forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			741 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			741 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// \file
 | |
| /// This is the LLVM vectorization plan. It represents a candidate for
 | |
| /// vectorization, allowing to plan and optimize how to vectorize a given loop
 | |
| /// before generating LLVM-IR.
 | |
| /// The vectorizer uses vectorization plans to estimate the costs of potential
 | |
| /// candidates and if profitable to execute the desired plan, generating vector
 | |
| /// LLVM-IR code.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "VPlan.h"
 | |
| #include "VPlanDominatorTree.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/GenericDomTreeConstruction.h"
 | |
| #include "llvm/Support/GraphWriter.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| extern cl::opt<bool> EnableVPlanNativePath;
 | |
| 
 | |
| #define DEBUG_TYPE "vplan"
 | |
| 
 | |
| raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
 | |
|   if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V))
 | |
|     Instr->print(OS);
 | |
|   else
 | |
|     V.printAsOperand(OS);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
 | |
| const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
 | |
|   const VPBlockBase *Block = this;
 | |
|   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
 | |
|     Block = Region->getEntry();
 | |
|   return cast<VPBasicBlock>(Block);
 | |
| }
 | |
| 
 | |
| VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
 | |
|   VPBlockBase *Block = this;
 | |
|   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
 | |
|     Block = Region->getEntry();
 | |
|   return cast<VPBasicBlock>(Block);
 | |
| }
 | |
| 
 | |
| /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
 | |
| const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
 | |
|   const VPBlockBase *Block = this;
 | |
|   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
 | |
|     Block = Region->getExit();
 | |
|   return cast<VPBasicBlock>(Block);
 | |
| }
 | |
| 
 | |
| VPBasicBlock *VPBlockBase::getExitBasicBlock() {
 | |
|   VPBlockBase *Block = this;
 | |
|   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
 | |
|     Block = Region->getExit();
 | |
|   return cast<VPBasicBlock>(Block);
 | |
| }
 | |
| 
 | |
| VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
 | |
|   if (!Successors.empty() || !Parent)
 | |
|     return this;
 | |
|   assert(Parent->getExit() == this &&
 | |
|          "Block w/o successors not the exit of its parent.");
 | |
|   return Parent->getEnclosingBlockWithSuccessors();
 | |
| }
 | |
| 
 | |
| VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
 | |
|   if (!Predecessors.empty() || !Parent)
 | |
|     return this;
 | |
|   assert(Parent->getEntry() == this &&
 | |
|          "Block w/o predecessors not the entry of its parent.");
 | |
|   return Parent->getEnclosingBlockWithPredecessors();
 | |
| }
 | |
| 
 | |
| void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
 | |
|   SmallVector<VPBlockBase *, 8> Blocks;
 | |
|   for (VPBlockBase *Block : depth_first(Entry))
 | |
|     Blocks.push_back(Block);
 | |
| 
 | |
|   for (VPBlockBase *Block : Blocks)
 | |
|     delete Block;
 | |
| }
 | |
| 
 | |
| BasicBlock *
 | |
| VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
 | |
|   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
 | |
|   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
 | |
|   BasicBlock *PrevBB = CFG.PrevBB;
 | |
|   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
 | |
|                                          PrevBB->getParent(), CFG.LastBB);
 | |
|   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
 | |
| 
 | |
|   // Hook up the new basic block to its predecessors.
 | |
|   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
 | |
|     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
 | |
|     auto &PredVPSuccessors = PredVPBB->getSuccessors();
 | |
|     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
 | |
| 
 | |
|     // In outer loop vectorization scenario, the predecessor BBlock may not yet
 | |
|     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
 | |
|     // vectorization. We do not encounter this case in inner loop vectorization
 | |
|     // as we start out by building a loop skeleton with the vector loop header
 | |
|     // and latch blocks. As a result, we never enter this function for the
 | |
|     // header block in the non VPlan-native path.
