forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1236 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1236 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass merges loads/stores to/from sequential memory addresses into vector
 | |
| // loads/stores.  Although there's nothing GPU-specific in here, this pass is
 | |
| // motivated by the microarchitectural quirks of nVidia and AMD GPUs.
 | |
| //
 | |
| // (For simplicity below we talk about loads only, but everything also applies
 | |
| // to stores.)
 | |
| //
 | |
| // This pass is intended to be run late in the pipeline, after other
 | |
| // vectorization opportunities have been exploited.  So the assumption here is
 | |
| // that immediately following our new vector load we'll need to extract out the
 | |
| // individual elements of the load, so we can operate on them individually.
 | |
| //
 | |
| // On CPUs this transformation is usually not beneficial, because extracting the
 | |
| // elements of a vector register is expensive on most architectures.  It's
 | |
| // usually better just to load each element individually into its own scalar
 | |
| // register.
 | |
| //
 | |
| // However, nVidia and AMD GPUs don't have proper vector registers.  Instead, a
 | |
| // "vector load" loads directly into a series of scalar registers.  In effect,
 | |
| // extracting the elements of the vector is free.  It's therefore always
 | |
| // beneficial to vectorize a sequence of loads on these architectures.
 | |
| //
 | |
| // Vectorizing (perhaps a better name might be "coalescing") loads can have
 | |
| // large performance impacts on GPU kernels, and opportunities for vectorizing
 | |
| // are common in GPU code.  This pass tries very hard to find such
 | |
| // opportunities; its runtime is quadratic in the number of loads in a BB.
 | |
| //
 | |
| // Some CPU architectures, such as ARM, have instructions that load into
 | |
| // multiple scalar registers, similar to a GPU vectorized load.  In theory ARM
 | |
| // could use this pass (with some modifications), but currently it implements
 | |
| // its own pass to do something similar to what we do here.
 | |
| 
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/MemoryLocation.h"
 | |
| #include "llvm/Analysis/OrderedBasicBlock.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Analysis/VectorUtils.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Vectorize.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdlib>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "load-store-vectorizer"
 | |
| 
 | |
| STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
 | |
| STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
 | |
| 
 | |
| // FIXME: Assuming stack alignment of 4 is always good enough
 | |
| static const unsigned StackAdjustedAlignment = 4;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// ChainID is an arbitrary token that is allowed to be different only for the
 | |
| /// accesses that are guaranteed to be considered non-consecutive by
 | |
| /// Vectorizer::isConsecutiveAccess. It's used for grouping instructions
 | |
| /// together and reducing the number of instructions the main search operates on
 | |
| /// at a time, i.e. this is to reduce compile time and nothing else as the main
 | |
| /// search has O(n^2) time complexity. The underlying type of ChainID should not
 | |
| /// be relied upon.
 | |
| using ChainID = const Value *;
 | |
| using InstrList = SmallVector<Instruction *, 8>;
 | |
| using InstrListMap = MapVector<ChainID, InstrList>;
 | |
| 
 | |
| class Vectorizer {
 | |
|   Function &F;
 | |
|   AliasAnalysis &AA;
 | |
|   DominatorTree &DT;
 | |
|   ScalarEvolution &SE;
 | |
|   TargetTransformInfo &TTI;
 | |
|   const DataLayout &DL;
 | |
|   IRBuilder<> Builder;
 | |
| 
 | |
| public:
 | |
|   Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT,
 | |
|              ScalarEvolution &SE, TargetTransformInfo &TTI)
 | |
|       : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI),
 | |
|         DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}
 | |
| 
 | |
|   bool run();
 | |
| 
 | |
| private:
 | |
|   unsigned getPointerAddressSpace(Value *I);
 | |
| 
 | |
|   unsigned getAlignment(LoadInst *LI) const {
 | |
|     unsigned Align = LI->getAlignment();
 | |
|     if (Align != 0)
 | |
|       return Align;
 | |
| 
 | |
|     return DL.getABITypeAlignment(LI->getType());
 | |
|   }
 | |
| 
 | |
|   unsigned getAlignment(StoreInst *SI) const {
 | |
|     unsigned Align = SI->getAlignment();
 | |
|     if (Align != 0)
 | |
|       return Align;
 | |
| 
 | |
|     return DL.getABITypeAlignment(SI->getValueOperand()->getType());
 | |
|   }
 | |
| 
 | |
|   static const unsigned MaxDepth = 3;
 | |
| 
 | |
|   bool isConsecutiveAccess(Value *A, Value *B);
 | |
|   bool areConsecutivePointers(Value *PtrA, Value *PtrB, const APInt &PtrDelta,
 | |
|                               unsigned Depth = 0) const;
 | |
|   bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta,
 | |
|                                    unsigned Depth) const;
 | |
|   bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta,
 | |
|                           unsigned Depth) const;
 | |
| 
 | |
|   /// After vectorization, reorder the instructions that I depends on
 | |
|   /// (the instructions defining its operands), to ensure they dominate I.
 | |
|   void reorder(Instruction *I);
 | |
| 
 | |
|   /// Returns the first and the last instructions in Chain.
 | |
|   std::pair<BasicBlock::iterator, BasicBlock::iterator>
 | |
|   getBoundaryInstrs(ArrayRef<Instruction *> Chain);
 | |
| 
 | |
|   /// Erases the original instructions after vectorizing.
 | |
|   void eraseInstructions(ArrayRef<Instruction *> Chain);
 | |
| 
 | |
|   /// "Legalize" the vector type that would be produced by combining \p
 | |
|   /// ElementSizeBits elements in \p Chain. Break into two pieces such that the
 | |
|   /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is
 | |
|   /// expected to have more than 4 elements.
 | |
|   std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
 | |
|   splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits);
 | |
| 
 | |
|   /// Finds the largest prefix of Chain that's vectorizable, checking for
 | |
|   /// intervening instructions which may affect the memory accessed by the
 | |
|   /// instructions within Chain.
 | |
|   ///
 | |
|   /// The elements of \p Chain must be all loads or all stores and must be in
 | |
|   /// address order.
 | |
|   ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain);
 | |
| 
 | |
|   /// Collects load and store instructions to vectorize.
