forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			305 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			305 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- Sink.cpp - Code Sinking -------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass moves instructions into successor blocks, when possible, so that
 | |
| // they aren't executed on paths where their results aren't needed.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar/Sink.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "sink"
 | |
| 
 | |
| STATISTIC(NumSunk, "Number of instructions sunk");
 | |
| STATISTIC(NumSinkIter, "Number of sinking iterations");
 | |
| 
 | |
| /// AllUsesDominatedByBlock - Return true if all uses of the specified value
 | |
| /// occur in blocks dominated by the specified block.
 | |
| static bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB,
 | |
|                                     DominatorTree &DT) {
 | |
|   // Ignoring debug uses is necessary so debug info doesn't affect the code.
 | |
|   // This may leave a referencing dbg_value in the original block, before
 | |
|   // the definition of the vreg.  Dwarf generator handles this although the
 | |
|   // user might not get the right info at runtime.
 | |
|   for (Use &U : Inst->uses()) {
 | |
|     // Determine the block of the use.
 | |
|     Instruction *UseInst = cast<Instruction>(U.getUser());
 | |
|     BasicBlock *UseBlock = UseInst->getParent();
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
 | |
|       // PHI nodes use the operand in the predecessor block, not the block with
 | |
|       // the PHI.
 | |
|       unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo());
 | |
|       UseBlock = PN->getIncomingBlock(Num);
 | |
|     }
 | |
|     // Check that it dominates.
 | |
|     if (!DT.dominates(BB, UseBlock))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isSafeToMove(Instruction *Inst, AliasAnalysis &AA,
 | |
|                          SmallPtrSetImpl<Instruction *> &Stores) {
 | |
| 
 | |
|   if (Inst->mayWriteToMemory()) {
 | |
|     Stores.insert(Inst);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
 | |
|     MemoryLocation Loc = MemoryLocation::get(L);
 | |
|     for (Instruction *S : Stores)
 | |
|       if (isModSet(AA.getModRefInfo(S, Loc)))
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   if (Inst->isTerminator() || isa<PHINode>(Inst) || Inst->isEHPad() ||
 | |
|       Inst->mayThrow())
 | |
|     return false;
 | |
| 
 | |
|   if (auto CS = CallSite(Inst)) {
 | |
|     // Convergent operations cannot be made control-dependent on additional
 | |
|     // values.
 | |
|     if (CS.hasFnAttr(Attribute::Convergent))
 | |
|       return false;
 | |
| 
 | |
|     for (Instruction *S : Stores)
 | |
|       if (isModSet(AA.getModRefInfo(S, CS)))
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// IsAcceptableTarget - Return true if it is possible to sink the instruction
 | |
| /// in the specified basic block.
 | |
| static bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo,
 | |
|                                DominatorTree &DT, LoopInfo &LI) {
 | |
|   assert(Inst && "Instruction to be sunk is null");
 | |
|   assert(SuccToSinkTo && "Candidate sink target is null");
 | |
| 
 | |
|   // It is not possible to sink an instruction into its own block.  This can
 | |
|   // happen with loops.
 | |
|   if (Inst->getParent() == SuccToSinkTo)
 | |
|     return false;
 | |
| 
 | |
|   // It's never legal to sink an instruction into a block which terminates in an
 | |
|   // EH-pad.
 | |
|   if (SuccToSinkTo->getTerminator()->isExceptionalTerminator())
 | |
|     return false;
 | |
| 
 | |
|   // If the block has multiple predecessors, this would introduce computation
 | |
|   // on different code paths.  We could split the critical edge, but for now we
 | |
|   // just punt.
 | |
|   // FIXME: Split critical edges if not backedges.
 | |
|   if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) {
 | |
|     // We cannot sink a load across a critical edge - there may be stores in
 | |
|     // other code paths.
 | |
|     if (Inst->mayReadFromMemory())
 | |
|       return false;
 | |
| 
 | |
|     // We don't want to sink across a critical edge if we don't dominate the
 | |
|     // successor. We could be introducing calculations to new code paths.
