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
 | |
|   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void computeLiveInValues(DominatorTree &DT, Function &F,
 | |
|                                 GCPtrLivenessData &Data) {
 | |
|   SmallSetVector<BasicBlock *, 32> Worklist;
 | |
| 
 | |
|   // Seed the liveness for each individual block
 | |
|   for (BasicBlock &BB : F) {
 | |
|     Data.KillSet[&BB] = computeKillSet(&BB);
 | |
|     Data.LiveSet[&BB].clear();
 | |
|     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     for (Value *Kill : Data.KillSet[&BB])
 | |
|       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
 | |
| #endif
 | |
| 
 | |
|     Data.LiveOut[&BB] = SetVector<Value *>();
 | |
|     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
 | |
|     Data.LiveIn[&BB] = Data.LiveSet[&BB];
 | |
|     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
 | |
|     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
 | |
|     if (!Data.LiveIn[&BB].empty())
 | |
|       Worklist.insert(pred_begin(&BB), pred_end(&BB));
 | |
|   }
 | |
| 
 | |
|   // Propagate that liveness until stable
 | |
|   while (!Worklist.empty()) {
 | |
|     BasicBlock *BB = Worklist.pop_back_val();
 | |
| 
 | |
|     // Compute our new liveout set, then exit early if it hasn't changed despite
 | |
|     // the contribution of our successor.
 | |
|     SetVector<Value *> LiveOut = Data.LiveOut[BB];
 | |
|     const auto OldLiveOutSize = LiveOut.size();
 | |
|     for (BasicBlock *Succ : successors(BB)) {
 | |
|       assert(Data.LiveIn.count(Succ));
 | |
|       LiveOut.set_union(Data.LiveIn[Succ]);
 | |
|     }
 | |
|     // assert OutLiveOut is a subset of LiveOut
 | |
|     if (OldLiveOutSize == LiveOut.size()) {
 | |
|       // If the sets are the same size, then we didn't actually add anything
 | |
|       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
 | |
|       // hasn't changed.
 | |
|       continue;
 | |
|     }
 | |
|     Data.LiveOut[BB] = LiveOut;
 | |
| 
 | |
|     // Apply the effects of this basic block
 | |
|     SetVector<Value *> LiveTmp = LiveOut;
 | |
|     LiveTmp.set_union(Data.LiveSet[BB]);
 | |
|     LiveTmp.set_subtract(Data.KillSet[BB]);
 | |
| 
 | |
|     assert(Data.LiveIn.count(BB));
 | |
|     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
 | |
|     // assert: OldLiveIn is a subset of LiveTmp
 | |
|     if (OldLiveIn.size() != LiveTmp.size()) {
 | |
|       Data.LiveIn[BB] = LiveTmp;
 | |
|       Worklist.insert(pred_begin(BB), pred_end(BB));
 | |
|     }
 | |
|   } // while (!Worklist.empty())
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Sanity check our output against SSA properties.  This helps catch any
 | |
|   // missing kills during the above iteration.
 | |
|   for (BasicBlock &BB : F)
 | |
|     checkBasicSSA(DT, Data, BB);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
 | |
|                               StatepointLiveSetTy &Out) {
 | |
|   BasicBlock *BB = Inst->getParent();
 | |
| 
 | |
|   // Note: The copy is intentional and required
 | |
|   assert(Data.LiveOut.count(BB));
 | |
|   SetVector<Value *> LiveOut = Data.LiveOut[BB];
 | |
| 
 | |
|   // We want to handle the statepoint itself oddly.  It's
 | |
|   // call result is not live (normal), nor are it's arguments
 | |
|   // (unless they're used again later).  This adjustment is
 | |
|   // specifically what we need to relocate
 | |
|   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
 | |
|                       LiveOut);
 | |
|   LiveOut.remove(Inst);
 | |
|   Out.insert(LiveOut.begin(), LiveOut.end());
 | |
| }
 | |
| 
 | |
| static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
 | |
|                                   CallSite CS,
 | |
|                                   PartiallyConstructedSafepointRecord &Info) {
 | |
|   Instruction *Inst = CS.getInstruction();
 | |
|   StatepointLiveSetTy Updated;
 | |
|   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
 | |
| 
 | |
|   // We may have base pointers which are now live that weren't before.  We need
 | |
|   // to update the PointerToBase structure to reflect this.
 | |
|   for (auto V : Updated)
 | |
|     if (Info.PointerToBase.insert({V, V}).second) {
 | |
|       assert(isKnownBaseResult(V) &&
 | |
|              "Can't find base for unexpected live value!");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (auto V : Updated)
 | |
|     assert(Info.PointerToBase.count(V) &&
 | |
|            "Must be able to find base for live value!");
 | |
| #endif
 | |
| 
 | |
|   // Remove any stale base mappings - this can happen since our liveness is
 | |
|   // more precise then the one inherent in the base pointer analysis.
 | |
|   DenseSet<Value *> ToErase;
 | |
|   for (auto KVPair : Info.PointerToBase)
 | |
|     if (!Updated.count(KVPair.first))
 | |
|       ToErase.insert(KVPair.first);
 | |
| 
 | |
|   for (auto *V : ToErase)
 | |
|     Info.PointerToBase.erase(V);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (auto KVPair : Info.PointerToBase)
 | |
|     assert(Updated.count(KVPair.first) && "record for non-live value");
 | |
| #endif
 | |
| 
 | |
|   Info.LiveSet = Updated;
 | |
| }
 |