 | |
|   std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB);
 | |
| 
 | |
|   /// Processes the collected instructions, the \p Map. The values of \p Map
 | |
|   /// should be all loads or all stores.
 | |
|   bool vectorizeChains(InstrListMap &Map);
 | |
| 
 | |
|   /// Finds the load/stores to consecutive memory addresses and vectorizes them.
 | |
|   bool vectorizeInstructions(ArrayRef<Instruction *> Instrs);
 | |
| 
 | |
|   /// Vectorizes the load instructions in Chain.
 | |
|   bool
 | |
|   vectorizeLoadChain(ArrayRef<Instruction *> Chain,
 | |
|                      SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
 | |
| 
 | |
|   /// Vectorizes the store instructions in Chain.
 | |
|   bool
 | |
|   vectorizeStoreChain(ArrayRef<Instruction *> Chain,
 | |
|                       SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
 | |
| 
 | |
|   /// Check if this load/store access is misaligned accesses.
 | |
|   bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
 | |
|                           unsigned Alignment);
 | |
| };
 | |
| 
 | |
| class LoadStoreVectorizer : public FunctionPass {
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   LoadStoreVectorizer() : FunctionPass(ID) {
 | |
|     initializeLoadStoreVectorizerPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override;
 | |
| 
 | |
|   StringRef getPassName() const override {
 | |
|     return "GPU Load and Store Vectorizer";
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<AAResultsWrapperPass>();
 | |
|     AU.addRequired<ScalarEvolutionWrapperPass>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|     AU.setPreservesCFG();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char LoadStoreVectorizer::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(LoadStoreVectorizer, DEBUG_TYPE,
 | |
|                       "Vectorize load and Store instructions", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(LoadStoreVectorizer, DEBUG_TYPE,
 | |
|                     "Vectorize load and store instructions", false, false)
 | |
| 
 | |
| Pass *llvm::createLoadStoreVectorizerPass() {
 | |
|   return new LoadStoreVectorizer();
 | |
| }
 | |
| 
 | |
| // The real propagateMetadata expects a SmallVector<Value*>, but we deal in
 | |
| // vectors of Instructions.
 | |
| static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) {
 | |
|   SmallVector<Value *, 8> VL(IL.begin(), IL.end());
 | |
|   propagateMetadata(I, VL);
 | |
| }
 | |
| 
 | |
| bool LoadStoreVectorizer::runOnFunction(Function &F) {
 | |
|   // Don't vectorize when the attribute NoImplicitFloat is used.
 | |
|   if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
 | |
|     return false;
 | |
| 
 | |
|   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | |
|   TargetTransformInfo &TTI =
 | |
|       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
| 
 | |
|   Vectorizer V(F, AA, DT, SE, TTI);
 | |
|   return V.run();
 | |
| }
 | |
| 
 | |
| // Vectorizer Implementation
 | |
| bool Vectorizer::run() {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Scan the blocks in the function in post order.
 | |
|   for (BasicBlock *BB : post_order(&F)) {
 | |
|     InstrListMap LoadRefs, StoreRefs;
 | |
|     std::tie(LoadRefs, StoreRefs) = collectInstructions(BB);
 | |
|     Changed |= vectorizeChains(LoadRefs);
 | |
|     Changed |= vectorizeChains(StoreRefs);
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| unsigned Vectorizer::getPointerAddressSpace(Value *I) {
 | |
|   if (LoadInst *L = dyn_cast<LoadInst>(I))
 | |
|     return L->getPointerAddressSpace();
 | |
|   if (StoreInst *S = dyn_cast<StoreInst>(I))
 | |
|     return S->getPointerAddressSpace();
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| // FIXME: Merge with llvm::isConsecutiveAccess
 | |
| bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) {
 | |
|   Value *PtrA = getLoadStorePointerOperand(A);
 | |
|   Value *PtrB = getLoadStorePointerOperand(B);
 | |
|   unsigned ASA = getPointerAddressSpace(A);
 | |
|   unsigned ASB = getPointerAddressSpace(B);
 | |
| 
 | |
|   // Check that the address spaces match and that the pointers are valid.
 | |
|   if (!PtrA || !PtrB || (ASA != ASB))
 | |
|     return false;
 | |
| 
 | |
|   // Make sure that A and B are different pointers of the same size type.
 | |
|   Type *PtrATy = PtrA->getType()->getPointerElementType();
 | |
|   Type *PtrBTy = PtrB->getType()->getPointerElementType();
 | |
|   if (PtrA == PtrB ||
 | |
|       PtrATy->isVectorTy() != PtrBTy->isVectorTy() ||
 | |
|       DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) ||
 | |
|       DL.getTypeStoreSize(PtrATy->getScalarType()) !=
 | |
|           DL.getTypeStoreSize(PtrBTy->getScalarType()))
 | |
|     return false;
 | |
| 
 | |
|   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
 | |
|   APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy));
 | |
| 
 | |
|   return areConsecutivePointers(PtrA, PtrB, Size);
 | |
| }
 | |
| 
 | |
| bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB,
 | |
|                                         const APInt &PtrDelta,
 | |
|                                         unsigned Depth) const {
 | |
|   unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType());
 | |
|   APInt OffsetA(PtrBitWidth, 0);
 | |
|   APInt OffsetB(PtrBitWidth, 0);
 | |
|   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
 | |
|   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
 | |
| 
 | |
|   APInt OffsetDelta = OffsetB - OffsetA;
 | |
| 
 | |
|   // Check if they are based on the same pointer. That makes the offsets
 | |
|   // sufficient.
 | |
|   if (PtrA == PtrB)
 | |
|     return OffsetDelta == PtrDelta;
 | |
| 
 | |
|   // Compute the necessary base pointer delta to have the necessary final delta
 | |
|   // equal to the pointer delta requested.
 | |
|   APInt BaseDelta = PtrDelta - OffsetDelta;
 | |
| 
 | |
|   // Compute the distance with SCEV between the base pointers.
