forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			6484 lines
		
	
	
		
			238 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			6484 lines
		
	
	
		
			238 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
 | |
| // stores that can be put together into vector-stores. Next, it attempts to
 | |
| // construct vectorizable tree using the use-def chains. If a profitable tree
 | |
| // was found, the SLP vectorizer performs vectorization on the tree.
 | |
| //
 | |
| // The pass is inspired by the work described in the paper:
 | |
| //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/iterator.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/CodeMetrics.h"
 | |
| #include "llvm/Analysis/DemandedBits.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/LoopAccessAnalysis.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/MemoryLocation.h"
 | |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Analysis/VectorUtils.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/NoFolder.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/IR/Verifier.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/DOTGraphTraits.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/GraphWriter.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/Transforms/Vectorize.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <memory>
 | |
| #include <set>
 | |
| #include <string>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| using namespace slpvectorizer;
 | |
| 
 | |
| #define SV_NAME "slp-vectorizer"
 | |
| #define DEBUG_TYPE "SLP"
 | |
| 
 | |
| STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
 | |
| 
 | |
| static cl::opt<int>
 | |
|     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
 | |
|                      cl::desc("Only vectorize if you gain more than this "
 | |
|                               "number "));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
 | |
|                    cl::desc("Attempt to vectorize horizontal reductions"));
 | |
| 
 | |
| static cl::opt<bool> ShouldStartVectorizeHorAtStore(
 | |
|     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
 | |
|     cl::desc(
 | |
|         "Attempt to vectorize horizontal reductions feeding into a store"));
 | |
| 
 | |
| static cl::opt<int>
 | |
| MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
 | |
|     cl::desc("Attempt to vectorize for this register size in bits"));
 | |
| 
 | |
| /// Limits the size of scheduling regions in a block.
 | |
| /// It avoid long compile times for _very_ large blocks where vector
 | |
| /// instructions are spread over a wide range.
 | |
| /// This limit is way higher than needed by real-world functions.
 | |
| static cl::opt<int>
 | |
| ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
 | |
|     cl::desc("Limit the size of the SLP scheduling region per block"));
 | |
| 
 | |
| static cl::opt<int> MinVectorRegSizeOption(
 | |
|     "slp-min-reg-size", cl::init(128), cl::Hidden,
 | |
|     cl::desc("Attempt to vectorize for this register size in bits"));
 | |
| 
 | |
| static cl::opt<unsigned> RecursionMaxDepth(
 | |
|     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
 | |
|     cl::desc("Limit the recursion depth when building a vectorizable tree"));
 | |
| 
 | |
| static cl::opt<unsigned> MinTreeSize(
 | |
|     "slp-min-tree-size", cl::init(3), cl::Hidden,
 | |
|     cl::desc("Only vectorize small trees if they are fully vectorizable"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     ViewSLPTree("view-slp-tree", cl::Hidden,
 | |
|                 cl::desc("Display the SLP trees with Graphviz"));
 | |
| 
 | |
| // Limit the number of alias checks. The limit is chosen so that
 | |
| // it has no negative effect on the llvm benchmarks.
 | |
| static const unsigned AliasedCheckLimit = 10;
 | |
| 
 | |
| // Another limit for the alias checks: The maximum distance between load/store
 | |
| // instructions where alias checks are done.
 | |
| // This limit is useful for very large basic blocks.
 | |
| static const unsigned MaxMemDepDistance = 160;
 | |
| 
 | |
| /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
 | |
| /// regions to be handled.
 | |
| static const int MinScheduleRegionSize = 16;
 | |
| 
 | |
| /// Predicate for the element types that the SLP vectorizer supports.
 | |
| ///
 | |
| /// The most important thing to filter here are types which are invalid in LLVM
 | |
| /// vectors. We also filter target specific types which have absolutely no
 | |
| /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
 | |
| /// avoids spending time checking the cost model and realizing that they will
 | |
| /// be inevitably scalarized.
 | |
| static bool isValidElementType(Type *Ty) {
 | |
|   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
 | |
|          !Ty->isPPC_FP128Ty();
 | |
| }
 | |
| 
 | |
| /// \returns true if all of the instructions in \p VL are in the same block or
 | |
| /// false otherwise.
 | |
| static bool allSameBlock(ArrayRef<Value *> VL) {
 | |
|   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
 | |
|   if (!I0)
 | |
|     return false;
 | |
|   BasicBlock *BB = I0->getParent();
 | |
|   for (int i = 1, e = VL.size(); i < e; i++) {
 | |
|     Instruction *I = dyn_cast<Instruction>(VL[i]);
 | |
|     if (!I)
 | |
|       return false;
 | |
| 
 | |
|     if (BB != I->getParent())
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \returns True if all of the values in \p VL are constants.
 | |
| static bool allConstant(ArrayRef<Value *> VL) {
 | |
|   for (Value *i : VL)
 | |
|     if (!isa<Constant>(i))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \returns True if all of the values in \p VL are identical.
 | |
| static bool isSplat(ArrayRef<Value *> VL) {
 | |
|   for (unsigned i = 1, e = VL.size(); i < e; ++i)
 | |
|     if (VL[i] != VL[0])
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Checks if the vector of instructions can be represented as a shuffle, like:
 | |
| /// %x0 = extractelement <4 x i8> %x, i32 0
 | |
| /// %x3 = extractelement <4 x i8> %x, i32 3
 | |
| /// %y1 = extractelement <4 x i8> %y, i32 1
 | |
| /// %y2 = extractelement <4 x i8> %y, i32 2
 | |
| /// %x0x0 = mul i8 %x0, %x0
 | |
| /// %x3x3 = mul i8 %x3, %x3
 | |
| /// %y1y1 = mul i8 %y1, %y1
 | |
| /// %y2y2 = mul i8 %y2, %y2
 | |
| /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
 | |
| /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
 | |
| /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
 | |
| /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
 | |
| /// ret <4 x i8> %ins4
 | |
| /// can be transformed into:
 | |
| /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
 | |
| ///                                                         i32 6>
 | |
| /// %2 = mul <4 x i8> %1, %1
 | |
| /// ret <4 x i8> %2
 | |
| /// We convert this initially to something like:
 | |
| /// %x0 = extractelement <4 x i8> %x, i32 0
 | |
| /// %x3 = extractelement <4 x i8> %x, i32 3
 | |
| /// %y1 = extractelement <4 x i8> %y, i32 1
 | |
| /// %y2 = extractelement <4 x i8> %y, i32 2
 | |
| /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
 | |
| /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
 | |
| /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
 | |
| /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
 | |
| /// %5 = mul <4 x i8> %4, %4
 | |
| /// %6 = extractelement <4 x i8> %5, i32 0
 | |
| /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
 | |
| /// %7 = extractelement <4 x i8> %5, i32 1
 | |
| /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
 | |
| /// %8 = extractelement <4 x i8> %5, i32 2
 | |
| /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
 | |
| /// %9 = extractelement <4 x i8> %5, i32 3
 | |
| /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
 | |
| /// ret <4 x i8> %ins4
 | |
| /// InstCombiner transforms this into a shuffle and vector mul
 | |
| /// TODO: Can we split off and reuse the shuffle mask detection from
 | |
| /// TargetTransformInfo::getInstructionThroughput?
 | |
| static Optional<TargetTransformInfo::ShuffleKind>
 | |
| isShuffle(ArrayRef<Value *> VL) {
 | |
|   auto *EI0 = cast<ExtractElementInst>(VL[0]);
 | |
|   unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
 | |
|   Value *Vec1 = nullptr;
 | |
|   Value *Vec2 = nullptr;
 | |
|   enum ShuffleMode { Unknown, Select, Permute };
 | |
|   ShuffleMode CommonShuffleMode = Unknown;
 | |
|   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
 | |
|     auto *EI = cast<ExtractElementInst>(VL[I]);
 | |
|     auto *Vec = EI->getVectorOperand();
 | |
|     // All vector operands must have the same number of vector elements.
 | |
|     if (Vec->getType()->getVectorNumElements() != Size)
 | |
|       return None;
 | |
|     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
 | |
|     if (!Idx)
 | |
|       return None;
 | |
|     // Undefined behavior if Idx is negative or >= Size.
 | |
|     if (Idx->getValue().uge(Size))
 | |
|       continue;
 | |
|     unsigned IntIdx = Idx->getValue().getZExtValue();
 | |
|     // We can extractelement from undef vector.
 | |
|     if (isa<UndefValue>(Vec))
 | |
|       continue;
 | |
|     // For correct shuffling we have to have at most 2 different vector operands
 | |
|     // in all extractelement instructions.
 | |
|     if (!Vec1 || Vec1 == Vec)
 | |
|       Vec1 = Vec;
 | |
|     else if (!Vec2 || Vec2 == Vec)
 | |
|       Vec2 = Vec;
 | |
|     else
 | |
|       return None;
 | |
|     if (CommonShuffleMode == Permute)
 | |
|       continue;
 | |
|     // If the extract index is not the same as the operation number, it is a
 | |
|     // permutation.
 | |
|     if (IntIdx != I) {
 | |
|       CommonShuffleMode = Permute;
 | |
|       continue;
 | |
|     }
 | |
|     CommonShuffleMode = Select;
 | |
|   }
 | |
|   // If we're not crossing lanes in different vectors, consider it as blending.
 | |
|   if (CommonShuffleMode == Select && Vec2)
 | |
|     return TargetTransformInfo::SK_Select;
 | |
|   // If Vec2 was never used, we have a permutation of a single vector, otherwise
 | |
|   // we have permutation of 2 vectors.
 | |
|   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
 | |
|               : TargetTransformInfo::SK_PermuteSingleSrc;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Main data required for vectorization of instructions.
 | |
| struct InstructionsState {
 | |
|   /// The very first instruction in the list with the main opcode.
 | |
|   Value *OpValue = nullptr;
 | |
| 
 | |
|   /// The main/alternate instruction.
 | |
|   Instruction *MainOp = nullptr;
 | |
|   Instruction *AltOp = nullptr;
 | |
| 
 | |
|   /// The main/alternate opcodes for the list of instructions.
 | |
|   unsigned getOpcode() const {
 | |
|     return MainOp ? MainOp->getOpcode() : 0;
 | |
|   }
 | |
| 
 | |
|   unsigned getAltOpcode() const {
 | |
|     return AltOp ? AltOp->getOpcode() : 0;
 | |
|   }
 | |
| 
 | |
|   /// Some of the instructions in the list have alternate opcodes.
 | |
|   bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
 | |
| 
 | |
|   bool isOpcodeOrAlt(Instruction *I) const {
 | |
|     unsigned CheckedOpcode = I->getOpcode();
 | |
|     return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
 | |
|   }
 | |
| 
 | |
|   InstructionsState() = delete;
 | |
|   InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
 | |
|       : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Chooses the correct key for scheduling data. If \p Op has the same (or
 | |
| /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
 | |
| /// OpValue.
 | |
| static Value *isOneOf(const InstructionsState &S, Value *Op) {
 | |
|   auto *I = dyn_cast<Instruction>(Op);
 | |
|   if (I && S.isOpcodeOrAlt(I))
 | |
|     return Op;
 | |
|   return S.OpValue;
 | |
| }
 | |
| 
 | |
| /// \returns analysis of the Instructions in \p VL described in
 | |
| /// InstructionsState, the Opcode that we suppose the whole list
 | |
| /// could be vectorized even if its structure is diverse.
 | |
| static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
 | |
|                                        unsigned BaseIndex = 0) {
 | |
|   // Make sure these are all Instructions.
 | |
|   if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
 | |
|     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
 | |
| 
 | |
|   bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
 | |
|   bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
 | |
|   unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
 | |
|   unsigned AltOpcode = Opcode;
 | |
|   unsigned AltIndex = BaseIndex;
 | |
| 
 | |
|   // Check for one alternate opcode from another BinaryOperator.
 | |
|   // TODO - generalize to support all operators (types, calls etc.).
 | |
|   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
 | |
|     unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
 | |
|     if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
 | |
|       if (InstOpcode == Opcode || InstOpcode == AltOpcode)
 | |
|         continue;
 | |
|       if (Opcode == AltOpcode) {
 | |
|         AltOpcode = InstOpcode;
 | |
|         AltIndex = Cnt;
 | |
|         continue;
 | |
|       }
 | |
|     } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
 | |
|       Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
 | |
|       Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
 | |
|       if (Ty0 == Ty1) {
 | |
|         if (InstOpcode == Opcode || InstOpcode == AltOpcode)
 | |
|           continue;
 | |
|         if (Opcode == AltOpcode) {
 | |
|           AltOpcode = InstOpcode;
 | |
|           AltIndex = Cnt;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
 | |
|       continue;
 | |
|     return InstructionsState(VL[BaseIndex], nullptr, nullptr);
 | |
|   }
 | |
| 
 | |
|   return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
 | |
|                            cast<Instruction>(VL[AltIndex]));
 | |
| }
 | |
| 
 | |
| /// \returns true if all of the values in \p VL have the same type or false
 | |
| /// otherwise.
 | |
| static bool allSameType(ArrayRef<Value *> VL) {
 | |
|   Type *Ty = VL[0]->getType();
 | |
|   for (int i = 1, e = VL.size(); i < e; i++)
 | |
|     if (VL[i]->getType() != Ty)
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \returns True if Extract{Value,Element} instruction extracts element Idx.
 | |
| static Optional<unsigned> getExtractIndex(Instruction *E) {
 | |
|   unsigned Opcode = E->getOpcode();
 | |
|   assert((Opcode == Instruction::ExtractElement ||
 | |
|           Opcode == Instruction::ExtractValue) &&
 | |
|          "Expected extractelement or extractvalue instruction.");
 | |
|   if (Opcode == Instruction::ExtractElement) {
 | |
|     auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
 | |
|     if (!CI)
 | |
|       return None;
 | |
|     return CI->getZExtValue();
 | |
|   }
 | |
|   ExtractValueInst *EI = cast<ExtractValueInst>(E);
 | |
|   if (EI->getNumIndices() != 1)
 | |
|     return None;
 | |
|   return *EI->idx_begin();
 | |
| }
 | |
| 
 | |
| /// \returns True if in-tree use also needs extract. This refers to
 | |
| /// possible scalar operand in vectorized instruction.
 | |
| static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
 | |
|                                     TargetLibraryInfo *TLI) {
 | |
|   unsigned Opcode = UserInst->getOpcode();
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Load: {
 | |
|     LoadInst *LI = cast<LoadInst>(UserInst);
 | |
|     return (LI->getPointerOperand() == Scalar);
 | |
|   }
 | |
|   case Instruction::Store: {
 | |
|     StoreInst *SI = cast<StoreInst>(UserInst);
 | |
|     return (SI->getPointerOperand() == Scalar);
 | |
|   }
 | |
|   case Instruction::Call: {
 | |
|     CallInst *CI = cast<CallInst>(UserInst);
 | |
|     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | |
|     if (hasVectorInstrinsicScalarOpd(ID, 1)) {
 | |
|       return (CI->getArgOperand(1) == Scalar);
 | |
|     }
 | |
|     LLVM_FALLTHROUGH;
 | |
|   }
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \returns the AA location that is being access by the instruction.
 | |
| static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return MemoryLocation::get(SI);
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     return MemoryLocation::get(LI);
 | |
|   return MemoryLocation();
 | |
| }
 | |
| 
 | |
| /// \returns True if the instruction is not a volatile or atomic load/store.
 | |
| static bool isSimple(Instruction *I) {
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     return LI->isSimple();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return SI->isSimple();
 | |
|   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
 | |
|     return !MI->isVolatile();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| namespace slpvectorizer {
 | |
| 
 | |
| /// Bottom Up SLP Vectorizer.
 | |
| class BoUpSLP {
 | |
| public:
 | |
|   using ValueList = SmallVector<Value *, 8>;
 | |
|   using InstrList = SmallVector<Instruction *, 16>;
 | |
|   using ValueSet = SmallPtrSet<Value *, 16>;
 | |
|   using StoreList = SmallVector<StoreInst *, 8>;
 | |
|   using ExtraValueToDebugLocsMap =
 | |
|       MapVector<Value *, SmallVector<Instruction *, 2>>;
 | |
| 
 | |
|   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
 | |
|           TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
 | |
|           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
 | |
|           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
 | |
|       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
 | |
|         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
 | |
|     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
 | |
|     // Use the vector register size specified by the target unless overridden
 | |
|     // by a command-line option.
 | |
|     // TODO: It would be better to limit the vectorization factor based on
 | |
|     //       data type rather than just register size. For example, x86 AVX has
 | |
|     //       256-bit registers, but it does not support integer operations
 | |
|     //       at that width (that requires AVX2).
 | |
|     if (MaxVectorRegSizeOption.getNumOccurrences())
 | |
|       MaxVecRegSize = MaxVectorRegSizeOption;
 | |
|     else
 | |
|       MaxVecRegSize = TTI->getRegisterBitWidth(true);
 | |
| 
 | |
|     if (MinVectorRegSizeOption.getNumOccurrences())
 | |
|       MinVecRegSize = MinVectorRegSizeOption;
 | |
|     else
 | |
|       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
 | |
|   }
 | |
| 
 | |
|   /// Vectorize the tree that starts with the elements in \p VL.
 | |
|   /// Returns the vectorized root.
 | |
|   Value *vectorizeTree();
 | |
| 
 | |
|   /// Vectorize the tree but with the list of externally used values \p
 | |
|   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
 | |
|   /// generated extractvalue instructions.
 | |
|   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
 | |
| 
 | |
|   /// \returns the cost incurred by unwanted spills and fills, caused by
 | |
|   /// holding live values over call sites.
 | |
|   int getSpillCost();
 | |
| 
 | |
|   /// \returns the vectorization cost of the subtree that starts at \p VL.
 | |
|   /// A negative number means that this is profitable.
 | |
|   int getTreeCost();
 | |
| 
 | |
|   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
 | |
|   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
 | |
|   void buildTree(ArrayRef<Value *> Roots,
 | |
|                  ArrayRef<Value *> UserIgnoreLst = None);
 | |
| 
 | |
|   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
 | |
|   /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
 | |
|   /// into account (anf updating it, if required) list of externally used
 | |
|   /// values stored in \p ExternallyUsedValues.
 | |
|   void buildTree(ArrayRef<Value *> Roots,
 | |
|                  ExtraValueToDebugLocsMap &ExternallyUsedValues,
 | |
|                  ArrayRef<Value *> UserIgnoreLst = None);
 | |
| 
 | |
|   /// Clear the internal data structures that are created by 'buildTree'.
 | |
|   void deleteTree() {
 | |
|     VectorizableTree.clear();
 | |
|     ScalarToTreeEntry.clear();
 | |
|     MustGather.clear();
 | |
|     ExternalUses.clear();
 | |
|     NumOpsWantToKeepOrder.clear();
 | |
|     NumOpsWantToKeepOriginalOrder = 0;
 | |
|     for (auto &Iter : BlocksSchedules) {
 | |
|       BlockScheduling *BS = Iter.second.get();
 | |
|       BS->clear();
 | |
|     }
 | |
|     MinBWs.clear();
 | |
|   }
 | |
| 
 | |
|   unsigned getTreeSize() const { return VectorizableTree.size(); }
 | |
| 
 | |
|   /// Perform LICM and CSE on the newly generated gather sequences.
 | |
|   void optimizeGatherSequence();
 | |
| 
 | |
|   /// \returns The best order of instructions for vectorization.
 | |
|   Optional<ArrayRef<unsigned>> bestOrder() const {
 | |
|     auto I = std::max_element(
 | |
|         NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
 | |
|         [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
 | |
|            const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
 | |
|           return D1.second < D2.second;
 | |
|         });
 | |
|     if (I == NumOpsWantToKeepOrder.end() ||
 | |
|         I->getSecond() <= NumOpsWantToKeepOriginalOrder)
 | |
|       return None;
 | |
| 
 | |
|     return makeArrayRef(I->getFirst());
 | |
|   }
 | |
| 
 | |
|   /// \return The vector element size in bits to use when vectorizing the
 | |
|   /// expression tree ending at \p V. If V is a store, the size is the width of
 | |
|   /// the stored value. Otherwise, the size is the width of the largest loaded
 | |
|   /// value reaching V. This method is used by the vectorizer to calculate
 | |
|   /// vectorization factors.
 | |
|   unsigned getVectorElementSize(Value *V);
 | |
| 
 | |
|   /// Compute the minimum type sizes required to represent the entries in a
 | |
|   /// vectorizable tree.
 | |
|   void computeMinimumValueSizes();
 | |
| 
 | |
|   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
 | |
|   unsigned getMaxVecRegSize() const {
 | |
|     return MaxVecRegSize;
 | |
|   }
 | |
| 
 | |
|   // \returns minimum vector register size as set by cl::opt.
 | |
|   unsigned getMinVecRegSize() const {
 | |
|     return MinVecRegSize;
 | |
|   }
 | |
| 
 | |
|   /// Check if ArrayType or StructType is isomorphic to some VectorType.
 | |
|   ///
 | |
|   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
 | |
|   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
 | |
| 
 | |
|   /// \returns True if the VectorizableTree is both tiny and not fully
 | |
|   /// vectorizable. We do not vectorize such trees.
 | |
|   bool isTreeTinyAndNotFullyVectorizable();
 | |
| 
 | |
|   OptimizationRemarkEmitter *getORE() { return ORE; }
 | |
| 
 | |
| private:
 | |
|   struct TreeEntry;
 | |
| 
 | |
|   /// Checks if all users of \p I are the part of the vectorization tree.
 | |
|   bool areAllUsersVectorized(Instruction *I) const;
 | |
| 
 | |
|   /// \returns the cost of the vectorizable entry.
 | |
|   int getEntryCost(TreeEntry *E);
 | |
| 
 | |
|   /// This is the recursive part of buildTree.
 | |
|   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int);
 | |
| 
 | |
|   /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
 | |
|   /// be vectorized to use the original vector (or aggregate "bitcast" to a
 | |
|   /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
 | |
|   /// returns false, setting \p CurrentOrder to either an empty vector or a
 | |
|   /// non-identity permutation that allows to reuse extract instructions.
 | |
|   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
 | |
|                        SmallVectorImpl<unsigned> &CurrentOrder) const;
 | |
| 
 | |
|   /// Vectorize a single entry in the tree.
 | |
|   Value *vectorizeTree(TreeEntry *E);
 | |
| 
 | |
|   /// Vectorize a single entry in the tree, starting in \p VL.
 | |
|   Value *vectorizeTree(ArrayRef<Value *> VL);
 | |
| 
 | |
|   /// \returns the scalarization cost for this type. Scalarization in this
 | |
|   /// context means the creation of vectors from a group of scalars.
 | |
|   int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices);
 | |
| 
 | |
|   /// \returns the scalarization cost for this list of values. Assuming that
 | |
|   /// this subtree gets vectorized, we may need to extract the values from the
 | |
|   /// roots. This method calculates the cost of extracting the values.
 | |
|   int getGatherCost(ArrayRef<Value *> VL);
 | |
| 
 | |
|   /// Set the Builder insert point to one after the last instruction in
 | |
|   /// the bundle
 | |
|   void setInsertPointAfterBundle(ArrayRef<Value *> VL,
 | |
|                                  const InstructionsState &S);
 | |
| 
 | |
|   /// \returns a vector from a collection of scalars in \p VL.
 | |
|   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
 | |
| 
 | |
|   /// \returns whether the VectorizableTree is fully vectorizable and will
 | |
|   /// be beneficial even the tree height is tiny.
 | |
|   bool isFullyVectorizableTinyTree();
 | |
| 
 | |
|   /// \reorder commutative operands in alt shuffle if they result in
 | |
|   ///  vectorized code.
 | |
|   void reorderAltShuffleOperands(const InstructionsState &S,
 | |
|                                  ArrayRef<Value *> VL,
 | |
|                                  SmallVectorImpl<Value *> &Left,
 | |
|                                  SmallVectorImpl<Value *> &Right);
 | |
| 
 | |
|   /// \reorder commutative operands to get better probability of
 | |
|   /// generating vectorized code.
 | |
|   void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL,
 | |
|                                       SmallVectorImpl<Value *> &Left,
 | |
|                                       SmallVectorImpl<Value *> &Right);
 | |
|   struct TreeEntry {
 | |
|     TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {}
 | |
| 
 | |
|     /// \returns true if the scalars in VL are equal to this entry.
 | |
|     bool isSame(ArrayRef<Value *> VL) const {
 | |
|       if (VL.size() == Scalars.size())
 | |
|         return std::equal(VL.begin(), VL.end(), Scalars.begin());
 | |
|       return VL.size() == ReuseShuffleIndices.size() &&
 | |
|              std::equal(
 | |
|                  VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
 | |
|                  [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; });
 | |
|     }
 | |
| 
 | |
|     /// A vector of scalars.
 | |
|     ValueList Scalars;
 | |
| 
 | |
|     /// The Scalars are vectorized into this value. It is initialized to Null.
 | |
|     Value *VectorizedValue = nullptr;
 | |
| 
 | |
|     /// Do we need to gather this sequence ?
 | |
|     bool NeedToGather = false;
 | |
| 
 | |
|     /// Does this sequence require some shuffling?
 | |
|     SmallVector<unsigned, 4> ReuseShuffleIndices;
 | |
| 
 | |
|     /// Does this entry require reordering?
 | |
|     ArrayRef<unsigned> ReorderIndices;
 | |
| 
 | |
|     /// Points back to the VectorizableTree.
 | |
|     ///
 | |
|     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
 | |
|     /// to be a pointer and needs to be able to initialize the child iterator.
 | |
|     /// Thus we need a reference back to the container to translate the indices
 | |
|     /// to entries.
 | |
|     std::vector<TreeEntry> &Container;
 | |
| 
 | |
|     /// The TreeEntry index containing the user of this entry.  We can actually
 | |
|     /// have multiple users so the data structure is not truly a tree.
 | |
|     SmallVector<int, 1> UserTreeIndices;
 | |
|   };
 | |
| 
 | |
|   /// Create a new VectorizableTree entry.
 | |
|   void newTreeEntry(ArrayRef<Value *> VL, bool Vectorized, int &UserTreeIdx,
 | |
|                     ArrayRef<unsigned> ReuseShuffleIndices = None,
 | |
|                     ArrayRef<unsigned> ReorderIndices = None) {
 | |
|     VectorizableTree.emplace_back(VectorizableTree);
 | |
|     int idx = VectorizableTree.size() - 1;
 | |
|     TreeEntry *Last = &VectorizableTree[idx];
 | |
|     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
 | |
|     Last->NeedToGather = !Vectorized;
 | |
|     Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
 | |
|                                      ReuseShuffleIndices.end());
 | |
|     Last->ReorderIndices = ReorderIndices;
 | |
|     if (Vectorized) {
 | |
|       for (int i = 0, e = VL.size(); i != e; ++i) {
 | |
|         assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
 | |
|         ScalarToTreeEntry[VL[i]] = idx;
 | |
|       }
 | |
|     } else {
 | |
|       MustGather.insert(VL.begin(), VL.end());
 | |
|     }
 | |
| 
 | |
|     if (UserTreeIdx >= 0)
 | |
|       Last->UserTreeIndices.push_back(UserTreeIdx);
 | |
|     UserTreeIdx = idx;
 | |
|   }
 | |
| 
 | |
|   /// -- Vectorization State --
 | |
|   /// Holds all of the tree entries.
 | |
|   std::vector<TreeEntry> VectorizableTree;
 | |
| 
 | |
|   TreeEntry *getTreeEntry(Value *V) {
 | |
|     auto I = ScalarToTreeEntry.find(V);
 | |
|     if (I != ScalarToTreeEntry.end())
 | |
|       return &VectorizableTree[I->second];
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   /// Maps a specific scalar to its tree entry.
 | |
|   SmallDenseMap<Value*, int> ScalarToTreeEntry;
 | |
| 
 | |
|   /// A list of scalars that we found that we need to keep as scalars.
 | |
|   ValueSet MustGather;
 | |
| 
 | |
|   /// This POD struct describes one external user in the vectorized tree.
 | |
|   struct ExternalUser {
 | |
|     ExternalUser(Value *S, llvm::User *U, int L)
 | |
|         : Scalar(S), User(U), Lane(L) {}
 | |
| 
 | |
|     // Which scalar in our function.
 | |
|     Value *Scalar;
 | |
| 
 | |
|     // Which user that uses the scalar.
 | |
|     llvm::User *User;
 | |
| 
 | |
|     // Which lane does the scalar belong to.
 | |
|     int Lane;
 | |
|   };
 | |
|   using UserList = SmallVector<ExternalUser, 16>;
 | |
| 
 | |
|   /// Checks if two instructions may access the same memory.
 | |
|   ///
 | |
|   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
 | |
|   /// is invariant in the calling loop.
 | |
|   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
 | |
|                  Instruction *Inst2) {
 | |
|     // First check if the result is already in the cache.
 | |
|     AliasCacheKey key = std::make_pair(Inst1, Inst2);
 | |
|     Optional<bool> &result = AliasCache[key];
 | |
|     if (result.hasValue()) {
 | |
|       return result.getValue();
 | |
|     }
 | |
|     MemoryLocation Loc2 = getLocation(Inst2, AA);
 | |
|     bool aliased = true;
 | |
|     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
 | |
|       // Do the alias check.
 | |
|       aliased = AA->alias(Loc1, Loc2);
 | |
|     }
 | |
|     // Store the result in the cache.
 | |
|     result = aliased;
 | |
|     return aliased;
 | |
|   }
 | |
| 
 | |
|   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
 | |
| 
 | |
|   /// Cache for alias results.
 | |
|   /// TODO: consider moving this to the AliasAnalysis itself.
 | |
|   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
 | |
| 
 | |
|   /// Removes an instruction from its block and eventually deletes it.
 | |
|   /// It's like Instruction::eraseFromParent() except that the actual deletion
 | |
|   /// is delayed until BoUpSLP is destructed.
 | |
|   /// This is required to ensure that there are no incorrect collisions in the
 | |
|   /// AliasCache, which can happen if a new instruction is allocated at the
 | |
|   /// same address as a previously deleted instruction.
 | |
|   void eraseInstruction(Instruction *I) {
 | |
|     I->removeFromParent();
 | |
|     I->dropAllReferences();
 | |
|     DeletedInstructions.emplace_back(I);
 | |
|   }
 | |
| 
 | |
|   /// Temporary store for deleted instructions. Instructions will be deleted
 | |
|   /// eventually when the BoUpSLP is destructed.
 | |
|   SmallVector<unique_value, 8> DeletedInstructions;
 | |
| 
 | |
|   /// A list of values that need to extracted out of the tree.
 | |
|   /// This list holds pairs of (Internal Scalar : External User). External User
 | |
|   /// can be nullptr, it means that this Internal Scalar will be used later,
 | |
|   /// after vectorization.
 | |
|   UserList ExternalUses;
 | |
| 
 | |
|   /// Values used only by @llvm.assume calls.
 | |
|   SmallPtrSet<const Value *, 32> EphValues;
 | |
| 
 | |
|   /// Holds all of the instructions that we gathered.
 | |
|   SetVector<Instruction *> GatherSeq;
 | |
| 
 | |
|   /// A list of blocks that we are going to CSE.
 | |
|   SetVector<BasicBlock *> CSEBlocks;
 | |
| 
 | |
|   /// Contains all scheduling relevant data for an instruction.
 | |
|   /// A ScheduleData either represents a single instruction or a member of an
 | |
|   /// instruction bundle (= a group of instructions which is combined into a
 | |
|   /// vector instruction).
 | |
|   struct ScheduleData {
 | |
|     // The initial value for the dependency counters. It means that the
 | |
|     // dependencies are not calculated yet.
