forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			1192 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1192 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- LoopVectorizationLegality.cpp --------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file provides loop vectorization legality analysis. Original code
 | |
| // resided in LoopVectorize.cpp for a long time.
 | |
| //
 | |
| // At this point, it is implemented as a utility class, not as an analysis
 | |
| // pass. It should be easy to create an analysis pass around it if there
 | |
| // is a need (but D45420 needs to happen first).
 | |
| //
 | |
| #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
 | |
| #include "llvm/Analysis/VectorUtils.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define LV_NAME "loop-vectorize"
 | |
| #define DEBUG_TYPE LV_NAME
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
 | |
|                        cl::desc("Enable if-conversion during vectorization."));
 | |
| 
 | |
| static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
 | |
|     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
 | |
|     cl::desc("The maximum allowed number of runtime memory checks with a "
 | |
|              "vectorize(enable) pragma."));
 | |
| 
 | |
| static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
 | |
|     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
 | |
|     cl::desc("The maximum number of SCEV checks allowed."));
 | |
| 
 | |
| static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
 | |
|     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
 | |
|     cl::desc("The maximum number of SCEV checks allowed with a "
 | |
|              "vectorize(enable) pragma"));
 | |
| 
 | |
| /// Maximum vectorization interleave count.
 | |
| static const unsigned MaxInterleaveFactor = 16;
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName,
 | |
|                                                   StringRef RemarkName,
 | |
|                                                   Loop *TheLoop,
 | |
|                                                   Instruction *I) {
 | |
|   Value *CodeRegion = TheLoop->getHeader();
 | |
|   DebugLoc DL = TheLoop->getStartLoc();
 | |
| 
 | |
|   if (I) {
 | |
|     CodeRegion = I->getParent();
 | |
|     // If there is no debug location attached to the instruction, revert back to
 | |
|     // using the loop's.
 | |
|     if (I->getDebugLoc())
 | |
|       DL = I->getDebugLoc();
 | |
|   }
 | |
| 
 | |
|   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
 | |
|   R << "loop not vectorized: ";
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizeHints::Hint::validate(unsigned Val) {
 | |
|   switch (Kind) {
 | |
|   case HK_WIDTH:
 | |
|     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
 | |
|   case HK_UNROLL:
 | |
|     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
 | |
|   case HK_FORCE:
 | |
|     return (Val <= 1);
 | |
|   case HK_ISVECTORIZED:
 | |
|     return (Val == 0 || Val == 1);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| LoopVectorizeHints::LoopVectorizeHints(const Loop *L, bool DisableInterleaving,
 | |
|                                        OptimizationRemarkEmitter &ORE)
 | |
|     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
 | |
|       Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
 | |
|       Force("vectorize.enable", FK_Undefined, HK_FORCE),
 | |
|       IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
 | |
|   // Populate values with existing loop metadata.
 | |
|   getHintsFromMetadata();
 | |
| 
 | |
|   // force-vector-interleave overrides DisableInterleaving.
 | |
|   if (VectorizerParams::isInterleaveForced())
 | |
|     Interleave.Value = VectorizerParams::VectorizationInterleave;
 | |
| 
 | |
|   if (IsVectorized.Value != 1)
 | |
|     // If the vectorization width and interleaving count are both 1 then
 | |
|     // consider the loop to have been already vectorized because there's
 | |
|     // nothing more that we can do.
 | |
|     IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
 | |
|   LLVM_DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
 | |
|              << "LV: Interleaving disabled by the pass manager\n");
 | |
| }
 | |
| 
 | |
| bool LoopVectorizeHints::allowVectorization(Function *F, Loop *L,
 | |
|                                             bool AlwaysVectorize) const {
 | |
|   if (getForce() == LoopVectorizeHints::FK_Disabled) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
 | |
|     emitRemarkWithHints();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
 | |
|     emitRemarkWithHints();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (getIsVectorized() == 1) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
 | |
|     // FIXME: Add interleave.disable metadata. This will allow
 | |
|     // vectorize.disable to be used without disabling the pass and errors
 | |
|     // to differentiate between disabled vectorization and a width of 1.