 | |
|     if (!PredBB) {
 | |
|       assert(EnableVPlanNativePath &&
 | |
|              "Unexpected null predecessor in non VPlan-native path");
 | |
|       CFG.VPBBsToFix.push_back(PredVPBB);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     assert(PredBB && "Predecessor basic-block not found building successor.");
 | |
|     auto *PredBBTerminator = PredBB->getTerminator();
 | |
|     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
 | |
|     if (isa<UnreachableInst>(PredBBTerminator)) {
 | |
|       assert(PredVPSuccessors.size() == 1 &&
 | |
|              "Predecessor ending w/o branch must have single successor.");
 | |
|       PredBBTerminator->eraseFromParent();
 | |
|       BranchInst::Create(NewBB, PredBB);
 | |
|     } else {
 | |
|       assert(PredVPSuccessors.size() == 2 &&
 | |
|              "Predecessor ending with branch must have two successors.");
 | |
|       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
 | |
|       assert(!PredBBTerminator->getSuccessor(idx) &&
 | |
|              "Trying to reset an existing successor block.");
 | |
|       PredBBTerminator->setSuccessor(idx, NewBB);
 | |
|     }
 | |
|   }
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| void VPBasicBlock::execute(VPTransformState *State) {
 | |
|   bool Replica = State->Instance &&
 | |
|                  !(State->Instance->Part == 0 && State->Instance->Lane == 0);
 | |
|   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
 | |
|   VPBlockBase *SingleHPred = nullptr;
 | |
|   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
 | |
| 
 | |
|   // 1. Create an IR basic block, or reuse the last one if possible.
 | |
|   // The last IR basic block is reused, as an optimization, in three cases:
 | |
|   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
 | |
|   // B. when the current VPBB has a single (hierarchical) predecessor which
 | |
|   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
 | |
|   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
 | |
|   //    is the exit of this region from a previous instance, or the predecessor
 | |
|   //    of this region.
 | |
|   if (PrevVPBB && /* A */
 | |
|       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
 | |
|         SingleHPred->getExitBasicBlock() == PrevVPBB &&
 | |
|         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
 | |
|       !(Replica && getPredecessors().empty())) {       /* C */
 | |
|     NewBB = createEmptyBasicBlock(State->CFG);
 | |
|     State->Builder.SetInsertPoint(NewBB);
 | |
|     // Temporarily terminate with unreachable until CFG is rewired.
 | |
|     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
 | |
|     State->Builder.SetInsertPoint(Terminator);
 | |
|     // Register NewBB in its loop. In innermost loops its the same for all BB's.
 | |
|     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
 | |
|     L->addBasicBlockToLoop(NewBB, *State->LI);
 | |
|     State->CFG.PrevBB = NewBB;
 | |
|   }
 | |
| 
 | |
|   // 2. Fill the IR basic block with IR instructions.
 | |
|   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
 | |
|                     << " in BB:" << NewBB->getName() << '\n');
 | |
| 
 | |
|   State->CFG.VPBB2IRBB[this] = NewBB;
 | |
|   State->CFG.PrevVPBB = this;
 | |
| 
 | |
|   for (VPRecipeBase &Recipe : Recipes)
 | |
|     Recipe.execute(*State);
 | |
| 
 | |
|   VPValue *CBV;
 | |
|   if (EnableVPlanNativePath && (CBV = getCondBit())) {
 | |
|     Value *IRCBV = CBV->getUnderlyingValue();
 | |
|     assert(IRCBV && "Unexpected null underlying value for condition bit");
 | |
| 
 | |
|     // Condition bit value in a VPBasicBlock is used as the branch selector. In
 | |
|     // the VPlan-native path case, since all branches are uniform we generate a
 | |
|     // branch instruction using the condition value from vector lane 0 and dummy
 | |
|     // successors. The successors are fixed later when the successor blocks are
 | |
|     // visited.
 | |
|     Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
 | |
|     NewCond = State->Builder.CreateExtractElement(NewCond,
 | |
|                                                   State->Builder.getInt32(0));
 | |
| 
 | |
|     // Replace the temporary unreachable terminator with the new conditional
 | |
|     // branch.