 | |
|     enum { InvalidDeps = -1 };
 | |
| 
 | |
|     ScheduleData() = default;
 | |
| 
 | |
|     void init(int BlockSchedulingRegionID, Value *OpVal) {
 | |
|       FirstInBundle = this;
 | |
|       NextInBundle = nullptr;
 | |
|       NextLoadStore = nullptr;
 | |
|       IsScheduled = false;
 | |
|       SchedulingRegionID = BlockSchedulingRegionID;
 | |
|       UnscheduledDepsInBundle = UnscheduledDeps;
 | |
|       clearDependencies();
 | |
|       OpValue = OpVal;
 | |
|     }
 | |
| 
 | |
|     /// Returns true if the dependency information has been calculated.
 | |
|     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
 | |
| 
 | |
|     /// Returns true for single instructions and for bundle representatives
 | |
|     /// (= the head of a bundle).
 | |
|     bool isSchedulingEntity() const { return FirstInBundle == this; }
 | |
| 
 | |
|     /// Returns true if it represents an instruction bundle and not only a
 | |
|     /// single instruction.
 | |
|     bool isPartOfBundle() const {
 | |
|       return NextInBundle != nullptr || FirstInBundle != this;
 | |
|     }
 | |
| 
 | |
|     /// Returns true if it is ready for scheduling, i.e. it has no more
 | |
|     /// unscheduled depending instructions/bundles.
 | |
|     bool isReady() const {
 | |
|       assert(isSchedulingEntity() &&
 | |
|              "can't consider non-scheduling entity for ready list");
 | |
|       return UnscheduledDepsInBundle == 0 && !IsScheduled;
 | |
|     }
 | |
| 
 | |
|     /// Modifies the number of unscheduled dependencies, also updating it for
 | |
|     /// the whole bundle.
 | |
|     int incrementUnscheduledDeps(int Incr) {
 | |
|       UnscheduledDeps += Incr;
 | |
|       return FirstInBundle->UnscheduledDepsInBundle += Incr;
 | |
|     }
 | |
| 
 | |
|     /// Sets the number of unscheduled dependencies to the number of
 | |
|     /// dependencies.
 | |
|     void resetUnscheduledDeps() {
 | |
|       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
 | |
|     }
 | |
| 
 | |
|     /// Clears all dependency information.
 | |
|     void clearDependencies() {
 | |
|       Dependencies = InvalidDeps;
 | |
|       resetUnscheduledDeps();
 | |
|       MemoryDependencies.clear();
 | |
|     }
 | |
| 
 | |
|     void dump(raw_ostream &os) const {
 | |
|       if (!isSchedulingEntity()) {
 | |
|         os << "/ " << *Inst;
 | |
|       } else if (NextInBundle) {
 | |
|         os << '[' << *Inst;
 | |
|         ScheduleData *SD = NextInBundle;
 | |
|         while (SD) {
 | |
|           os << ';' << *SD->Inst;
 | |
|           SD = SD->NextInBundle;
 | |
|         }
 | |
|         os << ']';
 | |
|       } else {
 | |
|         os << *Inst;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Instruction *Inst = nullptr;
 | |
| 
 | |
|     /// Points to the head in an instruction bundle (and always to this for
 | |
|     /// single instructions).
 | |
|     ScheduleData *FirstInBundle = nullptr;
 | |
| 
 | |
|     /// Single linked list of all instructions in a bundle. Null if it is a
 | |
|     /// single instruction.
 | |
|     ScheduleData *NextInBundle = nullptr;
 | |
| 
 | |
|     /// Single linked list of all memory instructions (e.g. load, store, call)
 | |
|     /// in the block - until the end of the scheduling region.
 | |
|     ScheduleData *NextLoadStore = nullptr;
 | |
| 
 | |
|     /// The dependent memory instructions.
 | |
|     /// This list is derived on demand in calculateDependencies().
 | |
|     SmallVector<ScheduleData *, 4> MemoryDependencies;
 | |
| 
 | |
|     /// This ScheduleData is in the current scheduling region if this matches
 | |
|     /// the current SchedulingRegionID of BlockScheduling.
 | |
|     int SchedulingRegionID = 0;
 | |
| 
 | |
|     /// Used for getting a "good" final ordering of instructions.
 | |
|     int SchedulingPriority = 0;
 | |
| 
 | |
|     /// The number of dependencies. Constitutes of the number of users of the
 | |
|     /// instruction plus the number of dependent memory instructions (if any).
 | |
|     /// This value is calculated on demand.
 | |
|     /// If InvalidDeps, the number of dependencies is not calculated yet.
 | |
|     int Dependencies = InvalidDeps;
 | |
| 
 | |
|     /// The number of dependencies minus the number of dependencies of scheduled
 | |
|     /// instructions. As soon as this is zero, the instruction/bundle gets ready
 | |
|     /// for scheduling.
 | |
|     /// Note that this is negative as long as Dependencies is not calculated.
 | |
|     int UnscheduledDeps = InvalidDeps;
 | |
| 
 | |
|     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
 | |
|     /// single instructions.
 | |
|     int UnscheduledDepsInBundle = InvalidDeps;
 | |
| 
 | |
|     /// True if this instruction is scheduled (or considered as scheduled in the
 | |
|     /// dry-run).
 | |
|     bool IsScheduled = false;
 | |
| 
 | |
|     /// Opcode of the current instruction in the schedule data.
 | |
|     Value *OpValue = nullptr;
 | |
|   };
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   friend inline raw_ostream &operator<<(raw_ostream &os,
 | |
|                                         const BoUpSLP::ScheduleData &SD) {
 | |
|     SD.dump(os);
 | |
|     return os;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   friend struct GraphTraits<BoUpSLP *>;
 | |
|   friend struct DOTGraphTraits<BoUpSLP *>;
 | |
| 
 | |
|   /// Contains all scheduling data for a basic block.
 | |
|   struct BlockScheduling {
 | |
|     BlockScheduling(BasicBlock *BB)
 | |
|         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
 | |
| 
 | |
|     void clear() {
 | |
|       ReadyInsts.clear();
 | |
|       ScheduleStart = nullptr;
 | |
|       ScheduleEnd = nullptr;
 | |
|       FirstLoadStoreInRegion = nullptr;
 | |
|       LastLoadStoreInRegion = nullptr;
 | |
| 
 | |
|       // Reduce the maximum schedule region size by the size of the
 | |
|       // previous scheduling run.
 | |
|       ScheduleRegionSizeLimit -= ScheduleRegionSize;
 | |
|       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
 | |
|         ScheduleRegionSizeLimit = MinScheduleRegionSize;
 | |
|       ScheduleRegionSize = 0;
 | |
| 
 | |
|       // Make a new scheduling region, i.e. all existing ScheduleData is not
 | |
|       // in the new region yet.
 | |
|       ++SchedulingRegionID;
 | |
|     }
 | |
| 
 | |
|     ScheduleData *getScheduleData(Value *V) {
 | |
|       ScheduleData *SD = ScheduleDataMap[V];
 | |
|       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
 | |
|         return SD;
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     ScheduleData *getScheduleData(Value *V, Value *Key) {
 | |
|       if (V == Key)
 | |
|         return getScheduleData(V);
 | |
|       auto I = ExtraScheduleDataMap.find(V);
 | |
|       if (I != ExtraScheduleDataMap.end()) {
 | |
|         ScheduleData *SD = I->second[Key];
 | |
|         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
 | |
|           return SD;
 | |
|       }
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     bool isInSchedulingRegion(ScheduleData *SD) {
 | |
|       return SD->SchedulingRegionID == SchedulingRegionID;
 | |
|     }
 | |
| 
 | |
|     /// Marks an instruction as scheduled and puts all dependent ready
 | |
|     /// instructions into the ready-list.
 | |
|     template <typename ReadyListType>
 | |
|     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
 | |
|       SD->IsScheduled = true;
 | |
|       LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
 | |
| 
 | |
|       ScheduleData *BundleMember = SD;
 | |
|       while (BundleMember) {
 | |
|         if (BundleMember->Inst != BundleMember->OpValue) {
 | |
|           BundleMember = BundleMember->NextInBundle;
 | |
|           continue;
 | |
|         }
 | |
|         // Handle the def-use chain dependencies.
 | |
|         for (Use &U : BundleMember->Inst->operands()) {
 | |
|           auto *I = dyn_cast<Instruction>(U.get());
 | |
|           if (!I)
 | |
|             continue;
 | |
|           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
 | |
|             if (OpDef && OpDef->hasValidDependencies() &&
 | |
|                 OpDef->incrementUnscheduledDeps(-1) == 0) {
 | |
|               // There are no more unscheduled dependencies after
 | |
|               // decrementing, so we can put the dependent instruction
 | |
|               // into the ready list.
 | |
|               ScheduleData *DepBundle = OpDef->FirstInBundle;
 | |
|               assert(!DepBundle->IsScheduled &&
 | |
|                      "already scheduled bundle gets ready");
 | |
|               ReadyList.insert(DepBundle);
 | |
|               LLVM_DEBUG(dbgs()
 | |
|                          << "SLP:    gets ready (def): " << *DepBundle << "\n");
 | |
|             }
 | |
|           });
 | |
|         }
 | |
|         // Handle the memory dependencies.
 | |
|         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
 | |
|           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
 | |
|             // There are no more unscheduled dependencies after decrementing,
 | |
|             // so we can put the dependent instruction into the ready list.
 | |
|             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
 | |
|             assert(!DepBundle->IsScheduled &&
 | |
|                    "already scheduled bundle gets ready");
 | |
|             ReadyList.insert(DepBundle);
 | |
|             LLVM_DEBUG(dbgs()
 | |
|                        << "SLP:    gets ready (mem): " << *DepBundle << "\n");
 | |
|           }
 | |
|         }
 | |
|         BundleMember = BundleMember->NextInBundle;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void doForAllOpcodes(Value *V,
 | |
|                          function_ref<void(ScheduleData *SD)> Action) {
 | |
|       if (ScheduleData *SD = getScheduleData(V))
 | |
|         Action(SD);
 | |
|       auto I = ExtraScheduleDataMap.find(V);
 | |
|       if (I != ExtraScheduleDataMap.end())
 | |
|         for (auto &P : I->second)
 | |
|           if (P.second->SchedulingRegionID == SchedulingRegionID)
 | |
|             Action(P.second);
 | |
|     }
 | |
| 
 | |
|     /// Put all instructions into the ReadyList which are ready for scheduling.
 | |
|     template <typename ReadyListType>
 | |
|     void initialFillReadyList(ReadyListType &ReadyList) {
 | |
|       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
 | |
|         doForAllOpcodes(I, [&](ScheduleData *SD) {
 | |
|           if (SD->isSchedulingEntity() && SD->isReady()) {
 | |
|             ReadyList.insert(SD);
 | |
|             LLVM_DEBUG(dbgs()
 | |
|                        << "SLP:    initially in ready list: " << *I << "\n");
 | |
|           }
 | |
|         });
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// Checks if a bundle of instructions can be scheduled, i.e. has no
 | |
|     /// cyclic dependencies. This is only a dry-run, no instructions are
 | |
|     /// actually moved at this stage.
 | |
|     bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
 | |
|                            const InstructionsState &S);
 | |
| 
 | |
|     /// Un-bundles a group of instructions.
 | |
|     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
 | |
| 
 | |
|     /// Allocates schedule data chunk.
 | |
|     ScheduleData *allocateScheduleDataChunks();
 | |
| 
 | |
|     /// Extends the scheduling region so that V is inside the region.
 | |
|     /// \returns true if the region size is within the limit.
 | |
|     bool extendSchedulingRegion(Value *V, const InstructionsState &S);
 | |
| 
 | |
|     /// Initialize the ScheduleData structures for new instructions in the
 | |
|     /// scheduling region.
 | |
|     void initScheduleData(Instruction *FromI, Instruction *ToI,
 | |
|                           ScheduleData *PrevLoadStore,
 | |
|                           ScheduleData *NextLoadStore);
 | |
| 
 | |
|     /// Updates the dependency information of a bundle and of all instructions/
 | |
|     /// bundles which depend on the original bundle.
 | |
|     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
 | |
|                                BoUpSLP *SLP);
 | |
| 
 | |
|     /// Sets all instruction in the scheduling region to un-scheduled.
 | |
|     void resetSchedule();
 | |
| 
 | |
|     BasicBlock *BB;
 | |
| 
 | |
|     /// Simple memory allocation for ScheduleData.
 | |
|     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
 | |
| 
 | |
|     /// The size of a ScheduleData array in ScheduleDataChunks.
 | |
|     int ChunkSize;
 | |
| 
 | |
|     /// The allocator position in the current chunk, which is the last entry
 | |
|     /// of ScheduleDataChunks.
 | |
|     int ChunkPos;
 | |
| 
 | |
|     /// Attaches ScheduleData to Instruction.
 | |
|     /// Note that the mapping survives during all vectorization iterations, i.e.
 | |
|     /// ScheduleData structures are recycled.
 | |
|     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
 | |
| 
 | |
|     /// Attaches ScheduleData to Instruction with the leading key.
 | |
|     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
 | |
|         ExtraScheduleDataMap;
 | |
| 
 | |
|     struct ReadyList : SmallVector<ScheduleData *, 8> {
 | |
|       void insert(ScheduleData *SD) { push_back(SD); }
 | |
|     };
 | |
| 
 | |
|     /// The ready-list for scheduling (only used for the dry-run).
 | |
|     ReadyList ReadyInsts;
 | |
| 
 | |
|     /// The first instruction of the scheduling region.
 | |
|     Instruction *ScheduleStart = nullptr;
 | |
| 
 | |
|     /// The first instruction _after_ the scheduling region.
 | |
|     Instruction *ScheduleEnd = nullptr;
 | |
| 
 | |
|     /// The first memory accessing instruction in the scheduling region
 | |
|     /// (can be null).
 | |
|     ScheduleData *FirstLoadStoreInRegion = nullptr;
 | |
| 
 | |
|     /// The last memory accessing instruction in the scheduling region
 | |
|     /// (can be null).
 | |
|     ScheduleData *LastLoadStoreInRegion = nullptr;
 | |
| 
 | |
|     /// The current size of the scheduling region.
 | |
|     int ScheduleRegionSize = 0;
 | |
| 
 | |
|     /// The maximum size allowed for the scheduling region.
 | |
|     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
 | |
| 
 | |
|     /// The ID of the scheduling region. For a new vectorization iteration this
 | |
|     /// is incremented which "removes" all ScheduleData from the region.
 | |
|     // Make sure that the initial SchedulingRegionID is greater than the
 | |
|     // initial SchedulingRegionID in ScheduleData (which is 0).
 | |
|     int SchedulingRegionID = 1;
 | |
|   };
 | |
| 
 | |
|   /// Attaches the BlockScheduling structures to basic blocks.
 | |
|   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
 | |
| 
 | |
|   /// Performs the "real" scheduling. Done before vectorization is actually
 | |
|   /// performed in a basic block.
 | |
|   void scheduleBlock(BlockScheduling *BS);
 | |
| 
 | |
|   /// List of users to ignore during scheduling and that don't need extracting.
 | |
|   ArrayRef<Value *> UserIgnoreList;
 | |
| 
 | |
|   using OrdersType = SmallVector<unsigned, 4>;
 | |
|   /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
 | |
|   /// sorted SmallVectors of unsigned.
 | |
|   struct OrdersTypeDenseMapInfo {
 | |
|     static OrdersType getEmptyKey() {
 | |
|       OrdersType V;
 | |
|       V.push_back(~1U);
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     static OrdersType getTombstoneKey() {
 | |
|       OrdersType V;
 | |
|       V.push_back(~2U);
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     static unsigned getHashValue(const OrdersType &V) {
 | |
|       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
 | |
|     }
 | |
| 
 | |
|     static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
 | |
|       return LHS == RHS;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// Contains orders of operations along with the number of bundles that have
 | |
|   /// operations in this order. It stores only those orders that require
 | |
|   /// reordering, if reordering is not required it is counted using \a
 | |
|   /// NumOpsWantToKeepOriginalOrder.
 | |
|   DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
 | |
|   /// Number of bundles that do not require reordering.
 | |
|   unsigned NumOpsWantToKeepOriginalOrder = 0;
 | |
| 
 | |
|   // Analysis and block reference.
 | |
|   Function *F;
 | |
|   ScalarEvolution *SE;
 | |
|   TargetTransformInfo *TTI;
 | |
|   TargetLibraryInfo *TLI;
 | |
|   AliasAnalysis *AA;
 | |
|   LoopInfo *LI;
 | |
|   DominatorTree *DT;
 | |
|   AssumptionCache *AC;
 | |
|   DemandedBits *DB;
 | |
|   const DataLayout *DL;
 | |
|   OptimizationRemarkEmitter *ORE;
 | |
| 
 | |
|   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
 | |
|   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
 | |
| 
 | |
|   /// Instruction builder to construct the vectorized tree.
 | |
|   IRBuilder<> Builder;
 | |
| 
 | |
|   /// A map of scalar integer values to the smallest bit width with which they
 | |
|   /// can legally be represented. The values map to (width, signed) pairs,
 | |
|   /// where "width" indicates the minimum bit width and "signed" is True if the
 | |
|   /// value must be signed-extended, rather than zero-extended, back to its
 | |
|   /// original width.
 | |
|   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
 | |
| };
 | |
| 
 | |
| } // end namespace slpvectorizer
 | |
| 
 | |
| template <> struct GraphTraits<BoUpSLP *> {
 | |
|   using TreeEntry = BoUpSLP::TreeEntry;
 | |
| 
 | |
|   /// NodeRef has to be a pointer per the GraphWriter.
 | |
|   using NodeRef = TreeEntry *;
 | |
| 
 | |
|   /// Add the VectorizableTree to the index iterator to be able to return
 | |
|   /// TreeEntry pointers.
 | |
|   struct ChildIteratorType
 | |
|       : public iterator_adaptor_base<ChildIteratorType,
 | |
|                                      SmallVector<int, 1>::iterator> {
 | |
|     std::vector<TreeEntry> &VectorizableTree;
 | |
| 
 | |
|     ChildIteratorType(SmallVector<int, 1>::iterator W,
 | |
|                       std::vector<TreeEntry> &VT)
 | |
|         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
 | |
| 
 | |
|     NodeRef operator*() { return &VectorizableTree[*I]; }
 | |
|   };
 | |
| 
 | |
|   static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; }
 | |
| 
 | |
|   static ChildIteratorType child_begin(NodeRef N) {
 | |
|     return {N->UserTreeIndices.begin(), N->Container};
 | |
|   }
 | |
| 
 | |
|   static ChildIteratorType child_end(NodeRef N) {
 | |
|     return {N->UserTreeIndices.end(), N->Container};
 | |
|   }
 | |
| 
 | |
|   /// For the node iterator we just need to turn the TreeEntry iterator into a
 | |
|   /// TreeEntry* iterator so that it dereferences to NodeRef.
 | |
|   using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>;
 | |
| 
 | |
|   static nodes_iterator nodes_begin(BoUpSLP *R) {
 | |
|     return nodes_iterator(R->VectorizableTree.begin());
 | |
|   }
 | |
| 
 | |
|   static nodes_iterator nodes_end(BoUpSLP *R) {
 | |
|     return nodes_iterator(R->VectorizableTree.end());
 | |
|   }
 | |
| 
 | |
|   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
 | |
| };
 | |
| 
 | |
| template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
 | |
|   using TreeEntry = BoUpSLP::TreeEntry;
 | |
| 
 | |
|   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
 | |
| 
 | |
|   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
 | |
|     std::string Str;
 | |
|     raw_string_ostream OS(Str);
 | |
|     if (isSplat(Entry->Scalars)) {
 | |
|       OS << "<splat> " << *Entry->Scalars[0];
 | |
|       return Str;
 | |
|     }
 | |
|     for (auto V : Entry->Scalars) {
 | |
|       OS << *V;
 | |
|       if (std::any_of(
 | |
|               R->ExternalUses.begin(), R->ExternalUses.end(),
 | |
|               [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
 | |
|         OS << " <extract>";
 | |
|       OS << "\n";
 | |
|     }
 | |
|     return Str;
 | |
|   }
 | |
| 
 | |
|   static std::string getNodeAttributes(const TreeEntry *Entry,
 | |
|                                        const BoUpSLP *) {
 | |
|     if (Entry->NeedToGather)
 | |
|       return "color=red";
 | |
|     return "";
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
 | |
|                         ArrayRef<Value *> UserIgnoreLst) {
 | |
|   ExtraValueToDebugLocsMap ExternallyUsedValues;
 | |
|   buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
 | |
| }
 | |
| 
 | |
| void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
 | |
|                         ExtraValueToDebugLocsMap &ExternallyUsedValues,
 | |
|                         ArrayRef<Value *> UserIgnoreLst) {
 | |
|   deleteTree();
 | |
|   UserIgnoreList = UserIgnoreLst;
 | |
|   if (!allSameType(Roots))
 | |
|     return;
 | |
|   buildTree_rec(Roots, 0, -1);
 | |
| 
 | |
|   // Collect the values that we need to extract from the tree.
 | |
|   for (TreeEntry &EIdx : VectorizableTree) {
 | |
|     TreeEntry *Entry = &EIdx;
 | |
| 
 | |
|     // No need to handle users of gathered values.
 | |
|     if (Entry->NeedToGather)
 | |
|       continue;
 | |
| 
 | |
|     // For each lane:
 | |
|     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
 | |
|       Value *Scalar = Entry->Scalars[Lane];
 | |
|       int FoundLane = Lane;
 | |
|       if (!Entry->ReuseShuffleIndices.empty()) {
 | |
|         FoundLane =
 | |
|             std::distance(Entry->ReuseShuffleIndices.begin(),
 | |
|                           llvm::find(Entry->ReuseShuffleIndices, FoundLane));
 | |
|       }
 | |
| 
 | |
|       // Check if the scalar is externally used as an extra arg.
 | |
|       auto ExtI = ExternallyUsedValues.find(Scalar);
 | |
|       if (ExtI != ExternallyUsedValues.end()) {
 | |
|         LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
 | |
|                           << Lane << " from " << *Scalar << ".\n");
 | |
|         ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
 | |
|       }
 | |
|       for (User *U : Scalar->users()) {
 | |
|         LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
 | |
| 
 | |
|         Instruction *UserInst = dyn_cast<Instruction>(U);
 | |
|         if (!UserInst)
 | |
|           continue;
 | |
| 
 | |
|         // Skip in-tree scalars that become vectors
 | |
|         if (TreeEntry *UseEntry = getTreeEntry(U)) {
 | |
|           Value *UseScalar = UseEntry->Scalars[0];
 | |
|           // Some in-tree scalars will remain as scalar in vectorized
 | |
|           // instructions. If that is the case, the one in Lane 0 will
 | |
|           // be used.
 | |
|           if (UseScalar != U ||
 | |
|               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
 | |
|             LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
 | |
|                               << ".\n");
 | |
|             assert(!UseEntry->NeedToGather && "Bad state");
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Ignore users in the user ignore list.
 | |
|         if (is_contained(UserIgnoreList, UserInst))
 | |
|           continue;
 | |
| 
 | |
|         LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
 | |
|                           << Lane << " from " << *Scalar << ".\n");
 | |
|         ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
 | |
|                             int UserTreeIdx) {
 | |
|   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
 | |
| 
 | |
|   InstructionsState S = getSameOpcode(VL);
 | |
|   if (Depth == RecursionMaxDepth) {
 | |
|     LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
 | |
|     newTreeEntry(VL, false, UserTreeIdx);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Don't handle vectors.
 | |
|   if (S.OpValue->getType()->isVectorTy()) {
 | |
|     LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
 | |
|     newTreeEntry(VL, false, UserTreeIdx);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
 | |
|     if (SI->getValueOperand()->getType()->isVectorTy()) {
 | |
|       LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
 | |
|       newTreeEntry(VL, false, UserTreeIdx);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|   // If all of the operands are identical or constant we have a simple solution.
 | |
|   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
 | |
|     LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
 | |
|     newTreeEntry(VL, false, UserTreeIdx);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We now know that this is a vector of instructions of the same type from
 | |
|   // the same block.
 | |
| 
 | |
|   // Don't vectorize ephemeral values.
 | |
|   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | |
|     if (EphValues.count(VL[i])) {
 | |
|       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i]
 | |
|                         << ") is ephemeral.\n");
 | |
|       newTreeEntry(VL, false, UserTreeIdx);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check if this is a duplicate of another entry.
 | |
|   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
 | |
|     LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
 | |
|     if (!E->isSame(VL)) {
 | |
|       LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
 | |
|       newTreeEntry(VL, false, UserTreeIdx);
 | |
|       return;
 | |
|     }
 | |
|     // Record the reuse of the tree node.  FIXME, currently this is only used to
 | |
|     // properly draw the graph rather than for the actual vectorization.
 | |
|     E->UserTreeIndices.push_back(UserTreeIdx);
 | |
|     LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
 | |
|                       << ".\n");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check that none of the instructions in the bundle are already in the tree.
 | |
|   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | |
|     auto *I = dyn_cast<Instruction>(VL[i]);
 | |
|     if (!I)
 | |
|       continue;
 | |
|     if (getTreeEntry(I)) {
 | |
|       LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *VL[i]
 | |
|                         << ") is already in tree.\n");
 | |
|       newTreeEntry(VL, false, UserTreeIdx);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If any of the scalars is marked as a value that needs to stay scalar, then
 | |
|   // we need to gather the scalars.
 | |
|   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
 | |
|     if (MustGather.count(VL[i])) {
 | |
|       LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
 | |
|       newTreeEntry(VL, false, UserTreeIdx);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that all of the users of the scalars that we want to vectorize are
 | |
|   // schedulable.
 | |
|   auto *VL0 = cast<Instruction>(S.OpValue);
 | |
|   BasicBlock *BB = VL0->getParent();
 | |
| 
 | |
|   if (!DT->isReachableFromEntry(BB)) {
 | |
|     // Don't go into unreachable blocks. They may contain instructions with
 | |
|     // dependency cycles which confuse the final scheduling.
 | |
|     LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
 | |
|     newTreeEntry(VL, false, UserTreeIdx);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Check that every instruction appears once in this bundle.
 | |
|   SmallVector<unsigned, 4> ReuseShuffleIndicies;
 | |
|   SmallVector<Value *, 4> UniqueValues;
 | |
|   DenseMap<Value *, unsigned> UniquePositions;
 | |
|   for (Value *V : VL) {
 | |
|     auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
 | |
|     ReuseShuffleIndicies.emplace_back(Res.first->second);
 | |
|     if (Res.second)
 | |
|       UniqueValues.emplace_back(V);
 | |
|   }
 | |
|   if (UniqueValues.size() == VL.size()) {
 | |
|     ReuseShuffleIndicies.clear();
 | |
|   } else {
 | |
|     LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
 | |
|     if (UniqueValues.size() <= 1 || !llvm::isPowerOf2_32(UniqueValues.size())) {
 | |
|       LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
 | |
|       newTreeEntry(VL, false, UserTreeIdx);
 | |
|       return;
 | |
|     }
 | |
|     VL = UniqueValues;
 | |
|   }
 | |
| 
 | |
|   auto &BSRef = BlocksSchedules[BB];
 | |
|   if (!BSRef)
 | |
|     BSRef = llvm::make_unique<BlockScheduling>(BB);
 | |
| 
 | |
|   BlockScheduling &BS = *BSRef.get();
 | |
| 
 | |
|   if (!BS.tryScheduleBundle(VL, this, S)) {
 | |
|     LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
 | |
|     assert((!BS.getScheduleData(VL0) ||
 | |
|             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
 | |
|            "tryScheduleBundle should cancelScheduling on failure");
 | |
|     newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|     return;
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
 | |
| 
 | |
|   unsigned ShuffleOrOp = S.isAltShuffle() ?
 | |
|                 (unsigned) Instruction::ShuffleVector : S.getOpcode();
 | |
|   switch (ShuffleOrOp) {
 | |
|     case Instruction::PHI: {
 | |
|       PHINode *PH = dyn_cast<PHINode>(VL0);
 | |
| 
 | |
|       // Check for terminator values (e.g. invoke).
 | |
|       for (unsigned j = 0; j < VL.size(); ++j)
 | |
|         for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | |
|           Instruction *Term = dyn_cast<Instruction>(
 | |
|               cast<PHINode>(VL[j])->getIncomingValueForBlock(
 | |
|                   PH->getIncomingBlock(i)));
 | |
|           if (Term && Term->isTerminator()) {
 | |
|             LLVM_DEBUG(dbgs()
 | |
|                        << "SLP: Need to swizzle PHINodes (terminator use).\n");
 | |
|             BS.cancelScheduling(VL, VL0);
 | |
|             newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
 | |
|       LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
 | |
| 
 | |
|       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (Value *j : VL)
 | |
|           Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
 | |
|               PH->getIncomingBlock(i)));
 | |
| 
 | |
|         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::ExtractValue:
 | |
|     case Instruction::ExtractElement: {
 | |
|       OrdersType CurrentOrder;
 | |
|       bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
 | |
|       if (Reuse) {
 | |
|         LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
 | |
|         ++NumOpsWantToKeepOriginalOrder;
 | |
|         newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
 | |
|                      ReuseShuffleIndicies);
 | |
|         return;
 | |
|       }
 | |
|       if (!CurrentOrder.empty()) {
 | |
|         LLVM_DEBUG({
 | |
|           dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
 | |
|                     "with order";
 | |
|           for (unsigned Idx : CurrentOrder)
 | |
|             dbgs() << " " << Idx;
 | |
|           dbgs() << "\n";
 | |
|         });
 | |
|         // Insert new order with initial value 0, if it does not exist,
 | |
|         // otherwise return the iterator to the existing one.
 | |
|         auto StoredCurrentOrderAndNum =
 | |
|             NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
 | |
|         ++StoredCurrentOrderAndNum->getSecond();
 | |
|         newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx, ReuseShuffleIndicies,
 | |
|                      StoredCurrentOrderAndNum->getFirst());
 | |
|         return;
 | |
|       }
 | |
|       LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
 | |
|       newTreeEntry(VL, /*Vectorized=*/false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|       BS.cancelScheduling(VL, VL0);
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::Load: {
 | |
|       // Check that a vectorized load would load the same memory as a scalar
 | |
|       // load. For example, we don't want to vectorize loads that are smaller
 | |
|       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
 | |
|       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
 | |
|       // from such a struct, we read/write packed bits disagreeing with the
 | |
|       // unvectorized version.
 | |
|       Type *ScalarTy = VL0->getType();
 | |
| 
 | |
|       if (DL->getTypeSizeInBits(ScalarTy) !=
 | |
|           DL->getTypeAllocSizeInBits(ScalarTy)) {
 | |
|         BS.cancelScheduling(VL, VL0);
 | |
|         newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|         LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Make sure all loads in the bundle are simple - we can't vectorize
 | |
|       // atomic or volatile loads.
 | |
|       SmallVector<Value *, 4> PointerOps(VL.size());
 | |
|       auto POIter = PointerOps.begin();
 | |
|       for (Value *V : VL) {
 | |
|         auto *L = cast<LoadInst>(V);
 | |
|         if (!L->isSimple()) {
 | |
|           BS.cancelScheduling(VL, VL0);
 | |
|           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|           LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
 | |
|           return;
 | |
|         }
 | |
|         *POIter = L->getPointerOperand();
 | |
|         ++POIter;
 | |
|       }
 | |
| 
 | |
|       OrdersType CurrentOrder;
 | |
|       // Check the order of pointer operands.