 | |
|     ORE.emit([&]() {
 | |
|       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
 | |
|                                         "AllDisabled", L->getStartLoc(),
 | |
|                                         L->getHeader())
 | |
|              << "loop not vectorized: vectorization and interleaving are "
 | |
|                 "explicitly disabled, or the loop has already been "
 | |
|                 "vectorized";
 | |
|     });
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void LoopVectorizeHints::emitRemarkWithHints() const {
 | |
|   using namespace ore;
 | |
| 
 | |
|   ORE.emit([&]() {
 | |
|     if (Force.Value == LoopVectorizeHints::FK_Disabled)
 | |
|       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
 | |
|                                       TheLoop->getStartLoc(),
 | |
|                                       TheLoop->getHeader())
 | |
|              << "loop not vectorized: vectorization is explicitly disabled";
 | |
|     else {
 | |
|       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
 | |
|                                  TheLoop->getStartLoc(), TheLoop->getHeader());
 | |
|       R << "loop not vectorized";
 | |
|       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
 | |
|         R << " (Force=" << NV("Force", true);
 | |
|         if (Width.Value != 0)
 | |
|           R << ", Vector Width=" << NV("VectorWidth", Width.Value);
 | |
|         if (Interleave.Value != 0)
 | |
|           R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
 | |
|         R << ")";
 | |
|       }
 | |
|       return R;
 | |
|     }
 | |
|   });
 | |
| }
 | |
| 
 | |
| const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
 | |
|   if (getWidth() == 1)
 | |
|     return LV_NAME;
 | |
|   if (getForce() == LoopVectorizeHints::FK_Disabled)
 | |
|     return LV_NAME;
 | |
|   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
 | |
|     return LV_NAME;
 | |
|   return OptimizationRemarkAnalysis::AlwaysPrint;
 | |
| }
 | |
| 
 | |
| void LoopVectorizeHints::getHintsFromMetadata() {
 | |
|   MDNode *LoopID = TheLoop->getLoopID();
 | |
|   if (!LoopID)
 | |
|     return;
 | |
| 
 | |
|   // First operand should refer to the loop id itself.
 | |
|   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
 | |
|   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
 | |
| 
 | |
|   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
 | |
|     const MDString *S = nullptr;
 | |
|     SmallVector<Metadata *, 4> Args;
 | |
| 
 | |
|     // The expected hint is either a MDString or a MDNode with the first
 | |
|     // operand a MDString.
 | |
|     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
 | |
|       if (!MD || MD->getNumOperands() == 0)
 | |
|         continue;
 | |
|       S = dyn_cast<MDString>(MD->getOperand(0));
 | |
|       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
 | |
|         Args.push_back(MD->getOperand(i));
 | |
|     } else {
 | |
|       S = dyn_cast<MDString>(LoopID->getOperand(i));
 | |
|       assert(Args.size() == 0 && "too many arguments for MDString");
 | |
|     }
 | |
| 
 | |
|     if (!S)
 | |
|       continue;
 | |
| 
 | |
|     // Check if the hint starts with the loop metadata prefix.
 | |
|     StringRef Name = S->getString();
 | |
|     if (Args.size() == 1)
 | |
|       setHint(Name, Args[0]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
 | |
|   if (!Name.startswith(Prefix()))
 | |
|     return;
 | |
|   Name = Name.substr(Prefix().size(), StringRef::npos);
 | |
| 
 | |
|   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
 | |
|   if (!C)
 | |
|     return;
 | |
|   unsigned Val = C->getZExtValue();
 | |
| 
 | |
|   Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
 | |
|   for (auto H : Hints) {
 | |
|     if (Name == H->Name) {
 | |
|       if (H->validate(Val))
 | |
|         H->Value = Val;
 | |
|       else
 | |
|         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| MDNode *LoopVectorizeHints::createHintMetadata(StringRef Name,
 | |
|                                                unsigned V) const {
 | |
|   LLVMContext &Context = TheLoop->getHeader()->getContext();
 | |
|   Metadata *MDs[] = {
 | |
|       MDString::get(Context, Name),
 | |
|       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
 | |
|   return MDNode::get(Context, MDs);
 | |
| }
 | |
| 
 | |
| bool LoopVectorizeHints::matchesHintMetadataName(MDNode *Node,
 | |
|                                                  ArrayRef<Hint> HintTypes) {
 | |
|   MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
 | |
|   if (!Name)
 | |
|     return false;
 | |
| 
 | |
|   for (auto H : HintTypes)
 | |
|     if (Name->getString().endswith(H.Name))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LoopVectorizeHints::writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
 | |
|   if (HintTypes.empty())
 | |
|     return;
 | |
| 
 | |
|   // Reserve the first element to LoopID (see below).
 | |
|   SmallVector<Metadata *, 4> MDs(1);
 | |
|   // If the loop already has metadata, then ignore the existing operands.
 | |
|   MDNode *LoopID = TheLoop->getLoopID();
 | |
|   if (LoopID) {
 | |
|     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
 | |
|       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
 | |
|       // If node in update list, ignore old value.
 | |
|       if (!matchesHintMetadataName(Node, HintTypes))
 | |
|         MDs.push_back(Node);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now, add the missing hints.
 | |
|   for (auto H : HintTypes)
 | |
|     MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
 | |
| 
 | |
|   // Replace current metadata node with new one.
 | |
|   LLVMContext &Context = TheLoop->getHeader()->getContext();
 | |
|   MDNode *NewLoopID = MDNode::get(Context, MDs);
 | |
|   // Set operand 0 to refer to the loop id itself.
 | |
|   NewLoopID->replaceOperandWith(0, NewLoopID);
 | |
| 
 | |
|   TheLoop->setLoopID(NewLoopID);
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationRequirements::doesNotMeet(
 | |
|     Function *F, Loop *L, const LoopVectorizeHints &Hints) {
 | |
|   const char *PassName = Hints.vectorizeAnalysisPassName();
 | |
|   bool Failed = false;
 | |
|   if (UnsafeAlgebraInst && !Hints.allowReordering()) {
 | |
|     ORE.emit([&]() {
 | |
|       return OptimizationRemarkAnalysisFPCommute(
 | |
|                  PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
 | |
|                  UnsafeAlgebraInst->getParent())
 | |
|              << "loop not vectorized: cannot prove it is safe to reorder "
 | |
|                 "floating-point operations";
 | |
|     });
 | |
|     Failed = true;
 | |
|   }
 | |
| 
 | |
|   // Test if runtime memcheck thresholds are exceeded.
