forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			808 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			808 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- Scalarizer.cpp - Scalarize vector operations -----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass converts vector operations into scalar operations, in order
 | |
| // to expose optimization opportunities on the individual scalar operations.
 | |
| // It is mainly intended for targets that do not have vector units, but it
 | |
| // may also be useful for revectorizing code to different vector widths.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Analysis/VectorUtils.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstVisitor.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/Options.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <map>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "scalarizer"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Used to store the scattered form of a vector.
 | |
| using ValueVector = SmallVector<Value *, 8>;
 | |
| 
 | |
| // Used to map a vector Value to its scattered form.  We use std::map
 | |
| // because we want iterators to persist across insertion and because the
 | |
| // values are relatively large.
 | |
| using ScatterMap = std::map<Value *, ValueVector>;
 | |
| 
 | |
| // Lists Instructions that have been replaced with scalar implementations,
 | |
| // along with a pointer to their scattered forms.
 | |
| using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>;
 | |
| 
 | |
| // Provides a very limited vector-like interface for lazily accessing one
 | |
| // component of a scattered vector or vector pointer.
 | |
| class Scatterer {
 | |
| public:
 | |
|   Scatterer() = default;
 | |
| 
 | |
|   // Scatter V into Size components.  If new instructions are needed,
 | |
|   // insert them before BBI in BB.  If Cache is nonnull, use it to cache
 | |
|   // the results.
 | |
|   Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
 | |
|             ValueVector *cachePtr = nullptr);
 | |
| 
 | |
|   // Return component I, creating a new Value for it if necessary.
 | |
|   Value *operator[](unsigned I);
 | |
| 
 | |
|   // Return the number of components.
 | |
|   unsigned size() const { return Size; }
 | |
| 
 | |
| private:
 | |
|   BasicBlock *BB;
 | |
|   BasicBlock::iterator BBI;
 | |
|   Value *V;
 | |
|   ValueVector *CachePtr;
 | |
|   PointerType *PtrTy;
 | |
|   ValueVector Tmp;
 | |
|   unsigned Size;
 | |
| };
 | |
| 
 | |
| // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
 | |
| // called Name that compares X and Y in the same way as FCI.
 | |
| struct FCmpSplitter {
 | |
|   FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
 | |
| 
 | |
|   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
 | |
|                     const Twine &Name) const {
 | |
|     return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
 | |
|   }
 | |
| 
 | |
|   FCmpInst &FCI;
 | |
| };
 | |
| 
 | |
| // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
 | |
| // called Name that compares X and Y in the same way as ICI.
 | |
| struct ICmpSplitter {
 | |
|   ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
 | |
| 
 | |
|   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
 | |
|                     const Twine &Name) const {
 | |
|     return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
 | |
|   }
 | |
| 
 | |
|   ICmpInst &ICI;
 | |
| };
 | |
| 
 | |
| // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
 | |
| // a binary operator like BO called Name with operands X and Y.
 | |
| struct BinarySplitter {
 | |
|   BinarySplitter(BinaryOperator &bo) : BO(bo) {}
 | |
| 
 | |
|   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
 | |
|                     const Twine &Name) const {
 | |
|     return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
 | |
|   }
 | |
| 
 | |
|   BinaryOperator &BO;
 | |
| };
 | |
| 
 | |
| // Information about a load or store that we're scalarizing.
 | |
| struct VectorLayout {
 | |
|   VectorLayout() = default;
 | |
| 
 | |
|   // Return the alignment of element I.
 | |
|   uint64_t getElemAlign(unsigned I) {
 | |
|     return MinAlign(VecAlign, I * ElemSize);
 | |
|   }
 | |
| 
 | |
|   // The type of the vector.
 | |
|   VectorType *VecTy = nullptr;
 | |
| 
 | |
|   // The type of each element.
 | |
|   Type *ElemTy = nullptr;
 | |
| 
 | |
|   // The alignment of the vector.
 | |
|   uint64_t VecAlign = 0;
 | |
| 
 | |
|   // The size of each element.