 | |
|   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
 | |
|   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
 | |
|   const SCEV *C = SE.getConstant(BaseDelta);
 | |
|   const SCEV *X = SE.getAddExpr(PtrSCEVA, C);
 | |
|   if (X == PtrSCEVB)
 | |
|     return true;
 | |
| 
 | |
|   // The above check will not catch the cases where one of the pointers is
 | |
|   // factorized but the other one is not, such as (C + (S * (A + B))) vs
 | |
|   // (AS + BS). Get the minus scev. That will allow re-combining the expresions
 | |
|   // and getting the simplified difference.
 | |
|   const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA);
 | |
|   if (C == Dist)
 | |
|     return true;
 | |
| 
 | |
|   // Sometimes even this doesn't work, because SCEV can't always see through
 | |
|   // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking
 | |
|   // things the hard way.
 | |
|   return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth);
 | |
| }
 | |
| 
 | |
| bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB,
 | |
|                                              APInt PtrDelta,
 | |
|                                              unsigned Depth) const {
 | |
|   auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA);
 | |
|   auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB);
 | |
|   if (!GEPA || !GEPB)
 | |
|     return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth);
 | |
| 
 | |
|   // Look through GEPs after checking they're the same except for the last
 | |
|   // index.
 | |
|   if (GEPA->getNumOperands() != GEPB->getNumOperands() ||
 | |
|       GEPA->getPointerOperand() != GEPB->getPointerOperand())
 | |
|     return false;
 | |
|   gep_type_iterator GTIA = gep_type_begin(GEPA);
 | |
|   gep_type_iterator GTIB = gep_type_begin(GEPB);
 | |
|   for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) {
 | |
|     if (GTIA.getOperand() != GTIB.getOperand())
 | |
|       return false;
 | |
|     ++GTIA;
 | |
|     ++GTIB;
 | |
|   }
 | |
| 
 | |
|   Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand());
 | |
|   Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand());
 | |
|   if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
 | |
|       OpA->getType() != OpB->getType())
 | |
|     return false;
 | |
| 
 | |
|   if (PtrDelta.isNegative()) {
 | |
|     if (PtrDelta.isMinSignedValue())
 | |
|       return false;
 | |
|     PtrDelta.negate();
 | |
|     std::swap(OpA, OpB);
 | |
|   }
 | |
|   uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType());
 | |
|   if (PtrDelta.urem(Stride) != 0)
 | |
|     return false;
 | |
|   unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits();
 | |
|   APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth);
 | |
| 
 | |
|   // Only look through a ZExt/SExt.
 | |
|   if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
 | |
|     return false;
 | |
| 
 | |
|   bool Signed = isa<SExtInst>(OpA);
 | |
| 
 | |
|   // At this point A could be a function parameter, i.e. not an instruction
 | |
|   Value *ValA = OpA->getOperand(0);
 | |
|   OpB = dyn_cast<Instruction>(OpB->getOperand(0));
 | |
|   if (!OpB || ValA->getType() != OpB->getType())
 | |
|     return false;
 | |
| 
 | |
|   // Now we need to prove that adding IdxDiff to ValA won't overflow.
 | |
|   bool Safe = false;
 | |
|   // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to
 | |
|   // ValA, we're okay.
 | |
|   if (OpB->getOpcode() == Instruction::Add &&
 | |
|       isa<ConstantInt>(OpB->getOperand(1)) &&
 | |
|       IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue())) {
 | |
|     if (Signed)
 | |
|       Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap();
 | |
|     else
 | |
|       Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap();
 | |
|   }
 | |
| 
 | |
|   unsigned BitWidth = ValA->getType()->getScalarSizeInBits();
 | |
| 
 | |
|   // Second attempt:
 | |
|   // If all set bits of IdxDiff or any higher order bit other than the sign bit
 | |
|   // are known to be zero in ValA, we can add Diff to it while guaranteeing no
 | |
|   // overflow of any sort.
 | |
|   if (!Safe) {
 | |
|     OpA = dyn_cast<Instruction>(ValA);
 | |
|     if (!OpA)
 | |
|       return false;
 | |
|     KnownBits Known(BitWidth);
 | |
|     computeKnownBits(OpA, Known, DL, 0, nullptr, OpA, &DT);
 | |
|     APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth());
 | |
|     if (Signed)
 | |
|       BitsAllowedToBeSet.clearBit(BitWidth - 1);
 | |
|     if (BitsAllowedToBeSet.ult(IdxDiff))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   const SCEV *OffsetSCEVA = SE.getSCEV(ValA);
 | |
|   const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
 | |
|   const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth));
 | |
|   const SCEV *X = SE.getAddExpr(OffsetSCEVA, C);
 | |
|   return X == OffsetSCEVB;
 | |
| }
 | |
| 
 | |
| bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB,
 | |
|                                     const APInt &PtrDelta,
 | |
|                                     unsigned Depth) const {
 | |
|   if (Depth++ == MaxDepth)
 | |
|     return false;
 | |
| 
 | |
|   if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) {
 | |
|     if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) {
 | |
|       return SelectA->getCondition() == SelectB->getCondition() &&
 | |
|              areConsecutivePointers(SelectA->getTrueValue(),
 | |
|                                     SelectB->getTrueValue(), PtrDelta, Depth) &&
 | |
|              areConsecutivePointers(SelectA->getFalseValue(),
 | |
|                                     SelectB->getFalseValue(), PtrDelta, Depth);
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Vectorizer::reorder(Instruction *I) {
 | |
|   OrderedBasicBlock OBB(I->getParent());
 | |
|   SmallPtrSet<Instruction *, 16> InstructionsToMove;
 | |
|   SmallVector<Instruction *, 16> Worklist;
 | |
| 
 | |
|   Worklist.push_back(I);
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *IW = Worklist.pop_back_val();
 | |
|     int NumOperands = IW->getNumOperands();
 | |
|     for (int i = 0; i < NumOperands; i++) {
 | |
|       Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
 | |
|       if (!IM || IM->getOpcode() == Instruction::PHI)
 | |
|         continue;
 | |
| 
 | |
|       // If IM is in another BB, no need to move it, because this pass only
 | |
|       // vectorizes instructions within one BB.