 | |
|   bool PragmaThresholdReached =
 | |
|       NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
 | |
|   bool ThresholdReached =
 | |
|       NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
 | |
|   if ((ThresholdReached && !Hints.allowReordering()) ||
 | |
|       PragmaThresholdReached) {
 | |
|     ORE.emit([&]() {
 | |
|       return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
 | |
|                                                 L->getStartLoc(),
 | |
|                                                 L->getHeader())
 | |
|              << "loop not vectorized: cannot prove it is safe to reorder "
 | |
|                 "memory operations";
 | |
|     });
 | |
|     LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
 | |
|     Failed = true;
 | |
|   }
 | |
| 
 | |
|   return Failed;
 | |
| }
 | |
| 
 | |
| // Return true if the inner loop \p Lp is uniform with regard to the outer loop
 | |
| // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
 | |
| // executing the inner loop will execute the same iterations). This check is
 | |
| // very constrained for now but it will be relaxed in the future. \p Lp is
 | |
| // considered uniform if it meets all the following conditions:
 | |
| //   1) it has a canonical IV (starting from 0 and with stride 1),
 | |
| //   2) its latch terminator is a conditional branch and,
 | |
| //   3) its latch condition is a compare instruction whose operands are the
 | |
| //      canonical IV and an OuterLp invariant.
 | |
| // This check doesn't take into account the uniformity of other conditions not
 | |
| // related to the loop latch because they don't affect the loop uniformity.
 | |
| //
 | |
| // NOTE: We decided to keep all these checks and its associated documentation
 | |
| // together so that we can easily have a picture of the current supported loop
 | |
| // nests. However, some of the current checks don't depend on \p OuterLp and
 | |
| // would be redundantly executed for each \p Lp if we invoked this function for
 | |
| // different candidate outer loops. This is not the case for now because we
 | |
| // don't currently have the infrastructure to evaluate multiple candidate outer
 | |
| // loops and \p OuterLp will be a fixed parameter while we only support explicit
 | |
| // outer loop vectorization. It's also very likely that these checks go away
 | |
| // before introducing the aforementioned infrastructure. However, if this is not
 | |
| // the case, we should move the \p OuterLp independent checks to a separate
 | |
| // function that is only executed once for each \p Lp.
 | |
| static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
 | |
|   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
 | |
| 
 | |
|   // If Lp is the outer loop, it's uniform by definition.
 | |
|   if (Lp == OuterLp)
 | |
|     return true;
 | |
|   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
 | |
| 
 | |
|   // 1.
 | |
|   PHINode *IV = Lp->getCanonicalInductionVariable();
 | |
|   if (!IV) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // 2.
 | |
|   BasicBlock *Latch = Lp->getLoopLatch();
 | |
|   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
 | |
|   if (!LatchBr || LatchBr->isUnconditional()) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // 3.
 | |
|   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
 | |
|   if (!LatchCmp) {
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Value *CondOp0 = LatchCmp->getOperand(0);
 | |
|   Value *CondOp1 = LatchCmp->getOperand(1);
 | |
|   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
 | |
|   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
 | |
|       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Return true if \p Lp and all its nested loops are uniform with regard to \p
 | |
| // OuterLp.
 | |
| static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
 | |
|   if (!isUniformLoop(Lp, OuterLp))
 | |
|     return false;
 | |
| 
 | |
|   // Check if nested loops are uniform.
 | |
|   for (Loop *SubLp : *Lp)
 | |
|     if (!isUniformLoopNest(SubLp, OuterLp))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check whether it is safe to if-convert this phi node.
 | |
| ///
 | |
| /// Phi nodes with constant expressions that can trap are not safe to if
 | |
| /// convert.
 | |
| static bool canIfConvertPHINodes(BasicBlock *BB) {
 | |
|   for (PHINode &Phi : BB->phis()) {
 | |
|     for (Value *V : Phi.incoming_values())
 | |
|       if (auto *C = dyn_cast<Constant>(V))
 | |
|         if (C->canTrap())
 | |
|           return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
 | |
|   if (Ty->isPointerTy())
 | |
|     return DL.getIntPtrType(Ty);
 | |
| 
 | |
|   // It is possible that char's or short's overflow when we ask for the loop's
 | |
|   // trip count, work around this by changing the type size.
 | |
|   if (Ty->getScalarSizeInBits() < 32)
 | |
|     return Type::getInt32Ty(Ty->getContext());
 | |
| 
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
 | |
|   Ty0 = convertPointerToIntegerType(DL, Ty0);
 | |
|   Ty1 = convertPointerToIntegerType(DL, Ty1);
 | |
|   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
 | |
|     return Ty0;
 | |
|   return Ty1;
 | |
| }
 | |
| 
 | |
| /// Check that the instruction has outside loop users and is not an
 | |
| /// identified reduction variable.