 | |
|   uint64_t ElemSize = 0;
 | |
| };
 | |
| 
 | |
| class Scalarizer : public FunctionPass,
 | |
|                    public InstVisitor<Scalarizer, bool> {
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   Scalarizer() : FunctionPass(ID) {
 | |
|     initializeScalarizerPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool doInitialization(Module &M) override;
 | |
|   bool runOnFunction(Function &F) override;
 | |
| 
 | |
|   // InstVisitor methods.  They return true if the instruction was scalarized,
 | |
|   // false if nothing changed.
 | |
|   bool visitInstruction(Instruction &I) { return false; }
 | |
|   bool visitSelectInst(SelectInst &SI);
 | |
|   bool visitICmpInst(ICmpInst &ICI);
 | |
|   bool visitFCmpInst(FCmpInst &FCI);
 | |
|   bool visitBinaryOperator(BinaryOperator &BO);
 | |
|   bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
 | |
|   bool visitCastInst(CastInst &CI);
 | |
|   bool visitBitCastInst(BitCastInst &BCI);
 | |
|   bool visitShuffleVectorInst(ShuffleVectorInst &SVI);
 | |
|   bool visitPHINode(PHINode &PHI);
 | |
|   bool visitLoadInst(LoadInst &LI);
 | |
|   bool visitStoreInst(StoreInst &SI);
 | |
|   bool visitCallInst(CallInst &ICI);
 | |
| 
 | |
|   static void registerOptions() {
 | |
|     // This is disabled by default because having separate loads and stores
 | |
|     // makes it more likely that the -combiner-alias-analysis limits will be
 | |
|     // reached.
 | |
|     OptionRegistry::registerOption<bool, Scalarizer,
 | |
|                                  &Scalarizer::ScalarizeLoadStore>(
 | |
|         "scalarize-load-store",
 | |
|         "Allow the scalarizer pass to scalarize loads and store", false);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   Scatterer scatter(Instruction *Point, Value *V);
 | |
|   void gather(Instruction *Op, const ValueVector &CV);
 | |
|   bool canTransferMetadata(unsigned Kind);
 | |
|   void transferMetadata(Instruction *Op, const ValueVector &CV);
 | |
|   bool getVectorLayout(Type *Ty, unsigned Alignment, VectorLayout &Layout,
 | |
|                        const DataLayout &DL);
 | |
|   bool finish();
 | |
| 
 | |
|   template<typename T> bool splitBinary(Instruction &, const T &);
 | |
| 
 | |
|   bool splitCall(CallInst &CI);
 | |
| 
 | |
|   ScatterMap Scattered;
 | |
|   GatherList Gathered;
 | |
|   unsigned ParallelLoopAccessMDKind;
 | |
|   bool ScalarizeLoadStore;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char Scalarizer::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_WITH_OPTIONS(Scalarizer, "scalarizer",
 | |
|                              "Scalarize vector operations", false, false)
 | |
| 
 | |
| Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
 | |
|                      ValueVector *cachePtr)
 | |
|   : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
 | |
|   Type *Ty = V->getType();
 | |
|   PtrTy = dyn_cast<PointerType>(Ty);
 | |
|   if (PtrTy)
 | |
|     Ty = PtrTy->getElementType();
 | |
|   Size = Ty->getVectorNumElements();
 | |
|   if (!CachePtr)
 | |
|     Tmp.resize(Size, nullptr);
 | |
|   else if (CachePtr->empty())
 | |
|     CachePtr->resize(Size, nullptr);
 | |
|   else
 | |
|     assert(Size == CachePtr->size() && "Inconsistent vector sizes");
 | |
| }
 | |
| 
 | |
| // Return component I, creating a new Value for it if necessary.
 | |
| Value *Scatterer::operator[](unsigned I) {
 | |
|   ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
 | |
|   // Try to reuse a previous value.