 | |
|       if (IM->getParent() != I->getParent())
 | |
|         continue;
 | |
| 
 | |
|       if (!OBB.dominates(IM, I)) {
 | |
|         InstructionsToMove.insert(IM);
 | |
|         Worklist.push_back(IM);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // All instructions to move should follow I. Start from I, not from begin().
 | |
|   for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;
 | |
|        ++BBI) {
 | |
|     if (!InstructionsToMove.count(&*BBI))
 | |
|       continue;
 | |
|     Instruction *IM = &*BBI;
 | |
|     --BBI;
 | |
|     IM->removeFromParent();
 | |
|     IM->insertBefore(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::pair<BasicBlock::iterator, BasicBlock::iterator>
 | |
| Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) {
 | |
|   Instruction *C0 = Chain[0];
 | |
|   BasicBlock::iterator FirstInstr = C0->getIterator();
 | |
|   BasicBlock::iterator LastInstr = C0->getIterator();
 | |
| 
 | |
|   BasicBlock *BB = C0->getParent();
 | |
|   unsigned NumFound = 0;
 | |
|   for (Instruction &I : *BB) {
 | |
|     if (!is_contained(Chain, &I))
 | |
|       continue;
 | |
| 
 | |
|     ++NumFound;
 | |
|     if (NumFound == 1) {
 | |
|       FirstInstr = I.getIterator();
 | |
|     }
 | |
|     if (NumFound == Chain.size()) {
 | |
|       LastInstr = I.getIterator();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Range is [first, last).
 | |
|   return std::make_pair(FirstInstr, ++LastInstr);
 | |
| }
 | |
| 
 | |
| void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) {
 | |
|   SmallVector<Instruction *, 16> Instrs;
 | |
|   for (Instruction *I : Chain) {
 | |
|     Value *PtrOperand = getLoadStorePointerOperand(I);
 | |
|     assert(PtrOperand && "Instruction must have a pointer operand.");
 | |
|     Instrs.push_back(I);
 | |
|     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand))
 | |
|       Instrs.push_back(GEP);
 | |
|   }
 | |
| 
 | |
|   // Erase instructions.
 | |
|   for (Instruction *I : Instrs)
 | |
|     if (I->use_empty())
 | |
|       I->eraseFromParent();
 | |
| }
 | |
| 
 | |
| std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
 | |
| Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain,
 | |
|                                unsigned ElementSizeBits) {
 | |
|   unsigned ElementSizeBytes = ElementSizeBits / 8;
 | |
|   unsigned SizeBytes = ElementSizeBytes * Chain.size();
 | |
|   unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes;
 | |
|   if (NumLeft == Chain.size()) {
 | |
|     if ((NumLeft & 1) == 0)
 | |
|       NumLeft /= 2; // Split even in half
 | |
|     else
 | |
|       --NumLeft;    // Split off last element
 | |
|   } else if (NumLeft == 0)
 | |
|     NumLeft = 1;
 | |
|   return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft));
 | |
| }
 | |
| 
 | |
| ArrayRef<Instruction *>
 | |
| Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) {
 | |
|   // These are in BB order, unlike Chain, which is in address order.
 | |
|   SmallVector<Instruction *, 16> MemoryInstrs;
 | |
|   SmallVector<Instruction *, 16> ChainInstrs;
 | |
| 
 | |
|   bool IsLoadChain = isa<LoadInst>(Chain[0]);
 | |
|   LLVM_DEBUG({
 | |
|     for (Instruction *I : Chain) {
 | |
|       if (IsLoadChain)
 | |
|         assert(isa<LoadInst>(I) &&
 | |
|                "All elements of Chain must be loads, or all must be stores.");
 | |
|       else
 | |
|         assert(isa<StoreInst>(I) &&
 | |
|                "All elements of Chain must be loads, or all must be stores.");
 | |
|     }
 | |
|   });
 | |
| 
 | |
|   for (Instruction &I : make_range(getBoundaryInstrs(Chain))) {
 | |
|     if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
 | |
|       if (!is_contained(Chain, &I))
 | |
|         MemoryInstrs.push_back(&I);
 | |
|       else
 | |
|         ChainInstrs.push_back(&I);
 | |
|     } else if (isa<IntrinsicInst>(&I) &&
 | |
|                cast<IntrinsicInst>(&I)->getIntrinsicID() ==
 | |
|                    Intrinsic::sideeffect) {
 | |
|       // Ignore llvm.sideeffect calls.
 | |
|     } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) {
 | |
|       LLVM_DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I
 | |
|                         << '\n');
 | |
|       break;
 | |
|     } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) {
 | |
|       LLVM_DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I
 | |
|                         << '\n');
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   OrderedBasicBlock OBB(Chain[0]->getParent());
 | |
| 
 | |
|   // Loop until we find an instruction in ChainInstrs that we can't vectorize.
 | |
|   unsigned ChainInstrIdx = 0;
 | |
|   Instruction *BarrierMemoryInstr = nullptr;
 | |
| 
 | |
|   for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) {
 | |
|     Instruction *ChainInstr = ChainInstrs[ChainInstrIdx];
 | |
| 
 | |
|     // If a barrier memory instruction was found, chain instructions that follow
 | |
|     // will not be added to the valid prefix.
 | |
|     if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, ChainInstr))
 | |
|       break;
 | |
| 
 | |
|     // Check (in BB order) if any instruction prevents ChainInstr from being
 | |
|     // vectorized. Find and store the first such "conflicting" instruction.
 | |
|     for (Instruction *MemInstr : MemoryInstrs) {
 | |
|       // If a barrier memory instruction was found, do not check past it.
 | |
|       if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, MemInstr))
 | |
|         break;
 | |
| 
 | |
|       auto *MemLoad = dyn_cast<LoadInst>(MemInstr);
 | |
|       auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr);
 | |
|       if (MemLoad && ChainLoad)
 | |
|         continue;
 | |
| 
 | |
|       // We can ignore the alias if the we have a load store pair and the load
 | |
|       // is known to be invariant. The load cannot be clobbered by the store.