 | |
| static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
 | |
|                                SmallPtrSetImpl<Value *> &AllowedExit) {
 | |
|   // Reductions, Inductions and non-header phis are allowed to have exit users. All
 | |
|   // other instructions must not have external users.
 | |
|   if (!AllowedExit.count(Inst))
 | |
|     // Check that all of the users of the loop are inside the BB.
 | |
|     for (User *U : Inst->users()) {
 | |
|       Instruction *UI = cast<Instruction>(U);
 | |
|       // This user may be a reduction exit value.
 | |
|       if (!TheLoop->contains(UI)) {
 | |
|         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
 | |
|   const ValueToValueMap &Strides =
 | |
|       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
 | |
| 
 | |
|   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
 | |
|   if (Stride == 1 || Stride == -1)
 | |
|     return Stride;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::isUniform(Value *V) {
 | |
|   return LAI->isUniform(V);
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorizeOuterLoop() {
 | |
|   assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
 | |
|   // Store the result and return it at the end instead of exiting early, in case
 | |
|   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
 | |
|   bool Result = true;
 | |
|   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
 | |
| 
 | |
|   for (BasicBlock *BB : TheLoop->blocks()) {
 | |
|     // Check whether the BB terminator is a BranchInst. Any other terminator is
 | |
|     // not supported yet.
 | |
|     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|     if (!Br) {
 | |
|       LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n");
 | |
|       ORE->emit(createMissedAnalysis("CFGNotUnderstood")
 | |
|                 << "loop control flow is not understood by vectorizer");
 | |
|       if (DoExtraAnalysis)
 | |
|         Result = false;
 | |
|       else
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Check whether the BranchInst is a supported one. Only unconditional
 | |
|     // branches, conditional branches with an outer loop invariant condition or
 | |
|     // backedges are supported.
 | |
|     if (Br && Br->isConditional() &&
 | |
|         !TheLoop->isLoopInvariant(Br->getCondition()) &&
 | |
|         !LI->isLoopHeader(Br->getSuccessor(0)) &&
 | |
|         !LI->isLoopHeader(Br->getSuccessor(1))) {
 | |
|       LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n");
 | |
|       ORE->emit(createMissedAnalysis("CFGNotUnderstood")
 | |
|                 << "loop control flow is not understood by vectorizer");
 | |
|       if (DoExtraAnalysis)
 | |
|         Result = false;
 | |
|       else
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check whether inner loops are uniform. At this point, we only support
 | |
|   // simple outer loops scenarios with uniform nested loops.
 | |
|   if (!isUniformLoopNest(TheLoop /*loop nest*/,
 | |
|                          TheLoop /*context outer loop*/)) {
 | |
|     LLVM_DEBUG(
 | |
|         dbgs()
 | |
|         << "LV: Not vectorizing: Outer loop contains divergent loops.\n");
 | |
|     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
 | |
|               << "loop control flow is not understood by vectorizer");
 | |
|     if (DoExtraAnalysis)
 | |
|       Result = false;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Check whether we are able to set up outer loop induction.
 | |
|   if (!setupOuterLoopInductions()) {
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "LV: Not vectorizing: Unsupported outer loop Phi(s).\n");
 | |
|     ORE->emit(createMissedAnalysis("UnsupportedPhi")
 | |
|               << "Unsupported outer loop Phi(s)");
 | |
|     if (DoExtraAnalysis)
 | |
|       Result = false;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void LoopVectorizationLegality::addInductionPhi(
 | |
|     PHINode *Phi, const InductionDescriptor &ID,
 | |
|     SmallPtrSetImpl<Value *> &AllowedExit) {
 | |
|   Inductions[Phi] = ID;
 | |
| 
 | |
|   // In case this induction also comes with casts that we know we can ignore
 | |
|   // in the vectorized loop body, record them here. All casts could be recorded
 | |
|   // here for ignoring, but suffices to record only the first (as it is the
 | |
|   // only one that may bw used outside the cast sequence).
 | |
|   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
 | |
|   if (!Casts.empty())
 | |
|     InductionCastsToIgnore.insert(*Casts.begin());
 | |
| 
 | |
|   Type *PhiTy = Phi->getType();
 | |
|   const DataLayout &DL = Phi->getModule()->getDataLayout();
 | |
| 
 | |
|   // Get the widest type.
 | |
|   if (!PhiTy->isFloatingPointTy()) {
 | |
|     if (!WidestIndTy)
 | |
|       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
 | |
|     else
 | |
|       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
 | |
|   }
 | |
| 
 | |
|   // Int inductions are special because we only allow one IV.
 | |
|   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
 | |
|       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
 | |
|       isa<Constant>(ID.getStartValue()) &&
 | |
|       cast<Constant>(ID.getStartValue())->isNullValue()) {
 | |
| 
 | |
|     // Use the phi node with the widest type as induction. Use the last
 | |
|     // one if there are multiple (no good reason for doing this other
 | |
|     // than it is expedient). We've checked that it begins at zero and
 | |
|     // steps by one, so this is a canonical induction variable.