 | |
|       if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
 | |
|         Value *Ptr0;
 | |
|         Value *PtrN;
 | |
|         if (CurrentOrder.empty()) {
 | |
|           Ptr0 = PointerOps.front();
 | |
|           PtrN = PointerOps.back();
 | |
|         } else {
 | |
|           Ptr0 = PointerOps[CurrentOrder.front()];
 | |
|           PtrN = PointerOps[CurrentOrder.back()];
 | |
|         }
 | |
|         const SCEV *Scev0 = SE->getSCEV(Ptr0);
 | |
|         const SCEV *ScevN = SE->getSCEV(PtrN);
 | |
|         const auto *Diff =
 | |
|             dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
 | |
|         uint64_t Size = DL->getTypeAllocSize(ScalarTy);
 | |
|         // Check that the sorted loads are consecutive.
 | |
|         if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) {
 | |
|           if (CurrentOrder.empty()) {
 | |
|             // Original loads are consecutive and does not require reordering.
 | |
|             ++NumOpsWantToKeepOriginalOrder;
 | |
|             newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
 | |
|                          ReuseShuffleIndicies);
 | |
|             LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
 | |
|           } else {
 | |
|             // Need to reorder.
 | |
|             auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
 | |
|             ++I->getSecond();
 | |
|             newTreeEntry(VL, /*Vectorized=*/true, UserTreeIdx,
 | |
|                          ReuseShuffleIndicies, I->getFirst());
 | |
|             LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
 | |
|           }
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
 | |
|       BS.cancelScheduling(VL, VL0);
 | |
|       newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::BitCast: {
 | |
|       Type *SrcTy = VL0->getOperand(0)->getType();
 | |
|       for (unsigned i = 0; i < VL.size(); ++i) {
 | |
|         Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
 | |
|         if (Ty != SrcTy || !isValidElementType(Ty)) {
 | |
|           BS.cancelScheduling(VL, VL0);
 | |
|           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|           LLVM_DEBUG(dbgs()
 | |
|                      << "SLP: Gathering casts with different src types.\n");
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
 | |
|       LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
 | |
| 
 | |
|       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (Value *j : VL)
 | |
|           Operands.push_back(cast<Instruction>(j)->getOperand(i));
 | |
| 
 | |
|         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::FCmp: {
 | |
|       // Check that all of the compares have the same predicate.
 | |
|       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
 | |
|       Type *ComparedTy = VL0->getOperand(0)->getType();
 | |
|       for (unsigned i = 1, e = VL.size(); i < e; ++i) {
 | |
|         CmpInst *Cmp = cast<CmpInst>(VL[i]);
 | |
|         if (Cmp->getPredicate() != P0 ||
 | |
|             Cmp->getOperand(0)->getType() != ComparedTy) {
 | |
|           BS.cancelScheduling(VL, VL0);
 | |
|           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|           LLVM_DEBUG(dbgs()
 | |
|                      << "SLP: Gathering cmp with different predicate.\n");
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
 | |
|       LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
 | |
| 
 | |
|       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (Value *j : VL)
 | |
|           Operands.push_back(cast<Instruction>(j)->getOperand(i));
 | |
| 
 | |
|         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::Select:
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
 | |
|       LLVM_DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
 | |
| 
 | |
|       // Sort operands of the instructions so that each side is more likely to
 | |
|       // have the same opcode.
 | |
|       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
 | |
|         ValueList Left, Right;
 | |
|         reorderInputsAccordingToOpcode(S.getOpcode(), VL, Left, Right);
 | |
|         buildTree_rec(Left, Depth + 1, UserTreeIdx);
 | |
|         buildTree_rec(Right, Depth + 1, UserTreeIdx);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (Value *j : VL)
 | |
|           Operands.push_back(cast<Instruction>(j)->getOperand(i));
 | |
| 
 | |
|         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
 | |
|       }
 | |
|       return;
 | |
| 
 | |
|     case Instruction::GetElementPtr: {
 | |
|       // We don't combine GEPs with complicated (nested) indexing.
 | |
|       for (unsigned j = 0; j < VL.size(); ++j) {
 | |
|         if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
 | |
|           LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
 | |
|           BS.cancelScheduling(VL, VL0);
 | |
|           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // We can't combine several GEPs into one vector if they operate on
 | |
|       // different types.
 | |
|       Type *Ty0 = VL0->getOperand(0)->getType();
 | |
|       for (unsigned j = 0; j < VL.size(); ++j) {
 | |
|         Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
 | |
|         if (Ty0 != CurTy) {
 | |
|           LLVM_DEBUG(dbgs()
 | |
|                      << "SLP: not-vectorizable GEP (different types).\n");
 | |
|           BS.cancelScheduling(VL, VL0);
 | |
|           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // We don't combine GEPs with non-constant indexes.
 | |
|       for (unsigned j = 0; j < VL.size(); ++j) {
 | |
|         auto Op = cast<Instruction>(VL[j])->getOperand(1);
 | |
|         if (!isa<ConstantInt>(Op)) {
 | |
|           LLVM_DEBUG(dbgs()
 | |
|                      << "SLP: not-vectorizable GEP (non-constant indexes).\n");
 | |
|           BS.cancelScheduling(VL, VL0);
 | |
|           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
 | |
|       LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
 | |
|       for (unsigned i = 0, e = 2; i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (Value *j : VL)
 | |
|           Operands.push_back(cast<Instruction>(j)->getOperand(i));
 | |
| 
 | |
|         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::Store: {
 | |
|       // Check if the stores are consecutive or of we need to swizzle them.
 | |
|       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
 | |
|         if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
 | |
|           BS.cancelScheduling(VL, VL0);
 | |
|           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|           LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
 | |
|       LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
 | |
| 
 | |
|       ValueList Operands;
 | |
|       for (Value *j : VL)
 | |
|         Operands.push_back(cast<Instruction>(j)->getOperand(0));
 | |
| 
 | |
|       buildTree_rec(Operands, Depth + 1, UserTreeIdx);
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::Call: {
 | |
|       // Check if the calls are all to the same vectorizable intrinsic.
 | |
|       CallInst *CI = cast<CallInst>(VL0);
 | |
|       // Check if this is an Intrinsic call or something that can be
 | |
|       // represented by an intrinsic call
 | |
|       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | |
|       if (!isTriviallyVectorizable(ID)) {
 | |
|         BS.cancelScheduling(VL, VL0);
 | |
|         newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|         LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
 | |
|         return;
 | |
|       }
 | |
|       Function *Int = CI->getCalledFunction();
 | |
|       Value *A1I = nullptr;
 | |
|       if (hasVectorInstrinsicScalarOpd(ID, 1))
 | |
|         A1I = CI->getArgOperand(1);
 | |
|       for (unsigned i = 1, e = VL.size(); i != e; ++i) {
 | |
|         CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
 | |
|         if (!CI2 || CI2->getCalledFunction() != Int ||
 | |
|             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
 | |
|             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
 | |
|           BS.cancelScheduling(VL, VL0);
 | |
|           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|           LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
 | |
|                             << "\n");
 | |
|           return;
 | |
|         }
 | |
|         // ctlz,cttz and powi are special intrinsics whose second argument
 | |
|         // should be same in order for them to be vectorized.
 | |
|         if (hasVectorInstrinsicScalarOpd(ID, 1)) {
 | |
|           Value *A1J = CI2->getArgOperand(1);
 | |
|           if (A1I != A1J) {
 | |
|             BS.cancelScheduling(VL, VL0);
 | |
|             newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|             LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
 | |
|                               << " argument " << A1I << "!=" << A1J << "\n");
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|         // Verify that the bundle operands are identical between the two calls.
 | |
|         if (CI->hasOperandBundles() &&
 | |
|             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
 | |
|                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
 | |
|                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
 | |
|           BS.cancelScheduling(VL, VL0);
 | |
|           newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|           LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
 | |
|                             << *CI << "!=" << *VL[i] << '\n');
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
 | |
|       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (Value *j : VL) {
 | |
|           CallInst *CI2 = dyn_cast<CallInst>(j);
 | |
|           Operands.push_back(CI2->getArgOperand(i));
 | |
|         }
 | |
|         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     case Instruction::ShuffleVector:
 | |
|       // If this is not an alternate sequence of opcode like add-sub
 | |
|       // then do not vectorize this instruction.
 | |
|       if (!S.isAltShuffle()) {
 | |
|         BS.cancelScheduling(VL, VL0);
 | |
|         newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|         LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
 | |
|         return;
 | |
|       }
 | |
|       newTreeEntry(VL, true, UserTreeIdx, ReuseShuffleIndicies);
 | |
|       LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
 | |
| 
 | |
|       // Reorder operands if reordering would enable vectorization.
 | |
|       if (isa<BinaryOperator>(VL0)) {
 | |
|         ValueList Left, Right;
 | |
|         reorderAltShuffleOperands(S, VL, Left, Right);
 | |
|         buildTree_rec(Left, Depth + 1, UserTreeIdx);
 | |
|         buildTree_rec(Right, Depth + 1, UserTreeIdx);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         // Prepare the operand vector.
 | |
|         for (Value *j : VL)
 | |
|           Operands.push_back(cast<Instruction>(j)->getOperand(i));
 | |
| 
 | |
|         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
 | |
|       }
 | |
|       return;
 | |
| 
 | |
|     default:
 | |
|       BS.cancelScheduling(VL, VL0);
 | |
|       newTreeEntry(VL, false, UserTreeIdx, ReuseShuffleIndicies);
 | |
|       LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
 | |
|       return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
 | |
|   unsigned N;
 | |
|   Type *EltTy;
 | |
|   auto *ST = dyn_cast<StructType>(T);
 | |
|   if (ST) {
 | |
|     N = ST->getNumElements();
 | |
|     EltTy = *ST->element_begin();
 | |
|   } else {
 | |
|     N = cast<ArrayType>(T)->getNumElements();
 | |
|     EltTy = cast<ArrayType>(T)->getElementType();
 | |
|   }
 | |
|   if (!isValidElementType(EltTy))
 | |
|     return 0;
 | |
|   uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
 | |
|   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
 | |
|     return 0;
 | |
|   if (ST) {
 | |
|     // Check that struct is homogeneous.
 | |
|     for (const auto *Ty : ST->elements())
 | |
|       if (Ty != EltTy)
 | |
|         return 0;
 | |
|   }
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
 | |
|                               SmallVectorImpl<unsigned> &CurrentOrder) const {
 | |
|   Instruction *E0 = cast<Instruction>(OpValue);
 | |
|   assert(E0->getOpcode() == Instruction::ExtractElement ||
 | |
|          E0->getOpcode() == Instruction::ExtractValue);
 | |
|   assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
 | |
|   // Check if all of the extracts come from the same vector and from the
 | |
|   // correct offset.
 | |
|   Value *Vec = E0->getOperand(0);
 | |
| 
 | |
|   CurrentOrder.clear();
 | |
| 
 | |
|   // We have to extract from a vector/aggregate with the same number of elements.
 | |
|   unsigned NElts;
 | |
|   if (E0->getOpcode() == Instruction::ExtractValue) {
 | |
|     const DataLayout &DL = E0->getModule()->getDataLayout();
 | |
|     NElts = canMapToVector(Vec->getType(), DL);
 | |
|     if (!NElts)
 | |
|       return false;
 | |
|     // Check if load can be rewritten as load of vector.
 | |
|     LoadInst *LI = dyn_cast<LoadInst>(Vec);
 | |
|     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
 | |
|       return false;
 | |
|   } else {
 | |
|     NElts = Vec->getType()->getVectorNumElements();
 | |
|   }
 | |
| 
 | |
|   if (NElts != VL.size())
 | |
|     return false;
 | |
| 
 | |
|   // Check that all of the indices extract from the correct offset.
 | |
|   bool ShouldKeepOrder = true;
 | |
|   unsigned E = VL.size();
 | |
|   // Assign to all items the initial value E + 1 so we can check if the extract
 | |
|   // instruction index was used already.
 | |
|   // Also, later we can check that all the indices are used and we have a
 | |
|   // consecutive access in the extract instructions, by checking that no
 | |
|   // element of CurrentOrder still has value E + 1.
 | |
|   CurrentOrder.assign(E, E + 1);
 | |
|   unsigned I = 0;
 | |
|   for (; I < E; ++I) {
 | |
|     auto *Inst = cast<Instruction>(VL[I]);
 | |
|     if (Inst->getOperand(0) != Vec)
 | |
|       break;
 | |
|     Optional<unsigned> Idx = getExtractIndex(Inst);
 | |
|     if (!Idx)
 | |
|       break;
 | |
|     const unsigned ExtIdx = *Idx;
 | |
|     if (ExtIdx != I) {
 | |
|       if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
 | |
|         break;
 | |
|       ShouldKeepOrder = false;
 | |
|       CurrentOrder[ExtIdx] = I;
 | |
|     } else {
 | |
|       if (CurrentOrder[I] != E + 1)
 | |
|         break;
 | |
|       CurrentOrder[I] = I;
 | |
|     }
 | |
|   }
 | |
|   if (I < E) {
 | |
|     CurrentOrder.clear();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return ShouldKeepOrder;
 | |
| }
 | |
| 
 | |
| bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
 | |
|   return I->hasOneUse() ||
 | |
|          std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
 | |
|            return ScalarToTreeEntry.count(U) > 0;
 | |
|          });
 | |
| }
 | |
| 
 | |
| int BoUpSLP::getEntryCost(TreeEntry *E) {
 | |
|   ArrayRef<Value*> VL = E->Scalars;
 | |
| 
 | |
|   Type *ScalarTy = VL[0]->getType();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | |
|     ScalarTy = SI->getValueOperand()->getType();
 | |
|   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
 | |
|     ScalarTy = CI->getOperand(0)->getType();
 | |
|   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | |
| 
 | |
|   // If we have computed a smaller type for the expression, update VecTy so
 | |
|   // that the costs will be accurate.
 | |
|   if (MinBWs.count(VL[0]))
 | |
|     VecTy = VectorType::get(
 | |
|         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
 | |
| 
 | |
|   unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
 | |
|   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
 | |
|   int ReuseShuffleCost = 0;
 | |
|   if (NeedToShuffleReuses) {
 | |
|     ReuseShuffleCost =
 | |
|         TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
 | |
|   }
 | |
|   if (E->NeedToGather) {
 | |
|     if (allConstant(VL))
 | |
|       return 0;
 | |
|     if (isSplat(VL)) {
 | |
|       return ReuseShuffleCost +
 | |
|              TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
 | |
|     }
 | |
|     if (getSameOpcode(VL).getOpcode() == Instruction::ExtractElement &&
 | |
|         allSameType(VL) && allSameBlock(VL)) {
 | |
|       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
 | |
|       if (ShuffleKind.hasValue()) {
 | |
|         int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
 | |
|         for (auto *V : VL) {
 | |
|           // If all users of instruction are going to be vectorized and this
 | |
|           // instruction itself is not going to be vectorized, consider this
 | |
|           // instruction as dead and remove its cost from the final cost of the
 | |
|           // vectorized tree.
 | |
|           if (areAllUsersVectorized(cast<Instruction>(V)) &&
 | |
|               !ScalarToTreeEntry.count(V)) {
 | |
|             auto *IO = cast<ConstantInt>(
 | |
|                 cast<ExtractElementInst>(V)->getIndexOperand());
 | |
|             Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
 | |
|                                             IO->getZExtValue());
 | |
|           }
 | |
|         }
 | |
|         return ReuseShuffleCost + Cost;
 | |
|       }
 | |
|     }
 | |
|     return ReuseShuffleCost + getGatherCost(VL);
 | |
|   }
 | |
|   InstructionsState S = getSameOpcode(VL);
 | |
|   assert(S.getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
 | |
|   Instruction *VL0 = cast<Instruction>(S.OpValue);
 | |
|   unsigned ShuffleOrOp = S.isAltShuffle() ?
 | |
|                (unsigned) Instruction::ShuffleVector : S.getOpcode();
 | |
|   switch (ShuffleOrOp) {
 | |
|     case Instruction::PHI:
 | |
|       return 0;
 | |
| 
 | |
|     case Instruction::ExtractValue:
 | |
|     case Instruction::ExtractElement:
 | |
|       if (NeedToShuffleReuses) {
 | |
|         unsigned Idx = 0;
 | |
|         for (unsigned I : E->ReuseShuffleIndices) {
 | |
|           if (ShuffleOrOp == Instruction::ExtractElement) {
 | |
|             auto *IO = cast<ConstantInt>(
 | |
|                 cast<ExtractElementInst>(VL[I])->getIndexOperand());
 | |
|             Idx = IO->getZExtValue();
 | |
|             ReuseShuffleCost -= TTI->getVectorInstrCost(
 | |
|                 Instruction::ExtractElement, VecTy, Idx);
 | |
|           } else {
 | |
|             ReuseShuffleCost -= TTI->getVectorInstrCost(
 | |
|                 Instruction::ExtractElement, VecTy, Idx);
 | |
|             ++Idx;
 | |
|           }
 | |
|         }
 | |
|         Idx = ReuseShuffleNumbers;
 | |
|         for (Value *V : VL) {
 | |
|           if (ShuffleOrOp == Instruction::ExtractElement) {
 | |
|             auto *IO = cast<ConstantInt>(
 | |
|                 cast<ExtractElementInst>(V)->getIndexOperand());
 | |
|             Idx = IO->getZExtValue();
 | |
|           } else {
 | |
|             --Idx;
 | |
|           }
 | |
|           ReuseShuffleCost +=
 | |
|               TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
 | |
|         }
 | |
|       }
 | |
|       if (!E->NeedToGather) {
 | |
|         int DeadCost = ReuseShuffleCost;
 | |
|         if (!E->ReorderIndices.empty()) {
 | |
|           // TODO: Merge this shuffle with the ReuseShuffleCost.
 | |
|           DeadCost += TTI->getShuffleCost(
 | |
|               TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
 | |
|         }
 | |
|         for (unsigned i = 0, e = VL.size(); i < e; ++i) {
 | |
|           Instruction *E = cast<Instruction>(VL[i]);
 | |
|           // If all users are going to be vectorized, instruction can be
 | |
|           // considered as dead.
 | |
|           // The same, if have only one user, it will be vectorized for sure.
 | |
|           if (areAllUsersVectorized(E)) {
 | |
|             // Take credit for instruction that will become dead.
 | |
|             if (E->hasOneUse()) {
 | |
|               Instruction *Ext = E->user_back();
 | |
|               if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
 | |
|                   all_of(Ext->users(),
 | |
|                          [](User *U) { return isa<GetElementPtrInst>(U); })) {
 | |
|                 // Use getExtractWithExtendCost() to calculate the cost of
 | |
|                 // extractelement/ext pair.
 | |
|                 DeadCost -= TTI->getExtractWithExtendCost(
 | |
|                     Ext->getOpcode(), Ext->getType(), VecTy, i);
 | |
|                 // Add back the cost of s|zext which is subtracted seperately.
 | |
|                 DeadCost += TTI->getCastInstrCost(
 | |
|                     Ext->getOpcode(), Ext->getType(), E->getType(), Ext);
 | |
|                 continue;
 | |
|               }
 | |
|             }
 | |
|             DeadCost -=
 | |
|                 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
 | |
|           }
 | |
|         }
 | |
|         return DeadCost;
 | |
|       }
 | |
|       return ReuseShuffleCost + getGatherCost(VL);
 | |
| 
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::BitCast: {
 | |
|       Type *SrcTy = VL0->getOperand(0)->getType();
 | |
|       int ScalarEltCost =
 | |
|           TTI->getCastInstrCost(S.getOpcode(), ScalarTy, SrcTy, VL0);
 | |
|       if (NeedToShuffleReuses) {
 | |
|         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
 | |
|       }
 | |
| 
 | |
|       // Calculate the cost of this instruction.
 | |
|       int ScalarCost = VL.size() * ScalarEltCost;
 | |
| 
 | |
|       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
 | |
|       int VecCost = 0;
 | |
|       // Check if the values are candidates to demote.
 | |
|       if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
 | |
|         VecCost = ReuseShuffleCost +
 | |
|                   TTI->getCastInstrCost(S.getOpcode(), VecTy, SrcVecTy, VL0);
 | |
|       }
 | |
|       return VecCost - ScalarCost;
 | |
|     }
 | |
|     case Instruction::FCmp:
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::Select: {
 | |
|       // Calculate the cost of this instruction.
 | |
|       int ScalarEltCost = TTI->getCmpSelInstrCost(S.getOpcode(), ScalarTy,
 | |
|                                                   Builder.getInt1Ty(), VL0);
 | |
|       if (NeedToShuffleReuses) {
 | |
|         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
 | |
|       }
 | |
|       VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
 | |
|       int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
 | |
|       int VecCost = TTI->getCmpSelInstrCost(S.getOpcode(), VecTy, MaskTy, VL0);
 | |
|       return ReuseShuffleCost + VecCost - ScalarCost;
 | |
|     }
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       // Certain instructions can be cheaper to vectorize if they have a
 | |
|       // constant second vector operand.
 | |
|       TargetTransformInfo::OperandValueKind Op1VK =
 | |
|           TargetTransformInfo::OK_AnyValue;
 | |
|       TargetTransformInfo::OperandValueKind Op2VK =
 | |
|           TargetTransformInfo::OK_UniformConstantValue;
 | |
|       TargetTransformInfo::OperandValueProperties Op1VP =
 | |
|           TargetTransformInfo::OP_None;
 | |
|       TargetTransformInfo::OperandValueProperties Op2VP =
 | |
|           TargetTransformInfo::OP_PowerOf2;
 | |
| 
 | |
|       // If all operands are exactly the same ConstantInt then set the
 | |
|       // operand kind to OK_UniformConstantValue.
 | |
|       // If instead not all operands are constants, then set the operand kind
 | |
|       // to OK_AnyValue. If all operands are constants but not the same,
 | |
|       // then set the operand kind to OK_NonUniformConstantValue.
 | |
|       ConstantInt *CInt0 = nullptr;
 | |
|       for (unsigned i = 0, e = VL.size(); i < e; ++i) {
 | |
|         const Instruction *I = cast<Instruction>(VL[i]);
 | |
|         ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(1));
 | |
|         if (!CInt) {
 | |
|           Op2VK = TargetTransformInfo::OK_AnyValue;
 | |
|           Op2VP = TargetTransformInfo::OP_None;
 | |
|           break;
 | |
|         }
 | |
|         if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
 | |
|             !CInt->getValue().isPowerOf2())
 | |
|           Op2VP = TargetTransformInfo::OP_None;
 | |
|         if (i == 0) {
 | |
|           CInt0 = CInt;
 | |
|           continue;
 | |
|         }
 | |
|         if (CInt0 != CInt)
 | |
|           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
 | |
|       }
 | |
| 
 | |
|       SmallVector<const Value *, 4> Operands(VL0->operand_values());
 | |
|       int ScalarEltCost = TTI->getArithmeticInstrCost(
 | |
|           S.getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands);
 | |
|       if (NeedToShuffleReuses) {
 | |
|         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
 | |
|       }
 | |
|       int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
 | |
|       int VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy, Op1VK,
 | |
|                                                 Op2VK, Op1VP, Op2VP, Operands);
 | |
|       return ReuseShuffleCost + VecCost - ScalarCost;
 | |
|     }
 | |
|     case Instruction::GetElementPtr: {
 | |
|       TargetTransformInfo::OperandValueKind Op1VK =
 | |
|           TargetTransformInfo::OK_AnyValue;
 | |
|       TargetTransformInfo::OperandValueKind Op2VK =
 | |
|           TargetTransformInfo::OK_UniformConstantValue;
 | |
| 
 | |
|       int ScalarEltCost =
 | |
|           TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
 | |
|       if (NeedToShuffleReuses) {
 | |
|         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
 | |
|       }
 | |
|       int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
 | |
|       int VecCost =
 | |
|           TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
 | |
|       return ReuseShuffleCost + VecCost - ScalarCost;
 | |
|     }
 | |
|     case Instruction::Load: {
 | |
|       // Cost of wide load - cost of scalar loads.
 | |
|       unsigned alignment = cast<LoadInst>(VL0)->getAlignment();
 | |
|       int ScalarEltCost =
 | |
|           TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
 | |
|       if (NeedToShuffleReuses) {
 | |
|         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
 | |
|       }
 | |
|       int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
 | |
|       int VecLdCost =
 | |
|           TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0);
 | |
|       if (!E->ReorderIndices.empty()) {
 | |
|         // TODO: Merge this shuffle with the ReuseShuffleCost.
 | |
|         VecLdCost += TTI->getShuffleCost(
 | |
|             TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
 | |
|       }
 | |
|       return ReuseShuffleCost + VecLdCost - ScalarLdCost;
 | |
|     }
 | |
|     case Instruction::Store: {
 | |
|       // We know that we can merge the stores. Calculate the cost.
 | |
|       unsigned alignment = cast<StoreInst>(VL0)->getAlignment();
 | |
|       int ScalarEltCost =
 | |
|           TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0);
 | |
|       if (NeedToShuffleReuses) {
 | |
|         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
 | |
|       }
 | |
|       int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
 | |
|       int VecStCost =
 | |
|           TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0);
 | |
|       return ReuseShuffleCost + VecStCost - ScalarStCost;
 | |
|     }
 | |
|     case Instruction::Call: {
 | |
|       CallInst *CI = cast<CallInst>(VL0);
 | |
|       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | |
| 
 | |
|       // Calculate the cost of the scalar and vector calls.
 | |
|       SmallVector<Type *, 4> ScalarTys;
 | |
|       for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op)
 | |
|         ScalarTys.push_back(CI->getArgOperand(op)->getType());
 | |
| 
 | |
|       FastMathFlags FMF;
 | |
|       if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
 | |
|         FMF = FPMO->getFastMathFlags();
 | |
| 
 | |
|       int ScalarEltCost =
 | |
|           TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
 | |
|       if (NeedToShuffleReuses) {
 | |
|         ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
 | |
|       }
 | |
|       int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
 | |
| 
 | |
|       SmallVector<Value *, 4> Args(CI->arg_operands());
 | |
|       int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
 | |
|                                                    VecTy->getNumElements());
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
 | |
|                         << " (" << VecCallCost << "-" << ScalarCallCost << ")"
 | |
|                         << " for " << *CI << "\n");
 | |
| 
 | |
|       return ReuseShuffleCost + VecCallCost - ScalarCallCost;
 | |
|     }
 | |
|     case Instruction::ShuffleVector: {
 | |
|       assert(S.isAltShuffle() &&
 | |
|              ((Instruction::isBinaryOp(S.getOpcode()) &&
 | |
|                Instruction::isBinaryOp(S.getAltOpcode())) ||
 | |
|               (Instruction::isCast(S.getOpcode()) &&
 | |
|                Instruction::isCast(S.getAltOpcode()))) &&
 | |
|              "Invalid Shuffle Vector Operand");
 | |
|       int ScalarCost = 0;
 | |
|       if (NeedToShuffleReuses) {
 | |
|         for (unsigned Idx : E->ReuseShuffleIndices) {
 | |
|           Instruction *I = cast<Instruction>(VL[Idx]);
 | |
|           ReuseShuffleCost -= TTI->getInstructionCost(
 | |
|               I, TargetTransformInfo::TCK_RecipThroughput);
 | |
|         }
 | |
|         for (Value *V : VL) {
 | |
|           Instruction *I = cast<Instruction>(V);
 | |
|           ReuseShuffleCost += TTI->getInstructionCost(
 | |
|               I, TargetTransformInfo::TCK_RecipThroughput);
 | |
|         }
 | |
|       }
 | |
|       for (Value *i : VL) {
 | |
|         Instruction *I = cast<Instruction>(i);
 | |
|         assert(S.isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
 | |
|         ScalarCost += TTI->getInstructionCost(
 | |
|             I, TargetTransformInfo::TCK_RecipThroughput);
 | |
|       }
 | |
|       // VecCost is equal to sum of the cost of creating 2 vectors
 | |
|       // and the cost of creating shuffle.
 | |
|       int VecCost = 0;
 | |
|       if (Instruction::isBinaryOp(S.getOpcode())) {
 | |
|         VecCost = TTI->getArithmeticInstrCost(S.getOpcode(), VecTy);
 | |
|         VecCost += TTI->getArithmeticInstrCost(S.getAltOpcode(), VecTy);
 | |
|       } else {
 | |
|         Type *Src0SclTy = S.MainOp->getOperand(0)->getType();
 | |
|         Type *Src1SclTy = S.AltOp->getOperand(0)->getType();
 | |
|         VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size());
 | |
|         VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size());
 | |
|         VecCost = TTI->getCastInstrCost(S.getOpcode(), VecTy, Src0Ty);
 | |
|         VecCost += TTI->getCastInstrCost(S.getAltOpcode(), VecTy, Src1Ty);
 | |
|       }
 | |
|       VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
 | |
|       return ReuseShuffleCost + VecCost - ScalarCost;
 | |
|     }
 | |
|     default:
 | |
|       llvm_unreachable("Unknown instruction");
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool BoUpSLP::isFullyVectorizableTinyTree() {
 | |
|   LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
 | |
|                     << VectorizableTree.size() << " is fully vectorizable .\n");
 | |
| 
 | |
|   // We only handle trees of heights 1 and 2.
 | |
|   if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather)
 | |
|     return true;
 | |
| 
 | |
|   if (VectorizableTree.size() != 2)
 | |
|     return false;
 | |
| 
 | |
|   // Handle splat and all-constants stores.
 | |
|   if (!VectorizableTree[0].NeedToGather &&
 | |
|       (allConstant(VectorizableTree[1].Scalars) ||
 | |
|        isSplat(VectorizableTree[1].Scalars)))
 | |
|     return true;
 | |
| 
 | |
|   // Gathering cost would be too much for tiny trees.
 | |
|   if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() {
 | |
|   // We can vectorize the tree if its size is greater than or equal to the
 | |
|   // minimum size specified by the MinTreeSize command line option.
 | |
|   if (VectorizableTree.size() >= MinTreeSize)
 | |
|     return false;
 | |
| 
 | |
|   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
 | |
|   // can vectorize it if we can prove it fully vectorizable.
 | |
|   if (isFullyVectorizableTinyTree())
 | |
|     return false;
 | |
| 
 | |
|   assert(VectorizableTree.empty()
 | |
|              ? ExternalUses.empty()
 | |
|              : true && "We shouldn't have any external users");
 | |
| 
 | |
|   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
 | |
|   // vectorizable.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| int BoUpSLP::getSpillCost() {
 | |
|   // Walk from the bottom of the tree to the top, tracking which values are
 | |
|   // live. When we see a call instruction that is not part of our tree,
 | |
|   // query TTI to see if there is a cost to keeping values live over it
 | |
|   // (for example, if spills and fills are required).
 | |
|   unsigned BundleWidth = VectorizableTree.front().Scalars.size();
 | |
|   int Cost = 0;
 | |
| 
 | |
|   SmallPtrSet<Instruction*, 4> LiveValues;
 | |
|   Instruction *PrevInst = nullptr;
 | |
| 
 | |
|   for (const auto &N : VectorizableTree) {
 | |
|     Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]);
 | |
|     if (!Inst)
 | |
|       continue;
 | |
| 
 | |
|     if (!PrevInst) {
 | |
|       PrevInst = Inst;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Update LiveValues.
 | |
|     LiveValues.erase(PrevInst);
 | |
|     for (auto &J : PrevInst->operands()) {
 | |
|       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
 | |
|         LiveValues.insert(cast<Instruction>(&*J));
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG({
 | |
|       dbgs() << "SLP: #LV: " << LiveValues.size();
 | |
|       for (auto *X : LiveValues)
 | |
|         dbgs() << " " << X->getName();
 | |
|       dbgs() << ", Looking at ";
 | |
|       Inst->dump();
 | |
|     });
 | |
| 
 | |
|     // Now find the sequence of instructions between PrevInst and Inst.