 | |
|   if (CV[I])
 | |
|     return CV[I];
 | |
|   IRBuilder<> Builder(BB, BBI);
 | |
|   if (PtrTy) {
 | |
|     if (!CV[0]) {
 | |
|       Type *Ty =
 | |
|         PointerType::get(PtrTy->getElementType()->getVectorElementType(),
 | |
|                          PtrTy->getAddressSpace());
 | |
|       CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0");
 | |
|     }
 | |
|     if (I != 0)
 | |
|       CV[I] = Builder.CreateConstGEP1_32(nullptr, CV[0], I,
 | |
|                                          V->getName() + ".i" + Twine(I));
 | |
|   } else {
 | |
|     // Search through a chain of InsertElementInsts looking for element I.
 | |
|     // Record other elements in the cache.  The new V is still suitable
 | |
|     // for all uncached indices.
 | |
|     while (true) {
 | |
|       InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
 | |
|       if (!Insert)
 | |
|         break;
 | |
|       ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
 | |
|       if (!Idx)
 | |
|         break;
 | |
|       unsigned J = Idx->getZExtValue();
 | |
|       V = Insert->getOperand(0);
 | |
|       if (I == J) {
 | |
|         CV[J] = Insert->getOperand(1);
 | |
|         return CV[J];
 | |
|       } else if (!CV[J]) {
 | |
|         // Only cache the first entry we find for each index we're not actively
 | |
|         // searching for. This prevents us from going too far up the chain and
 | |
|         // caching incorrect entries.
 | |
|         CV[J] = Insert->getOperand(1);
 | |
|       }
 | |
|     }
 | |
|     CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
 | |
|                                          V->getName() + ".i" + Twine(I));
 | |
|   }
 | |
|   return CV[I];
 | |
| }
 | |
| 
 | |
| bool Scalarizer::doInitialization(Module &M) {
 | |
|   ParallelLoopAccessMDKind =
 | |
|       M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
 | |
|   ScalarizeLoadStore =
 | |
|       M.getContext().getOption<bool, Scalarizer, &Scalarizer::ScalarizeLoadStore>();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Scalarizer::runOnFunction(Function &F) {
 | |
|   if (skipFunction(F))
 | |
|     return false;
 | |
|   assert(Gathered.empty() && Scattered.empty());
 | |
| 
 | |
|   // To ensure we replace gathered components correctly we need to do an ordered
 | |
|   // traversal of the basic blocks in the function.
 | |
|   ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock());
 | |
|   for (BasicBlock *BB : RPOT) {
 | |
|     for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
 | |
|       Instruction *I = &*II;
 | |
|       bool Done = visit(I);
 | |
|       ++II;
 | |
|       if (Done && I->getType()->isVoidTy())
 | |
|         I->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
|   return finish();
 | |
| }
 | |
| 
 | |
| // Return a scattered form of V that can be accessed by Point.  V must be a
 | |
| // vector or a pointer to a vector.
 | |
| Scatterer Scalarizer::scatter(Instruction *Point, Value *V) {
 | |
|   if (Argument *VArg = dyn_cast<Argument>(V)) {
 | |
|     // Put the scattered form of arguments in the entry block,
 | |
|     // so that it can be used everywhere.
 | |
|     Function *F = VArg->getParent();
 | |
|     BasicBlock *BB = &F->getEntryBlock();
 | |
|     return Scatterer(BB, BB->begin(), V, &Scattered[V]);
 | |
|   }
 | |
|   if (Instruction *VOp = dyn_cast<Instruction>(V)) {
 | |
|     // Put the scattered form of an instruction directly after the
 | |
|     // instruction.
 | |
|     BasicBlock *BB = VOp->getParent();
 | |
|     return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
 | |
|                      V, &Scattered[V]);
 | |
|   }
 | |
|   // In the fallback case, just put the scattered before Point and
 | |
|   // keep the result local to Point.
 | |
|   return Scatterer(Point->getParent(), Point->getIterator(), V);
 | |
| }
 | |
| 
 | |
| // Replace Op with the gathered form of the components in CV.  Defer the
 | |
| // deletion of Op and creation of the gathered form to the end of the pass,
 | |
| // so that we can avoid creating the gathered form if all uses of Op are
 | |
| // replaced with uses of CV.