 | |
|     if (!PrimaryInduction || PhiTy == WidestIndTy)
 | |
|       PrimaryInduction = Phi;
 | |
|   }
 | |
| 
 | |
|   // Both the PHI node itself, and the "post-increment" value feeding
 | |
|   // back into the PHI node may have external users.
 | |
|   // We can allow those uses, except if the SCEVs we have for them rely
 | |
|   // on predicates that only hold within the loop, since allowing the exit
 | |
|   // currently means re-using this SCEV outside the loop (see PR33706 for more
 | |
|   // details).
 | |
|   if (PSE.getUnionPredicate().isAlwaysTrue()) {
 | |
|     AllowedExit.insert(Phi);
 | |
|     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::setupOuterLoopInductions() {
 | |
|   BasicBlock *Header = TheLoop->getHeader();
 | |
| 
 | |
|   // Returns true if a given Phi is a supported induction.
 | |
|   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
 | |
|     InductionDescriptor ID;
 | |
|     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
 | |
|         ID.getKind() == InductionDescriptor::IK_IntInduction) {
 | |
|       addInductionPhi(&Phi, ID, AllowedExit);
 | |
|       return true;
 | |
|     } else {
 | |
|       // Bail out for any Phi in the outer loop header that is not a supported
 | |
|       // induction.
 | |
|       LLVM_DEBUG(
 | |
|           dbgs()
 | |
|           << "LV: Found unsupported PHI for outer loop vectorization.\n");
 | |
|       return false;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   if (llvm::all_of(Header->phis(), isSupportedPhi))
 | |
|     return true;
 | |
|   else
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorizeInstrs() {
 | |
|   BasicBlock *Header = TheLoop->getHeader();
 | |
| 
 | |
|   // Look for the attribute signaling the absence of NaNs.
 | |
|   Function &F = *Header->getParent();
 | |
|   HasFunNoNaNAttr =
 | |
|       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
 | |
| 
 | |
|   // For each block in the loop.
 | |
|   for (BasicBlock *BB : TheLoop->blocks()) {
 | |
|     // Scan the instructions in the block and look for hazards.
 | |
|     for (Instruction &I : *BB) {
 | |
|       if (auto *Phi = dyn_cast<PHINode>(&I)) {
 | |
|         Type *PhiTy = Phi->getType();
 | |
|         // Check that this PHI type is allowed.
 | |
|         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
 | |
|             !PhiTy->isPointerTy()) {
 | |
|           ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
 | |
|                     << "loop control flow is not understood by vectorizer");
 | |
|           LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         // If this PHINode is not in the header block, then we know that we
 | |
|         // can convert it to select during if-conversion. No need to check if
 | |
|         // the PHIs in this block are induction or reduction variables.
 | |
|         if (BB != Header) {
 | |
|           // Non-header phi nodes that have outside uses can be vectorized. Add
 | |
|           // them to the list of allowed exits.
 | |
|           // Unsafe cyclic dependencies with header phis are identified during
 | |
|           // legalization for reduction, induction and first order
 | |
|           // recurrences.
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // We only allow if-converted PHIs with exactly two incoming values.
 | |
|         if (Phi->getNumIncomingValues() != 2) {
 | |
|           ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
 | |
|                     << "control flow not understood by vectorizer");
 | |
|           LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         RecurrenceDescriptor RedDes;
 | |
|         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
 | |
|                                                  DT)) {
 | |
|           if (RedDes.hasUnsafeAlgebra())
 | |
|             Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
 | |
|           AllowedExit.insert(RedDes.getLoopExitInstr());
 | |
|           Reductions[Phi] = RedDes;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // TODO: Instead of recording the AllowedExit, it would be good to record the
 | |
|         // complementary set: NotAllowedExit. These include (but may not be
 | |
|         // limited to):
 | |
|         // 1. Reduction phis as they represent the one-before-last value, which
 | |
|         // is not available when vectorized 
 | |
|         // 2. Induction phis and increment when SCEV predicates cannot be used
 | |
|         // outside the loop - see addInductionPhi
 | |
|         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
 | |
|         // outside the loop - see call to hasOutsideLoopUser in the non-phi
 | |
|         // handling below
 | |
|         // 4. FirstOrderRecurrence phis that can possibly be handled by
 | |
|         // extraction.
 | |
|         // By recording these, we can then reason about ways to vectorize each
 | |
|         // of these NotAllowedExit. 
 | |
|         InductionDescriptor ID;
 | |
|         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
 | |
|           addInductionPhi(Phi, ID, AllowedExit);
 | |
|           if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
 | |
|             Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
 | |
|                                                          SinkAfter, DT)) {
 | |
|           FirstOrderRecurrences.insert(Phi);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // As a last resort, coerce the PHI to a AddRec expression
 | |
|         // and re-try classifying it a an induction PHI.
 | |
|         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
 | |
|           addInductionPhi(Phi, ID, AllowedExit);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
 | |
|                   << "value that could not be identified as "
 | |
|                      "reduction is used outside the loop");
 | |
|         LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
 | |
|         return false;
 | |
|       } // end of PHI handling
 | |
| 
 | |
|       // We handle calls that:
 | |
|       //   * Are debug info intrinsics.