 | |
|     if (!DT.dominates(Inst->getParent(), SuccToSinkTo))
 | |
|       return false;
 | |
| 
 | |
|     // Don't sink instructions into a loop.
 | |
|     Loop *succ = LI.getLoopFor(SuccToSinkTo);
 | |
|     Loop *cur = LI.getLoopFor(Inst->getParent());
 | |
|     if (succ != nullptr && succ != cur)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Finally, check that all the uses of the instruction are actually
 | |
|   // dominated by the candidate
 | |
|   return AllUsesDominatedByBlock(Inst, SuccToSinkTo, DT);
 | |
| }
 | |
| 
 | |
| /// SinkInstruction - Determine whether it is safe to sink the specified machine
 | |
| /// instruction out of its current block into a successor.
 | |
| static bool SinkInstruction(Instruction *Inst,
 | |
|                             SmallPtrSetImpl<Instruction *> &Stores,
 | |
|                             DominatorTree &DT, LoopInfo &LI, AAResults &AA) {
 | |
| 
 | |
|   // Don't sink static alloca instructions.  CodeGen assumes allocas outside the
 | |
|   // entry block are dynamically sized stack objects.
 | |
|   if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
 | |
|     if (AI->isStaticAlloca())
 | |
|       return false;
 | |
| 
 | |
|   // Check if it's safe to move the instruction.
 | |
|   if (!isSafeToMove(Inst, AA, Stores))
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: This should include support for sinking instructions within the
 | |
|   // block they are currently in to shorten the live ranges.  We often get
 | |
|   // instructions sunk into the top of a large block, but it would be better to
 | |
|   // also sink them down before their first use in the block.  This xform has to
 | |
|   // be careful not to *increase* register pressure though, e.g. sinking
 | |
|   // "x = y + z" down if it kills y and z would increase the live ranges of y
 | |
|   // and z and only shrink the live range of x.
 | |
| 
 | |
|   // SuccToSinkTo - This is the successor to sink this instruction to, once we
 | |
|   // decide.
 | |
|   BasicBlock *SuccToSinkTo = nullptr;
 | |
| 
 | |
|   // Instructions can only be sunk if all their uses are in blocks
 | |
|   // dominated by one of the successors.
 | |
|   // Look at all the dominated blocks and see if we can sink it in one.
 | |
|   DomTreeNode *DTN = DT.getNode(Inst->getParent());
 | |
|   for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end();
 | |
|       I != E && SuccToSinkTo == nullptr; ++I) {
 | |
|     BasicBlock *Candidate = (*I)->getBlock();
 | |
|     // A node always immediate-dominates its children on the dominator
 | |
|     // tree.
 | |
|     if (IsAcceptableTarget(Inst, Candidate, DT, LI))
 | |
|       SuccToSinkTo = Candidate;
 | |
|   }
 | |
| 
 | |
|   // If no suitable postdominator was found, look at all the successors and
 | |
|   // decide which one we should sink to, if any.
 | |
|   for (succ_iterator I = succ_begin(Inst->getParent()),
 | |
|       E = succ_end(Inst->getParent()); I != E && !SuccToSinkTo; ++I) {
 | |
|     if (IsAcceptableTarget(Inst, *I, DT, LI))
 | |
|       SuccToSinkTo = *I;
 | |
|   }
 | |
| 
 | |
|   // If we couldn't find a block to sink to, ignore this instruction.
 | |
|   if (!SuccToSinkTo)
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Sink" << *Inst << " (";
 | |
|              Inst->getParent()->printAsOperand(dbgs(), false); dbgs() << " -> ";
 | |
|              SuccToSinkTo->printAsOperand(dbgs(), false); dbgs() << ")\n");
 | |
| 
 | |
|   // Move the instruction.