 | |
| void Scalarizer::gather(Instruction *Op, const ValueVector &CV) {
 | |
|   // Since we're not deleting Op yet, stub out its operands, so that it
 | |
|   // doesn't make anything live unnecessarily.
 | |
|   for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
 | |
|     Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
 | |
| 
 | |
|   transferMetadata(Op, CV);
 | |
| 
 | |
|   // If we already have a scattered form of Op (created from ExtractElements
 | |
|   // of Op itself), replace them with the new form.
 | |
|   ValueVector &SV = Scattered[Op];
 | |
|   if (!SV.empty()) {
 | |
|     for (unsigned I = 0, E = SV.size(); I != E; ++I) {
 | |
|       Value *V = SV[I];
 | |
|       if (V == nullptr)
 | |
|         continue;
 | |
| 
 | |
|       Instruction *Old = cast<Instruction>(V);
 | |
|       CV[I]->takeName(Old);
 | |
|       Old->replaceAllUsesWith(CV[I]);
 | |
|       Old->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
|   SV = CV;
 | |
|   Gathered.push_back(GatherList::value_type(Op, &SV));
 | |
| }
 | |
| 
 | |
| // Return true if it is safe to transfer the given metadata tag from
 | |
| // vector to scalar instructions.
 | |
| bool Scalarizer::canTransferMetadata(unsigned Tag) {
 | |
|   return (Tag == LLVMContext::MD_tbaa
 | |
|           || Tag == LLVMContext::MD_fpmath
 | |
|           || Tag == LLVMContext::MD_tbaa_struct
 | |
|           || Tag == LLVMContext::MD_invariant_load
 | |
|           || Tag == LLVMContext::MD_alias_scope
 | |
|           || Tag == LLVMContext::MD_noalias
 | |
|           || Tag == ParallelLoopAccessMDKind);
 | |
| }
 | |
| 
 | |
| // Transfer metadata from Op to the instructions in CV if it is known
 | |
| // to be safe to do so.
 | |
| void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
 | |
|   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
 | |
|   Op->getAllMetadataOtherThanDebugLoc(MDs);
 | |
|   for (unsigned I = 0, E = CV.size(); I != E; ++I) {
 | |
|     if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
 | |
|       for (const auto &MD : MDs)
 | |
|         if (canTransferMetadata(MD.first))
 | |
|           New->setMetadata(MD.first, MD.second);
 | |
|       if (Op->getDebugLoc() && !New->getDebugLoc())
 | |
|         New->setDebugLoc(Op->getDebugLoc());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Try to fill in Layout from Ty, returning true on success.  Alignment is
 | |
| // the alignment of the vector, or 0 if the ABI default should be used.
 | |
| bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
 | |
|                                  VectorLayout &Layout, const DataLayout &DL) {
 | |
|   // Make sure we're dealing with a vector.
 | |
|   Layout.VecTy = dyn_cast<VectorType>(Ty);
 | |
|   if (!Layout.VecTy)
 | |
|     return false;
 | |
| 
 | |
|   // Check that we're dealing with full-byte elements.
 | |
|   Layout.ElemTy = Layout.VecTy->getElementType();
 | |
|   if (DL.getTypeSizeInBits(Layout.ElemTy) !=
 | |
|       DL.getTypeStoreSizeInBits(Layout.ElemTy))
 | |
|     return false;
 | |
| 
 | |
|   if (Alignment)
 | |
|     Layout.VecAlign = Alignment;
 | |
|   else
 | |
|     Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy);
 | |
|   Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
 | |
| // to create an instruction like I with operands X and Y and name Name.