 | |
|       auto IsInvariantLoad = [](const LoadInst *LI) -> bool {
 | |
|         return LI->getMetadata(LLVMContext::MD_invariant_load);
 | |
|       };
 | |
| 
 | |
|       // We can ignore the alias as long as the load comes before the store,
 | |
|       // because that means we won't be moving the load past the store to
 | |
|       // vectorize it (the vectorized load is inserted at the location of the
 | |
|       // first load in the chain).
 | |
|       if (isa<StoreInst>(MemInstr) && ChainLoad &&
 | |
|           (IsInvariantLoad(ChainLoad) || OBB.dominates(ChainLoad, MemInstr)))
 | |
|         continue;
 | |
| 
 | |
|       // Same case, but in reverse.
 | |
|       if (MemLoad && isa<StoreInst>(ChainInstr) &&
 | |
|           (IsInvariantLoad(MemLoad) || OBB.dominates(MemLoad, ChainInstr)))
 | |
|         continue;
 | |
| 
 | |
|       if (!AA.isNoAlias(MemoryLocation::get(MemInstr),
 | |
|                         MemoryLocation::get(ChainInstr))) {
 | |
|         LLVM_DEBUG({
 | |
|           dbgs() << "LSV: Found alias:\n"
 | |
|                     "  Aliasing instruction and pointer:\n"
 | |
|                  << "  " << *MemInstr << '\n'
 | |
|                  << "  " << *getLoadStorePointerOperand(MemInstr) << '\n'
 | |
|                  << "  Aliased instruction and pointer:\n"
 | |
|                  << "  " << *ChainInstr << '\n'
 | |
|                  << "  " << *getLoadStorePointerOperand(ChainInstr) << '\n';
 | |
|         });
 | |
|         // Save this aliasing memory instruction as a barrier, but allow other
 | |
|         // instructions that precede the barrier to be vectorized with this one.
 | |
|         BarrierMemoryInstr = MemInstr;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // Continue the search only for store chains, since vectorizing stores that
 | |
|     // precede an aliasing load is valid. Conversely, vectorizing loads is valid
 | |
|     // up to an aliasing store, but should not pull loads from further down in
 | |
|     // the basic block.
 | |
|     if (IsLoadChain && BarrierMemoryInstr) {
 | |
|       // The BarrierMemoryInstr is a store that precedes ChainInstr.
 | |
|       assert(OBB.dominates(BarrierMemoryInstr, ChainInstr));
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Find the largest prefix of Chain whose elements are all in
 | |
|   // ChainInstrs[0, ChainInstrIdx).  This is the largest vectorizable prefix of
 | |
|   // Chain.  (Recall that Chain is in address order, but ChainInstrs is in BB
 | |
|   // order.)
 | |
|   SmallPtrSet<Instruction *, 8> VectorizableChainInstrs(
 | |
|       ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx);
 | |
|   unsigned ChainIdx = 0;
 | |
|   for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) {
 | |
|     if (!VectorizableChainInstrs.count(Chain[ChainIdx]))
 | |
|       break;
 | |
|   }
 | |
|   return Chain.slice(0, ChainIdx);
 | |
| }
 | |
| 
 | |
| static ChainID getChainID(const Value *Ptr, const DataLayout &DL) {
 | |
|   const Value *ObjPtr = GetUnderlyingObject(Ptr, DL);
 | |
|   if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) {
 | |
|     // The select's themselves are distinct instructions even if they share the
 | |
|     // same condition and evaluate to consecutive pointers for true and false
 | |
|     // values of the condition. Therefore using the select's themselves for
 | |
|     // grouping instructions would put consecutive accesses into different lists
 | |
|     // and they won't be even checked for being consecutive, and won't be
 | |
|     // vectorized.
 | |
|     return Sel->getCondition();
 | |
|   }
 | |
|   return ObjPtr;
 | |
| }
 | |
| 
 | |
| std::pair<InstrListMap, InstrListMap>
 | |
| Vectorizer::collectInstructions(BasicBlock *BB) {
 | |
|   InstrListMap LoadRefs;
 | |
|   InstrListMap StoreRefs;
 | |
| 
 | |
|   for (Instruction &I : *BB) {
 | |
|     if (!I.mayReadOrWriteMemory())
 | |
|       continue;
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
 | |
|       if (!LI->isSimple())
 | |
|         continue;
 | |
| 
 | |
|       // Skip if it's not legal.
 | |
|       if (!TTI.isLegalToVectorizeLoad(LI))
 | |
|         continue;
 | |
| 
 | |
|       Type *Ty = LI->getType();
 | |
|       if (!VectorType::isValidElementType(Ty->getScalarType()))
 | |
|         continue;
 | |
| 
 | |
|       // Skip weird non-byte sizes. They probably aren't worth the effort of
 | |
|       // handling correctly.
 | |
|       unsigned TySize = DL.getTypeSizeInBits(Ty);
 | |
|       if ((TySize % 8) != 0)
 | |
|         continue;
 | |
| 
 | |
|       // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
 | |
|       // functions are currently using an integer type for the vectorized
 | |
|       // load/store, and does not support casting between the integer type and a
 | |
|       // vector of pointers (e.g. i64 to <2 x i16*>)
 | |
|       if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
 | |
|         continue;
 | |
| 
 | |
|       Value *Ptr = LI->getPointerOperand();
 | |
|       unsigned AS = Ptr->getType()->getPointerAddressSpace();
 | |
|       unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
 | |
| 
 | |
|       unsigned VF = VecRegSize / TySize;
 | |
|       VectorType *VecTy = dyn_cast<VectorType>(Ty);
 | |
| 
 | |
|       // No point in looking at these if they're too big to vectorize.
 | |
|       if (TySize > VecRegSize / 2 ||
 | |
|           (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
 | |
|         continue;
 | |
| 
 | |
|       // Make sure all the users of a vector are constant-index extracts.
 | |
|       if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) {
 | |
|             const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
 | |
|             return EEI && isa<ConstantInt>(EEI->getOperand(1));
 | |
|           }))
 | |
|         continue;
 | |
| 
 | |
|       // Save the load locations.
 | |
|       const ChainID ID = getChainID(Ptr, DL);
 | |
|       LoadRefs[ID].push_back(LI);
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
 | |
|       if (!SI->isSimple())
 | |
|         continue;
 | |
| 
 | |
|       // Skip if it's not legal.