 | |
|     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
 | |
|                                  PrevInstIt =
 | |
|                                      PrevInst->getIterator().getReverse();
 | |
|     while (InstIt != PrevInstIt) {
 | |
|       if (PrevInstIt == PrevInst->getParent()->rend()) {
 | |
|         PrevInstIt = Inst->getParent()->rbegin();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Debug informations don't impact spill cost.
 | |
|       if ((isa<CallInst>(&*PrevInstIt) &&
 | |
|            !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
 | |
|           &*PrevInstIt != PrevInst) {
 | |
|         SmallVector<Type*, 4> V;
 | |
|         for (auto *II : LiveValues)
 | |
|           V.push_back(VectorType::get(II->getType(), BundleWidth));
 | |
|         Cost += TTI->getCostOfKeepingLiveOverCall(V);
 | |
|       }
 | |
| 
 | |
|       ++PrevInstIt;
 | |
|     }
 | |
| 
 | |
|     PrevInst = Inst;
 | |
|   }
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int BoUpSLP::getTreeCost() {
 | |
|   int Cost = 0;
 | |
|   LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
 | |
|                     << VectorizableTree.size() << ".\n");
 | |
| 
 | |
|   unsigned BundleWidth = VectorizableTree[0].Scalars.size();
 | |
| 
 | |
|   for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
 | |
|     TreeEntry &TE = VectorizableTree[I];
 | |
| 
 | |
|     // We create duplicate tree entries for gather sequences that have multiple
 | |
|     // uses. However, we should not compute the cost of duplicate sequences.
 | |
|     // For example, if we have a build vector (i.e., insertelement sequence)
 | |
|     // that is used by more than one vector instruction, we only need to
 | |
|     // compute the cost of the insertelement instructions once. The redundent
 | |
|     // instructions will be eliminated by CSE.
 | |
|     //
 | |
|     // We should consider not creating duplicate tree entries for gather
 | |
|     // sequences, and instead add additional edges to the tree representing
 | |
|     // their uses. Since such an approach results in fewer total entries,
 | |
|     // existing heuristics based on tree size may yeild different results.
 | |
|     //
 | |
|     if (TE.NeedToGather &&
 | |
|         std::any_of(std::next(VectorizableTree.begin(), I + 1),
 | |
|                     VectorizableTree.end(), [TE](TreeEntry &Entry) {
 | |
|                       return Entry.NeedToGather && Entry.isSame(TE.Scalars);
 | |
|                     }))
 | |
|       continue;
 | |
| 
 | |
|     int C = getEntryCost(&TE);
 | |
|     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
 | |
|                       << " for bundle that starts with " << *TE.Scalars[0]
 | |
|                       << ".\n");
 | |
|     Cost += C;
 | |
|   }
 | |
| 
 | |
|   SmallPtrSet<Value *, 16> ExtractCostCalculated;
 | |
|   int ExtractCost = 0;
 | |
|   for (ExternalUser &EU : ExternalUses) {
 | |
|     // We only add extract cost once for the same scalar.
 | |
|     if (!ExtractCostCalculated.insert(EU.Scalar).second)
 | |
|       continue;
 | |
| 
 | |
|     // Uses by ephemeral values are free (because the ephemeral value will be
 | |
|     // removed prior to code generation, and so the extraction will be
 | |
|     // removed as well).
 | |
|     if (EphValues.count(EU.User))
 | |
|       continue;
 | |
| 
 | |
|     // If we plan to rewrite the tree in a smaller type, we will need to sign
 | |
|     // extend the extracted value back to the original type. Here, we account
 | |
|     // for the extract and the added cost of the sign extend if needed.
 | |
|     auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
 | |
|     auto *ScalarRoot = VectorizableTree[0].Scalars[0];
 | |
|     if (MinBWs.count(ScalarRoot)) {
 | |
|       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
 | |
|       auto Extend =
 | |
|           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
 | |
|       VecTy = VectorType::get(MinTy, BundleWidth);
 | |
|       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
 | |
|                                                    VecTy, EU.Lane);
 | |
|     } else {
 | |
|       ExtractCost +=
 | |
|           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int SpillCost = getSpillCost();
 | |
|   Cost += SpillCost + ExtractCost;
 | |
| 
 | |
|   std::string Str;
 | |
|   {
 | |
|     raw_string_ostream OS(Str);
 | |
|     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
 | |
|        << "SLP: Extract Cost = " << ExtractCost << ".\n"
 | |
|        << "SLP: Total Cost = " << Cost << ".\n";
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << Str);
 | |
| 
 | |
|   if (ViewSLPTree)
 | |
|     ViewGraph(this, "SLP" + F->getName(), false, Str);
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int BoUpSLP::getGatherCost(Type *Ty,
 | |
|                            const DenseSet<unsigned> &ShuffledIndices) {
 | |
|   int Cost = 0;
 | |
|   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
 | |
|     if (!ShuffledIndices.count(i))
 | |
|       Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
 | |
|   if (!ShuffledIndices.empty())
 | |
|       Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
 | |
|   // Find the type of the operands in VL.
 | |
|   Type *ScalarTy = VL[0]->getType();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
 | |
|     ScalarTy = SI->getValueOperand()->getType();
 | |
|   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | |
|   // Find the cost of inserting/extracting values from the vector.
 | |
|   // Check if the same elements are inserted several times and count them as
 | |
|   // shuffle candidates.
 | |
|   DenseSet<unsigned> ShuffledElements;
 | |
|   DenseSet<Value *> UniqueElements;
 | |
|   // Iterate in reverse order to consider insert elements with the high cost.
 | |
|   for (unsigned I = VL.size(); I > 0; --I) {
 | |
|     unsigned Idx = I - 1;
 | |
|     if (!UniqueElements.insert(VL[Idx]).second)
 | |
|       ShuffledElements.insert(Idx);
 | |
|   }
 | |
|   return getGatherCost(VecTy, ShuffledElements);
 | |
| }
 | |
| 
 | |
| // Reorder commutative operations in alternate shuffle if the resulting vectors
 | |
| // are consecutive loads. This would allow us to vectorize the tree.
 | |
| // If we have something like-
 | |
| // load a[0] - load b[0]
 | |
| // load b[1] + load a[1]
 | |
| // load a[2] - load b[2]
 | |
| // load a[3] + load b[3]
 | |
| // Reordering the second load b[1]  load a[1] would allow us to vectorize this
 | |
| // code.
 | |
| void BoUpSLP::reorderAltShuffleOperands(const InstructionsState &S,
 | |
|                                         ArrayRef<Value *> VL,
 | |
|                                         SmallVectorImpl<Value *> &Left,
 | |
|                                         SmallVectorImpl<Value *> &Right) {
 | |
|   // Push left and right operands of binary operation into Left and Right
 | |
|   for (Value *V : VL) {
 | |
|     auto *I = cast<Instruction>(V);
 | |
|     assert(S.isOpcodeOrAlt(I) && "Incorrect instruction in vector");
 | |
|     Left.push_back(I->getOperand(0));
 | |
|     Right.push_back(I->getOperand(1));
 | |
|   }
 | |
| 
 | |
|   // Reorder if we have a commutative operation and consecutive access
 | |
|   // are on either side of the alternate instructions.
 | |
|   for (unsigned j = 0; j < VL.size() - 1; ++j) {
 | |
|     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
 | |
|       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
 | |
|         Instruction *VL1 = cast<Instruction>(VL[j]);
 | |
|         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
 | |
|         if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
 | |
|           std::swap(Left[j], Right[j]);
 | |
|           continue;
 | |
|         } else if (VL2->isCommutative() &&
 | |
|                    isConsecutiveAccess(L, L1, *DL, *SE)) {
 | |
|           std::swap(Left[j + 1], Right[j + 1]);
 | |
|           continue;
 | |
|         }
 | |
|         // else unchanged
 | |
|       }
 | |
|     }
 | |
|     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
 | |
|       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
 | |
|         Instruction *VL1 = cast<Instruction>(VL[j]);
 | |
|         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
 | |
|         if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
 | |
|           std::swap(Left[j], Right[j]);
 | |
|           continue;
 | |
|         } else if (VL2->isCommutative() &&
 | |
|                    isConsecutiveAccess(L, L1, *DL, *SE)) {
 | |
|           std::swap(Left[j + 1], Right[j + 1]);
 | |
|           continue;
 | |
|         }
 | |
|         // else unchanged
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return true if I should be commuted before adding it's left and right
 | |
| // operands to the arrays Left and Right.
 | |
| //
 | |
| // The vectorizer is trying to either have all elements one side being
 | |
| // instruction with the same opcode to enable further vectorization, or having
 | |
| // a splat to lower the vectorizing cost.
 | |
| static bool shouldReorderOperands(
 | |
|     int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left,
 | |
|     ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight,
 | |
|     bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) {
 | |
|   VLeft = I.getOperand(0);
 | |
|   VRight = I.getOperand(1);
 | |
|   // If we have "SplatRight", try to see if commuting is needed to preserve it.
 | |
|   if (SplatRight) {
 | |
|     if (VRight == Right[i - 1])
 | |
|       // Preserve SplatRight
 | |
|       return false;
 | |
|     if (VLeft == Right[i - 1]) {
 | |
|       // Commuting would preserve SplatRight, but we don't want to break
 | |
|       // SplatLeft either, i.e. preserve the original order if possible.
 | |
|       // (FIXME: why do we care?)
 | |
|       if (SplatLeft && VLeft == Left[i - 1])
 | |
|         return false;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   // Symmetrically handle Right side.
 | |
|   if (SplatLeft) {
 | |
|     if (VLeft == Left[i - 1])
 | |
|       // Preserve SplatLeft
 | |
|       return false;
 | |
|     if (VRight == Left[i - 1])
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   Instruction *ILeft = dyn_cast<Instruction>(VLeft);
 | |
|   Instruction *IRight = dyn_cast<Instruction>(VRight);
 | |
| 
 | |
|   // If we have "AllSameOpcodeRight", try to see if the left operands preserves
 | |
|   // it and not the right, in this case we want to commute.
 | |
|   if (AllSameOpcodeRight) {
 | |
|     unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode();
 | |
|     if (IRight && RightPrevOpcode == IRight->getOpcode())
 | |
|       // Do not commute, a match on the right preserves AllSameOpcodeRight
 | |
|       return false;
 | |
|     if (ILeft && RightPrevOpcode == ILeft->getOpcode()) {
 | |
|       // We have a match and may want to commute, but first check if there is
 | |
|       // not also a match on the existing operands on the Left to preserve
 | |
|       // AllSameOpcodeLeft, i.e. preserve the original order if possible.
 | |
|       // (FIXME: why do we care?)
 | |
|       if (AllSameOpcodeLeft && ILeft &&
 | |
|           cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode())
 | |
|         return false;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   // Symmetrically handle Left side.
 | |
|   if (AllSameOpcodeLeft) {
 | |
|     unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode();
 | |
|     if (ILeft && LeftPrevOpcode == ILeft->getOpcode())
 | |
|       return false;
 | |
|     if (IRight && LeftPrevOpcode == IRight->getOpcode())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode,
 | |
|                                              ArrayRef<Value *> VL,
 | |
|                                              SmallVectorImpl<Value *> &Left,
 | |
|                                              SmallVectorImpl<Value *> &Right) {
 | |
|   if (!VL.empty()) {
 | |
|     // Peel the first iteration out of the loop since there's nothing
 | |
|     // interesting to do anyway and it simplifies the checks in the loop.
 | |
|     auto *I = cast<Instruction>(VL[0]);
 | |
|     Value *VLeft = I->getOperand(0);
 | |
|     Value *VRight = I->getOperand(1);
 | |
|     if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft))
 | |
|       // Favor having instruction to the right. FIXME: why?
 | |
|       std::swap(VLeft, VRight);
 | |
|     Left.push_back(VLeft);
 | |
|     Right.push_back(VRight);
 | |
|   }
 | |
| 
 | |
|   // Keep track if we have instructions with all the same opcode on one side.
 | |
|   bool AllSameOpcodeLeft = isa<Instruction>(Left[0]);
 | |
|   bool AllSameOpcodeRight = isa<Instruction>(Right[0]);
 | |
|   // Keep track if we have one side with all the same value (broadcast).
 | |
|   bool SplatLeft = true;
 | |
|   bool SplatRight = true;
 | |
| 
 | |
|   for (unsigned i = 1, e = VL.size(); i != e; ++i) {
 | |
|     Instruction *I = cast<Instruction>(VL[i]);
 | |
|     assert(((I->getOpcode() == Opcode && I->isCommutative()) ||
 | |
|             (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) &&
 | |
|            "Can only process commutative instruction");
 | |
|     // Commute to favor either a splat or maximizing having the same opcodes on
 | |
|     // one side.
 | |
|     Value *VLeft;
 | |
|     Value *VRight;
 | |
|     if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft,
 | |
|                               AllSameOpcodeRight, SplatLeft, SplatRight, VLeft,
 | |
|                               VRight)) {
 | |
|       Left.push_back(VRight);
 | |
|       Right.push_back(VLeft);
 | |
|     } else {
 | |
|       Left.push_back(VLeft);
 | |
|       Right.push_back(VRight);
 | |
|     }
 | |
|     // Update Splat* and AllSameOpcode* after the insertion.
 | |
|     SplatRight = SplatRight && (Right[i - 1] == Right[i]);
 | |
|     SplatLeft = SplatLeft && (Left[i - 1] == Left[i]);
 | |
|     AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) &&
 | |
|                         (cast<Instruction>(Left[i - 1])->getOpcode() ==
 | |
|                          cast<Instruction>(Left[i])->getOpcode());
 | |
|     AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) &&
 | |
|                          (cast<Instruction>(Right[i - 1])->getOpcode() ==
 | |
|                           cast<Instruction>(Right[i])->getOpcode());
 | |
|   }
 | |
| 
 | |
|   // If one operand end up being broadcast, return this operand order.
 | |
|   if (SplatRight || SplatLeft)
 | |
|     return;
 | |
| 
 | |
|   // Finally check if we can get longer vectorizable chain by reordering
 | |
|   // without breaking the good operand order detected above.
 | |
|   // E.g. If we have something like-
 | |
|   // load a[0]  load b[0]
 | |
|   // load b[1]  load a[1]
 | |
|   // load a[2]  load b[2]
 | |
|   // load a[3]  load b[3]
 | |
|   // Reordering the second load b[1]  load a[1] would allow us to vectorize
 | |
|   // this code and we still retain AllSameOpcode property.
 | |
|   // FIXME: This load reordering might break AllSameOpcode in some rare cases
 | |
|   // such as-
 | |
|   // add a[0],c[0]  load b[0]
 | |
|   // add a[1],c[2]  load b[1]
 | |
|   // b[2]           load b[2]
 | |
|   // add a[3],c[3]  load b[3]
 | |
|   for (unsigned j = 0, e = VL.size() - 1; j < e; ++j) {
 | |
|     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
 | |
|       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
 | |
|         if (isConsecutiveAccess(L, L1, *DL, *SE)) {
 | |
|           std::swap(Left[j + 1], Right[j + 1]);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
 | |
|       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
 | |
|         if (isConsecutiveAccess(L, L1, *DL, *SE)) {
 | |
|           std::swap(Left[j + 1], Right[j + 1]);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     // else unchanged
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL,
 | |
|                                         const InstructionsState &S) {
 | |
|   // Get the basic block this bundle is in. All instructions in the bundle
 | |
|   // should be in this block.
 | |
|   auto *Front = cast<Instruction>(S.OpValue);
 | |
|   auto *BB = Front->getParent();
 | |
|   assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool {
 | |
|     auto *I = cast<Instruction>(V);
 | |
|     return !S.isOpcodeOrAlt(I) || I->getParent() == BB;
 | |
|   }));
 | |
| 
 | |
|   // The last instruction in the bundle in program order.
 | |
|   Instruction *LastInst = nullptr;
 | |
| 
 | |
|   // Find the last instruction. The common case should be that BB has been
 | |
|   // scheduled, and the last instruction is VL.back(). So we start with
 | |
|   // VL.back() and iterate over schedule data until we reach the end of the
 | |
|   // bundle. The end of the bundle is marked by null ScheduleData.
 | |
|   if (BlocksSchedules.count(BB)) {
 | |
|     auto *Bundle =
 | |
|         BlocksSchedules[BB]->getScheduleData(isOneOf(S, VL.back()));
 | |
|     if (Bundle && Bundle->isPartOfBundle())
 | |
|       for (; Bundle; Bundle = Bundle->NextInBundle)
 | |
|         if (Bundle->OpValue == Bundle->Inst)
 | |
|           LastInst = Bundle->Inst;
 | |
|   }
 | |
| 
 | |
|   // LastInst can still be null at this point if there's either not an entry
 | |
|   // for BB in BlocksSchedules or there's no ScheduleData available for
 | |
|   // VL.back(). This can be the case if buildTree_rec aborts for various
 | |
|   // reasons (e.g., the maximum recursion depth is reached, the maximum region
 | |
|   // size is reached, etc.). ScheduleData is initialized in the scheduling
 | |
|   // "dry-run".
 | |
|   //
 | |
|   // If this happens, we can still find the last instruction by brute force. We
 | |
|   // iterate forwards from Front (inclusive) until we either see all
 | |
|   // instructions in the bundle or reach the end of the block. If Front is the
 | |
|   // last instruction in program order, LastInst will be set to Front, and we
 | |
|   // will visit all the remaining instructions in the block.
 | |
|   //
 | |
|   // One of the reasons we exit early from buildTree_rec is to place an upper
 | |
|   // bound on compile-time. Thus, taking an additional compile-time hit here is
 | |
|   // not ideal. However, this should be exceedingly rare since it requires that
 | |
|   // we both exit early from buildTree_rec and that the bundle be out-of-order
 | |
|   // (causing us to iterate all the way to the end of the block).
 | |
|   if (!LastInst) {
 | |
|     SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end());
 | |
|     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
 | |
|       if (Bundle.erase(&I) && S.isOpcodeOrAlt(&I))
 | |
|         LastInst = &I;
 | |
|       if (Bundle.empty())
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Set the insertion point after the last instruction in the bundle. Set the
 | |
|   // debug location to Front.
 | |
|   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
 | |
|   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
 | |
| }
 | |
| 
 | |
| Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
 | |
|   Value *Vec = UndefValue::get(Ty);
 | |
|   // Generate the 'InsertElement' instruction.
 | |
|   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
 | |
|     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
 | |
|     if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
 | |
|       GatherSeq.insert(Insrt);
 | |
|       CSEBlocks.insert(Insrt->getParent());
 | |
| 
 | |
|       // Add to our 'need-to-extract' list.
 | |
|       if (TreeEntry *E = getTreeEntry(VL[i])) {
 | |
|         // Find which lane we need to extract.
 | |
|         int FoundLane = -1;
 | |
|         for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
 | |
|           // Is this the lane of the scalar that we are looking for ?
 | |
|           if (E->Scalars[Lane] == VL[i]) {
 | |
|             FoundLane = Lane;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         assert(FoundLane >= 0 && "Could not find the correct lane");
 | |
|         if (!E->ReuseShuffleIndices.empty()) {
 | |
|           FoundLane =
 | |
|               std::distance(E->ReuseShuffleIndices.begin(),
 | |
|                             llvm::find(E->ReuseShuffleIndices, FoundLane));
 | |
|         }
 | |
|         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Vec;
 | |
| }
 | |
| 
 | |
| Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
 | |
|   InstructionsState S = getSameOpcode(VL);
 | |
|   if (S.getOpcode()) {
 | |
|     if (TreeEntry *E = getTreeEntry(S.OpValue)) {
 | |
|       if (E->isSame(VL)) {
 | |
|         Value *V = vectorizeTree(E);
 | |
|         if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
 | |
|           // We need to get the vectorized value but without shuffle.
 | |
|           if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
 | |
|             V = SV->getOperand(0);
 | |
|           } else {
 | |
|             // Reshuffle to get only unique values.
 | |
|             SmallVector<unsigned, 4> UniqueIdxs;
 | |
|             SmallSet<unsigned, 4> UsedIdxs;
 | |
|             for(unsigned Idx : E->ReuseShuffleIndices)
 | |
|               if (UsedIdxs.insert(Idx).second)
 | |
|                 UniqueIdxs.emplace_back(Idx);
 | |
|             V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
 | |
|                                             UniqueIdxs);
 | |
|           }
 | |
|         }
 | |
|         return V;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Type *ScalarTy = S.OpValue->getType();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
 | |
|     ScalarTy = SI->getValueOperand()->getType();
 | |
| 
 | |
|   // Check that every instruction appears once in this bundle.
 | |
|   SmallVector<unsigned, 4> ReuseShuffleIndicies;
 | |
|   SmallVector<Value *, 4> UniqueValues;
 | |
|   if (VL.size() > 2) {
 | |
|     DenseMap<Value *, unsigned> UniquePositions;
 | |
|     for (Value *V : VL) {
 | |
|       auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
 | |
|       ReuseShuffleIndicies.emplace_back(Res.first->second);
 | |
|       if (Res.second || isa<Constant>(V))
 | |
|         UniqueValues.emplace_back(V);
 | |
|     }
 | |
|     // Do not shuffle single element or if number of unique values is not power
 | |
|     // of 2.
 | |
|     if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
 | |
|         !llvm::isPowerOf2_32(UniqueValues.size()))
 | |
|       ReuseShuffleIndicies.clear();
 | |
|     else
 | |
|       VL = UniqueValues;
 | |
|   }
 | |
|   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
 | |
| 
 | |
|   Value *V = Gather(VL, VecTy);
 | |
|   if (!ReuseShuffleIndicies.empty()) {
 | |
|     V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
 | |
|                                     ReuseShuffleIndicies, "shuffle");
 | |
|     if (auto *I = dyn_cast<Instruction>(V)) {
 | |
|       GatherSeq.insert(I);
 | |
|       CSEBlocks.insert(I->getParent());
 | |
|     }
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| static void inversePermutation(ArrayRef<unsigned> Indices,
 | |
|                                SmallVectorImpl<unsigned> &Mask) {
 | |
|   Mask.clear();
 | |
|   const unsigned E = Indices.size();
 | |
|   Mask.resize(E);
 | |
|   for (unsigned I = 0; I < E; ++I)
 | |
|     Mask[Indices[I]] = I;
 | |
| }
 | |
| 
 | |
| Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
 | |
|   IRBuilder<>::InsertPointGuard Guard(Builder);
 | |
| 
 | |
|   if (E->VectorizedValue) {
 | |
|     LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
 | |
|     return E->VectorizedValue;
 | |
|   }
 | |
| 
 | |
|   InstructionsState S = getSameOpcode(E->Scalars);
 | |
|   Instruction *VL0 = cast<Instruction>(S.OpValue);
 | |
|   Type *ScalarTy = VL0->getType();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
 | |
|     ScalarTy = SI->getValueOperand()->getType();
 | |
|   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
 | |
| 
 | |
|   bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
 | |
| 
 | |
|   if (E->NeedToGather) {
 | |
|     setInsertPointAfterBundle(E->Scalars, S);
 | |
|     auto *V = Gather(E->Scalars, VecTy);
 | |
|     if (NeedToShuffleReuses) {
 | |
|       V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
 | |
|                                       E->ReuseShuffleIndices, "shuffle");
 | |
|       if (auto *I = dyn_cast<Instruction>(V)) {
 | |
|         GatherSeq.insert(I);
 | |
|         CSEBlocks.insert(I->getParent());
 | |
|       }
 | |
|     }
 | |
|     E->VectorizedValue = V;
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   unsigned ShuffleOrOp = S.isAltShuffle() ?
 | |
|            (unsigned) Instruction::ShuffleVector : S.getOpcode();
 | |
|   switch (ShuffleOrOp) {
 | |
|     case Instruction::PHI: {
 | |
|       PHINode *PH = dyn_cast<PHINode>(VL0);
 | |
|       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
 | |
|       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
 | |
|       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
 | |
|       Value *V = NewPhi;
 | |
|       if (NeedToShuffleReuses) {
 | |
|         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
 | |
|                                         E->ReuseShuffleIndices, "shuffle");
 | |
|       }
 | |
|       E->VectorizedValue = V;
 | |
| 
 | |
|       // PHINodes may have multiple entries from the same block. We want to
 | |
|       // visit every block once.
 | |
|       SmallPtrSet<BasicBlock*, 4> VisitedBBs;
 | |
| 
 | |
|       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
 | |
|         ValueList Operands;
 | |
|         BasicBlock *IBB = PH->getIncomingBlock(i);
 | |
| 
 | |
|         if (!VisitedBBs.insert(IBB).second) {
 | |
|           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Prepare the operand vector.
 | |
|         for (Value *V : E->Scalars)
 | |
|           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
 | |
| 
 | |
|         Builder.SetInsertPoint(IBB->getTerminator());
 | |
|         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
 | |
|         Value *Vec = vectorizeTree(Operands);
 | |
|         NewPhi->addIncoming(Vec, IBB);
 | |
|       }
 | |
| 
 | |
|       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
 | |
|              "Invalid number of incoming values");
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     case Instruction::ExtractElement: {
 | |
|       if (!E->NeedToGather) {
 | |
|         Value *V = VL0->getOperand(0);
 | |
|         if (!E->ReorderIndices.empty()) {
 | |
|           OrdersType Mask;
 | |
|           inversePermutation(E->ReorderIndices, Mask);
 | |
|           Builder.SetInsertPoint(VL0);
 | |
|           V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask,
 | |
|                                           "reorder_shuffle");
 | |
|         }
 | |
|         if (NeedToShuffleReuses) {
 | |
|           // TODO: Merge this shuffle with the ReorderShuffleMask.
 | |
|           if (E->ReorderIndices.empty())
 | |
|             Builder.SetInsertPoint(VL0);
 | |
|           V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
 | |
|                                           E->ReuseShuffleIndices, "shuffle");
 | |
|         }
 | |
|         E->VectorizedValue = V;
 | |
|         return V;
 | |
|       }
 | |
|       setInsertPointAfterBundle(E->Scalars, S);
 | |
|       auto *V = Gather(E->Scalars, VecTy);
 | |
|       if (NeedToShuffleReuses) {
 | |
|         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
 | |
|                                         E->ReuseShuffleIndices, "shuffle");
 | |
|         if (auto *I = dyn_cast<Instruction>(V)) {
 | |
|           GatherSeq.insert(I);
 | |
|           CSEBlocks.insert(I->getParent());
 | |
|         }
 | |
|       }
 | |
|       E->VectorizedValue = V;
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::ExtractValue: {
 | |
|       if (!E->NeedToGather) {
 | |
|         LoadInst *LI = cast<LoadInst>(VL0->getOperand(0));
 | |
|         Builder.SetInsertPoint(LI);
 | |
|         PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
 | |
|         Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
 | |
|         LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment());
 | |
|         Value *NewV = propagateMetadata(V, E->Scalars);
 | |
|         if (!E->ReorderIndices.empty()) {
 | |
|           OrdersType Mask;
 | |
|           inversePermutation(E->ReorderIndices, Mask);
 | |
|           NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask,
 | |
|                                              "reorder_shuffle");
 | |
|         }
 | |
|         if (NeedToShuffleReuses) {
 | |
|           // TODO: Merge this shuffle with the ReorderShuffleMask.
 | |
|           NewV = Builder.CreateShuffleVector(
 | |
|               NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle");
 | |
|         }
 | |
|         E->VectorizedValue = NewV;
 | |
|         return NewV;
 | |
|       }
 | |
|       setInsertPointAfterBundle(E->Scalars, S);
 | |
|       auto *V = Gather(E->Scalars, VecTy);
 | |
|       if (NeedToShuffleReuses) {
 | |
|         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
 | |
|                                         E->ReuseShuffleIndices, "shuffle");
 | |
|         if (auto *I = dyn_cast<Instruction>(V)) {
 | |
|           GatherSeq.insert(I);
 | |
|           CSEBlocks.insert(I->getParent());
 | |
|         }
 | |
|       }
 | |
|       E->VectorizedValue = V;
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::BitCast: {
 | |
|       ValueList INVL;
 | |
|       for (Value *V : E->Scalars)
 | |
|         INVL.push_back(cast<Instruction>(V)->getOperand(0));
 | |
| 
 | |
|       setInsertPointAfterBundle(E->Scalars, S);
 | |
| 
 | |
|       Value *InVec = vectorizeTree(INVL);
 | |
| 
 | |
|       if (E->VectorizedValue) {
 | |
|         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
 | |
|         return E->VectorizedValue;
 | |
|       }
 | |
| 
 | |
|       CastInst *CI = dyn_cast<CastInst>(VL0);
 | |
|       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
 | |
|       if (NeedToShuffleReuses) {
 | |
|         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
 | |
|                                         E->ReuseShuffleIndices, "shuffle");
 | |
|       }
 | |
|       E->VectorizedValue = V;
 | |
|       ++NumVectorInstructions;
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::FCmp:
 | |
|     case Instruction::ICmp: {
 | |
|       ValueList LHSV, RHSV;
 | |
|       for (Value *V : E->Scalars) {
 | |
|         LHSV.push_back(cast<Instruction>(V)->getOperand(0));
 | |
|         RHSV.push_back(cast<Instruction>(V)->getOperand(1));
 | |
|       }
 | |
| 
 | |
|       setInsertPointAfterBundle(E->Scalars, S);
 | |
| 
 | |
|       Value *L = vectorizeTree(LHSV);
 | |
|       Value *R = vectorizeTree(RHSV);
 | |
| 
 | |
|       if (E->VectorizedValue) {
 | |
|         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
 | |
|         return E->VectorizedValue;
 | |
|       }
 | |
| 
 | |
|       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
 | |
|       Value *V;
 | |
|       if (S.getOpcode() == Instruction::FCmp)
 | |
|         V = Builder.CreateFCmp(P0, L, R);
 | |
|       else
 | |
|         V = Builder.CreateICmp(P0, L, R);
 | |
| 
 | |
|       propagateIRFlags(V, E->Scalars, VL0);
 | |
|       if (NeedToShuffleReuses) {
 | |
|         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
 | |
|                                         E->ReuseShuffleIndices, "shuffle");
 | |
|       }
 | |
|       E->VectorizedValue = V;
 | |
|       ++NumVectorInstructions;
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::Select: {
 | |
|       ValueList TrueVec, FalseVec, CondVec;
 | |
|       for (Value *V : E->Scalars) {
 | |
|         CondVec.push_back(cast<Instruction>(V)->getOperand(0));
 | |
|         TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
 | |
|         FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
 | |
|       }
 | |
| 
 | |
|       setInsertPointAfterBundle(E->Scalars, S);
 | |
| 
 | |
|       Value *Cond = vectorizeTree(CondVec);
 | |
|       Value *True = vectorizeTree(TrueVec);
 | |
|       Value *False = vectorizeTree(FalseVec);
 | |
| 
 | |
|       if (E->VectorizedValue) {
 | |
|         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
 | |
|         return E->VectorizedValue;
 | |
|       }
 | |
| 
 | |
|       Value *V = Builder.CreateSelect(Cond, True, False);
 | |
|       if (NeedToShuffleReuses) {
 | |
|         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
 | |
|                                         E->ReuseShuffleIndices, "shuffle");
 | |
|       }
 | |
|       E->VectorizedValue = V;
 | |
|       ++NumVectorInstructions;
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       ValueList LHSVL, RHSVL;
 | |
|       if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
 | |
|         reorderInputsAccordingToOpcode(S.getOpcode(), E->Scalars, LHSVL,
 | |
|                                        RHSVL);
 | |
|       else
 | |
|         for (Value *V : E->Scalars) {
 | |
|           auto *I = cast<Instruction>(V);
 | |
|           LHSVL.push_back(I->getOperand(0));
 | |
|           RHSVL.push_back(I->getOperand(1));
 | |
|         }
 | |
| 
 | |
|       setInsertPointAfterBundle(E->Scalars, S);
 | |
| 
 | |
|       Value *LHS = vectorizeTree(LHSVL);
 | |
|       Value *RHS = vectorizeTree(RHSVL);
 | |
| 
 | |
|       if (E->VectorizedValue) {
 | |
|         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
 | |
|         return E->VectorizedValue;
 | |
|       }
 | |
| 
 | |
|       Value *V = Builder.CreateBinOp(
 | |
|           static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS);
 | |
|       propagateIRFlags(V, E->Scalars, VL0);
 | |
|       if (auto *I = dyn_cast<Instruction>(V))
 | |
|         V = propagateMetadata(I, E->Scalars);
 | |
| 
 | |
|       if (NeedToShuffleReuses) {
 | |
|         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
 | |
|                                         E->ReuseShuffleIndices, "shuffle");
 | |
|       }
 | |
|       E->VectorizedValue = V;
 | |
|       ++NumVectorInstructions;
 | |
| 
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::Load: {
 | |
|       // Loads are inserted at the head of the tree because we don't want to
 | |
|       // sink them all the way down past store instructions.