 | |
| template<typename Splitter>
 | |
| bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) {
 | |
|   VectorType *VT = dyn_cast<VectorType>(I.getType());
 | |
|   if (!VT)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElems = VT->getNumElements();
 | |
|   IRBuilder<> Builder(&I);
 | |
|   Scatterer Op0 = scatter(&I, I.getOperand(0));
 | |
|   Scatterer Op1 = scatter(&I, I.getOperand(1));
 | |
|   assert(Op0.size() == NumElems && "Mismatched binary operation");
 | |
|   assert(Op1.size() == NumElems && "Mismatched binary operation");
 | |
|   ValueVector Res;
 | |
|   Res.resize(NumElems);
 | |
|   for (unsigned Elem = 0; Elem < NumElems; ++Elem)
 | |
|     Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
 | |
|                       I.getName() + ".i" + Twine(Elem));
 | |
|   gather(&I, Res);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isTriviallyScalariable(Intrinsic::ID ID) {
 | |
|   return isTriviallyVectorizable(ID);
 | |
| }
 | |
| 
 | |
| // All of the current scalarizable intrinsics only have one mangled type.
 | |
| static Function *getScalarIntrinsicDeclaration(Module *M,
 | |
|                                                Intrinsic::ID ID,
 | |
|                                                VectorType *Ty) {
 | |
|   return Intrinsic::getDeclaration(M, ID, { Ty->getScalarType() });
 | |
| }
 | |
| 
 | |
| /// If a call to a vector typed intrinsic function, split into a scalar call per
 | |
| /// element if possible for the intrinsic.
 | |
| bool Scalarizer::splitCall(CallInst &CI) {
 | |
|   VectorType *VT = dyn_cast<VectorType>(CI.getType());
 | |
|   if (!VT)
 | |
|     return false;
 | |
| 
 | |
|   Function *F = CI.getCalledFunction();
 | |
|   if (!F)
 | |
|     return false;
 | |
| 
 | |
|   Intrinsic::ID ID = F->getIntrinsicID();
 | |
|   if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElems = VT->getNumElements();
 | |
|   unsigned NumArgs = CI.getNumArgOperands();
 | |
| 
 | |
|   ValueVector ScalarOperands(NumArgs);
 | |
|   SmallVector<Scatterer, 8> Scattered(NumArgs);
 | |
| 
 | |
|   Scattered.resize(NumArgs);
 | |
| 
 | |
|   // Assumes that any vector type has the same number of elements as the return
 | |
|   // vector type, which is true for all current intrinsics.
 | |
|   for (unsigned I = 0; I != NumArgs; ++I) {
 | |
|     Value *OpI = CI.getOperand(I);
 | |
|     if (OpI->getType()->isVectorTy()) {
 | |
|       Scattered[I] = scatter(&CI, OpI);
 | |
|       assert(Scattered[I].size() == NumElems && "mismatched call operands");
 | |
|     } else {
 | |
|       ScalarOperands[I] = OpI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ValueVector Res(NumElems);
 | |
|   ValueVector ScalarCallOps(NumArgs);
 | |
| 
 | |
|   Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, VT);
 | |
|   IRBuilder<> Builder(&CI);
 | |
| 
 | |
|   // Perform actual scalarization, taking care to preserve any scalar operands.