 | |
|       if (!TTI.isLegalToVectorizeStore(SI))
 | |
|         continue;
 | |
| 
 | |
|       Type *Ty = SI->getValueOperand()->getType();
 | |
|       if (!VectorType::isValidElementType(Ty->getScalarType()))
 | |
|         continue;
 | |
| 
 | |
|       // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
 | |
|       // functions are currently using an integer type for the vectorized
 | |
|       // load/store, and does not support casting between the integer type and a
 | |
|       // vector of pointers (e.g. i64 to <2 x i16*>)
 | |
|       if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
 | |
|         continue;
 | |
| 
 | |
|       // Skip weird non-byte sizes. They probably aren't worth the effort of
 | |
|       // handling correctly.
 | |
|       unsigned TySize = DL.getTypeSizeInBits(Ty);
 | |
|       if ((TySize % 8) != 0)
 | |
|         continue;
 | |
| 
 | |
|       Value *Ptr = SI->getPointerOperand();
 | |
|       unsigned AS = Ptr->getType()->getPointerAddressSpace();
 | |
|       unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
 | |
| 
 | |
|       unsigned VF = VecRegSize / TySize;
 | |
|       VectorType *VecTy = dyn_cast<VectorType>(Ty);
 | |
| 
 | |
|       // No point in looking at these if they're too big to vectorize.
 | |
|       if (TySize > VecRegSize / 2 ||
 | |
|           (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
 | |
|         continue;
 | |
| 
 | |
|       if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) {
 | |
|             const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
 | |
|             return EEI && isa<ConstantInt>(EEI->getOperand(1));
 | |
|           }))
 | |
|         continue;
 | |
| 
 | |
|       // Save store location.
 | |
|       const ChainID ID = getChainID(Ptr, DL);
 | |
|       StoreRefs[ID].push_back(SI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return {LoadRefs, StoreRefs};
 | |
| }
 | |
| 
 | |
| bool Vectorizer::vectorizeChains(InstrListMap &Map) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   for (const std::pair<ChainID, InstrList> &Chain : Map) {
 | |
|     unsigned Size = Chain.second.size();
 | |
|     if (Size < 2)
 | |
|       continue;
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n");
 | |
| 
 | |
|     // Process the stores in chunks of 64.
 | |
|     for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) {
 | |
|       unsigned Len = std::min<unsigned>(CE - CI, 64);
 | |
|       ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len);
 | |
|       Changed |= vectorizeInstructions(Chunk);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) {
 | |
|   LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size()
 | |
|                     << " instructions.\n");
 | |
|   SmallVector<int, 16> Heads, Tails;
 | |
|   int ConsecutiveChain[64];
 | |
| 
 | |
|   // Do a quadratic search on all of the given loads/stores and find all of the
 | |
|   // pairs of loads/stores that follow each other.
 | |
|   for (int i = 0, e = Instrs.size(); i < e; ++i) {
 | |
|     ConsecutiveChain[i] = -1;
 | |
|     for (int j = e - 1; j >= 0; --j) {
 | |
|       if (i == j)
 | |
|         continue;
 | |
| 
 | |
|       if (isConsecutiveAccess(Instrs[i], Instrs[j])) {
 | |
|         if (ConsecutiveChain[i] != -1) {
 | |
|           int CurDistance = std::abs(ConsecutiveChain[i] - i);
 | |
|           int NewDistance = std::abs(ConsecutiveChain[i] - j);
 | |
|           if (j < i || NewDistance > CurDistance)
 | |
|             continue; // Should not insert.
 | |
|         }
 | |
| 
 | |
|         Tails.push_back(j);
 | |
|         Heads.push_back(i);
 | |
|         ConsecutiveChain[i] = j;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool Changed = false;
 | |
|   SmallPtrSet<Instruction *, 16> InstructionsProcessed;
 | |
| 
 | |
|   for (int Head : Heads) {
 | |
|     if (InstructionsProcessed.count(Instrs[Head]))
 | |
|       continue;
 | |
|     bool LongerChainExists = false;
 | |
|     for (unsigned TIt = 0; TIt < Tails.size(); TIt++)
 | |
|       if (Head == Tails[TIt] &&
 | |
|           !InstructionsProcessed.count(Instrs[Heads[TIt]])) {
 | |
|         LongerChainExists = true;
 | |
|         break;
 | |
|       }
 | |
|     if (LongerChainExists)
 | |
|       continue;
 | |
| 
 | |
|     // We found an instr that starts a chain. Now follow the chain and try to
 | |
|     // vectorize it.
 | |
|     SmallVector<Instruction *, 16> Operands;
 | |
|     int I = Head;
 | |
|     while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) {
 | |
|       if (InstructionsProcessed.count(Instrs[I]))
 | |
|         break;
 | |
| 
 | |
|       Operands.push_back(Instrs[I]);
 | |
|       I = ConsecutiveChain[I];
 | |
|     }
 | |
| 
 | |
|     bool Vectorized = false;
 | |
|     if (isa<LoadInst>(*Operands.begin()))
 | |
|       Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed);
 | |
|     else
 | |
|       Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed);
 | |
| 
 | |
|     Changed |= Vectorized;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool Vectorizer::vectorizeStoreChain(
 | |
|     ArrayRef<Instruction *> Chain,
 | |
|     SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
 | |
|   StoreInst *S0 = cast<StoreInst>(Chain[0]);
 | |
| 
 | |
|   // If the vector has an int element, default to int for the whole store.
 | |
|   Type *StoreTy;
 | |
|   for (Instruction *I : Chain) {
 | |
|     StoreTy = cast<StoreInst>(I)->getValueOperand()->getType();
 | |
|     if (StoreTy->isIntOrIntVectorTy())
 | |
|       break;
 | |
| 
 | |
|     if (StoreTy->isPtrOrPtrVectorTy()) {
 | |
|       StoreTy = Type::getIntNTy(F.getParent()->getContext(),
 | |
|                                 DL.getTypeSizeInBits(StoreTy));
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned Sz = DL.getTypeSizeInBits(StoreTy);
 | |
|   unsigned AS = S0->getPointerAddressSpace();
 | |
|   unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
 | |
|   unsigned VF = VecRegSize / Sz;
 | |
|   unsigned ChainSize = Chain.size();
 | |
|   unsigned Alignment = getAlignment(S0);
 | |
| 
 | |
|   if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
 | |
|     InstructionsProcessed->insert(Chain.begin(), Chain.end());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
 | |
|   if (NewChain.empty()) {
 | |
|     // No vectorization possible.