 | |
|       bool IsReorder = !E->ReorderIndices.empty();
 | |
|       if (IsReorder) {
 | |
|         S = getSameOpcode(E->Scalars, E->ReorderIndices.front());
 | |
|         VL0 = cast<Instruction>(S.OpValue);
 | |
|       }
 | |
|       setInsertPointAfterBundle(E->Scalars, S);
 | |
| 
 | |
|       LoadInst *LI = cast<LoadInst>(VL0);
 | |
|       Type *ScalarLoadTy = LI->getType();
 | |
|       unsigned AS = LI->getPointerAddressSpace();
 | |
| 
 | |
|       Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
 | |
|                                             VecTy->getPointerTo(AS));
 | |
| 
 | |
|       // The pointer operand uses an in-tree scalar so we add the new BitCast to
 | |
|       // ExternalUses list to make sure that an extract will be generated in the
 | |
|       // future.
 | |
|       Value *PO = LI->getPointerOperand();
 | |
|       if (getTreeEntry(PO))
 | |
|         ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
 | |
| 
 | |
|       unsigned Alignment = LI->getAlignment();
 | |
|       LI = Builder.CreateLoad(VecPtr);
 | |
|       if (!Alignment) {
 | |
|         Alignment = DL->getABITypeAlignment(ScalarLoadTy);
 | |
|       }
 | |
|       LI->setAlignment(Alignment);
 | |
|       Value *V = propagateMetadata(LI, E->Scalars);
 | |
|       if (IsReorder) {
 | |
|         OrdersType Mask;
 | |
|         inversePermutation(E->ReorderIndices, Mask);
 | |
|         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
 | |
|                                         Mask, "reorder_shuffle");
 | |
|       }
 | |
|       if (NeedToShuffleReuses) {
 | |
|         // TODO: Merge this shuffle with the ReorderShuffleMask.
 | |
|         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
 | |
|                                         E->ReuseShuffleIndices, "shuffle");
 | |
|       }
 | |
|       E->VectorizedValue = V;
 | |
|       ++NumVectorInstructions;
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::Store: {
 | |
|       StoreInst *SI = cast<StoreInst>(VL0);
 | |
|       unsigned Alignment = SI->getAlignment();
 | |
|       unsigned AS = SI->getPointerAddressSpace();
 | |
| 
 | |
|       ValueList ScalarStoreValues;
 | |
|       for (Value *V : E->Scalars)
 | |
|         ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand());
 | |
| 
 | |
|       setInsertPointAfterBundle(E->Scalars, S);
 | |
| 
 | |
|       Value *VecValue = vectorizeTree(ScalarStoreValues);
 | |
|       Value *ScalarPtr = SI->getPointerOperand();
 | |
|       Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS));
 | |
|       StoreInst *ST = Builder.CreateStore(VecValue, VecPtr);
 | |
| 
 | |
|       // The pointer operand uses an in-tree scalar, so add the new BitCast to
 | |
|       // ExternalUses to make sure that an extract will be generated in the
 | |
|       // future.
 | |
|       if (getTreeEntry(ScalarPtr))
 | |
|         ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
 | |
| 
 | |
|       if (!Alignment)
 | |
|         Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
 | |
| 
 | |
|       ST->setAlignment(Alignment);
 | |
|       Value *V = propagateMetadata(ST, E->Scalars);
 | |
|       if (NeedToShuffleReuses) {
 | |
|         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
 | |
|                                         E->ReuseShuffleIndices, "shuffle");
 | |
|       }
 | |
|       E->VectorizedValue = V;
 | |
|       ++NumVectorInstructions;
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::GetElementPtr: {
 | |
|       setInsertPointAfterBundle(E->Scalars, S);
 | |
| 
 | |
|       ValueList Op0VL;
 | |
|       for (Value *V : E->Scalars)
 | |
|         Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
 | |
| 
 | |
|       Value *Op0 = vectorizeTree(Op0VL);
 | |
| 
 | |
|       std::vector<Value *> OpVecs;
 | |
|       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
 | |
|            ++j) {
 | |
|         ValueList OpVL;
 | |
|         for (Value *V : E->Scalars)
 | |
|           OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
 | |
| 
 | |
|         Value *OpVec = vectorizeTree(OpVL);
 | |
|         OpVecs.push_back(OpVec);
 | |
|       }
 | |
| 
 | |
|       Value *V = Builder.CreateGEP(
 | |
|           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
 | |
|       if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|         V = propagateMetadata(I, E->Scalars);
 | |
| 
 | |
|       if (NeedToShuffleReuses) {
 | |
|         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
 | |
|                                         E->ReuseShuffleIndices, "shuffle");
 | |
|       }
 | |
|       E->VectorizedValue = V;
 | |
|       ++NumVectorInstructions;
 | |
| 
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::Call: {
 | |
|       CallInst *CI = cast<CallInst>(VL0);
 | |
|       setInsertPointAfterBundle(E->Scalars, S);
 | |
|       Function *FI;
 | |
|       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
 | |
|       Value *ScalarArg = nullptr;
 | |
|       if (CI && (FI = CI->getCalledFunction())) {
 | |
|         IID = FI->getIntrinsicID();
 | |
|       }
 | |
|       std::vector<Value *> OpVecs;
 | |
|       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
 | |
|         ValueList OpVL;
 | |
|         // ctlz,cttz and powi are special intrinsics whose second argument is
 | |
|         // a scalar. This argument should not be vectorized.
 | |
|         if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
 | |
|           CallInst *CEI = cast<CallInst>(VL0);
 | |
|           ScalarArg = CEI->getArgOperand(j);
 | |
|           OpVecs.push_back(CEI->getArgOperand(j));
 | |
|           continue;
 | |
|         }
 | |
|         for (Value *V : E->Scalars) {
 | |
|           CallInst *CEI = cast<CallInst>(V);
 | |
|           OpVL.push_back(CEI->getArgOperand(j));
 | |
|         }
 | |
| 
 | |
|         Value *OpVec = vectorizeTree(OpVL);
 | |
|         LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
 | |
|         OpVecs.push_back(OpVec);
 | |
|       }
 | |
| 
 | |
|       Module *M = F->getParent();
 | |
|       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
 | |
|       Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
 | |
|       Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
 | |
|       SmallVector<OperandBundleDef, 1> OpBundles;
 | |
|       CI->getOperandBundlesAsDefs(OpBundles);
 | |
|       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
 | |
| 
 | |
|       // The scalar argument uses an in-tree scalar so we add the new vectorized
 | |
|       // call to ExternalUses list to make sure that an extract will be
 | |
|       // generated in the future.
 | |
|       if (ScalarArg && getTreeEntry(ScalarArg))
 | |
|         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
 | |
| 
 | |
|       propagateIRFlags(V, E->Scalars, VL0);
 | |
|       if (NeedToShuffleReuses) {
 | |
|         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
 | |
|                                         E->ReuseShuffleIndices, "shuffle");
 | |
|       }
 | |
|       E->VectorizedValue = V;
 | |
|       ++NumVectorInstructions;
 | |
|       return V;
 | |
|     }
 | |
|     case Instruction::ShuffleVector: {
 | |
|       ValueList LHSVL, RHSVL;
 | |
|       assert(S.isAltShuffle() &&
 | |
|              ((Instruction::isBinaryOp(S.getOpcode()) &&
 | |
|                Instruction::isBinaryOp(S.getAltOpcode())) ||
 | |
|               (Instruction::isCast(S.getOpcode()) &&
 | |
|                Instruction::isCast(S.getAltOpcode()))) &&
 | |
|              "Invalid Shuffle Vector Operand");
 | |
| 
 | |
|       Value *LHS, *RHS;
 | |
|       if (Instruction::isBinaryOp(S.getOpcode())) {
 | |
|         reorderAltShuffleOperands(S, E->Scalars, LHSVL, RHSVL);
 | |
|         setInsertPointAfterBundle(E->Scalars, S);
 | |
|         LHS = vectorizeTree(LHSVL);
 | |
|         RHS = vectorizeTree(RHSVL);
 | |
|       } else {
 | |
|         ValueList INVL;
 | |
|         for (Value *V : E->Scalars)
 | |
|           INVL.push_back(cast<Instruction>(V)->getOperand(0));
 | |
|         setInsertPointAfterBundle(E->Scalars, S);
 | |
|         LHS = vectorizeTree(INVL);
 | |
|       }
 | |
| 
 | |
|       if (E->VectorizedValue) {
 | |
|         LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
 | |
|         return E->VectorizedValue;
 | |
|       }
 | |
| 
 | |
|       Value *V0, *V1;
 | |
|       if (Instruction::isBinaryOp(S.getOpcode())) {
 | |
|         V0 = Builder.CreateBinOp(
 | |
|           static_cast<Instruction::BinaryOps>(S.getOpcode()), LHS, RHS);
 | |
|         V1 = Builder.CreateBinOp(
 | |
|           static_cast<Instruction::BinaryOps>(S.getAltOpcode()), LHS, RHS);
 | |
|       } else {
 | |
|         V0 = Builder.CreateCast(
 | |
|             static_cast<Instruction::CastOps>(S.getOpcode()), LHS, VecTy);
 | |
|         V1 = Builder.CreateCast(
 | |
|             static_cast<Instruction::CastOps>(S.getAltOpcode()), LHS, VecTy);
 | |
|       }
 | |
| 
 | |
|       // Create shuffle to take alternate operations from the vector.
 | |
|       // Also, gather up main and alt scalar ops to propagate IR flags to
 | |
|       // each vector operation.
 | |
|       ValueList OpScalars, AltScalars;
 | |
|       unsigned e = E->Scalars.size();
 | |
|       SmallVector<Constant *, 8> Mask(e);
 | |
|       for (unsigned i = 0; i < e; ++i) {
 | |
|         auto *OpInst = cast<Instruction>(E->Scalars[i]);
 | |
|         assert(S.isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
 | |
|         if (OpInst->getOpcode() == S.getAltOpcode()) {
 | |
|           Mask[i] = Builder.getInt32(e + i);
 | |
|           AltScalars.push_back(E->Scalars[i]);
 | |
|         } else {
 | |
|           Mask[i] = Builder.getInt32(i);
 | |
|           OpScalars.push_back(E->Scalars[i]);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       Value *ShuffleMask = ConstantVector::get(Mask);
 | |
|       propagateIRFlags(V0, OpScalars);
 | |
|       propagateIRFlags(V1, AltScalars);
 | |
| 
 | |
|       Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
 | |
|       if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|         V = propagateMetadata(I, E->Scalars);
 | |
|       if (NeedToShuffleReuses) {
 | |
|         V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
 | |
|                                         E->ReuseShuffleIndices, "shuffle");
 | |
|       }
 | |
|       E->VectorizedValue = V;
 | |
|       ++NumVectorInstructions;
 | |
| 
 | |
|       return V;
 | |
|     }
 | |
|     default:
 | |
|     llvm_unreachable("unknown inst");
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Value *BoUpSLP::vectorizeTree() {
 | |
|   ExtraValueToDebugLocsMap ExternallyUsedValues;
 | |
|   return vectorizeTree(ExternallyUsedValues);
 | |
| }
 | |
| 
 | |
| Value *
 | |
| BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
 | |
|   // All blocks must be scheduled before any instructions are inserted.
 | |
|   for (auto &BSIter : BlocksSchedules) {
 | |
|     scheduleBlock(BSIter.second.get());
 | |
|   }
 | |
| 
 | |
|   Builder.SetInsertPoint(&F->getEntryBlock().front());
 | |
|   auto *VectorRoot = vectorizeTree(&VectorizableTree[0]);
 | |
| 
 | |
|   // If the vectorized tree can be rewritten in a smaller type, we truncate the
 | |
|   // vectorized root. InstCombine will then rewrite the entire expression. We
 | |
|   // sign extend the extracted values below.
 | |
|   auto *ScalarRoot = VectorizableTree[0].Scalars[0];
 | |
|   if (MinBWs.count(ScalarRoot)) {
 | |
|     if (auto *I = dyn_cast<Instruction>(VectorRoot))
 | |
|       Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
 | |
|     auto BundleWidth = VectorizableTree[0].Scalars.size();
 | |
|     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
 | |
|     auto *VecTy = VectorType::get(MinTy, BundleWidth);
 | |
|     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
 | |
|     VectorizableTree[0].VectorizedValue = Trunc;
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
 | |
|                     << " values .\n");
 | |
| 
 | |
|   // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
 | |
|   // specified by ScalarType.
 | |
|   auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
 | |
|     if (!MinBWs.count(ScalarRoot))
 | |
|       return Ex;
 | |
|     if (MinBWs[ScalarRoot].second)
 | |
|       return Builder.CreateSExt(Ex, ScalarType);
 | |
|     return Builder.CreateZExt(Ex, ScalarType);
 | |
|   };
 | |
| 
 | |
|   // Extract all of the elements with the external uses.
 | |
|   for (const auto &ExternalUse : ExternalUses) {
 | |
|     Value *Scalar = ExternalUse.Scalar;
 | |
|     llvm::User *User = ExternalUse.User;
 | |
| 
 | |
|     // Skip users that we already RAUW. This happens when one instruction
 | |
|     // has multiple uses of the same value.
 | |
|     if (User && !is_contained(Scalar->users(), User))
 | |
|       continue;
 | |
|     TreeEntry *E = getTreeEntry(Scalar);
 | |
|     assert(E && "Invalid scalar");
 | |
|     assert(!E->NeedToGather && "Extracting from a gather list");
 | |
| 
 | |
|     Value *Vec = E->VectorizedValue;
 | |
|     assert(Vec && "Can't find vectorizable value");
 | |
| 
 | |
|     Value *Lane = Builder.getInt32(ExternalUse.Lane);
 | |
|     // If User == nullptr, the Scalar is used as extra arg. Generate
 | |
|     // ExtractElement instruction and update the record for this scalar in
 | |
|     // ExternallyUsedValues.
 | |
|     if (!User) {
 | |
|       assert(ExternallyUsedValues.count(Scalar) &&
 | |
|              "Scalar with nullptr as an external user must be registered in "
 | |
|              "ExternallyUsedValues map");
 | |
|       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
 | |
|         Builder.SetInsertPoint(VecI->getParent(),
 | |
|                                std::next(VecI->getIterator()));
 | |
|       } else {
 | |
|         Builder.SetInsertPoint(&F->getEntryBlock().front());
 | |
|       }
 | |
|       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | |
|       Ex = extend(ScalarRoot, Ex, Scalar->getType());
 | |
|       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
 | |
|       auto &Locs = ExternallyUsedValues[Scalar];
 | |
|       ExternallyUsedValues.insert({Ex, Locs});
 | |
|       ExternallyUsedValues.erase(Scalar);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Generate extracts for out-of-tree users.
 | |
|     // Find the insertion point for the extractelement lane.
 | |
|     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
 | |
|       if (PHINode *PH = dyn_cast<PHINode>(User)) {
 | |
|         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
 | |
|           if (PH->getIncomingValue(i) == Scalar) {
 | |
|             Instruction *IncomingTerminator =
 | |
|                 PH->getIncomingBlock(i)->getTerminator();
 | |
|             if (isa<CatchSwitchInst>(IncomingTerminator)) {
 | |
|               Builder.SetInsertPoint(VecI->getParent(),
 | |
|                                      std::next(VecI->getIterator()));
 | |
|             } else {
 | |
|               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
 | |
|             }
 | |
|             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | |
|             Ex = extend(ScalarRoot, Ex, Scalar->getType());
 | |
|             CSEBlocks.insert(PH->getIncomingBlock(i));
 | |
|             PH->setOperand(i, Ex);
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         Builder.SetInsertPoint(cast<Instruction>(User));
 | |
|         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | |
|         Ex = extend(ScalarRoot, Ex, Scalar->getType());
 | |
|         CSEBlocks.insert(cast<Instruction>(User)->getParent());
 | |
|         User->replaceUsesOfWith(Scalar, Ex);
 | |
|       }
 | |
|     } else {
 | |
|       Builder.SetInsertPoint(&F->getEntryBlock().front());
 | |
|       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
 | |
|       Ex = extend(ScalarRoot, Ex, Scalar->getType());
 | |
|       CSEBlocks.insert(&F->getEntryBlock());
 | |
|       User->replaceUsesOfWith(Scalar, Ex);
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
 | |
|   }
 | |
| 
 | |
|   // For each vectorized value:
 | |
|   for (TreeEntry &EIdx : VectorizableTree) {
 | |
|     TreeEntry *Entry = &EIdx;
 | |
| 
 | |
|     // No need to handle users of gathered values.
 | |
|     if (Entry->NeedToGather)
 | |
|       continue;
 | |
| 
 | |
|     assert(Entry->VectorizedValue && "Can't find vectorizable value");
 | |
| 
 | |
|     // For each lane:
 | |
|     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
 | |
|       Value *Scalar = Entry->Scalars[Lane];
 | |
| 
 | |
|       Type *Ty = Scalar->getType();
 | |
|       if (!Ty->isVoidTy()) {
 | |
| #ifndef NDEBUG
 | |
|         for (User *U : Scalar->users()) {
 | |
|           LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
 | |
| 
 | |
|           // It is legal to replace users in the ignorelist by undef.
 | |
|           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
 | |
|                  "Replacing out-of-tree value with undef");
 | |
|         }
 | |
| #endif
 | |
|         Value *Undef = UndefValue::get(Ty);
 | |
|         Scalar->replaceAllUsesWith(Undef);
 | |
|       }
 | |
|       LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
 | |
|       eraseInstruction(cast<Instruction>(Scalar));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Builder.ClearInsertionPoint();
 | |
| 
 | |
|   return VectorizableTree[0].VectorizedValue;
 | |
| }
 | |
| 
 | |
| void BoUpSLP::optimizeGatherSequence() {
 | |
|   LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
 | |
|                     << " gather sequences instructions.\n");
 | |
|   // LICM InsertElementInst sequences.
 | |
|   for (Instruction *I : GatherSeq) {
 | |
|     if (!isa<InsertElementInst>(I) && !isa<ShuffleVectorInst>(I))
 | |
|       continue;
 | |
| 
 | |
|     // Check if this block is inside a loop.
 | |
|     Loop *L = LI->getLoopFor(I->getParent());
 | |
|     if (!L)
 | |
|       continue;
 | |
| 
 | |
|     // Check if it has a preheader.
 | |
|     BasicBlock *PreHeader = L->getLoopPreheader();
 | |
|     if (!PreHeader)
 | |
|       continue;
 | |
| 
 | |
|     // If the vector or the element that we insert into it are
 | |
|     // instructions that are defined in this basic block then we can't
 | |
|     // hoist this instruction.
 | |
|     auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
 | |
|     auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
 | |
|     if (Op0 && L->contains(Op0))
 | |
|       continue;
 | |
|     if (Op1 && L->contains(Op1))
 | |
|       continue;
 | |
| 
 | |
|     // We can hoist this instruction. Move it to the pre-header.
 | |
|     I->moveBefore(PreHeader->getTerminator());
 | |
|   }
 | |
| 
 | |
|   // Make a list of all reachable blocks in our CSE queue.
 | |
|   SmallVector<const DomTreeNode *, 8> CSEWorkList;
 | |
|   CSEWorkList.reserve(CSEBlocks.size());
 | |
|   for (BasicBlock *BB : CSEBlocks)
 | |
|     if (DomTreeNode *N = DT->getNode(BB)) {
 | |
|       assert(DT->isReachableFromEntry(N));
 | |
|       CSEWorkList.push_back(N);
 | |
|     }
 | |
| 
 | |
|   // Sort blocks by domination. This ensures we visit a block after all blocks
 | |
|   // dominating it are visited.
 | |
|   std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
 | |
|                    [this](const DomTreeNode *A, const DomTreeNode *B) {
 | |
|     return DT->properlyDominates(A, B);
 | |
|   });
 | |
| 
 | |
|   // Perform O(N^2) search over the gather sequences and merge identical
 | |
|   // instructions. TODO: We can further optimize this scan if we split the
 | |
|   // instructions into different buckets based on the insert lane.
 | |
|   SmallVector<Instruction *, 16> Visited;
 | |
|   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
 | |
|     assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
 | |
|            "Worklist not sorted properly!");
 | |
|     BasicBlock *BB = (*I)->getBlock();
 | |
|     // For all instructions in blocks containing gather sequences:
 | |
|     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
 | |
|       Instruction *In = &*it++;
 | |
|       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
 | |
|         continue;
 | |
| 
 | |
|       // Check if we can replace this instruction with any of the
 | |
|       // visited instructions.
 | |
|       for (Instruction *v : Visited) {
 | |
|         if (In->isIdenticalTo(v) &&
 | |
|             DT->dominates(v->getParent(), In->getParent())) {
 | |
|           In->replaceAllUsesWith(v);
 | |
|           eraseInstruction(In);
 | |
|           In = nullptr;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (In) {
 | |
|         assert(!is_contained(Visited, In));
 | |
|         Visited.push_back(In);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   CSEBlocks.clear();
 | |
|   GatherSeq.clear();
 | |
| }
 | |
| 
 | |
| // Groups the instructions to a bundle (which is then a single scheduling entity)
 | |
| // and schedules instructions until the bundle gets ready.
 | |
| bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
 | |
|                                                  BoUpSLP *SLP,
 | |
|                                                  const InstructionsState &S) {
 | |
|   if (isa<PHINode>(S.OpValue))
 | |
|     return true;
 | |
| 
 | |
|   // Initialize the instruction bundle.
 | |
|   Instruction *OldScheduleEnd = ScheduleEnd;
 | |
|   ScheduleData *PrevInBundle = nullptr;
 | |
|   ScheduleData *Bundle = nullptr;
 | |
|   bool ReSchedule = false;
 | |
|   LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
 | |
| 
 | |
|   // Make sure that the scheduling region contains all
 | |
|   // instructions of the bundle.
 | |
|   for (Value *V : VL) {
 | |
|     if (!extendSchedulingRegion(V, S))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   for (Value *V : VL) {
 | |
|     ScheduleData *BundleMember = getScheduleData(V);
 | |
|     assert(BundleMember &&
 | |
|            "no ScheduleData for bundle member (maybe not in same basic block)");
 | |
|     if (BundleMember->IsScheduled) {
 | |
|       // A bundle member was scheduled as single instruction before and now
 | |
|       // needs to be scheduled as part of the bundle. We just get rid of the
 | |
|       // existing schedule.
 | |
|       LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
 | |
|                         << " was already scheduled\n");
 | |
|       ReSchedule = true;
 | |
|     }
 | |
|     assert(BundleMember->isSchedulingEntity() &&
 | |
|            "bundle member already part of other bundle");
 | |
|     if (PrevInBundle) {
 | |
|       PrevInBundle->NextInBundle = BundleMember;
 | |
|     } else {
 | |
|       Bundle = BundleMember;
 | |
|     }
 | |
|     BundleMember->UnscheduledDepsInBundle = 0;
 | |
|     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
 | |
| 
 | |
|     // Group the instructions to a bundle.
 | |
|     BundleMember->FirstInBundle = Bundle;
 | |
|     PrevInBundle = BundleMember;
 | |
|   }
 | |
|   if (ScheduleEnd != OldScheduleEnd) {
 | |
|     // The scheduling region got new instructions at the lower end (or it is a
 | |
|     // new region for the first bundle). This makes it necessary to
 | |
|     // recalculate all dependencies.
 | |
|     // It is seldom that this needs to be done a second time after adding the
 | |
|     // initial bundle to the region.
 | |
|     for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
 | |
|       doForAllOpcodes(I, [](ScheduleData *SD) {
 | |
|         SD->clearDependencies();
 | |
|       });
 | |
|     }
 | |
|     ReSchedule = true;
 | |
|   }
 | |
|   if (ReSchedule) {
 | |
|     resetSchedule();
 | |
|     initialFillReadyList(ReadyInsts);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
 | |
|                     << BB->getName() << "\n");
 | |
| 
 | |
|   calculateDependencies(Bundle, true, SLP);
 | |
| 
 | |
|   // Now try to schedule the new bundle. As soon as the bundle is "ready" it
 | |
|   // means that there are no cyclic dependencies and we can schedule it.
 | |
|   // Note that's important that we don't "schedule" the bundle yet (see
 | |
|   // cancelScheduling).
 | |
|   while (!Bundle->isReady() && !ReadyInsts.empty()) {
 | |
| 
 | |
|     ScheduleData *pickedSD = ReadyInsts.back();
 | |
|     ReadyInsts.pop_back();
 | |
| 
 | |
|     if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
 | |
|       schedule(pickedSD, ReadyInsts);
 | |
|     }
 | |
|   }
 | |
|   if (!Bundle->isReady()) {
 | |
|     cancelScheduling(VL, S.OpValue);
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
 | |
|                                                 Value *OpValue) {
 | |
|   if (isa<PHINode>(OpValue))
 | |
|     return;
 | |
| 
 | |
|   ScheduleData *Bundle = getScheduleData(OpValue);
 | |
|   LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
 | |
|   assert(!Bundle->IsScheduled &&
 | |
|          "Can't cancel bundle which is already scheduled");
 | |
|   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
 | |
|          "tried to unbundle something which is not a bundle");
 | |
| 
 | |
|   // Un-bundle: make single instructions out of the bundle.
 | |
|   ScheduleData *BundleMember = Bundle;
 | |
|   while (BundleMember) {
 | |
|     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
 | |
|     BundleMember->FirstInBundle = BundleMember;
 | |
|     ScheduleData *Next = BundleMember->NextInBundle;
 | |
|     BundleMember->NextInBundle = nullptr;
 | |
|     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
 | |
|     if (BundleMember->UnscheduledDepsInBundle == 0) {
 | |
|       ReadyInsts.insert(BundleMember);
 | |
|     }
 | |
|     BundleMember = Next;
 | |
|   }
 | |
| }
 | |
| 
 | |
| BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
 | |
|   // Allocate a new ScheduleData for the instruction.
 | |
|   if (ChunkPos >= ChunkSize) {
 | |
|     ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize));
 | |
|     ChunkPos = 0;
 | |
|   }
 | |
|   return &(ScheduleDataChunks.back()[ChunkPos++]);
 | |
| }
 | |
| 
 | |
| bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
 | |
|                                                       const InstructionsState &S) {
 | |
|   if (getScheduleData(V, isOneOf(S, V)))
 | |
|     return true;
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   assert(I && "bundle member must be an instruction");
 | |
|   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
 | |
|   auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
 | |
|     ScheduleData *ISD = getScheduleData(I);
 | |
|     if (!ISD)
 | |
|       return false;
 | |
|     assert(isInSchedulingRegion(ISD) &&
 | |
|            "ScheduleData not in scheduling region");
 | |
|     ScheduleData *SD = allocateScheduleDataChunks();
 | |
|     SD->Inst = I;
 | |
|     SD->init(SchedulingRegionID, S.OpValue);
 | |
|     ExtraScheduleDataMap[I][S.OpValue] = SD;
 | |
|     return true;
 | |
|   };
 | |
|   if (CheckSheduleForI(I))
 | |
|     return true;
 | |
|   if (!ScheduleStart) {
 | |
|     // It's the first instruction in the new region.
 | |
|     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
 | |
|     ScheduleStart = I;
 | |
|     ScheduleEnd = I->getNextNode();
 | |
|     if (isOneOf(S, I) != I)
 | |
|       CheckSheduleForI(I);
 | |
|     assert(ScheduleEnd && "tried to vectorize a terminator?");
 | |
|     LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   // Search up and down at the same time, because we don't know if the new
 | |
|   // instruction is above or below the existing scheduling region.
 | |
|   BasicBlock::reverse_iterator UpIter =
 | |
|       ++ScheduleStart->getIterator().getReverse();
 | |
|   BasicBlock::reverse_iterator UpperEnd = BB->rend();
 | |
|   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
 | |
|   BasicBlock::iterator LowerEnd = BB->end();
 | |
|   while (true) {
 | |
|     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
 | |
|       LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (UpIter != UpperEnd) {
 | |
|       if (&*UpIter == I) {
 | |
|         initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
 | |
|         ScheduleStart = I;
 | |
|         if (isOneOf(S, I) != I)
 | |
|           CheckSheduleForI(I);
 | |
|         LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
 | |
|                           << "\n");
 | |
|         return true;
 | |
|       }
 | |
|       UpIter++;
 | |
|     }
 | |
|     if (DownIter != LowerEnd) {
 | |
|       if (&*DownIter == I) {
 | |
|         initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
 | |
|                          nullptr);
 | |
|         ScheduleEnd = I->getNextNode();
 | |
|         if (isOneOf(S, I) != I)
 | |
|           CheckSheduleForI(I);
 | |
|         assert(ScheduleEnd && "tried to vectorize a terminator?");
 | |
|         LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I
 | |
|                           << "\n");
 | |
|         return true;
 | |
|       }
 | |
|       DownIter++;
 | |
|     }
 | |
|     assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
 | |
|            "instruction not found in block");
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
 | |
|                                                 Instruction *ToI,
 | |
|                                                 ScheduleData *PrevLoadStore,
 | |
|                                                 ScheduleData *NextLoadStore) {
 | |
|   ScheduleData *CurrentLoadStore = PrevLoadStore;
 | |
|   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
 | |
|     ScheduleData *SD = ScheduleDataMap[I];
 | |
|     if (!SD) {
 | |
|       SD = allocateScheduleDataChunks();
 | |
|       ScheduleDataMap[I] = SD;
 | |
|       SD->Inst = I;
 | |
|     }
 | |
|     assert(!isInSchedulingRegion(SD) &&
 | |
|            "new ScheduleData already in scheduling region");
 | |
|     SD->init(SchedulingRegionID, I);
 | |
| 
 | |
|     if (I->mayReadOrWriteMemory() &&
 | |
|         (!isa<IntrinsicInst>(I) ||
 | |
|          cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
 | |
|       // Update the linked list of memory accessing instructions.