 | |
|   for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
 | |
|     ScalarCallOps.clear();
 | |
| 
 | |
|     for (unsigned J = 0; J != NumArgs; ++J) {
 | |
|       if (hasVectorInstrinsicScalarOpd(ID, J))
 | |
|         ScalarCallOps.push_back(ScalarOperands[J]);
 | |
|       else
 | |
|         ScalarCallOps.push_back(Scattered[J][Elem]);
 | |
|     }
 | |
| 
 | |
|     Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps,
 | |
|                                    CI.getName() + ".i" + Twine(Elem));
 | |
|   }
 | |
| 
 | |
|   gather(&CI, Res);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Scalarizer::visitSelectInst(SelectInst &SI) {
 | |
|   VectorType *VT = dyn_cast<VectorType>(SI.getType());
 | |
|   if (!VT)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElems = VT->getNumElements();
 | |
|   IRBuilder<> Builder(&SI);
 | |
|   Scatterer Op1 = scatter(&SI, SI.getOperand(1));
 | |
|   Scatterer Op2 = scatter(&SI, SI.getOperand(2));
 | |
|   assert(Op1.size() == NumElems && "Mismatched select");
 | |
|   assert(Op2.size() == NumElems && "Mismatched select");
 | |
|   ValueVector Res;
 | |
|   Res.resize(NumElems);
 | |
| 
 | |
|   if (SI.getOperand(0)->getType()->isVectorTy()) {
 | |
|     Scatterer Op0 = scatter(&SI, SI.getOperand(0));
 | |
|     assert(Op0.size() == NumElems && "Mismatched select");
 | |
|     for (unsigned I = 0; I < NumElems; ++I)
 | |
|       Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
 | |
|                                     SI.getName() + ".i" + Twine(I));
 | |
|   } else {
 | |
|     Value *Op0 = SI.getOperand(0);
 | |
|     for (unsigned I = 0; I < NumElems; ++I)
 | |
|       Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
 | |
|                                     SI.getName() + ".i" + Twine(I));
 | |
|   }
 | |
|   gather(&SI, Res);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Scalarizer::visitICmpInst(ICmpInst &ICI) {
 | |
|   return splitBinary(ICI, ICmpSplitter(ICI));
 | |
| }
 | |
| 
 | |
| bool Scalarizer::visitFCmpInst(FCmpInst &FCI) {
 | |
|   return splitBinary(FCI, FCmpSplitter(FCI));
 | |
| }
 | |
| 
 | |
| bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) {
 | |
|   return splitBinary(BO, BinarySplitter(BO));
 | |
| }
 | |
| 
 | |
| bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
 | |
|   VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
 | |
|   if (!VT)
 | |
|     return false;
 | |
| 
 | |
|   IRBuilder<> Builder(&GEPI);
 | |
|   unsigned NumElems = VT->getNumElements();
 | |
|   unsigned NumIndices = GEPI.getNumIndices();
 | |
| 
 | |
|   // The base pointer might be scalar even if it's a vector GEP. In those cases,
 | |
|   // splat the pointer into a vector value, and scatter that vector.
 | |
|   Value *Op0 = GEPI.getOperand(0);
 | |
|   if (!Op0->getType()->isVectorTy())
 | |
|     Op0 = Builder.CreateVectorSplat(NumElems, Op0);
 | |
|   Scatterer Base = scatter(&GEPI, Op0);
 | |
| 
 | |
|   SmallVector<Scatterer, 8> Ops;
 | |
|   Ops.resize(NumIndices);
 | |
|   for (unsigned I = 0; I < NumIndices; ++I) {
 | |
|     Value *Op = GEPI.getOperand(I + 1);
 | |
| 
 | |
|     // The indices might be scalars even if it's a vector GEP. In those cases,
 | |
|     // splat the scalar into a vector value, and scatter that vector.
 | |
|     if (!Op->getType()->isVectorTy())
 | |
|       Op = Builder.CreateVectorSplat(NumElems, Op);
 | |
| 
 | |
|     Ops[I] = scatter(&GEPI, Op);
 | |
|   }
 | |
| 
 | |
|   ValueVector Res;
 | |
|   Res.resize(NumElems);
 | |
|   for (unsigned I = 0; I < NumElems; ++I) {
 | |
|     SmallVector<Value *, 8> Indices;
 | |
|     Indices.resize(NumIndices);
 | |
|     for (unsigned J = 0; J < NumIndices; ++J)
 | |
|       Indices[J] = Ops[J][I];
 | |
|     Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
 | |
|                                GEPI.getName() + ".i" + Twine(I));
 | |
|     if (GEPI.isInBounds())
 | |
|       if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
 | |
|         NewGEPI->setIsInBounds();
 | |
|   }
 | |
|   gather(&GEPI, Res);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Scalarizer::visitCastInst(CastInst &CI) {
 | |
|   VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