 | |
|     InstructionsProcessed->insert(Chain.begin(), Chain.end());
 | |
|     return false;
 | |
|   }
 | |
|   if (NewChain.size() == 1) {
 | |
|     // Failed after the first instruction. Discard it and try the smaller chain.
 | |
|     InstructionsProcessed->insert(NewChain.front());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Update Chain to the valid vectorizable subchain.
 | |
|   Chain = NewChain;
 | |
|   ChainSize = Chain.size();
 | |
| 
 | |
|   // Check if it's legal to vectorize this chain. If not, split the chain and
 | |
|   // try again.
 | |
|   unsigned EltSzInBytes = Sz / 8;
 | |
|   unsigned SzInBytes = EltSzInBytes * ChainSize;
 | |
| 
 | |
|   VectorType *VecTy;
 | |
|   VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy);
 | |
|   if (VecStoreTy)
 | |
|     VecTy = VectorType::get(StoreTy->getScalarType(),
 | |
|                             Chain.size() * VecStoreTy->getNumElements());
 | |
|   else
 | |
|     VecTy = VectorType::get(StoreTy, Chain.size());
 | |
| 
 | |
|   // If it's more than the max vector size or the target has a better
 | |
|   // vector factor, break it into two pieces.
 | |
|   unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy);
 | |
|   if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
 | |
|     LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
 | |
|                          " Creating two separate arrays.\n");
 | |
|     return vectorizeStoreChain(Chain.slice(0, TargetVF),
 | |
|                                InstructionsProcessed) |
 | |
|            vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "LSV: Stores to vectorize:\n";
 | |
|     for (Instruction *I : Chain)
 | |
|       dbgs() << "  " << *I << "\n";
 | |
|   });
 | |
| 
 | |
|   // We won't try again to vectorize the elements of the chain, regardless of
 | |
|   // whether we succeed below.
 | |
|   InstructionsProcessed->insert(Chain.begin(), Chain.end());
 | |
| 
 | |
|   // If the store is going to be misaligned, don't vectorize it.
 | |
|   if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
 | |
|     if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
 | |
|       auto Chains = splitOddVectorElts(Chain, Sz);
 | |
|       return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
 | |
|              vectorizeStoreChain(Chains.second, InstructionsProcessed);
 | |
|     }
 | |
| 
 | |
|     unsigned NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(),
 | |
|                                                    StackAdjustedAlignment,
 | |
|                                                    DL, S0, nullptr, &DT);
 | |
|     if (NewAlign != 0)
 | |
|       Alignment = NewAlign;
 | |
|   }
 | |
| 
 | |
|   if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) {
 | |
|     auto Chains = splitOddVectorElts(Chain, Sz);
 | |
|     return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
 | |
|            vectorizeStoreChain(Chains.second, InstructionsProcessed);
 | |
|   }
 | |
| 
 | |
|   BasicBlock::iterator First, Last;
 | |
|   std::tie(First, Last) = getBoundaryInstrs(Chain);
 | |
|   Builder.SetInsertPoint(&*Last);
 | |
| 
 | |
|   Value *Vec = UndefValue::get(VecTy);
 | |
| 
 | |
|   if (VecStoreTy) {
 | |
|     unsigned VecWidth = VecStoreTy->getNumElements();
 | |
|     for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
 | |
|       StoreInst *Store = cast<StoreInst>(Chain[I]);
 | |
|       for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) {
 | |
|         unsigned NewIdx = J + I * VecWidth;
 | |
|         Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(),
 | |
|                                                       Builder.getInt32(J));
 | |
|         if (Extract->getType() != StoreTy->getScalarType())
 | |
|           Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType());
 | |
| 
 | |
|         Value *Insert =
 | |
|             Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx));
 | |
|         Vec = Insert;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
 | |
|       StoreInst *Store = cast<StoreInst>(Chain[I]);
 | |
|       Value *Extract = Store->getValueOperand();
 | |
|       if (Extract->getType() != StoreTy->getScalarType())
 | |
|         Extract =
 | |
|             Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType());
 | |
| 
 | |
|       Value *Insert =
 | |
|           Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I));
 | |
|       Vec = Insert;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   StoreInst *SI = Builder.CreateAlignedStore(
 | |
|     Vec,
 | |
|     Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)),
 | |
|     Alignment);
 | |
|   propagateMetadata(SI, Chain);
 | |
| 
 | |
|   eraseInstructions(Chain);
 | |
|   ++NumVectorInstructions;
 | |
|   NumScalarsVectorized += Chain.size();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Vectorizer::vectorizeLoadChain(
 | |
|     ArrayRef<Instruction *> Chain,
 | |
|     SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
 | |
|   LoadInst *L0 = cast<LoadInst>(Chain[0]);
 | |
| 
 | |
|   // If the vector has an int element, default to int for the whole load.
 | |
|   Type *LoadTy;
 | |
|   for (const auto &V : Chain) {
 | |
|     LoadTy = cast<LoadInst>(V)->getType();
 | |
|     if (LoadTy->isIntOrIntVectorTy())
 | |
|       break;
 | |
| 
 | |
|     if (LoadTy->isPtrOrPtrVectorTy()) {
 | |
|       LoadTy = Type::getIntNTy(F.getParent()->getContext(),
 | |
|                                DL.getTypeSizeInBits(LoadTy));
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned Sz = DL.getTypeSizeInBits(LoadTy);
 | |
|   unsigned AS = L0->getPointerAddressSpace();
 | |
|   unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
 | |
|   unsigned VF = VecRegSize / Sz;
 | |
|   unsigned ChainSize = Chain.size();
 | |
|   unsigned Alignment = getAlignment(L0);
 | |
| 
 | |
|   if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
 | |
|     InstructionsProcessed->insert(Chain.begin(), Chain.end());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
 | |
|   if (NewChain.empty()) {
 | |
|     // No vectorization possible.