 | |
|       if (CurrentLoadStore) {
 | |
|         CurrentLoadStore->NextLoadStore = SD;
 | |
|       } else {
 | |
|         FirstLoadStoreInRegion = SD;
 | |
|       }
 | |
|       CurrentLoadStore = SD;
 | |
|     }
 | |
|   }
 | |
|   if (NextLoadStore) {
 | |
|     if (CurrentLoadStore)
 | |
|       CurrentLoadStore->NextLoadStore = NextLoadStore;
 | |
|   } else {
 | |
|     LastLoadStoreInRegion = CurrentLoadStore;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
 | |
|                                                      bool InsertInReadyList,
 | |
|                                                      BoUpSLP *SLP) {
 | |
|   assert(SD->isSchedulingEntity());
 | |
| 
 | |
|   SmallVector<ScheduleData *, 10> WorkList;
 | |
|   WorkList.push_back(SD);
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     ScheduleData *SD = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
| 
 | |
|     ScheduleData *BundleMember = SD;
 | |
|     while (BundleMember) {
 | |
|       assert(isInSchedulingRegion(BundleMember));
 | |
|       if (!BundleMember->hasValidDependencies()) {
 | |
| 
 | |
|         LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
 | |
|                           << "\n");
 | |
|         BundleMember->Dependencies = 0;
 | |
|         BundleMember->resetUnscheduledDeps();
 | |
| 
 | |
|         // Handle def-use chain dependencies.
 | |
|         if (BundleMember->OpValue != BundleMember->Inst) {
 | |
|           ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
 | |
|           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
 | |
|             BundleMember->Dependencies++;
 | |
|             ScheduleData *DestBundle = UseSD->FirstInBundle;
 | |
|             if (!DestBundle->IsScheduled)
 | |
|               BundleMember->incrementUnscheduledDeps(1);
 | |
|             if (!DestBundle->hasValidDependencies())
 | |
|               WorkList.push_back(DestBundle);
 | |
|           }
 | |
|         } else {
 | |
|           for (User *U : BundleMember->Inst->users()) {
 | |
|             if (isa<Instruction>(U)) {
 | |
|               ScheduleData *UseSD = getScheduleData(U);
 | |
|               if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
 | |
|                 BundleMember->Dependencies++;
 | |
|                 ScheduleData *DestBundle = UseSD->FirstInBundle;
 | |
|                 if (!DestBundle->IsScheduled)
 | |
|                   BundleMember->incrementUnscheduledDeps(1);
 | |
|                 if (!DestBundle->hasValidDependencies())
 | |
|                   WorkList.push_back(DestBundle);
 | |
|               }
 | |
|             } else {
 | |
|               // I'm not sure if this can ever happen. But we need to be safe.
 | |
|               // This lets the instruction/bundle never be scheduled and
 | |
|               // eventually disable vectorization.
 | |
|               BundleMember->Dependencies++;
 | |
|               BundleMember->incrementUnscheduledDeps(1);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Handle the memory dependencies.
 | |
|         ScheduleData *DepDest = BundleMember->NextLoadStore;
 | |
|         if (DepDest) {
 | |
|           Instruction *SrcInst = BundleMember->Inst;
 | |
|           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
 | |
|           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
 | |
|           unsigned numAliased = 0;
 | |
|           unsigned DistToSrc = 1;
 | |
| 
 | |
|           while (DepDest) {
 | |
|             assert(isInSchedulingRegion(DepDest));
 | |
| 
 | |
|             // We have two limits to reduce the complexity:
 | |
|             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
 | |
|             //    SLP->isAliased (which is the expensive part in this loop).
 | |
|             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
 | |
|             //    the whole loop (even if the loop is fast, it's quadratic).
 | |
|             //    It's important for the loop break condition (see below) to
 | |
|             //    check this limit even between two read-only instructions.
 | |
|             if (DistToSrc >= MaxMemDepDistance ||
 | |
|                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
 | |
|                      (numAliased >= AliasedCheckLimit ||
 | |
|                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
 | |
| 
 | |
|               // We increment the counter only if the locations are aliased
 | |
|               // (instead of counting all alias checks). This gives a better
 | |
|               // balance between reduced runtime and accurate dependencies.
 | |
|               numAliased++;
 | |
| 
 | |
|               DepDest->MemoryDependencies.push_back(BundleMember);
 | |
|               BundleMember->Dependencies++;
 | |
|               ScheduleData *DestBundle = DepDest->FirstInBundle;
 | |
|               if (!DestBundle->IsScheduled) {
 | |
|                 BundleMember->incrementUnscheduledDeps(1);
 | |
|               }
 | |
|               if (!DestBundle->hasValidDependencies()) {
 | |
|                 WorkList.push_back(DestBundle);
 | |
|               }
 | |
|             }
 | |
|             DepDest = DepDest->NextLoadStore;
 | |
| 
 | |
|             // Example, explaining the loop break condition: Let's assume our
 | |
|             // starting instruction is i0 and MaxMemDepDistance = 3.
 | |
|             //
 | |
|             //                      +--------v--v--v
 | |
|             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
 | |
|             //             +--------^--^--^
 | |
|             //
 | |
|             // MaxMemDepDistance let us stop alias-checking at i3 and we add
 | |
|             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
 | |
|             // Previously we already added dependencies from i3 to i6,i7,i8
 | |
|             // (because of MaxMemDepDistance). As we added a dependency from
 | |
|             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
 | |
|             // and we can abort this loop at i6.
 | |
|             if (DistToSrc >= 2 * MaxMemDepDistance)
 | |
|               break;
 | |
|             DistToSrc++;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       BundleMember = BundleMember->NextInBundle;
 | |
|     }
 | |
|     if (InsertInReadyList && SD->isReady()) {
 | |
|       ReadyInsts.push_back(SD);
 | |
|       LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
 | |
|                         << "\n");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BoUpSLP::BlockScheduling::resetSchedule() {
 | |
|   assert(ScheduleStart &&
 | |
|          "tried to reset schedule on block which has not been scheduled");
 | |
|   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
 | |
|     doForAllOpcodes(I, [&](ScheduleData *SD) {
 | |
|       assert(isInSchedulingRegion(SD) &&
 | |
|              "ScheduleData not in scheduling region");
 | |
|       SD->IsScheduled = false;
 | |
|       SD->resetUnscheduledDeps();
 | |
|     });
 | |
|   }
 | |
|   ReadyInsts.clear();
 | |
| }
 | |
| 
 | |
| void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
 | |
|   if (!BS->ScheduleStart)
 | |
|     return;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
 | |
| 
 | |
|   BS->resetSchedule();
 | |
| 
 | |
|   // For the real scheduling we use a more sophisticated ready-list: it is
 | |
|   // sorted by the original instruction location. This lets the final schedule
 | |
|   // be as  close as possible to the original instruction order.
 | |
|   struct ScheduleDataCompare {
 | |
|     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
 | |
|       return SD2->SchedulingPriority < SD1->SchedulingPriority;
 | |
|     }
 | |
|   };
 | |
|   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
 | |
| 
 | |
|   // Ensure that all dependency data is updated and fill the ready-list with
 | |
|   // initial instructions.
 | |
|   int Idx = 0;
 | |
|   int NumToSchedule = 0;
 | |
|   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
 | |
|        I = I->getNextNode()) {
 | |
|     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
 | |
|       assert(SD->isPartOfBundle() ==
 | |
|                  (getTreeEntry(SD->Inst) != nullptr) &&
 | |
|              "scheduler and vectorizer bundle mismatch");
 | |
|       SD->FirstInBundle->SchedulingPriority = Idx++;
 | |
|       if (SD->isSchedulingEntity()) {
 | |
|         BS->calculateDependencies(SD, false, this);
 | |
|         NumToSchedule++;
 | |
|       }
 | |
|     });
 | |
|   }
 | |
|   BS->initialFillReadyList(ReadyInsts);
 | |
| 
 | |
|   Instruction *LastScheduledInst = BS->ScheduleEnd;
 | |
| 
 | |
|   // Do the "real" scheduling.
 | |
|   while (!ReadyInsts.empty()) {
 | |
|     ScheduleData *picked = *ReadyInsts.begin();
 | |
|     ReadyInsts.erase(ReadyInsts.begin());
 | |
| 
 | |
|     // Move the scheduled instruction(s) to their dedicated places, if not
 | |
|     // there yet.
 | |
|     ScheduleData *BundleMember = picked;
 | |
|     while (BundleMember) {
 | |
|       Instruction *pickedInst = BundleMember->Inst;
 | |
|       if (LastScheduledInst->getNextNode() != pickedInst) {
 | |
|         BS->BB->getInstList().remove(pickedInst);
 | |
|         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
 | |
|                                      pickedInst);
 | |
|       }
 | |
|       LastScheduledInst = pickedInst;
 | |
|       BundleMember = BundleMember->NextInBundle;
 | |
|     }
 | |
| 
 | |
|     BS->schedule(picked, ReadyInsts);
 | |
|     NumToSchedule--;
 | |
|   }
 | |
|   assert(NumToSchedule == 0 && "could not schedule all instructions");
 | |
| 
 | |
|   // Avoid duplicate scheduling of the block.
 | |
|   BS->ScheduleStart = nullptr;
 | |
| }
 | |
| 
 | |
| unsigned BoUpSLP::getVectorElementSize(Value *V) {
 | |
|   // If V is a store, just return the width of the stored value without
 | |
|   // traversing the expression tree. This is the common case.
 | |
|   if (auto *Store = dyn_cast<StoreInst>(V))
 | |
|     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
 | |
| 
 | |
|   // If V is not a store, we can traverse the expression tree to find loads
 | |
|   // that feed it. The type of the loaded value may indicate a more suitable
 | |
|   // width than V's type. We want to base the vector element size on the width
 | |
|   // of memory operations where possible.
 | |
|   SmallVector<Instruction *, 16> Worklist;
 | |
|   SmallPtrSet<Instruction *, 16> Visited;
 | |
|   if (auto *I = dyn_cast<Instruction>(V))
 | |
|     Worklist.push_back(I);
 | |
| 
 | |
|   // Traverse the expression tree in bottom-up order looking for loads. If we
 | |
|   // encounter an instruciton we don't yet handle, we give up.
 | |
|   auto MaxWidth = 0u;
 | |
|   auto FoundUnknownInst = false;
 | |
|   while (!Worklist.empty() && !FoundUnknownInst) {
 | |
|     auto *I = Worklist.pop_back_val();
 | |
|     Visited.insert(I);
 | |
| 
 | |
|     // We should only be looking at scalar instructions here. If the current
 | |
|     // instruction has a vector type, give up.
 | |
|     auto *Ty = I->getType();
 | |
|     if (isa<VectorType>(Ty))
 | |
|       FoundUnknownInst = true;
 | |
| 
 | |
|     // If the current instruction is a load, update MaxWidth to reflect the
 | |
|     // width of the loaded value.
 | |
|     else if (isa<LoadInst>(I))
 | |
|       MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
 | |
| 
 | |
|     // Otherwise, we need to visit the operands of the instruction. We only
 | |
|     // handle the interesting cases from buildTree here. If an operand is an
 | |
|     // instruction we haven't yet visited, we add it to the worklist.
 | |
|     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
 | |
|              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
 | |
|       for (Use &U : I->operands())
 | |
|         if (auto *J = dyn_cast<Instruction>(U.get()))
 | |
|           if (!Visited.count(J))
 | |
|             Worklist.push_back(J);
 | |
|     }
 | |
| 
 | |
|     // If we don't yet handle the instruction, give up.
 | |
|     else
 | |
|       FoundUnknownInst = true;
 | |
|   }
 | |
| 
 | |
|   // If we didn't encounter a memory access in the expression tree, or if we
 | |
|   // gave up for some reason, just return the width of V.
 | |
|   if (!MaxWidth || FoundUnknownInst)
 | |
|     return DL->getTypeSizeInBits(V->getType());
 | |
| 
 | |
|   // Otherwise, return the maximum width we found.
 | |
|   return MaxWidth;
 | |
| }
 | |
| 
 | |
| // Determine if a value V in a vectorizable expression Expr can be demoted to a
 | |
| // smaller type with a truncation. We collect the values that will be demoted
 | |
| // in ToDemote and additional roots that require investigating in Roots.
 | |
| static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
 | |
|                                   SmallVectorImpl<Value *> &ToDemote,
 | |
|                                   SmallVectorImpl<Value *> &Roots) {
 | |
|   // We can always demote constants.
 | |
|   if (isa<Constant>(V)) {
 | |
|     ToDemote.push_back(V);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If the value is not an instruction in the expression with only one use, it
 | |
|   // cannot be demoted.
 | |
|   auto *I = dyn_cast<Instruction>(V);
 | |
|   if (!I || !I->hasOneUse() || !Expr.count(I))
 | |
|     return false;
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
| 
 | |
|   // We can always demote truncations and extensions. Since truncations can
 | |
|   // seed additional demotion, we save the truncated value.
 | |
|   case Instruction::Trunc:
 | |
|     Roots.push_back(I->getOperand(0));
 | |
|     break;
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|     break;
 | |
| 
 | |
|   // We can demote certain binary operations if we can demote both of their
 | |
|   // operands.
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
 | |
|         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
 | |
|       return false;
 | |
|     break;
 | |
| 
 | |
|   // We can demote selects if we can demote their true and false values.
 | |
|   case Instruction::Select: {
 | |
|     SelectInst *SI = cast<SelectInst>(I);
 | |
|     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
 | |
|         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
 | |
|       return false;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // We can demote phis if we can demote all their incoming operands. Note that
 | |
|   // we don't need to worry about cycles since we ensure single use above.
 | |
|   case Instruction::PHI: {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     for (Value *IncValue : PN->incoming_values())
 | |
|       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
 | |
|         return false;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, conservatively give up.
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Record the value that we can demote.
 | |
|   ToDemote.push_back(V);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void BoUpSLP::computeMinimumValueSizes() {
 | |
|   // If there are no external uses, the expression tree must be rooted by a
 | |
|   // store. We can't demote in-memory values, so there is nothing to do here.
 | |
|   if (ExternalUses.empty())
 | |
|     return;
 | |
| 
 | |
|   // We only attempt to truncate integer expressions.
 | |
|   auto &TreeRoot = VectorizableTree[0].Scalars;
 | |
|   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
 | |
|   if (!TreeRootIT)
 | |
|     return;
 | |
| 
 | |
|   // If the expression is not rooted by a store, these roots should have
 | |
|   // external uses. We will rely on InstCombine to rewrite the expression in
 | |
|   // the narrower type. However, InstCombine only rewrites single-use values.
 | |
|   // This means that if a tree entry other than a root is used externally, it
 | |
|   // must have multiple uses and InstCombine will not rewrite it. The code
 | |
|   // below ensures that only the roots are used externally.
 | |
|   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
 | |
|   for (auto &EU : ExternalUses)
 | |
|     if (!Expr.erase(EU.Scalar))
 | |
|       return;
 | |
|   if (!Expr.empty())
 | |
|     return;
 | |
| 
 | |
|   // Collect the scalar values of the vectorizable expression. We will use this
 | |
|   // context to determine which values can be demoted. If we see a truncation,
 | |
|   // we mark it as seeding another demotion.
 | |
|   for (auto &Entry : VectorizableTree)
 | |
|     Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end());
 | |
| 
 | |
|   // Ensure the roots of the vectorizable tree don't form a cycle. They must
 | |
|   // have a single external user that is not in the vectorizable tree.
 | |
|   for (auto *Root : TreeRoot)
 | |
|     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
 | |
|       return;
 | |
| 
 | |
|   // Conservatively determine if we can actually truncate the roots of the
 | |
|   // expression. Collect the values that can be demoted in ToDemote and
 | |
|   // additional roots that require investigating in Roots.
 | |
|   SmallVector<Value *, 32> ToDemote;
 | |
|   SmallVector<Value *, 4> Roots;
 | |
|   for (auto *Root : TreeRoot)
 | |
|     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
 | |
|       return;
 | |
| 
 | |
|   // The maximum bit width required to represent all the values that can be
 | |
|   // demoted without loss of precision. It would be safe to truncate the roots
 | |
|   // of the expression to this width.
 | |
|   auto MaxBitWidth = 8u;
 | |
| 
 | |
|   // We first check if all the bits of the roots are demanded. If they're not,
 | |
|   // we can truncate the roots to this narrower type.
 | |
|   for (auto *Root : TreeRoot) {
 | |
|     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
 | |
|     MaxBitWidth = std::max<unsigned>(
 | |
|         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
 | |
|   }
 | |
| 
 | |
|   // True if the roots can be zero-extended back to their original type, rather
 | |
|   // than sign-extended. We know that if the leading bits are not demanded, we
 | |
|   // can safely zero-extend. So we initialize IsKnownPositive to True.
 | |
|   bool IsKnownPositive = true;
 | |
| 
 | |
|   // If all the bits of the roots are demanded, we can try a little harder to
 | |
|   // compute a narrower type. This can happen, for example, if the roots are
 | |
|   // getelementptr indices. InstCombine promotes these indices to the pointer
 | |
|   // width. Thus, all their bits are technically demanded even though the
 | |
|   // address computation might be vectorized in a smaller type.
 | |
|   //
 | |
|   // We start by looking at each entry that can be demoted. We compute the
 | |
|   // maximum bit width required to store the scalar by using ValueTracking to
 | |
|   // compute the number of high-order bits we can truncate.
 | |
|   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
 | |
|       llvm::all_of(TreeRoot, [](Value *R) {
 | |
|         assert(R->hasOneUse() && "Root should have only one use!");
 | |
|         return isa<GetElementPtrInst>(R->user_back());
 | |
|       })) {
 | |
|     MaxBitWidth = 8u;
 | |
| 
 | |
|     // Determine if the sign bit of all the roots is known to be zero. If not,
 | |
|     // IsKnownPositive is set to False.
 | |
|     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
 | |
|       KnownBits Known = computeKnownBits(R, *DL);
 | |
|       return Known.isNonNegative();
 | |
|     });
 | |
| 
 | |
|     // Determine the maximum number of bits required to store the scalar
 | |
|     // values.
 | |
|     for (auto *Scalar : ToDemote) {
 | |
|       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
 | |
|       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
 | |
|       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
 | |
|     }
 | |
| 
 | |
|     // If we can't prove that the sign bit is zero, we must add one to the
 | |
|     // maximum bit width to account for the unknown sign bit. This preserves
 | |
|     // the existing sign bit so we can safely sign-extend the root back to the
 | |
|     // original type. Otherwise, if we know the sign bit is zero, we will
 | |
|     // zero-extend the root instead.
 | |
|     //
 | |
|     // FIXME: This is somewhat suboptimal, as there will be cases where adding
 | |
|     //        one to the maximum bit width will yield a larger-than-necessary
 | |
|     //        type. In general, we need to add an extra bit only if we can't
 | |
|     //        prove that the upper bit of the original type is equal to the
 | |
|     //        upper bit of the proposed smaller type. If these two bits are the
 | |
|     //        same (either zero or one) we know that sign-extending from the
 | |
|     //        smaller type will result in the same value. Here, since we can't
 | |
|     //        yet prove this, we are just making the proposed smaller type
 | |
|     //        larger to ensure correctness.
 | |
|     if (!IsKnownPositive)
 | |
|       ++MaxBitWidth;
 | |
|   }
 | |
| 
 | |
|   // Round MaxBitWidth up to the next power-of-two.
 | |
|   if (!isPowerOf2_64(MaxBitWidth))
 | |
|     MaxBitWidth = NextPowerOf2(MaxBitWidth);
 | |
| 
 | |
|   // If the maximum bit width we compute is less than the with of the roots'
 | |
|   // type, we can proceed with the narrowing. Otherwise, do nothing.
 | |
|   if (MaxBitWidth >= TreeRootIT->getBitWidth())
 | |
|     return;
 | |
| 
 | |
|   // If we can truncate the root, we must collect additional values that might
 | |
|   // be demoted as a result. That is, those seeded by truncations we will
 | |
|   // modify.
 | |
|   while (!Roots.empty())
 | |
|     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
 | |
| 
 | |
|   // Finally, map the values we can demote to the maximum bit with we computed.
 | |
|   for (auto *Scalar : ToDemote)
 | |
|     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// The SLPVectorizer Pass.
 | |
| struct SLPVectorizer : public FunctionPass {
 | |
|   SLPVectorizerPass Impl;
 | |
| 
 | |
|   /// Pass identification, replacement for typeid
 | |
|   static char ID;
 | |
| 
 | |
|   explicit SLPVectorizer() : FunctionPass(ID) {
 | |
|     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool doInitialization(Module &M) override {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     if (skipFunction(F))
 | |
|       return false;
 | |
| 
 | |
|     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | |
|     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
|     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
 | |
|     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
 | |
|     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
|     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
 | |
|     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
 | |
| 
 | |
|     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     FunctionPass::getAnalysisUsage(AU);
 | |
|     AU.addRequired<AssumptionCacheTracker>();
 | |
|     AU.addRequired<ScalarEvolutionWrapperPass>();
 | |
|     AU.addRequired<AAResultsWrapperPass>();
 | |
|     AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|     AU.addRequired<LoopInfoWrapperPass>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<DemandedBitsWrapperPass>();
 | |
|     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
 | |
|     AU.addPreserved<LoopInfoWrapperPass>();
 | |
|     AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|     AU.addPreserved<AAResultsWrapperPass>();
 | |
|     AU.addPreserved<GlobalsAAWrapperPass>();
 | |
|     AU.setPreservesCFG();
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
 | |
|   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
 | |
|   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
 | |
|   auto *AA = &AM.getResult<AAManager>(F);
 | |
|   auto *LI = &AM.getResult<LoopAnalysis>(F);
 | |
|   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
 | |
|   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
 | |
|   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
 | |
|   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
 | |
| 
 | |
|   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
 | |
|   if (!Changed)
 | |
|     return PreservedAnalyses::all();
 | |
| 
 | |
|   PreservedAnalyses PA;
 | |
|   PA.preserveSet<CFGAnalyses>();
 | |
|   PA.preserve<AAManager>();
 | |
|   PA.preserve<GlobalsAA>();
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
 | |
|                                 TargetTransformInfo *TTI_,
 | |
|                                 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
 | |
|                                 LoopInfo *LI_, DominatorTree *DT_,
 | |
|                                 AssumptionCache *AC_, DemandedBits *DB_,
 | |
|                                 OptimizationRemarkEmitter *ORE_) {
 | |
|   SE = SE_;
 | |
|   TTI = TTI_;
 | |
|   TLI = TLI_;
 | |
|   AA = AA_;
 | |
|   LI = LI_;
 | |
|   DT = DT_;
 | |
|   AC = AC_;
 | |
|   DB = DB_;
 | |
|   DL = &F.getParent()->getDataLayout();
 | |
| 
 | |
|   Stores.clear();
 | |
|   GEPs.clear();
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // If the target claims to have no vector registers don't attempt
 | |
|   // vectorization.
 | |
|   if (!TTI->getNumberOfRegisters(true))
 | |
|     return false;
 | |
| 
 | |
|   // Don't vectorize when the attribute NoImplicitFloat is used.
 | |
|   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
 | |
| 
 | |
|   // Use the bottom up slp vectorizer to construct chains that start with
 | |
|   // store instructions.
 | |
|   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
 | |
| 
 | |
|   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
 | |
|   // delete instructions.
 | |
| 
 | |
|   // Scan the blocks in the function in post order.
 | |
|   for (auto BB : post_order(&F.getEntryBlock())) {
 | |
|     collectSeedInstructions(BB);
 | |
| 
 | |
|     // Vectorize trees that end at stores.
 | |
|     if (!Stores.empty()) {
 | |
|       LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
 | |
|                         << " underlying objects.\n");
 | |
|       Changed |= vectorizeStoreChains(R);
 | |
|     }
 | |
| 
 | |
|     // Vectorize trees that end at reductions.
 | |
|     Changed |= vectorizeChainsInBlock(BB, R);
 | |
| 
 | |
|     // Vectorize the index computations of getelementptr instructions. This
 | |
|     // is primarily intended to catch gather-like idioms ending at
 | |
|     // non-consecutive loads.
 | |
|     if (!GEPs.empty()) {
 | |
|       LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
 | |
|                         << " underlying objects.\n");
 | |
|       Changed |= vectorizeGEPIndices(BB, R);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Changed) {
 | |
|     R.optimizeGatherSequence();
 | |
|     LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
 | |
|     LLVM_DEBUG(verifyFunction(F));
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Check that the Values in the slice in VL array are still existent in
 | |
| /// the WeakTrackingVH array.
 | |
| /// Vectorization of part of the VL array may cause later values in the VL array
 | |
| /// to become invalid. We track when this has happened in the WeakTrackingVH
 | |
| /// array.
 | |
| static bool hasValueBeenRAUWed(ArrayRef<Value *> VL,
 | |
|                                ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin,
 | |
|                                unsigned SliceSize) {
 | |
|   VL = VL.slice(SliceBegin, SliceSize);
 | |
|   VH = VH.slice(SliceBegin, SliceSize);
 | |
|   return !std::equal(VL.begin(), VL.end(), VH.begin());
 | |
| }
 | |
| 
 | |
| bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
 | |
|                                             unsigned VecRegSize) {
 | |
|   const unsigned ChainLen = Chain.size();
 | |
|   LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
 | |
|                     << "\n");
 | |
|   const unsigned Sz = R.getVectorElementSize(Chain[0]);
 | |
|   const unsigned VF = VecRegSize / Sz;
 | |
| 
 | |
|   if (!isPowerOf2_32(Sz) || VF < 2)
 | |
|     return false;
 | |
| 
 | |
|   // Keep track of values that were deleted by vectorizing in the loop below.
 | |
|   const SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end());
 | |
| 
 | |
|   bool Changed = false;
 | |
|   // Look for profitable vectorizable trees at all offsets, starting at zero.
 | |
|   for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) {
 | |
| 
 | |
|     // Check that a previous iteration of this loop did not delete the Value.
 | |
|     if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
 | |
|       continue;
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
 | |
|                       << "\n");
 | |
|     ArrayRef<Value *> Operands = Chain.slice(i, VF);
 | |
| 
 | |
|     R.buildTree(Operands);
 | |
|     if (R.isTreeTinyAndNotFullyVectorizable())
 | |
|       continue;
 | |
| 
 | |
|     R.computeMinimumValueSizes();
 | |
| 
 | |
|     int Cost = R.getTreeCost();
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF
 | |
|                       << "\n");
 | |
|     if (Cost < -SLPCostThreshold) {
 | |
|       LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
 | |
| 
 | |
|       using namespace ore;
 | |
| 
 | |
|       R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
 | |
|                                           cast<StoreInst>(Chain[i]))
 | |
|                        << "Stores SLP vectorized with cost " << NV("Cost", Cost)
 | |
|                        << " and with tree size "
 | |
|                        << NV("TreeSize", R.getTreeSize()));
 | |
| 
 | |
|       R.vectorizeTree();
 | |
| 
 | |
|       // Move to the next bundle.
 | |
|       i += VF - 1;
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
 | |
|                                         BoUpSLP &R) {
 | |
|   SetVector<StoreInst *> Heads;
 | |
|   SmallDenseSet<StoreInst *> Tails;
 | |
|   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
 | |
| 
 | |
|   // We may run into multiple chains that merge into a single chain. We mark the
 | |
|   // stores that we vectorized so that we don't visit the same store twice.
 | |
|   BoUpSLP::ValueSet VectorizedStores;
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Do a quadratic search on all of the given stores in reverse order and find
 | |
|   // all of the pairs of stores that follow each other.
 | |
|   SmallVector<unsigned, 16> IndexQueue;
 | |
|   unsigned E = Stores.size();
 | |
|   IndexQueue.resize(E - 1);
 | |
|   for (unsigned I = E; I > 0; --I) {
 | |
|     unsigned Idx = I - 1;
 | |
|     // If a store has multiple consecutive store candidates, search Stores
 | |
|     // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
 | |
|     // This is because usually pairing with immediate succeeding or preceding
 | |
|     // candidate create the best chance to find slp vectorization opportunity.
 | |
|     unsigned Offset = 1;
 | |
|     unsigned Cnt = 0;
 | |
|     for (unsigned J = 0; J < E - 1; ++J, ++Offset) {
 | |
|       if (Idx >= Offset) {
 | |
|         IndexQueue[Cnt] = Idx - Offset;
 | |
|         ++Cnt;
 | |
|       }
 | |
|       if (Idx + Offset < E) {
 | |
|         IndexQueue[Cnt] = Idx + Offset;
 | |
|         ++Cnt;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (auto K : IndexQueue) {
 | |
|       if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) {
 | |
|         Tails.insert(Stores[Idx]);
 | |
|         Heads.insert(Stores[K]);
 | |
|         ConsecutiveChain[Stores[K]] = Stores[Idx];
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For stores that start but don't end a link in the chain:
 | |
|   for (auto *SI : llvm::reverse(Heads)) {
 | |
|     if (Tails.count(SI))
 | |
|       continue;
 | |
| 
 | |
|     // We found a store instr that starts a chain. Now follow the chain and try
 | |
|     // to vectorize it.
 | |
|     BoUpSLP::ValueList Operands;
 | |
|     StoreInst *I = SI;
 | |
|     // Collect the chain into a list.
 | |
|     while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) {
 | |
|       Operands.push_back(I);
 | |
|       // Move to the next value in the chain.
 | |
|       I = ConsecutiveChain[I];
 | |
|     }
 | |
| 
 | |
|     // FIXME: Is division-by-2 the correct step? Should we assert that the
 | |
|     // register size is a power-of-2?
 | |
|     for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize();
 | |
|          Size /= 2) {
 | |
|       if (vectorizeStoreChain(Operands, R, Size)) {
 | |
|         // Mark the vectorized stores so that we don't vectorize them again.
 | |
|         VectorizedStores.insert(Operands.begin(), Operands.end());
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
 | |
|   // Initialize the collections. We will make a single pass over the block.
 | |
|   Stores.clear();
 | |
|   GEPs.clear();
 | |
| 
 | |
|   // Visit the store and getelementptr instructions in BB and organize them in
 | |
|   // Stores and GEPs according to the underlying objects of their pointer
 | |
|   // operands.
 | |
|   for (Instruction &I : *BB) {
 | |
|     // Ignore store instructions that are volatile or have a pointer operand
 | |
|     // that doesn't point to a scalar type.
 | |
|     if (auto *SI = dyn_cast<StoreInst>(&I)) {
 | |
|       if (!SI->isSimple())
 | |
|         continue;
 | |
|       if (!isValidElementType(SI->getValueOperand()->getType()))
 | |
|         continue;
 | |
|       Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
 | |
|     }
 | |
| 
 | |
|     // Ignore getelementptr instructions that have more than one index, a
 | |
|     // constant index, or a pointer operand that doesn't point to a scalar
 | |
|     // type.
 | |
|     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
 | |
|       auto Idx = GEP->idx_begin()->get();
 | |
|       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
 | |
|         continue;
 | |
|       if (!isValidElementType(Idx->getType()))
 | |
|         continue;
 | |
|       if (GEP->getType()->isVectorTy())
 | |
|         continue;
 | |
|       GEPs[GEP->getPointerOperand()].push_back(GEP);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
 | |
|   if (!A || !B)
 | |
|     return false;
 | |
|   Value *VL[] = { A, B };
 | |
|   return tryToVectorizeList(VL, R, /*UserCost=*/0, true);
 | |
| }
 | |
| 
 | |
| bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
 | |
|                                            int UserCost, bool AllowReorder) {
 | |
|   if (VL.size() < 2)
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
 | |
|                     << VL.size() << ".\n");
 | |
| 
 | |
|   // Check that all of the parts are scalar instructions of the same type,
 | |
|   // we permit an alternate opcode via InstructionsState.
 | |
|   InstructionsState S = getSameOpcode(VL);
 | |
|   if (!S.getOpcode())
 | |
|     return false;
 | |
| 
 | |
|   Instruction *I0 = cast<Instruction>(S.OpValue);
 | |
|   unsigned Sz = R.getVectorElementSize(I0);
 | |
|   unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
 | |
|   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
 | |
|   if (MaxVF < 2) {
 | |
|     R.getORE()->emit([&]() {
 | |
|       return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
 | |
|              << "Cannot SLP vectorize list: vectorization factor "
 | |
|              << "less than 2 is not supported";
 | |
|     });
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   for (Value *V : VL) {
 | |
|     Type *Ty = V->getType();
 | |
|     if (!isValidElementType(Ty)) {
 | |
|       // NOTE: the following will give user internal llvm type name, which may
 | |
|       // not be useful.