 | |
|       //   * Have a mapping to an IR intrinsic.
 | |
|       //   * Have a vector version available.
 | |
|       auto *CI = dyn_cast<CallInst>(&I);
 | |
|       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
 | |
|           !isa<DbgInfoIntrinsic>(CI) &&
 | |
|           !(CI->getCalledFunction() && TLI &&
 | |
|             TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
 | |
|         ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
 | |
|                   << "call instruction cannot be vectorized");
 | |
|         LLVM_DEBUG(
 | |
|             dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
 | |
|       // second argument is the same (i.e. loop invariant)
 | |
|       if (CI && hasVectorInstrinsicScalarOpd(
 | |
|                     getVectorIntrinsicIDForCall(CI, TLI), 1)) {
 | |
|         auto *SE = PSE.getSE();
 | |
|         if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
 | |
|           ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
 | |
|                     << "intrinsic instruction cannot be vectorized");
 | |
|           LLVM_DEBUG(dbgs()
 | |
|                      << "LV: Found unvectorizable intrinsic " << *CI << "\n");
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Check that the instruction return type is vectorizable.
 | |
|       // Also, we can't vectorize extractelement instructions.
 | |
|       if ((!VectorType::isValidElementType(I.getType()) &&
 | |
|            !I.getType()->isVoidTy()) ||
 | |
|           isa<ExtractElementInst>(I)) {
 | |
|         ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
 | |
|                   << "instruction return type cannot be vectorized");
 | |
|         LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Check that the stored type is vectorizable.
 | |
|       if (auto *ST = dyn_cast<StoreInst>(&I)) {
 | |
|         Type *T = ST->getValueOperand()->getType();
 | |
|         if (!VectorType::isValidElementType(T)) {
 | |
|           ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
 | |
|                     << "store instruction cannot be vectorized");
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         // FP instructions can allow unsafe algebra, thus vectorizable by
 | |
|         // non-IEEE-754 compliant SIMD units.
 | |
|         // This applies to floating-point math operations and calls, not memory
 | |
|         // operations, shuffles, or casts, as they don't change precision or
 | |
|         // semantics.
 | |
|       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
 | |
|                  !I.isFast()) {
 | |
|         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
 | |
|         Hints->setPotentiallyUnsafe();
 | |
|       }
 | |
| 
 | |
|       // Reduction instructions are allowed to have exit users.
 | |
|       // All other instructions must not have external users.
 | |
|       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
 | |
|         // We can safely vectorize loops where instructions within the loop are
 | |
|         // used outside the loop only if the SCEV predicates within the loop is
 | |
|         // same as outside the loop. Allowing the exit means reusing the SCEV
 | |
|         // outside the loop.
 | |
|         if (PSE.getUnionPredicate().isAlwaysTrue()) {
 | |
|           AllowedExit.insert(&I);
 | |
|           continue;
 | |
|         }
 | |
|         ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
 | |
|                   << "value cannot be used outside the loop");
 | |
|         return false;
 | |
|       }
 | |
|     } // next instr.
 | |
|   }
 | |
| 
 | |
|   if (!PrimaryInduction) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
 | |
|     if (Inductions.empty()) {
 | |
|       ORE->emit(createMissedAnalysis("NoInductionVariable")
 | |
|                 << "loop induction variable could not be identified");
 | |
|       return false;
 | |
|     } else if (!WidestIndTy) {
 | |
|       ORE->emit(createMissedAnalysis("NoIntegerInductionVariable")
 | |
|                 << "integer loop induction variable could not be identified");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now we know the widest induction type, check if our found induction
 | |
|   // is the same size. If it's not, unset it here and InnerLoopVectorizer
 | |
|   // will create another.
 | |
|   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
 | |
|     PrimaryInduction = nullptr;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorizeMemory() {
 | |
|   LAI = &(*GetLAA)(*TheLoop);
 | |
|   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
 | |
|   if (LAR) {
 | |
|     ORE->emit([&]() {
 | |
|       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
 | |
|                                         "loop not vectorized: ", *LAR);
 | |
|     });
 | |
|   }
 | |
|   if (!LAI->canVectorizeMemory())
 | |
|     return false;
 | |
| 
 | |
|   if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
 | |
|     ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
 | |
|               << "write to a loop invariant address could not "
 | |
|                  "be vectorized");
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "LV: Non vectorizable stores to a uniform address\n");
 | |
|     return false;
 | |
|   }
 | |
|   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
 | |
|   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
 | |
|   Value *In0 = const_cast<Value *>(V);
 | |
|   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
 | |
|   if (!PN)
 | |
|     return false;
 | |
| 
 | |
|   return Inductions.count(PN);
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
 | |
|   auto *Inst = dyn_cast<Instruction>(V);
 | |
|   return (Inst && InductionCastsToIgnore.count(Inst));
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
 | |
|   return isInductionPhi(V) || isCastedInductionVariable(V);
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
 | |
|   return FirstOrderRecurrences.count(Phi);
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
 | |
|   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::blockCanBePredicated(
 | |
|     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
 | |
|   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
 | |
| 
 | |
|   for (Instruction &I : *BB) {
 | |
|     // Check that we don't have a constant expression that can trap as operand.