 | |
|   Inst->moveBefore(&*SuccToSinkTo->getFirstInsertionPt());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool ProcessBlock(BasicBlock &BB, DominatorTree &DT, LoopInfo &LI,
 | |
|                          AAResults &AA) {
 | |
|   // Can't sink anything out of a block that has less than two successors.
 | |
|   if (BB.getTerminator()->getNumSuccessors() <= 1) return false;
 | |
| 
 | |
|   // Don't bother sinking code out of unreachable blocks. In addition to being
 | |
|   // unprofitable, it can also lead to infinite looping, because in an
 | |
|   // unreachable loop there may be nowhere to stop.
 | |
|   if (!DT.isReachableFromEntry(&BB)) return false;
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Walk the basic block bottom-up.  Remember if we saw a store.
 | |
|   BasicBlock::iterator I = BB.end();
 | |
|   --I;
 | |
|   bool ProcessedBegin = false;
 | |
|   SmallPtrSet<Instruction *, 8> Stores;
 | |
|   do {
 | |
|     Instruction *Inst = &*I; // The instruction to sink.
 | |
| 
 | |
|     // Predecrement I (if it's not begin) so that it isn't invalidated by
 | |
|     // sinking.
 | |
|     ProcessedBegin = I == BB.begin();
 | |
|     if (!ProcessedBegin)
 | |
|       --I;
 | |
| 
 | |
|     if (isa<DbgInfoIntrinsic>(Inst))
 | |
|       continue;
 | |
| 
 | |
|     if (SinkInstruction(Inst, Stores, DT, LI, AA)) {
 | |
|       ++NumSunk;
 | |
|       MadeChange = true;
 | |
|     }
 | |
| 
 | |
|     // If we just processed the first instruction in the block, we're done.
 | |
|   } while (!ProcessedBegin);
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| static bool iterativelySinkInstructions(Function &F, DominatorTree &DT,
 | |
|                                         LoopInfo &LI, AAResults &AA) {
 | |
|   bool MadeChange, EverMadeChange = false;
 | |
| 
 | |
|   do {
 | |
|     MadeChange = false;
 | |
|     LLVM_DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n");
 | |
|     // Process all basic blocks.
 | |
|     for (BasicBlock &I : F)
 | |
|       MadeChange |= ProcessBlock(I, DT, LI, AA);
 | |
|     EverMadeChange |= MadeChange;
 | |
|     NumSinkIter++;
 | |
|   } while (MadeChange);
 | |
| 
 | |
|   return EverMadeChange;
 | |
| }
 | |
| 
 | |
| PreservedAnalyses SinkingPass::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | |
|   auto &LI = AM.getResult<LoopAnalysis>(F);
 | |
|   auto &AA = AM.getResult<AAManager>(F);
 | |
| 
 | |
|   if (!iterativelySinkInstructions(F, DT, LI, AA))
 | |
|     return PreservedAnalyses::all();
 | |
| 
 | |
|   PreservedAnalyses PA;
 | |
|   PA.preserveSet<CFGAnalyses>();
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   class SinkingLegacyPass : public FunctionPass {
 | |
|   public:
 | |
|     static char ID; // Pass identification
 | |
|     SinkingLegacyPass() : FunctionPass(ID) {
 | |
|       initializeSinkingLegacyPassPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) override {
 | |
|       auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|       auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|       auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
| 
 | |
|       return iterativelySinkInstructions(F, DT, LI, AA);
 | |
|     }
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.setPreservesCFG();
 | |
|       FunctionPass::getAnalysisUsage(AU);
 | |
|       AU.addRequired<AAResultsWrapperPass>();
 | |
|       AU.addRequired<DominatorTreeWrapperPass>();
 | |
|       AU.addRequired<LoopInfoWrapperPass>();
 | |
|       AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|       AU.addPreserved<LoopInfoWrapperPass>();
 | |
|     }
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char SinkingLegacyPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(SinkingLegacyPass, "sink", "Code sinking", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_END(SinkingLegacyPass, "sink", "Code sinking", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createSinkingPass() { return new SinkingLegacyPass(); }
 |