 | |
|       R.getORE()->emit([&]() {
 | |
|         std::string type_str;
 | |
|         llvm::raw_string_ostream rso(type_str);
 | |
|         Ty->print(rso);
 | |
|         return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
 | |
|                << "Cannot SLP vectorize list: type "
 | |
|                << rso.str() + " is unsupported by vectorizer";
 | |
|       });
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool Changed = false;
 | |
|   bool CandidateFound = false;
 | |
|   int MinCost = SLPCostThreshold;
 | |
| 
 | |
|   // Keep track of values that were deleted by vectorizing in the loop below.
 | |
|   SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end());
 | |
| 
 | |
|   unsigned NextInst = 0, MaxInst = VL.size();
 | |
|   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF;
 | |
|        VF /= 2) {
 | |
|     // No actual vectorization should happen, if number of parts is the same as
 | |
|     // provided vectorization factor (i.e. the scalar type is used for vector
 | |
|     // code during codegen).
 | |
|     auto *VecTy = VectorType::get(VL[0]->getType(), VF);
 | |
|     if (TTI->getNumberOfParts(VecTy) == VF)
 | |
|       continue;
 | |
|     for (unsigned I = NextInst; I < MaxInst; ++I) {
 | |
|       unsigned OpsWidth = 0;
 | |
| 
 | |
|       if (I + VF > MaxInst)
 | |
|         OpsWidth = MaxInst - I;
 | |
|       else
 | |
|         OpsWidth = VF;
 | |
| 
 | |
|       if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
 | |
|         break;
 | |
| 
 | |
|       // Check that a previous iteration of this loop did not delete the Value.
 | |
|       if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth))
 | |
|         continue;
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
 | |
|                         << "\n");
 | |
|       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
 | |
| 
 | |
|       R.buildTree(Ops);
 | |
|       Optional<ArrayRef<unsigned>> Order = R.bestOrder();
 | |
|       // TODO: check if we can allow reordering for more cases.
 | |
|       if (AllowReorder && Order) {
 | |
|         // TODO: reorder tree nodes without tree rebuilding.
 | |
|         // Conceptually, there is nothing actually preventing us from trying to
 | |
|         // reorder a larger list. In fact, we do exactly this when vectorizing
 | |
|         // reductions. However, at this point, we only expect to get here when
 | |
|         // there are exactly two operations.
 | |
|         assert(Ops.size() == 2);
 | |
|         Value *ReorderedOps[] = {Ops[1], Ops[0]};
 | |
|         R.buildTree(ReorderedOps, None);
 | |
|       }
 | |
|       if (R.isTreeTinyAndNotFullyVectorizable())
 | |
|         continue;
 | |
| 
 | |
|       R.computeMinimumValueSizes();
 | |
|       int Cost = R.getTreeCost() - UserCost;
 | |
|       CandidateFound = true;
 | |
|       MinCost = std::min(MinCost, Cost);
 | |
| 
 | |
|       if (Cost < -SLPCostThreshold) {
 | |
|         LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
 | |
|         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
 | |
|                                                     cast<Instruction>(Ops[0]))
 | |
|                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
 | |
|                                  << " and with tree size "
 | |
|                                  << ore::NV("TreeSize", R.getTreeSize()));
 | |
| 
 | |
|         R.vectorizeTree();
 | |
|         // Move to the next bundle.
 | |
|         I += VF - 1;
 | |
|         NextInst = I + 1;
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!Changed && CandidateFound) {
 | |
|     R.getORE()->emit([&]() {
 | |
|       return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
 | |
|              << "List vectorization was possible but not beneficial with cost "
 | |
|              << ore::NV("Cost", MinCost) << " >= "
 | |
|              << ore::NV("Treshold", -SLPCostThreshold);
 | |
|     });
 | |
|   } else if (!Changed) {
 | |
|     R.getORE()->emit([&]() {
 | |
|       return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
 | |
|              << "Cannot SLP vectorize list: vectorization was impossible"
 | |
|              << " with available vectorization factors";
 | |
|     });
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
 | |
|   if (!I)
 | |
|     return false;
 | |
| 
 | |
|   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
 | |
|     return false;
 | |
| 
 | |
|   Value *P = I->getParent();
 | |
| 
 | |
|   // Vectorize in current basic block only.
 | |
|   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
 | |
|   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
 | |
|   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
 | |
|     return false;
 | |
| 
 | |
|   // Try to vectorize V.
 | |
|   if (tryToVectorizePair(Op0, Op1, R))
 | |
|     return true;
 | |
| 
 | |
|   auto *A = dyn_cast<BinaryOperator>(Op0);
 | |
|   auto *B = dyn_cast<BinaryOperator>(Op1);
 | |
|   // Try to skip B.
 | |
|   if (B && B->hasOneUse()) {
 | |
|     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
 | |
|     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
 | |
|     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
 | |
|       return true;
 | |
|     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Try to skip A.
 | |
|   if (A && A->hasOneUse()) {
 | |
|     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
 | |
|     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
 | |
|     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
 | |
|       return true;
 | |
|     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Generate a shuffle mask to be used in a reduction tree.
 | |
| ///
 | |
| /// \param VecLen The length of the vector to be reduced.
 | |
| /// \param NumEltsToRdx The number of elements that should be reduced in the
 | |
| ///        vector.
 | |
| /// \param IsPairwise Whether the reduction is a pairwise or splitting
 | |
| ///        reduction. A pairwise reduction will generate a mask of
 | |
| ///        <0,2,...> or <1,3,..> while a splitting reduction will generate
 | |
| ///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
 | |
| /// \param IsLeft True will generate a mask of even elements, odd otherwise.
 | |
| static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
 | |
|                                    bool IsPairwise, bool IsLeft,
 | |
|                                    IRBuilder<> &Builder) {
 | |
|   assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
 | |
| 
 | |
|   SmallVector<Constant *, 32> ShuffleMask(
 | |
|       VecLen, UndefValue::get(Builder.getInt32Ty()));
 | |
| 
 | |
|   if (IsPairwise)
 | |
|     // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
 | |
|     for (unsigned i = 0; i != NumEltsToRdx; ++i)
 | |
|       ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
 | |
|   else
 | |
|     // Move the upper half of the vector to the lower half.
 | |
|     for (unsigned i = 0; i != NumEltsToRdx; ++i)
 | |
|       ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
 | |
| 
 | |
|   return ConstantVector::get(ShuffleMask);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Model horizontal reductions.
 | |
| ///
 | |
| /// A horizontal reduction is a tree of reduction operations (currently add and
 | |
| /// fadd) that has operations that can be put into a vector as its leaf.
 | |
| /// For example, this tree:
 | |
| ///
 | |
| /// mul mul mul mul
 | |
| ///  \  /    \  /
 | |
| ///   +       +
 | |
| ///    \     /
 | |
| ///       +
 | |
| /// This tree has "mul" as its reduced values and "+" as its reduction
 | |
| /// operations. A reduction might be feeding into a store or a binary operation
 | |
| /// feeding a phi.
 | |
| ///    ...
 | |
| ///    \  /
 | |
| ///     +
 | |
| ///     |
 | |
| ///  phi +=
 | |
| ///
 | |
| ///  Or:
 | |
| ///    ...
 | |
| ///    \  /
 | |
| ///     +
 | |
| ///     |
 | |
| ///   *p =
 | |
| ///
 | |
| class HorizontalReduction {
 | |
|   using ReductionOpsType = SmallVector<Value *, 16>;
 | |
|   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
 | |
|   ReductionOpsListType  ReductionOps;
 | |
|   SmallVector<Value *, 32> ReducedVals;
 | |
|   // Use map vector to make stable output.
 | |
|   MapVector<Instruction *, Value *> ExtraArgs;
 | |
| 
 | |
|   /// Kind of the reduction data.
 | |
|   enum ReductionKind {
 | |
|     RK_None,       /// Not a reduction.
 | |
|     RK_Arithmetic, /// Binary reduction data.
 | |
|     RK_Min,        /// Minimum reduction data.
 | |
|     RK_UMin,       /// Unsigned minimum reduction data.
 | |
|     RK_Max,        /// Maximum reduction data.
 | |
|     RK_UMax,       /// Unsigned maximum reduction data.
 | |
|   };
 | |
| 
 | |
|   /// Contains info about operation, like its opcode, left and right operands.
 | |
|   class OperationData {
 | |
|     /// Opcode of the instruction.
 | |
|     unsigned Opcode = 0;
 | |
| 
 | |
|     /// Left operand of the reduction operation.
 | |
|     Value *LHS = nullptr;
 | |
| 
 | |
|     /// Right operand of the reduction operation.
 | |
|     Value *RHS = nullptr;
 | |
| 
 | |
|     /// Kind of the reduction operation.
 | |
|     ReductionKind Kind = RK_None;
 | |
| 
 | |
|     /// True if float point min/max reduction has no NaNs.
 | |
|     bool NoNaN = false;
 | |
| 
 | |
|     /// Checks if the reduction operation can be vectorized.
 | |
|     bool isVectorizable() const {
 | |
|       return LHS && RHS &&
 | |
|              // We currently only support add/mul/logical && min/max reductions.
 | |
|              ((Kind == RK_Arithmetic &&
 | |
|                (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
 | |
|                 Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
 | |
|                 Opcode == Instruction::And || Opcode == Instruction::Or ||
 | |
|                 Opcode == Instruction::Xor)) ||
 | |
|               ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
 | |
|                (Kind == RK_Min || Kind == RK_Max)) ||
 | |
|               (Opcode == Instruction::ICmp &&
 | |
|                (Kind == RK_UMin || Kind == RK_UMax)));
 | |
|     }
 | |
| 
 | |
|     /// Creates reduction operation with the current opcode.
 | |
|     Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
 | |
|       assert(isVectorizable() &&
 | |
|              "Expected add|fadd or min/max reduction operation.");
 | |
|       Value *Cmp;
 | |
|       switch (Kind) {
 | |
|       case RK_Arithmetic:
 | |
|         return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
 | |
|                                    Name);
 | |
|       case RK_Min:
 | |
|         Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
 | |
|                                           : Builder.CreateFCmpOLT(LHS, RHS);
 | |
|         break;
 | |
|       case RK_Max:
 | |
|         Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
 | |
|                                           : Builder.CreateFCmpOGT(LHS, RHS);
 | |
|         break;
 | |
|       case RK_UMin:
 | |
|         assert(Opcode == Instruction::ICmp && "Expected integer types.");
 | |
|         Cmp = Builder.CreateICmpULT(LHS, RHS);
 | |
|         break;
 | |
|       case RK_UMax:
 | |
|         assert(Opcode == Instruction::ICmp && "Expected integer types.");
 | |
|         Cmp = Builder.CreateICmpUGT(LHS, RHS);
 | |
|         break;
 | |
|       case RK_None:
 | |
|         llvm_unreachable("Unknown reduction operation.");
 | |
|       }
 | |
|       return Builder.CreateSelect(Cmp, LHS, RHS, Name);
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     explicit OperationData() = default;
 | |
| 
 | |
|     /// Construction for reduced values. They are identified by opcode only and
 | |
|     /// don't have associated LHS/RHS values.
 | |
|     explicit OperationData(Value *V) {
 | |
|       if (auto *I = dyn_cast<Instruction>(V))
 | |
|         Opcode = I->getOpcode();
 | |
|     }
 | |
| 
 | |
|     /// Constructor for reduction operations with opcode and its left and
 | |
|     /// right operands.
 | |
|     OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
 | |
|                   bool NoNaN = false)
 | |
|         : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
 | |
|       assert(Kind != RK_None && "One of the reduction operations is expected.");
 | |
|     }
 | |
| 
 | |
|     explicit operator bool() const { return Opcode; }
 | |
| 
 | |
|     /// Get the index of the first operand.
 | |
|     unsigned getFirstOperandIndex() const {
 | |
|       assert(!!*this && "The opcode is not set.");
 | |
|       switch (Kind) {
 | |
|       case RK_Min:
 | |
|       case RK_UMin:
 | |
|       case RK_Max:
 | |
|       case RK_UMax:
 | |
|         return 1;
 | |
|       case RK_Arithmetic:
 | |
|       case RK_None:
 | |
|         break;
 | |
|       }
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     /// Total number of operands in the reduction operation.
 | |
|     unsigned getNumberOfOperands() const {
 | |
|       assert(Kind != RK_None && !!*this && LHS && RHS &&
 | |
|              "Expected reduction operation.");
 | |
|       switch (Kind) {
 | |
|       case RK_Arithmetic:
 | |
|         return 2;
 | |
|       case RK_Min:
 | |
|       case RK_UMin:
 | |
|       case RK_Max:
 | |
|       case RK_UMax:
 | |
|         return 3;
 | |
|       case RK_None:
 | |
|         break;
 | |
|       }
 | |
|       llvm_unreachable("Reduction kind is not set");
 | |
|     }
 | |
| 
 | |
|     /// Checks if the operation has the same parent as \p P.
 | |
|     bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
 | |
|       assert(Kind != RK_None && !!*this && LHS && RHS &&
 | |
|              "Expected reduction operation.");
 | |
|       if (!IsRedOp)
 | |
|         return I->getParent() == P;
 | |
|       switch (Kind) {
 | |
|       case RK_Arithmetic:
 | |
|         // Arithmetic reduction operation must be used once only.
 | |
|         return I->getParent() == P;
 | |
|       case RK_Min:
 | |
|       case RK_UMin:
 | |
|       case RK_Max:
 | |
|       case RK_UMax: {
 | |
|         // SelectInst must be used twice while the condition op must have single
 | |
|         // use only.
 | |
|         auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
 | |
|         return I->getParent() == P && Cmp && Cmp->getParent() == P;
 | |
|       }
 | |
|       case RK_None:
 | |
|         break;
 | |
|       }
 | |
|       llvm_unreachable("Reduction kind is not set");
 | |
|     }
 | |
|     /// Expected number of uses for reduction operations/reduced values.
 | |
|     bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
 | |
|       assert(Kind != RK_None && !!*this && LHS && RHS &&
 | |
|              "Expected reduction operation.");
 | |
|       switch (Kind) {
 | |
|       case RK_Arithmetic:
 | |
|         return I->hasOneUse();
 | |
|       case RK_Min:
 | |
|       case RK_UMin:
 | |
|       case RK_Max:
 | |
|       case RK_UMax:
 | |
|         return I->hasNUses(2) &&
 | |
|                (!IsReductionOp ||
 | |
|                 cast<SelectInst>(I)->getCondition()->hasOneUse());
 | |
|       case RK_None:
 | |
|         break;
 | |
|       }
 | |
|       llvm_unreachable("Reduction kind is not set");
 | |
|     }
 | |
| 
 | |
|     /// Initializes the list of reduction operations.
 | |
|     void initReductionOps(ReductionOpsListType &ReductionOps) {
 | |
|       assert(Kind != RK_None && !!*this && LHS && RHS &&
 | |
|              "Expected reduction operation.");
 | |
|       switch (Kind) {
 | |
|       case RK_Arithmetic:
 | |
|         ReductionOps.assign(1, ReductionOpsType());
 | |
|         break;
 | |
|       case RK_Min:
 | |
|       case RK_UMin:
 | |
|       case RK_Max:
 | |
|       case RK_UMax:
 | |
|         ReductionOps.assign(2, ReductionOpsType());
 | |
|         break;
 | |
|       case RK_None:
 | |
|         llvm_unreachable("Reduction kind is not set");
 | |
|       }
 | |
|     }
 | |
|     /// Add all reduction operations for the reduction instruction \p I.
 | |
|     void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
 | |
|       assert(Kind != RK_None && !!*this && LHS && RHS &&
 | |
|              "Expected reduction operation.");
 | |
|       switch (Kind) {
 | |
|       case RK_Arithmetic:
 | |
|         ReductionOps[0].emplace_back(I);
 | |
|         break;
 | |
|       case RK_Min:
 | |
|       case RK_UMin:
 | |
|       case RK_Max:
 | |
|       case RK_UMax:
 | |
|         ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
 | |
|         ReductionOps[1].emplace_back(I);
 | |
|         break;
 | |
|       case RK_None:
 | |
|         llvm_unreachable("Reduction kind is not set");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// Checks if instruction is associative and can be vectorized.
 | |
|     bool isAssociative(Instruction *I) const {
 | |
|       assert(Kind != RK_None && *this && LHS && RHS &&
 | |
|              "Expected reduction operation.");
 | |
|       switch (Kind) {
 | |
|       case RK_Arithmetic:
 | |
|         return I->isAssociative();
 | |
|       case RK_Min:
 | |
|       case RK_Max:
 | |
|         return Opcode == Instruction::ICmp ||
 | |
|                cast<Instruction>(I->getOperand(0))->isFast();
 | |
|       case RK_UMin:
 | |
|       case RK_UMax:
 | |
|         assert(Opcode == Instruction::ICmp &&
 | |
|                "Only integer compare operation is expected.");
 | |
|         return true;
 | |
|       case RK_None:
 | |
|         break;
 | |
|       }
 | |
|       llvm_unreachable("Reduction kind is not set");
 | |
|     }
 | |
| 
 | |
|     /// Checks if the reduction operation can be vectorized.
 | |
|     bool isVectorizable(Instruction *I) const {
 | |
|       return isVectorizable() && isAssociative(I);
 | |
|     }
 | |
| 
 | |
|     /// Checks if two operation data are both a reduction op or both a reduced
 | |
|     /// value.
 | |
|     bool operator==(const OperationData &OD) {
 | |
|       assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
 | |
|              "One of the comparing operations is incorrect.");
 | |
|       return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
 | |
|     }
 | |
|     bool operator!=(const OperationData &OD) { return !(*this == OD); }
 | |
|     void clear() {
 | |
|       Opcode = 0;
 | |
|       LHS = nullptr;
 | |
|       RHS = nullptr;
 | |
|       Kind = RK_None;
 | |
|       NoNaN = false;
 | |
|     }
 | |
| 
 | |
|     /// Get the opcode of the reduction operation.
 | |
|     unsigned getOpcode() const {
 | |
|       assert(isVectorizable() && "Expected vectorizable operation.");
 | |
|       return Opcode;
 | |
|     }
 | |
| 
 | |
|     /// Get kind of reduction data.
 | |
|     ReductionKind getKind() const { return Kind; }
 | |
|     Value *getLHS() const { return LHS; }
 | |
|     Value *getRHS() const { return RHS; }
 | |
|     Type *getConditionType() const {
 | |
|       switch (Kind) {
 | |
|       case RK_Arithmetic:
 | |
|         return nullptr;
 | |
|       case RK_Min:
 | |
|       case RK_Max:
 | |
|       case RK_UMin:
 | |
|       case RK_UMax:
 | |
|         return CmpInst::makeCmpResultType(LHS->getType());
 | |
|       case RK_None:
 | |
|         break;
 | |
|       }
 | |
|       llvm_unreachable("Reduction kind is not set");
 | |
|     }
 | |
| 
 | |
|     /// Creates reduction operation with the current opcode with the IR flags
 | |
|     /// from \p ReductionOps.
 | |
|     Value *createOp(IRBuilder<> &Builder, const Twine &Name,
 | |
|                     const ReductionOpsListType &ReductionOps) const {
 | |
|       assert(isVectorizable() &&
 | |
|              "Expected add|fadd or min/max reduction operation.");
 | |
|       auto *Op = createOp(Builder, Name);
 | |
|       switch (Kind) {
 | |
|       case RK_Arithmetic:
 | |
|         propagateIRFlags(Op, ReductionOps[0]);
 | |
|         return Op;
 | |
|       case RK_Min:
 | |
|       case RK_Max:
 | |
|       case RK_UMin:
 | |
|       case RK_UMax:
 | |
|         if (auto *SI = dyn_cast<SelectInst>(Op))
 | |
|           propagateIRFlags(SI->getCondition(), ReductionOps[0]);
 | |
|         propagateIRFlags(Op, ReductionOps[1]);
 | |
|         return Op;
 | |
|       case RK_None:
 | |
|         break;
 | |
|       }
 | |
|       llvm_unreachable("Unknown reduction operation.");
 | |
|     }
 | |
|     /// Creates reduction operation with the current opcode with the IR flags
 | |
|     /// from \p I.
 | |
|     Value *createOp(IRBuilder<> &Builder, const Twine &Name,
 | |
|                     Instruction *I) const {
 | |
|       assert(isVectorizable() &&
 | |
|              "Expected add|fadd or min/max reduction operation.");
 | |
|       auto *Op = createOp(Builder, Name);
 | |
|       switch (Kind) {
 | |
|       case RK_Arithmetic:
 | |
|         propagateIRFlags(Op, I);
 | |
|         return Op;
 | |
|       case RK_Min:
 | |
|       case RK_Max:
 | |
|       case RK_UMin:
 | |
|       case RK_UMax:
 | |
|         if (auto *SI = dyn_cast<SelectInst>(Op)) {
 | |
|           propagateIRFlags(SI->getCondition(),
 | |
|                            cast<SelectInst>(I)->getCondition());
 | |
|         }
 | |
|         propagateIRFlags(Op, I);
 | |
|         return Op;
 | |
|       case RK_None:
 | |
|         break;
 | |
|       }
 | |
|       llvm_unreachable("Unknown reduction operation.");
 | |
|     }
 | |
| 
 | |
|     TargetTransformInfo::ReductionFlags getFlags() const {
 | |
|       TargetTransformInfo::ReductionFlags Flags;
 | |
|       Flags.NoNaN = NoNaN;
 | |
|       switch (Kind) {
 | |
|       case RK_Arithmetic:
 | |
|         break;
 | |
|       case RK_Min:
 | |
|         Flags.IsSigned = Opcode == Instruction::ICmp;
 | |
|         Flags.IsMaxOp = false;
 | |
|         break;
 | |
|       case RK_Max:
 | |
|         Flags.IsSigned = Opcode == Instruction::ICmp;
 | |
|         Flags.IsMaxOp = true;
 | |
|         break;
 | |
|       case RK_UMin:
 | |
|         Flags.IsSigned = false;
 | |
|         Flags.IsMaxOp = false;
 | |
|         break;
 | |
|       case RK_UMax:
 | |
|         Flags.IsSigned = false;
 | |
|         Flags.IsMaxOp = true;
 | |
|         break;
 | |
|       case RK_None:
 | |
|         llvm_unreachable("Reduction kind is not set");
 | |
|       }
 | |
|       return Flags;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   Instruction *ReductionRoot = nullptr;
 | |
| 
 | |
|   /// The operation data of the reduction operation.
 | |
|   OperationData ReductionData;
 | |
| 
 | |
|   /// The operation data of the values we perform a reduction on.
 | |
|   OperationData ReducedValueData;
 | |
| 
 | |
|   /// Should we model this reduction as a pairwise reduction tree or a tree that
 | |
|   /// splits the vector in halves and adds those halves.
 | |
|   bool IsPairwiseReduction = false;
 | |
| 
 | |
|   /// Checks if the ParentStackElem.first should be marked as a reduction
 | |
|   /// operation with an extra argument or as extra argument itself.
 | |
|   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
 | |
|                     Value *ExtraArg) {
 | |
|     if (ExtraArgs.count(ParentStackElem.first)) {
 | |
|       ExtraArgs[ParentStackElem.first] = nullptr;
 | |
|       // We ran into something like:
 | |
|       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
 | |
|       // The whole ParentStackElem.first should be considered as an extra value
 | |
|       // in this case.
 | |
|       // Do not perform analysis of remaining operands of ParentStackElem.first
 | |
|       // instruction, this whole instruction is an extra argument.
 | |
|       ParentStackElem.second = ParentStackElem.first->getNumOperands();
 | |
|     } else {
 | |
|       // We ran into something like:
 | |
|       // ParentStackElem.first += ... + ExtraArg + ...
 | |
|       ExtraArgs[ParentStackElem.first] = ExtraArg;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static OperationData getOperationData(Value *V) {
 | |
|     if (!V)
 | |
|       return OperationData();
 | |
| 
 | |
|     Value *LHS;
 | |
|     Value *RHS;
 | |
|     if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
 | |
|       return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
 | |
|                            RK_Arithmetic);
 | |
|     }
 | |
|     if (auto *Select = dyn_cast<SelectInst>(V)) {
 | |
|       // Look for a min/max pattern.
 | |
|       if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
 | |
|         return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
 | |
|       } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
 | |
|         return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
 | |
|       } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
 | |
|                  m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
 | |
|         return OperationData(
 | |
|             Instruction::FCmp, LHS, RHS, RK_Min,
 | |
|             cast<Instruction>(Select->getCondition())->hasNoNaNs());
 | |
|       } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
 | |
|         return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
 | |
|       } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
 | |
|         return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
 | |
|       } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
 | |
|                  m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
 | |
|         return OperationData(
 | |
|             Instruction::FCmp, LHS, RHS, RK_Max,
 | |
|             cast<Instruction>(Select->getCondition())->hasNoNaNs());
 | |
|       } else {
 | |
|         // Try harder: look for min/max pattern based on instructions producing
 | |
|         // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
 | |
|         // During the intermediate stages of SLP, it's very common to have
 | |
|         // pattern like this (since optimizeGatherSequence is run only once
 | |
|         // at the end):
 | |
|         // %1 = extractelement <2 x i32> %a, i32 0
 | |
|         // %2 = extractelement <2 x i32> %a, i32 1
 | |
|         // %cond = icmp sgt i32 %1, %2
 | |
|         // %3 = extractelement <2 x i32> %a, i32 0
 | |
|         // %4 = extractelement <2 x i32> %a, i32 1
 | |
|         // %select = select i1 %cond, i32 %3, i32 %4
 | |
|         CmpInst::Predicate Pred;
 | |
|         Instruction *L1;
 | |
|         Instruction *L2;
 | |
| 
 | |
|         LHS = Select->getTrueValue();
 | |
|         RHS = Select->getFalseValue();
 | |
|         Value *Cond = Select->getCondition();
 | |
| 
 | |
|         // TODO: Support inverse predicates.
 | |
|         if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
 | |
|           if (!isa<ExtractElementInst>(RHS) ||
 | |
|               !L2->isIdenticalTo(cast<Instruction>(RHS)))
 | |
|             return OperationData(V);
 | |
|         } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
 | |
|           if (!isa<ExtractElementInst>(LHS) ||
 | |
|               !L1->isIdenticalTo(cast<Instruction>(LHS)))
 | |
|             return OperationData(V);
 | |
|         } else {
 | |
|           if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
 | |
|             return OperationData(V);
 | |
|           if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
 | |
|               !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
 | |
|               !L2->isIdenticalTo(cast<Instruction>(RHS)))
 | |
|             return OperationData(V);
 | |
|         }
 | |
|         switch (Pred) {
 | |
|         default:
 | |
|           return OperationData(V);
 | |
| 
 | |
|         case CmpInst::ICMP_ULT:
 | |
|         case CmpInst::ICMP_ULE:
 | |
|           return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
 | |
| 
 | |
|         case CmpInst::ICMP_SLT:
 | |
|         case CmpInst::ICMP_SLE:
 | |
|           return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
 | |
| 
 | |
|         case CmpInst::FCMP_OLT:
 | |
|         case CmpInst::FCMP_OLE:
 | |
|         case CmpInst::FCMP_ULT:
 | |
|         case CmpInst::FCMP_ULE:
 | |
|           return OperationData(Instruction::FCmp, LHS, RHS, RK_Min,
 | |
|                                cast<Instruction>(Cond)->hasNoNaNs());
 | |
| 
 | |
|         case CmpInst::ICMP_UGT:
 | |
|         case CmpInst::ICMP_UGE:
 | |
|           return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
 | |
| 
 | |
|         case CmpInst::ICMP_SGT:
 | |
|         case CmpInst::ICMP_SGE:
 | |
|           return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
 | |
| 
 | |
|         case CmpInst::FCMP_OGT:
 | |
|         case CmpInst::FCMP_OGE:
 | |
|         case CmpInst::FCMP_UGT:
 | |
|         case CmpInst::FCMP_UGE:
 | |
|           return OperationData(Instruction::FCmp, LHS, RHS, RK_Max,
 | |
|                                cast<Instruction>(Cond)->hasNoNaNs());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return OperationData(V);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   HorizontalReduction() = default;
 | |
| 
 | |
|   /// Try to find a reduction tree.
 | |
|   bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
 | |
|     assert((!Phi || is_contained(Phi->operands(), B)) &&
 | |
|            "Thi phi needs to use the binary operator");
 | |
| 
 | |
|     ReductionData = getOperationData(B);
 | |
| 
 | |
|     // We could have a initial reductions that is not an add.
 | |
|     //  r *= v1 + v2 + v3 + v4
 | |
|     // In such a case start looking for a tree rooted in the first '+'.
 | |
|     if (Phi) {
 | |
|       if (ReductionData.getLHS() == Phi) {
 | |
|         Phi = nullptr;
 | |
|         B = dyn_cast<Instruction>(ReductionData.getRHS());
 | |
|         ReductionData = getOperationData(B);
 | |
|       } else if (ReductionData.getRHS() == Phi) {
 | |
|         Phi = nullptr;
 | |
|         B = dyn_cast<Instruction>(ReductionData.getLHS());
 | |
|         ReductionData = getOperationData(B);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!ReductionData.isVectorizable(B))
 | |
|       return false;
 | |
| 
 | |
|     Type *Ty = B->getType();
 | |
|     if (!isValidElementType(Ty))
 | |
|       return false;
 | |
|     if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
 | |
|       return false;
 | |
| 
 | |
|     ReducedValueData.clear();
 | |
|     ReductionRoot = B;
 | |
| 
 | |
|     // Post order traverse the reduction tree starting at B. We only handle true
 | |
|     // trees containing only binary operators.
 | |
|     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
 | |
|     Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
 | |
|     ReductionData.initReductionOps(ReductionOps);
 | |
|     while (!Stack.empty()) {
 | |
|       Instruction *TreeN = Stack.back().first;
 | |
|       unsigned EdgeToVist = Stack.back().second++;
 | |
|       OperationData OpData = getOperationData(TreeN);
 | |
|       bool IsReducedValue = OpData != ReductionData;
 | |
| 
 | |
|       // Postorder vist.
 | |
|       if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
 | |
|         if (IsReducedValue)
 | |
|           ReducedVals.push_back(TreeN);
 | |
|         else {
 | |
|           auto I = ExtraArgs.find(TreeN);
 | |
|           if (I != ExtraArgs.end() && !I->second) {
 | |
|             // Check if TreeN is an extra argument of its parent operation.
 | |
|             if (Stack.size() <= 1) {
 | |
|               // TreeN can't be an extra argument as it is a root reduction
 | |
|               // operation.
 | |
|               return false;
 | |
|             }
 | |
|             // Yes, TreeN is an extra argument, do not add it to a list of
 | |
|             // reduction operations.
 | |
|             // Stack[Stack.size() - 2] always points to the parent operation.
 | |
|             markExtraArg(Stack[Stack.size() - 2], TreeN);
 | |
|             ExtraArgs.erase(TreeN);
 | |
|           } else
 | |
|             ReductionData.addReductionOps(TreeN, ReductionOps);
 | |
|         }
 | |
|         // Retract.
 | |
|         Stack.pop_back();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Visit left or right.
 | |
|       Value *NextV = TreeN->getOperand(EdgeToVist);
 | |
|       if (NextV != Phi) {
 | |
|         auto *I = dyn_cast<Instruction>(NextV);
 | |
|         OpData = getOperationData(I);
 | |
|         // Continue analysis if the next operand is a reduction operation or
 | |
|         // (possibly) a reduced value. If the reduced value opcode is not set,
 | |
|         // the first met operation != reduction operation is considered as the
 | |
|         // reduced value class.