 | |
|     for (Value *Operand : I.operands()) {
 | |
|       if (auto *C = dyn_cast<Constant>(Operand))
 | |
|         if (C->canTrap())
 | |
|           return false;
 | |
|     }
 | |
|     // We might be able to hoist the load.
 | |
|     if (I.mayReadFromMemory()) {
 | |
|       auto *LI = dyn_cast<LoadInst>(&I);
 | |
|       if (!LI)
 | |
|         return false;
 | |
|       if (!SafePtrs.count(LI->getPointerOperand())) {
 | |
|         // !llvm.mem.parallel_loop_access implies if-conversion safety.
 | |
|         // Otherwise, record that the load needs (real or emulated) masking
 | |
|         // and let the cost model decide.
 | |
|         if (!IsAnnotatedParallel)
 | |
|           MaskedOp.insert(LI);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (I.mayWriteToMemory()) {
 | |
|       auto *SI = dyn_cast<StoreInst>(&I);
 | |
|       if (!SI)
 | |
|         return false;
 | |
|       // Predicated store requires some form of masking:
 | |
|       // 1) masked store HW instruction,
 | |
|       // 2) emulation via load-blend-store (only if safe and legal to do so,
 | |
|       //    be aware on the race conditions), or
 | |
|       // 3) element-by-element predicate check and scalar store.
 | |
|       MaskedOp.insert(SI);
 | |
|       continue;
 | |
|     }
 | |
|     if (I.mayThrow())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
 | |
|   if (!EnableIfConversion) {
 | |
|     ORE->emit(createMissedAnalysis("IfConversionDisabled")
 | |
|               << "if-conversion is disabled");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
 | |
| 
 | |
|   // A list of pointers that we can safely read and write to.
 | |
|   SmallPtrSet<Value *, 8> SafePointes;
 | |
| 
 | |
|   // Collect safe addresses.
 | |
|   for (BasicBlock *BB : TheLoop->blocks()) {
 | |
|     if (blockNeedsPredication(BB))
 | |
|       continue;
 | |
| 
 | |
|     for (Instruction &I : *BB)
 | |
|       if (auto *Ptr = getLoadStorePointerOperand(&I))
 | |
|         SafePointes.insert(Ptr);
 | |
|   }
 | |
| 
 | |
|   // Collect the blocks that need predication.
 | |
|   BasicBlock *Header = TheLoop->getHeader();
 | |
|   for (BasicBlock *BB : TheLoop->blocks()) {
 | |
|     // We don't support switch statements inside loops.
 | |
|     if (!isa<BranchInst>(BB->getTerminator())) {
 | |
|       ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
 | |
|                 << "loop contains a switch statement");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // We must be able to predicate all blocks that need to be predicated.
 | |
|     if (blockNeedsPredication(BB)) {
 | |
|       if (!blockCanBePredicated(BB, SafePointes)) {
 | |
|         ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
 | |
|                   << "control flow cannot be substituted for a select");
 | |
|         return false;
 | |
|       }
 | |
|     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
 | |
|       ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
 | |
|                 << "control flow cannot be substituted for a select");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We can if-convert this loop.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Helper function to canVectorizeLoopNestCFG.
 | |
| bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
 | |
|                                                     bool UseVPlanNativePath) {
 | |
|   assert((UseVPlanNativePath || Lp->empty()) &&
 | |
|          "VPlan-native path is not enabled.");
 | |
| 
 | |
|   // TODO: ORE should be improved to show more accurate information when an
 | |
|   // outer loop can't be vectorized because a nested loop is not understood or
 | |
|   // legal. Something like: "outer_loop_location: loop not vectorized:
 | |
|   // (inner_loop_location) loop control flow is not understood by vectorizer".
 | |
| 
 | |
|   // Store the result and return it at the end instead of exiting early, in case
 | |
|   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
 | |
|   bool Result = true;
 | |
|   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
 | |
| 
 | |
|   // We must have a loop in canonical form. Loops with indirectbr in them cannot
 | |
|   // be canonicalized.
 | |
|   if (!Lp->getLoopPreheader()) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n");
 | |
|     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
 | |
|               << "loop control flow is not understood by vectorizer");
 | |
|     if (DoExtraAnalysis)
 | |
|       Result = false;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // We must have a single backedge.
 | |
|   if (Lp->getNumBackEdges() != 1) {
 | |
|     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
 | |
|               << "loop control flow is not understood by vectorizer");
 | |
|     if (DoExtraAnalysis)
 | |
|       Result = false;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // We must have a single exiting block.
 | |
|   if (!Lp->getExitingBlock()) {
 | |
|     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
 | |
|               << "loop control flow is not understood by vectorizer");
 | |
|     if (DoExtraAnalysis)
 | |
|       Result = false;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // We only handle bottom-tested loops, i.e. loop in which the condition is
 | |
|   // checked at the end of each iteration. With that we can assume that all
 | |
|   // instructions in the loop are executed the same number of times.