 | |
|   if (!VT)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElems = VT->getNumElements();
 | |
|   IRBuilder<> Builder(&CI);
 | |
|   Scatterer Op0 = scatter(&CI, CI.getOperand(0));
 | |
|   assert(Op0.size() == NumElems && "Mismatched cast");
 | |
|   ValueVector Res;
 | |
|   Res.resize(NumElems);
 | |
|   for (unsigned I = 0; I < NumElems; ++I)
 | |
|     Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
 | |
|                                 CI.getName() + ".i" + Twine(I));
 | |
|   gather(&CI, Res);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Scalarizer::visitBitCastInst(BitCastInst &BCI) {
 | |
|   VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
 | |
|   VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
 | |
|   if (!DstVT || !SrcVT)
 | |
|     return false;
 | |
| 
 | |
|   unsigned DstNumElems = DstVT->getNumElements();
 | |
|   unsigned SrcNumElems = SrcVT->getNumElements();
 | |
|   IRBuilder<> Builder(&BCI);
 | |
|   Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
 | |
|   ValueVector Res;
 | |
|   Res.resize(DstNumElems);
 | |
| 
 | |
|   if (DstNumElems == SrcNumElems) {
 | |
|     for (unsigned I = 0; I < DstNumElems; ++I)
 | |
|       Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
 | |
|                                      BCI.getName() + ".i" + Twine(I));
 | |
|   } else if (DstNumElems > SrcNumElems) {
 | |
|     // <M x t1> -> <N*M x t2>.  Convert each t1 to <N x t2> and copy the
 | |
|     // individual elements to the destination.
 | |
|     unsigned FanOut = DstNumElems / SrcNumElems;
 | |
|     Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
 | |
|     unsigned ResI = 0;
 | |
|     for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
 | |
|       Value *V = Op0[Op0I];
 | |
|       Instruction *VI;
 | |
|       // Look through any existing bitcasts before converting to <N x t2>.
 | |
|       // In the best case, the resulting conversion might be a no-op.
 | |
|       while ((VI = dyn_cast<Instruction>(V)) &&
 | |
|              VI->getOpcode() == Instruction::BitCast)
 | |
|         V = VI->getOperand(0);
 | |
|       V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
 | |
|       Scatterer Mid = scatter(&BCI, V);
 | |
|       for (unsigned MidI = 0; MidI < FanOut; ++MidI)
 | |
|         Res[ResI++] = Mid[MidI];
 | |
|     }
 | |
|   } else {
 | |
|     // <N*M x t1> -> <M x t2>.  Convert each group of <N x t1> into a t2.
 | |
|     unsigned FanIn = SrcNumElems / DstNumElems;
 | |
|     Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
 | |
|     unsigned Op0I = 0;
 | |
|     for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
 | |
|       Value *V = UndefValue::get(MidTy);
 | |
|       for (unsigned MidI = 0; MidI < FanIn; ++MidI)
 | |
|         V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
 | |
|                                         BCI.getName() + ".i" + Twine(ResI)
 | |
|                                         + ".upto" + Twine(MidI));
 | |
|       Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
 | |
|                                         BCI.getName() + ".i" + Twine(ResI));
 | |
|     }
 | |
|   }
 | |
|   gather(&BCI, Res);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
 | |
|   VectorType *VT = dyn_cast<VectorType>(SVI.getType());
 | |
|   if (!VT)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElems = VT->getNumElements();
 | |
|   Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
 | |
|   Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
 | |
|   ValueVector Res;
 | |
|   Res.resize(NumElems);
 | |
| 
 | |
|   for (unsigned I = 0; I < NumElems; ++I) {
 | |
|     int Selector = SVI.getMaskValue(I);
 | |
|     if (Selector < 0)
 | |
|       Res[I] = UndefValue::get(VT->getElementType());
 | |
|     else if (unsigned(Selector) < Op0.size())
 | |
|       Res[I] = Op0[Selector];
 | |
|     else
 | |
|       Res[I] = Op1[Selector - Op0.size()];
 | |
|   }
 | |
|   gather(&SVI, Res);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Scalarizer::visitPHINode(PHINode &PHI) {
 | |
|   VectorType *VT = dyn_cast<VectorType>(PHI.getType());
 | |