 | |
|         if (I && (!ReducedValueData || OpData == ReducedValueData ||
 | |
|                   OpData == ReductionData)) {
 | |
|           const bool IsReductionOperation = OpData == ReductionData;
 | |
|           // Only handle trees in the current basic block.
 | |
|           if (!ReductionData.hasSameParent(I, B->getParent(),
 | |
|                                            IsReductionOperation)) {
 | |
|             // I is an extra argument for TreeN (its parent operation).
 | |
|             markExtraArg(Stack.back(), I);
 | |
|             continue;
 | |
|           }
 | |
| 
 | |
|           // Each tree node needs to have minimal number of users except for the
 | |
|           // ultimate reduction.
 | |
|           if (!ReductionData.hasRequiredNumberOfUses(I,
 | |
|                                                      OpData == ReductionData) &&
 | |
|               I != B) {
 | |
|             // I is an extra argument for TreeN (its parent operation).
 | |
|             markExtraArg(Stack.back(), I);
 | |
|             continue;
 | |
|           }
 | |
| 
 | |
|           if (IsReductionOperation) {
 | |
|             // We need to be able to reassociate the reduction operations.
 | |
|             if (!OpData.isAssociative(I)) {
 | |
|               // I is an extra argument for TreeN (its parent operation).
 | |
|               markExtraArg(Stack.back(), I);
 | |
|               continue;
 | |
|             }
 | |
|           } else if (ReducedValueData &&
 | |
|                      ReducedValueData != OpData) {
 | |
|             // Make sure that the opcodes of the operations that we are going to
 | |
|             // reduce match.
 | |
|             // I is an extra argument for TreeN (its parent operation).
 | |
|             markExtraArg(Stack.back(), I);
 | |
|             continue;
 | |
|           } else if (!ReducedValueData)
 | |
|             ReducedValueData = OpData;
 | |
| 
 | |
|           Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       // NextV is an extra argument for TreeN (its parent operation).
 | |
|       markExtraArg(Stack.back(), NextV);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Attempt to vectorize the tree found by
 | |
|   /// matchAssociativeReduction.
 | |
|   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
 | |
|     if (ReducedVals.empty())
 | |
|       return false;
 | |
| 
 | |
|     // If there is a sufficient number of reduction values, reduce
 | |
|     // to a nearby power-of-2. Can safely generate oversized
 | |
|     // vectors and rely on the backend to split them to legal sizes.
 | |
|     unsigned NumReducedVals = ReducedVals.size();
 | |
|     if (NumReducedVals < 4)
 | |
|       return false;
 | |
| 
 | |
|     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
 | |
| 
 | |
|     Value *VectorizedTree = nullptr;
 | |
|     IRBuilder<> Builder(ReductionRoot);
 | |
|     FastMathFlags Unsafe;
 | |
|     Unsafe.setFast();
 | |
|     Builder.setFastMathFlags(Unsafe);
 | |
|     unsigned i = 0;
 | |
| 
 | |
|     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
 | |
|     // The same extra argument may be used several time, so log each attempt
 | |
|     // to use it.
 | |
|     for (auto &Pair : ExtraArgs)
 | |
|       ExternallyUsedValues[Pair.second].push_back(Pair.first);
 | |
|     SmallVector<Value *, 16> IgnoreList;
 | |
|     for (auto &V : ReductionOps)
 | |
|       IgnoreList.append(V.begin(), V.end());
 | |
|     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
 | |
|       auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
 | |
|       V.buildTree(VL, ExternallyUsedValues, IgnoreList);
 | |
|       Optional<ArrayRef<unsigned>> Order = V.bestOrder();
 | |
|       // TODO: Handle orders of size less than number of elements in the vector.
 | |
|       if (Order && Order->size() == VL.size()) {
 | |
|         // TODO: reorder tree nodes without tree rebuilding.
 | |
|         SmallVector<Value *, 4> ReorderedOps(VL.size());
 | |
|         llvm::transform(*Order, ReorderedOps.begin(),
 | |
|                         [VL](const unsigned Idx) { return VL[Idx]; });
 | |
|         V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
 | |
|       }
 | |
|       if (V.isTreeTinyAndNotFullyVectorizable())
 | |
|         break;
 | |
| 
 | |
|       V.computeMinimumValueSizes();
 | |
| 
 | |
|       // Estimate cost.
 | |
|       int TreeCost = V.getTreeCost();
 | |
|       int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
 | |
|       int Cost = TreeCost + ReductionCost;
 | |
|       if (Cost >= -SLPCostThreshold) {
 | |
|           V.getORE()->emit([&]() {
 | |
|               return OptimizationRemarkMissed(
 | |
|                          SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
 | |
|                      << "Vectorizing horizontal reduction is possible"
 | |
|                      << "but not beneficial with cost "
 | |
|                      << ore::NV("Cost", Cost) << " and threshold "
 | |
|                      << ore::NV("Threshold", -SLPCostThreshold);
 | |
|           });
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
 | |
|                         << Cost << ". (HorRdx)\n");
 | |
|       V.getORE()->emit([&]() {
 | |
|           return OptimizationRemark(
 | |
|                      SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
 | |
|           << "Vectorized horizontal reduction with cost "
 | |
|           << ore::NV("Cost", Cost) << " and with tree size "
 | |
|           << ore::NV("TreeSize", V.getTreeSize());
 | |
|       });
 | |
| 
 | |
|       // Vectorize a tree.
 | |
|       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
 | |
|       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
 | |
| 
 | |
|       // Emit a reduction.
 | |
|       Value *ReducedSubTree =
 | |
|           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
 | |
|       if (VectorizedTree) {
 | |
|         Builder.SetCurrentDebugLocation(Loc);
 | |
|         OperationData VectReductionData(ReductionData.getOpcode(),
 | |
|                                         VectorizedTree, ReducedSubTree,
 | |
|                                         ReductionData.getKind());
 | |
|         VectorizedTree =
 | |
|             VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
 | |
|       } else
 | |
|         VectorizedTree = ReducedSubTree;
 | |
|       i += ReduxWidth;
 | |
|       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
 | |
|     }
 | |
| 
 | |
|     if (VectorizedTree) {
 | |
|       // Finish the reduction.
 | |
|       for (; i < NumReducedVals; ++i) {
 | |
|         auto *I = cast<Instruction>(ReducedVals[i]);
 | |
|         Builder.SetCurrentDebugLocation(I->getDebugLoc());
 | |
|         OperationData VectReductionData(ReductionData.getOpcode(),
 | |
|                                         VectorizedTree, I,
 | |
|                                         ReductionData.getKind());
 | |
|         VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
 | |
|       }
 | |
|       for (auto &Pair : ExternallyUsedValues) {
 | |
|         assert(!Pair.second.empty() &&
 | |
|                "At least one DebugLoc must be inserted");
 | |
|         // Add each externally used value to the final reduction.
 | |
|         for (auto *I : Pair.second) {
 | |
|           Builder.SetCurrentDebugLocation(I->getDebugLoc());
 | |
|           OperationData VectReductionData(ReductionData.getOpcode(),
 | |
|                                           VectorizedTree, Pair.first,
 | |
|                                           ReductionData.getKind());
 | |
|           VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
 | |
|         }
 | |
|       }
 | |
|       // Update users.
 | |
|       ReductionRoot->replaceAllUsesWith(VectorizedTree);
 | |
|     }
 | |
|     return VectorizedTree != nullptr;
 | |
|   }
 | |
| 
 | |
|   unsigned numReductionValues() const {
 | |
|     return ReducedVals.size();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// Calculate the cost of a reduction.
 | |
|   int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
 | |
|                        unsigned ReduxWidth) {
 | |
|     Type *ScalarTy = FirstReducedVal->getType();
 | |
|     Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
 | |
| 
 | |
|     int PairwiseRdxCost;
 | |
|     int SplittingRdxCost;
 | |
|     switch (ReductionData.getKind()) {
 | |
|     case RK_Arithmetic:
 | |
|       PairwiseRdxCost =
 | |
|           TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
 | |
|                                           /*IsPairwiseForm=*/true);
 | |
|       SplittingRdxCost =
 | |
|           TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
 | |
|                                           /*IsPairwiseForm=*/false);
 | |
|       break;
 | |
|     case RK_Min:
 | |
|     case RK_Max:
 | |
|     case RK_UMin:
 | |
|     case RK_UMax: {
 | |
|       Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
 | |
|       bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
 | |
|                         ReductionData.getKind() == RK_UMax;
 | |
|       PairwiseRdxCost =
 | |
|           TTI->getMinMaxReductionCost(VecTy, VecCondTy,
 | |
|                                       /*IsPairwiseForm=*/true, IsUnsigned);
 | |
|       SplittingRdxCost =
 | |
|           TTI->getMinMaxReductionCost(VecTy, VecCondTy,
 | |
|                                       /*IsPairwiseForm=*/false, IsUnsigned);
 | |
|       break;
 | |
|     }
 | |
|     case RK_None:
 | |
|       llvm_unreachable("Expected arithmetic or min/max reduction operation");
 | |
|     }
 | |
| 
 | |
|     IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
 | |
|     int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
 | |
| 
 | |
|     int ScalarReduxCost;
 | |
|     switch (ReductionData.getKind()) {
 | |
|     case RK_Arithmetic:
 | |
|       ScalarReduxCost =
 | |
|           TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
 | |
|       break;
 | |
|     case RK_Min:
 | |
|     case RK_Max:
 | |
|     case RK_UMin:
 | |
|     case RK_UMax:
 | |
|       ScalarReduxCost =
 | |
|           TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
 | |
|           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
 | |
|                                   CmpInst::makeCmpResultType(ScalarTy));
 | |
|       break;
 | |
|     case RK_None:
 | |
|       llvm_unreachable("Expected arithmetic or min/max reduction operation");
 | |
|     }
 | |
|     ScalarReduxCost *= (ReduxWidth - 1);
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
 | |
|                       << " for reduction that starts with " << *FirstReducedVal
 | |
|                       << " (It is a "
 | |
|                       << (IsPairwiseReduction ? "pairwise" : "splitting")
 | |
|                       << " reduction)\n");
 | |
| 
 | |
|     return VecReduxCost - ScalarReduxCost;
 | |
|   }
 | |
| 
 | |
|   /// Emit a horizontal reduction of the vectorized value.
 | |
|   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
 | |
|                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
 | |
|     assert(VectorizedValue && "Need to have a vectorized tree node");
 | |
|     assert(isPowerOf2_32(ReduxWidth) &&
 | |
|            "We only handle power-of-two reductions for now");
 | |
| 
 | |
|     if (!IsPairwiseReduction)
 | |
|       return createSimpleTargetReduction(
 | |
|           Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
 | |
|           ReductionData.getFlags(), ReductionOps.back());
 | |
| 
 | |
|     Value *TmpVec = VectorizedValue;
 | |
|     for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
 | |
|       Value *LeftMask =
 | |
|           createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
 | |
|       Value *RightMask =
 | |
|           createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
 | |
| 
 | |
|       Value *LeftShuf = Builder.CreateShuffleVector(
 | |
|           TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
 | |
|       Value *RightShuf = Builder.CreateShuffleVector(
 | |
|           TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
 | |
|           "rdx.shuf.r");
 | |
|       OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
 | |
|                                       RightShuf, ReductionData.getKind());
 | |
|       TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
 | |
|     }
 | |
| 
 | |
|     // The result is in the first element of the vector.
 | |
|     return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Recognize construction of vectors like
 | |
| ///  %ra = insertelement <4 x float> undef, float %s0, i32 0
 | |
| ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
 | |
| ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
 | |
| ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
 | |
| ///  starting from the last insertelement instruction.
 | |
| ///
 | |
| /// Returns true if it matches
 | |
| static bool findBuildVector(InsertElementInst *LastInsertElem,
 | |
|                             TargetTransformInfo *TTI,
 | |
|                             SmallVectorImpl<Value *> &BuildVectorOpds,
 | |
|                             int &UserCost) {
 | |
|   UserCost = 0;
 | |
|   Value *V = nullptr;
 | |
|   do {
 | |
|     if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) {
 | |
|       UserCost += TTI->getVectorInstrCost(Instruction::InsertElement,
 | |
|                                           LastInsertElem->getType(),
 | |
|                                           CI->getZExtValue());
 | |
|     }
 | |
|     BuildVectorOpds.push_back(LastInsertElem->getOperand(1));
 | |
|     V = LastInsertElem->getOperand(0);
 | |
|     if (isa<UndefValue>(V))
 | |
|       break;
 | |
|     LastInsertElem = dyn_cast<InsertElementInst>(V);
 | |
|     if (!LastInsertElem || !LastInsertElem->hasOneUse())
 | |
|       return false;
 | |
|   } while (true);
 | |
|   std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Like findBuildVector, but looks for construction of aggregate.
 | |
| ///
 | |
| /// \return true if it matches.
 | |
| static bool findBuildAggregate(InsertValueInst *IV,
 | |
|                                SmallVectorImpl<Value *> &BuildVectorOpds) {
 | |
|   Value *V;
 | |
|   do {
 | |
|     BuildVectorOpds.push_back(IV->getInsertedValueOperand());
 | |
|     V = IV->getAggregateOperand();
 | |
|     if (isa<UndefValue>(V))
 | |
|       break;
 | |
|     IV = dyn_cast<InsertValueInst>(V);
 | |
|     if (!IV || !IV->hasOneUse())
 | |
|       return false;
 | |
|   } while (true);
 | |
|   std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool PhiTypeSorterFunc(Value *V, Value *V2) {
 | |
|   return V->getType() < V2->getType();
 | |
| }
 | |
| 
 | |
| /// Try and get a reduction value from a phi node.
 | |
| ///
 | |
| /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
 | |
| /// if they come from either \p ParentBB or a containing loop latch.
 | |
| ///
 | |
| /// \returns A candidate reduction value if possible, or \code nullptr \endcode
 | |
| /// if not possible.
 | |
| static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
 | |
|                                 BasicBlock *ParentBB, LoopInfo *LI) {
 | |
|   // There are situations where the reduction value is not dominated by the
 | |
|   // reduction phi. Vectorizing such cases has been reported to cause
 | |
|   // miscompiles. See PR25787.
 | |
|   auto DominatedReduxValue = [&](Value *R) {
 | |
|     return isa<Instruction>(R) &&
 | |
|            DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
 | |
|   };
 | |
| 
 | |
|   Value *Rdx = nullptr;
 | |
| 
 | |
|   // Return the incoming value if it comes from the same BB as the phi node.
 | |
|   if (P->getIncomingBlock(0) == ParentBB) {
 | |
|     Rdx = P->getIncomingValue(0);
 | |
|   } else if (P->getIncomingBlock(1) == ParentBB) {
 | |
|     Rdx = P->getIncomingValue(1);
 | |
|   }
 | |
| 
 | |
|   if (Rdx && DominatedReduxValue(Rdx))
 | |
|     return Rdx;
 | |
| 
 | |
|   // Otherwise, check whether we have a loop latch to look at.
 | |
|   Loop *BBL = LI->getLoopFor(ParentBB);
 | |
|   if (!BBL)
 | |
|     return nullptr;
 | |
|   BasicBlock *BBLatch = BBL->getLoopLatch();
 | |
|   if (!BBLatch)
 | |
|     return nullptr;
 | |
| 
 | |
|   // There is a loop latch, return the incoming value if it comes from
 | |
|   // that. This reduction pattern occasionally turns up.
 | |
|   if (P->getIncomingBlock(0) == BBLatch) {
 | |
|     Rdx = P->getIncomingValue(0);
 | |
|   } else if (P->getIncomingBlock(1) == BBLatch) {
 | |
|     Rdx = P->getIncomingValue(1);
 | |
|   }
 | |
| 
 | |
|   if (Rdx && DominatedReduxValue(Rdx))
 | |
|     return Rdx;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Attempt to reduce a horizontal reduction.
 | |
| /// If it is legal to match a horizontal reduction feeding the phi node \a P
 | |
| /// with reduction operators \a Root (or one of its operands) in a basic block
 | |
| /// \a BB, then check if it can be done. If horizontal reduction is not found
 | |
| /// and root instruction is a binary operation, vectorization of the operands is
 | |
| /// attempted.
 | |
| /// \returns true if a horizontal reduction was matched and reduced or operands
 | |
| /// of one of the binary instruction were vectorized.
 | |
| /// \returns false if a horizontal reduction was not matched (or not possible)
 | |
| /// or no vectorization of any binary operation feeding \a Root instruction was
 | |
| /// performed.
 | |
| static bool tryToVectorizeHorReductionOrInstOperands(
 | |
|     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
 | |
|     TargetTransformInfo *TTI,
 | |
|     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
 | |
|   if (!ShouldVectorizeHor)
 | |
|     return false;
 | |
| 
 | |
|   if (!Root)
 | |
|     return false;
 | |
| 
 | |
|   if (Root->getParent() != BB || isa<PHINode>(Root))
 | |
|     return false;
 | |
|   // Start analysis starting from Root instruction. If horizontal reduction is
 | |
|   // found, try to vectorize it. If it is not a horizontal reduction or
 | |
|   // vectorization is not possible or not effective, and currently analyzed
 | |
|   // instruction is a binary operation, try to vectorize the operands, using
 | |
|   // pre-order DFS traversal order. If the operands were not vectorized, repeat
 | |
|   // the same procedure considering each operand as a possible root of the
 | |
|   // horizontal reduction.
 | |
|   // Interrupt the process if the Root instruction itself was vectorized or all
 | |
|   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
 | |
|   SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0});
 | |
|   SmallPtrSet<Value *, 8> VisitedInstrs;
 | |
|   bool Res = false;
 | |
|   while (!Stack.empty()) {
 | |
|     Value *V;
 | |
|     unsigned Level;
 | |
|     std::tie(V, Level) = Stack.pop_back_val();
 | |
|     if (!V)
 | |
|       continue;
 | |
|     auto *Inst = dyn_cast<Instruction>(V);
 | |
|     if (!Inst)
 | |
|       continue;
 | |
|     auto *BI = dyn_cast<BinaryOperator>(Inst);
 | |
|     auto *SI = dyn_cast<SelectInst>(Inst);
 | |
|     if (BI || SI) {
 | |
|       HorizontalReduction HorRdx;
 | |
|       if (HorRdx.matchAssociativeReduction(P, Inst)) {
 | |
|         if (HorRdx.tryToReduce(R, TTI)) {
 | |
|           Res = true;
 | |
|           // Set P to nullptr to avoid re-analysis of phi node in
 | |
|           // matchAssociativeReduction function unless this is the root node.
 | |
|           P = nullptr;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       if (P && BI) {
 | |
|         Inst = dyn_cast<Instruction>(BI->getOperand(0));
 | |
|         if (Inst == P)
 | |
|           Inst = dyn_cast<Instruction>(BI->getOperand(1));
 | |
|         if (!Inst) {
 | |
|           // Set P to nullptr to avoid re-analysis of phi node in
 | |
|           // matchAssociativeReduction function unless this is the root node.
 | |
|           P = nullptr;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     // Set P to nullptr to avoid re-analysis of phi node in
 | |
|     // matchAssociativeReduction function unless this is the root node.
 | |
|     P = nullptr;
 | |
|     if (Vectorize(Inst, R)) {
 | |
|       Res = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Try to vectorize operands.
 | |
|     // Continue analysis for the instruction from the same basic block only to
 | |
|     // save compile time.
 | |
|     if (++Level < RecursionMaxDepth)
 | |
|       for (auto *Op : Inst->operand_values())
 | |
|         if (VisitedInstrs.insert(Op).second)
 | |
|           if (auto *I = dyn_cast<Instruction>(Op))
 | |
|             if (!isa<PHINode>(I) && I->getParent() == BB)
 | |
|               Stack.emplace_back(Op, Level);
 | |
|   }
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
 | |
|                                                  BasicBlock *BB, BoUpSLP &R,
 | |
|                                                  TargetTransformInfo *TTI) {
 | |
|   if (!V)
 | |
|     return false;
 | |
|   auto *I = dyn_cast<Instruction>(V);
 | |
|   if (!I)
 | |
|     return false;
 | |
| 
 | |
|   if (!isa<BinaryOperator>(I))
 | |
|     P = nullptr;
 | |
|   // Try to match and vectorize a horizontal reduction.
 | |
|   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
 | |
|     return tryToVectorize(I, R);
 | |
|   };
 | |
|   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
 | |
|                                                   ExtraVectorization);
 | |
| }
 | |
| 
 | |
| bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
 | |
|                                                  BasicBlock *BB, BoUpSLP &R) {
 | |
|   const DataLayout &DL = BB->getModule()->getDataLayout();
 | |
|   if (!R.canMapToVector(IVI->getType(), DL))
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<Value *, 16> BuildVectorOpds;
 | |
|   if (!findBuildAggregate(IVI, BuildVectorOpds))
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
 | |
|   // Aggregate value is unlikely to be processed in vector register, we need to
 | |
|   // extract scalars into scalar registers, so NeedExtraction is set true.
 | |
|   return tryToVectorizeList(BuildVectorOpds, R);
 | |
| }
 | |
| 
 | |
| bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
 | |
|                                                    BasicBlock *BB, BoUpSLP &R) {
 | |
|   int UserCost;
 | |
|   SmallVector<Value *, 16> BuildVectorOpds;
 | |
|   if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) ||
 | |
|       (llvm::all_of(BuildVectorOpds,
 | |
|                     [](Value *V) { return isa<ExtractElementInst>(V); }) &&
 | |
|        isShuffle(BuildVectorOpds)))
 | |
|     return false;
 | |
| 
 | |
|   // Vectorize starting with the build vector operands ignoring the BuildVector
 | |
|   // instructions for the purpose of scheduling and user extraction.
 | |
|   return tryToVectorizeList(BuildVectorOpds, R, UserCost);
 | |
| }
 | |
| 
 | |
| bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
 | |
|                                          BoUpSLP &R) {
 | |
|   if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
 | |
|     return true;
 | |
| 
 | |
|   bool OpsChanged = false;
 | |
|   for (int Idx = 0; Idx < 2; ++Idx) {
 | |
|     OpsChanged |=
 | |
|         vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
 | |
|   }
 | |
|   return OpsChanged;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizerPass::vectorizeSimpleInstructions(
 | |
|     SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) {
 | |
|   bool OpsChanged = false;
 | |
|   for (auto &VH : reverse(Instructions)) {
 | |
|     auto *I = dyn_cast_or_null<Instruction>(VH);
 | |
|     if (!I)
 | |
|       continue;
 | |
|     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
 | |
|       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
 | |
|     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
 | |
|       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
 | |
|     else if (auto *CI = dyn_cast<CmpInst>(I))
 | |
|       OpsChanged |= vectorizeCmpInst(CI, BB, R);
 | |
|   }
 | |
|   Instructions.clear();
 | |
|   return OpsChanged;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
 | |
|   bool Changed = false;
 | |
|   SmallVector<Value *, 4> Incoming;
 | |
|   SmallPtrSet<Value *, 16> VisitedInstrs;
 | |
| 
 | |
|   bool HaveVectorizedPhiNodes = true;
 | |
|   while (HaveVectorizedPhiNodes) {
 | |
|     HaveVectorizedPhiNodes = false;
 | |
| 
 | |
|     // Collect the incoming values from the PHIs.
 | |
|     Incoming.clear();
 | |
|     for (Instruction &I : *BB) {
 | |
|       PHINode *P = dyn_cast<PHINode>(&I);
 | |
|       if (!P)
 | |
|         break;
 | |
| 
 | |
|       if (!VisitedInstrs.count(P))
 | |
|         Incoming.push_back(P);
 | |
|     }
 | |
| 
 | |
|     // Sort by type.
 | |
|     std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
 | |
| 
 | |
|     // Try to vectorize elements base on their type.
 | |
|     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
 | |
|                                            E = Incoming.end();
 | |
|          IncIt != E;) {
 | |
| 
 | |
|       // Look for the next elements with the same type.
 | |
|       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
 | |
|       while (SameTypeIt != E &&
 | |
|              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
 | |
|         VisitedInstrs.insert(*SameTypeIt);
 | |
|         ++SameTypeIt;
 | |
|       }
 | |
| 
 | |
|       // Try to vectorize them.
 | |
|       unsigned NumElts = (SameTypeIt - IncIt);
 | |
|       LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
 | |
|                         << NumElts << ")\n");
 | |
|       // The order in which the phi nodes appear in the program does not matter.
 | |
|       // So allow tryToVectorizeList to reorder them if it is beneficial. This
 | |
|       // is done when there are exactly two elements since tryToVectorizeList
 | |
|       // asserts that there are only two values when AllowReorder is true.
 | |
|       bool AllowReorder = NumElts == 2;
 | |
|       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
 | |
|                                             /*UserCost=*/0, AllowReorder)) {
 | |
|         // Success start over because instructions might have been changed.
 | |
|         HaveVectorizedPhiNodes = true;
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Start over at the next instruction of a different type (or the end).
 | |
|       IncIt = SameTypeIt;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   VisitedInstrs.clear();
 | |
| 
 | |
|   SmallVector<WeakVH, 8> PostProcessInstructions;
 | |
|   SmallDenseSet<Instruction *, 4> KeyNodes;
 | |
|   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
 | |
|     // We may go through BB multiple times so skip the one we have checked.
 | |
|     if (!VisitedInstrs.insert(&*it).second) {
 | |
|       if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
 | |
|           vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
 | |
|         // We would like to start over since some instructions are deleted
 | |
|         // and the iterator may become invalid value.
 | |
|         Changed = true;
 | |
|         it = BB->begin();
 | |
|         e = BB->end();
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (isa<DbgInfoIntrinsic>(it))
 | |
|       continue;
 | |
| 
 | |
|     // Try to vectorize reductions that use PHINodes.
 | |
|     if (PHINode *P = dyn_cast<PHINode>(it)) {
 | |
|       // Check that the PHI is a reduction PHI.
 | |
|       if (P->getNumIncomingValues() != 2)
 | |
|         return Changed;
 | |
| 
 | |
|       // Try to match and vectorize a horizontal reduction.
 | |
|       if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
 | |
|                                    TTI)) {
 | |
|         Changed = true;
 | |
|         it = BB->begin();
 | |
|         e = BB->end();
 | |
|         continue;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Ran into an instruction without users, like terminator, or function call
 | |
|     // with ignored return value, store. Ignore unused instructions (basing on
 | |
|     // instruction type, except for CallInst and InvokeInst).
 | |
|     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
 | |
|                             isa<InvokeInst>(it))) {
 | |
|       KeyNodes.insert(&*it);
 | |
|       bool OpsChanged = false;
 | |
|       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
 | |
|         for (auto *V : it->operand_values()) {
 | |
|           // Try to match and vectorize a horizontal reduction.
 | |
|           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
 | |
|         }
 | |
|       }
 | |
|       // Start vectorization of post-process list of instructions from the
 | |
|       // top-tree instructions to try to vectorize as many instructions as
 | |
|       // possible.
 | |
|       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
 | |
|       if (OpsChanged) {
 | |
|         // We would like to start over since some instructions are deleted
 | |
|         // and the iterator may become invalid value.
 | |
|         Changed = true;
 | |
|         it = BB->begin();
 | |
|         e = BB->end();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
 | |
|         isa<InsertValueInst>(it))
 | |
|       PostProcessInstructions.push_back(&*it);
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
 | |
|   auto Changed = false;
 | |
|   for (auto &Entry : GEPs) {
 | |
|     // If the getelementptr list has fewer than two elements, there's nothing
 | |
|     // to do.
 | |
|     if (Entry.second.size() < 2)
 | |
|       continue;
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
 | |
|                       << Entry.second.size() << ".\n");
 | |
| 
 | |
|     // We process the getelementptr list in chunks of 16 (like we do for
 | |
|     // stores) to minimize compile-time.
 | |
|     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
 | |
|       auto Len = std::min<unsigned>(BE - BI, 16);
 | |
|       auto GEPList = makeArrayRef(&Entry.second[BI], Len);
 | |
| 
 | |
|       // Initialize a set a candidate getelementptrs. Note that we use a
 | |
|       // SetVector here to preserve program order. If the index computations
 | |
|       // are vectorizable and begin with loads, we want to minimize the chance
 | |
|       // of having to reorder them later.
 | |
|       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
 | |
| 
 | |
|       // Some of the candidates may have already been vectorized after we
 | |
|       // initially collected them. If so, the WeakTrackingVHs will have
 | |
|       // nullified the
 | |
|       // values, so remove them from the set of candidates.
 | |
|       Candidates.remove(nullptr);
 | |
| 
 | |
|       // Remove from the set of candidates all pairs of getelementptrs with
 | |
|       // constant differences. Such getelementptrs are likely not good
 | |
|       // candidates for vectorization in a bottom-up phase since one can be
 | |
|       // computed from the other. We also ensure all candidate getelementptr
 | |
|       // indices are unique.
 | |
|       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
 | |
|         auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
 | |
|         if (!Candidates.count(GEPI))
 | |
|           continue;
 | |
|         auto *SCEVI = SE->getSCEV(GEPList[I]);
 | |
|         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
 | |
|           auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
 | |
|           auto *SCEVJ = SE->getSCEV(GEPList[J]);
 | |
|           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
 | |
|             Candidates.remove(GEPList[I]);
 | |
|             Candidates.remove(GEPList[J]);
 | |
|           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
 | |
|             Candidates.remove(GEPList[J]);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // We break out of the above computation as soon as we know there are
 | |
|       // fewer than two candidates remaining.
 | |
|       if (Candidates.size() < 2)
 | |
|         continue;
 | |
| 
 | |
|       // Add the single, non-constant index of each candidate to the bundle. We
 | |
|       // ensured the indices met these constraints when we originally collected
 | |
|       // the getelementptrs.
 | |
|       SmallVector<Value *, 16> Bundle(Candidates.size());
 | |
|       auto BundleIndex = 0u;
 | |
|       for (auto *V : Candidates) {
 | |
|         auto *GEP = cast<GetElementPtrInst>(V);
 | |
|         auto *GEPIdx = GEP->idx_begin()->get();
 | |
|         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
 | |
|         Bundle[BundleIndex++] = GEPIdx;
 | |
|       }
 | |
| 
 | |
|       // Try and vectorize the indices. We are currently only interested in
 | |
|       // gather-like cases of the form:
 | |
|       //
 | |
|       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
 | |
|       //
 | |
|       // where the loads of "a", the loads of "b", and the subtractions can be
 | |
|       // performed in parallel. It's likely that detecting this pattern in a
 | |
|       // bottom-up phase will be simpler and less costly than building a
 | |
|       // full-blown top-down phase beginning at the consecutive loads.
 | |
|       Changed |= tryToVectorizeList(Bundle, R);
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
 | |
|   bool Changed = false;
 | |
|   // Attempt to sort and vectorize each of the store-groups.
 | |
|   for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
 | |
|        ++it) {
 | |
|     if (it->second.size() < 2)
 | |
|       continue;
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
 | |
|                       << it->second.size() << ".\n");
 | |
| 
 | |
|     // Process the stores in chunks of 16.
 | |
|     // TODO: The limit of 16 inhibits greater vectorization factors.
 | |
|     //       For example, AVX2 supports v32i8. Increasing this limit, however,
 | |
|     //       may cause a significant compile-time increase.
 | |
|     for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) {
 | |
|       unsigned Len = std::min<unsigned>(CE - CI, 16);
 | |
|       Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R);
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| char SLPVectorizer::ID = 0;
 | |
| 
 | |
| static const char lv_name[] = "SLP Vectorizer";
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
 | |
| INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
 | |
| 
 | |
| Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
 |