 | |
|   if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
 | |
|     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
 | |
|               << "loop control flow is not understood by vectorizer");
 | |
|     if (DoExtraAnalysis)
 | |
|       Result = false;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
 | |
|     Loop *Lp, bool UseVPlanNativePath) {
 | |
|   // Store the result and return it at the end instead of exiting early, in case
 | |
|   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
 | |
|   bool Result = true;
 | |
|   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
 | |
|   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
 | |
|     if (DoExtraAnalysis)
 | |
|       Result = false;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Recursively check whether the loop control flow of nested loops is
 | |
|   // understood.
 | |
|   for (Loop *SubLp : *Lp)
 | |
|     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
 | |
|       if (DoExtraAnalysis)
 | |
|         Result = false;
 | |
|       else
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
 | |
|   // Store the result and return it at the end instead of exiting early, in case
 | |
|   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
 | |
|   bool Result = true;
 | |
| 
 | |
|   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
 | |
|   // Check whether the loop-related control flow in the loop nest is expected by
 | |
|   // vectorizer.
 | |
|   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
 | |
|     if (DoExtraAnalysis)
 | |
|       Result = false;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // We need to have a loop header.
 | |
|   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
 | |
|                     << '\n');
 | |
| 
 | |
|   // Specific checks for outer loops. We skip the remaining legal checks at this
 | |
|   // point because they don't support outer loops.
 | |
|   if (!TheLoop->empty()) {
 | |
|     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
 | |
| 
 | |
|     if (!canVectorizeOuterLoop()) {
 | |
|       LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n");
 | |
|       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
 | |
|       // outer loops.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   assert(TheLoop->empty() && "Inner loop expected.");
 | |
|   // Check if we can if-convert non-single-bb loops.
 | |
|   unsigned NumBlocks = TheLoop->getNumBlocks();
 | |
|   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
 | |
|     if (DoExtraAnalysis)
 | |
|       Result = false;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Check if we can vectorize the instructions and CFG in this loop.
 | |
|   if (!canVectorizeInstrs()) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
 | |
|     if (DoExtraAnalysis)
 | |
|       Result = false;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Go over each instruction and look at memory deps.
 | |
|   if (!canVectorizeMemory()) {
 | |
|     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
 | |
|     if (DoExtraAnalysis)
 | |
|       Result = false;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
 | |
|                     << (LAI->getRuntimePointerChecking()->Need
 | |
|                             ? " (with a runtime bound check)"
 | |
|                             : "")
 | |
|                     << "!\n");
 | |
| 
 | |
|   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
 | |
|   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
 | |
|     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
 | |
| 
 | |
|   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
 | |
|     ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
 | |
|               << "Too many SCEV assumptions need to be made and checked "
 | |
|               << "at runtime");
 | |
|     LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
 | |
|     if (DoExtraAnalysis)
 | |
|       Result = false;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Okay! We've done all the tests. If any have failed, return false. Otherwise
 | |
|   // we can vectorize, and at this point we don't have any other mem analysis
 | |
|   // which may limit our maximum vectorization factor, so just return true with
 | |
|   // no restrictions.
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canFoldTailByMasking() {
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
 | |
| 
 | |
|   if (!PrimaryInduction) {
 | |
|     ORE->emit(createMissedAnalysis("NoPrimaryInduction")
 | |
|               << "Missing a primary induction variable in the loop, which is "
 | |
|               << "needed in order to fold tail by masking as required.");
 | |
|     LLVM_DEBUG(dbgs() << "LV: No primary induction, cannot fold tail by "
 | |
|                       << "masking.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // TODO: handle reductions when tail is folded by masking.
 | |
|   if (!Reductions.empty()) {
 | |
|     ORE->emit(createMissedAnalysis("ReductionFoldingTailByMasking")
 | |
|               << "Cannot fold tail by masking in the presence of reductions.");
 | |
|     LLVM_DEBUG(dbgs() << "LV: Loop has reductions, cannot fold tail by "
 | |
|                       << "masking.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // TODO: handle outside users when tail is folded by masking.
 | |
|   for (auto *AE : AllowedExit) {
 | |
|     // Check that all users of allowed exit values are inside the loop.
 | |
|     for (User *U : AE->users()) {
 | |
|       Instruction *UI = cast<Instruction>(U);
 | |
|       if (TheLoop->contains(UI))
 | |
|         continue;
 | |
|       ORE->emit(createMissedAnalysis("LiveOutFoldingTailByMasking")
 | |
|                 << "Cannot fold tail by masking in the presence of live outs.");
 | |
|       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop has an "
 | |
|                         << "outside user for : " << *UI << '\n');
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The list of pointers that we can safely read and write to remains empty.
 | |
|   SmallPtrSet<Value *, 8> SafePointers;
 | |
| 
 | |
|   // Check and mark all blocks for predication, including those that ordinarily
 | |
|   // do not need predication such as the header block.
 | |
|   for (BasicBlock *BB : TheLoop->blocks()) {
 | |
|     if (!blockCanBePredicated(BB, SafePointers)) {
 | |
|       ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
 | |
|                 << "control flow cannot be substituted for a select");
 | |
|       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as required.\n");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| } // namespace llvm
 |