|   if (!VT)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElems = VT->getNumElements();
 | |
|   IRBuilder<> Builder(&PHI);
 | |
|   ValueVector Res;
 | |
|   Res.resize(NumElems);
 | |
| 
 | |
|   unsigned NumOps = PHI.getNumOperands();
 | |
|   for (unsigned I = 0; I < NumElems; ++I)
 | |
|     Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
 | |
|                                PHI.getName() + ".i" + Twine(I));
 | |
| 
 | |
|   for (unsigned I = 0; I < NumOps; ++I) {
 | |
|     Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
 | |
|     BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
 | |
|     for (unsigned J = 0; J < NumElems; ++J)
 | |
|       cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
 | |
|   }
 | |
|   gather(&PHI, Res);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Scalarizer::visitLoadInst(LoadInst &LI) {
 | |
|   if (!ScalarizeLoadStore)
 | |
|     return false;
 | |
|   if (!LI.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   VectorLayout Layout;
 | |
|   if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout,
 | |
|                        LI.getModule()->getDataLayout()))
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElems = Layout.VecTy->getNumElements();
 | |
|   IRBuilder<> Builder(&LI);
 | |
|   Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
 | |
|   ValueVector Res;
 | |
|   Res.resize(NumElems);
 | |
| 
 | |
|   for (unsigned I = 0; I < NumElems; ++I)
 | |
|     Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I),
 | |
|                                        LI.getName() + ".i" + Twine(I));
 | |
|   gather(&LI, Res);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Scalarizer::visitStoreInst(StoreInst &SI) {
 | |
|   if (!ScalarizeLoadStore)
 | |
|     return false;
 | |
|   if (!SI.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   VectorLayout Layout;
 | |
|   Value *FullValue = SI.getValueOperand();
 | |
|   if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout,
 | |
|                        SI.getModule()->getDataLayout()))
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumElems = Layout.VecTy->getNumElements();
 | |
|   IRBuilder<> Builder(&SI);
 | |
|   Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
 | |
|   Scatterer Val = scatter(&SI, FullValue);
 | |
| 
 | |
|   ValueVector Stores;
 | |
|   Stores.resize(NumElems);
 | |
|   for (unsigned I = 0; I < NumElems; ++I) {
 | |
|     unsigned Align = Layout.getElemAlign(I);
 | |
|     Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
 | |
|   }
 | |
|   transferMetadata(&SI, Stores);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Scalarizer::visitCallInst(CallInst &CI) {
 | |
|   return splitCall(CI);
 | |
| }
 | |
| 
 | |
| // Delete the instructions that we scalarized.  If a full vector result
 | |
| // is still needed, recreate it using InsertElements.
 | |
| bool Scalarizer::finish() {
 | |
|   // The presence of data in Gathered or Scattered indicates changes
 | |
|   // made to the Function.
 | |
|   if (Gathered.empty() && Scattered.empty())
 | |
|     return false;
 | |
|   for (const auto &GMI : Gathered) {
 | |
|     Instruction *Op = GMI.first;
 | |
|     ValueVector &CV = *GMI.second;
 | |
|     if (!Op->use_empty()) {
 | |
|       // The value is still needed, so recreate it using a series of
 | |
|       // InsertElements.
 | |
|       Type *Ty = Op->getType();
 | |
|       Value *Res = UndefValue::get(Ty);
 | |
|       BasicBlock *BB = Op->getParent();
 | |
|       unsigned Count = Ty->getVectorNumElements();
 | |
|       IRBuilder<> Builder(Op);
 | |
|       if (isa<PHINode>(Op))
 | |
|         Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
 | |
|       for (unsigned I = 0; I < Count; ++I)
 | |
|         Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
 | |
|                                           Op->getName() + ".upto" + Twine(I));
 | |
|       Res->takeName(Op);
 | |
|       Op->replaceAllUsesWith(Res);
 | |
|     }
 | |
|     Op->eraseFromParent();
 | |
|   }
 | |
|   Gathered.clear();
 | |
|   Scattered.clear();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createScalarizerPass() {
 | |
|   return new Scalarizer();
 | |
| }
 |