 | |
|     InstructionsProcessed->insert(Chain.begin(), Chain.end());
 | |
|     return false;
 | |
|   }
 | |
|   if (NewChain.size() == 1) {
 | |
|     // Failed after the first instruction. Discard it and try the smaller chain.
 | |
|     InstructionsProcessed->insert(NewChain.front());
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Update Chain to the valid vectorizable subchain.
 | |
|   Chain = NewChain;
 | |
|   ChainSize = Chain.size();
 | |
| 
 | |
|   // Check if it's legal to vectorize this chain. If not, split the chain and
 | |
|   // try again.
 | |
|   unsigned EltSzInBytes = Sz / 8;
 | |
|   unsigned SzInBytes = EltSzInBytes * ChainSize;
 | |
|   VectorType *VecTy;
 | |
|   VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy);
 | |
|   if (VecLoadTy)
 | |
|     VecTy = VectorType::get(LoadTy->getScalarType(),
 | |
|                             Chain.size() * VecLoadTy->getNumElements());
 | |
|   else
 | |
|     VecTy = VectorType::get(LoadTy, Chain.size());
 | |
| 
 | |
|   // If it's more than the max vector size or the target has a better
 | |
|   // vector factor, break it into two pieces.
 | |
|   unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy);
 | |
|   if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
 | |
|     LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
 | |
|                          " Creating two separate arrays.\n");
 | |
|     return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) |
 | |
|            vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed);
 | |
|   }
 | |
| 
 | |
|   // We won't try again to vectorize the elements of the chain, regardless of
 | |
|   // whether we succeed below.
 | |
|   InstructionsProcessed->insert(Chain.begin(), Chain.end());
 | |
| 
 | |
|   // If the load is going to be misaligned, don't vectorize it.
 | |
|   if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
 | |
|     if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
 | |
|       auto Chains = splitOddVectorElts(Chain, Sz);
 | |
|       return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
 | |
|              vectorizeLoadChain(Chains.second, InstructionsProcessed);
 | |
|     }
 | |
| 
 | |
|     unsigned NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(),
 | |
|                                                    StackAdjustedAlignment,
 | |
|                                                    DL, L0, nullptr, &DT);
 | |
|     if (NewAlign != 0)
 | |
|       Alignment = NewAlign;
 | |
| 
 | |
|     Alignment = NewAlign;
 | |
|   }
 | |
| 
 | |
|   if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) {
 | |
|     auto Chains = splitOddVectorElts(Chain, Sz);
 | |
|     return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
 | |
|            vectorizeLoadChain(Chains.second, InstructionsProcessed);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "LSV: Loads to vectorize:\n";
 | |
|     for (Instruction *I : Chain)
 | |
|       I->dump();
 | |
|   });
 | |
| 
 | |
|   // getVectorizablePrefix already computed getBoundaryInstrs.  The value of
 | |
|   // Last may have changed since then, but the value of First won't have.  If it
 | |
|   // matters, we could compute getBoundaryInstrs only once and reuse it here.
 | |
|   BasicBlock::iterator First, Last;
 | |
|   std::tie(First, Last) = getBoundaryInstrs(Chain);
 | |
|   Builder.SetInsertPoint(&*First);
 | |
| 
 | |
|   Value *Bitcast =
 | |
|       Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS));
 | |
|   LoadInst *LI = Builder.CreateAlignedLoad(Bitcast, Alignment);
 | |
|   propagateMetadata(LI, Chain);
 | |
| 
 | |
|   if (VecLoadTy) {
 | |
|     SmallVector<Instruction *, 16> InstrsToErase;
 | |
| 
 | |
|     unsigned VecWidth = VecLoadTy->getNumElements();
 | |
|     for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
 | |
|       for (auto Use : Chain[I]->users()) {
 | |
|         // All users of vector loads are ExtractElement instructions with
 | |
|         // constant indices, otherwise we would have bailed before now.
 | |
|         Instruction *UI = cast<Instruction>(Use);
 | |
|         unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue();
 | |
|         unsigned NewIdx = Idx + I * VecWidth;
 | |
|         Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx),
 | |
|                                                 UI->getName());
 | |
|         if (V->getType() != UI->getType())
 | |
|           V = Builder.CreateBitCast(V, UI->getType());
 | |
| 
 | |
|         // Replace the old instruction.
 | |
|         UI->replaceAllUsesWith(V);
 | |
|         InstrsToErase.push_back(UI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Bitcast might not be an Instruction, if the value being loaded is a
 | |
|     // constant.  In that case, no need to reorder anything.
 | |
|     if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
 | |
|       reorder(BitcastInst);
 | |
| 
 | |
|     for (auto I : InstrsToErase)
 | |
|       I->eraseFromParent();
 | |
|   } else {
 | |
|     for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
 | |
|       Value *CV = Chain[I];
 | |
|       Value *V =
 | |
|           Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName());
 | |
|       if (V->getType() != CV->getType()) {
 | |
|         V = Builder.CreateBitOrPointerCast(V, CV->getType());
 | |
|       }
 | |
| 
 | |
|       // Replace the old instruction.
 | |
|       CV->replaceAllUsesWith(V);
 | |
|     }
 | |
| 
 | |
|     if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
 | |
|       reorder(BitcastInst);
 | |
|   }
 | |
| 
 | |
|   eraseInstructions(Chain);
 | |
| 
 | |
|   ++NumVectorInstructions;
 | |
|   NumScalarsVectorized += Chain.size();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
 | |
|                                     unsigned Alignment) {
 | |
|   if (Alignment % SzInBytes == 0)
 | |
|     return false;
 | |
| 
 | |
|   bool Fast = false;
 | |
|   bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(),
 | |
|                                                    SzInBytes * 8, AddressSpace,
 | |
|                                                    Alignment, &Fast);
 | |
|   LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows
 | |
|                     << " and fast? " << Fast << "\n";);
 | |
|   return !Allows || !Fast;
 | |
| }
 |