 | |
|     auto *CurrentTerminator = NewBB->getTerminator();
 | |
|     assert(isa<UnreachableInst>(CurrentTerminator) &&
 | |
|            "Expected to replace unreachable terminator with conditional "
 | |
|            "branch.");
 | |
|     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
 | |
|     CondBr->setSuccessor(0, nullptr);
 | |
|     ReplaceInstWithInst(CurrentTerminator, CondBr);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
 | |
| }
 | |
| 
 | |
| void VPRegionBlock::execute(VPTransformState *State) {
 | |
|   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
 | |
| 
 | |
|   if (!isReplicator()) {
 | |
|     // Visit the VPBlocks connected to "this", starting from it.
 | |
|     for (VPBlockBase *Block : RPOT) {
 | |
|       if (EnableVPlanNativePath) {
 | |
|         // The inner loop vectorization path does not represent loop preheader
 | |
|         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
 | |
|         // vectorizing loop preheader block. In future, we may replace this
 | |
|         // check with the check for loop preheader.
 | |
|         if (Block->getNumPredecessors() == 0)
 | |
|           continue;
 | |
| 
 | |
|         // Skip vectorizing loop exit block. In future, we may replace this
 | |
|         // check with the check for loop exit.
 | |
|         if (Block->getNumSuccessors() == 0)
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
 | |
|       Block->execute(State);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert(!State->Instance && "Replicating a Region with non-null instance.");
 | |
| 
 | |
|   // Enter replicating mode.
 | |
|   State->Instance = {0, 0};
 | |
| 
 | |
|   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
 | |
|     State->Instance->Part = Part;
 | |
|     for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) {
 | |
|       State->Instance->Lane = Lane;
 | |
|       // Visit the VPBlocks connected to \p this, starting from it.
 | |
|       for (VPBlockBase *Block : RPOT) {
 | |
|         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
 | |
|         Block->execute(State);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Exit replicating mode.
 | |
|   State->Instance.reset();
 | |
| }
 | |
| 
 | |
| void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
 | |
|   Parent = InsertPos->getParent();
 | |
|   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
 | |
| }
 | |
| 
 | |
| iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
 | |
|   return getParent()->getRecipeList().erase(getIterator());
 | |
| }
 | |
| 
 | |
| void VPInstruction::generateInstruction(VPTransformState &State,
 | |
|                                         unsigned Part) {
 | |
|   IRBuilder<> &Builder = State.Builder;
 | |
| 
 | |
|   if (Instruction::isBinaryOp(getOpcode())) {
 | |
|     Value *A = State.get(getOperand(0), Part);
 | |
|     Value *B = State.get(getOperand(1), Part);
 | |
|     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
 | |
|     State.set(this, V, Part);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   switch (getOpcode()) {
 | |
|   case VPInstruction::Not: {
 | |
|     Value *A = State.get(getOperand(0), Part);
 | |
|     Value *V = Builder.CreateNot(A);
 | |
|     State.set(this, V, Part);
 | |
|     break;
 | |
|   }
 | |
|   case VPInstruction::ICmpULE: {
 | |
|     Value *IV = State.get(getOperand(0), Part);
 | |
|     Value *TC = State.get(getOperand(1), Part);
 | |
|     Value *V = Builder.CreateICmpULE(IV, TC);
 | |
|     State.set(this, V, Part);
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     llvm_unreachable("Unsupported opcode for instruction");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void VPInstruction::execute(VPTransformState &State) {
 | |
|   assert(!State.Instance && "VPInstruction executing an Instance");
 | |
|   for (unsigned Part = 0; Part < State.UF; ++Part)
 | |
|     generateInstruction(State, Part);
 | |
| }
 | |
| 
 | |
| void VPInstruction::print(raw_ostream &O, const Twine &Indent) const {
 | |
|   O << " +\n" << Indent << "\"EMIT ";
 | |
|   print(O);
 | |
|   O << "\\l\"";
 | |
| }
 | |
| 
 | |
| void VPInstruction::print(raw_ostream &O) const {
 | |
|   printAsOperand(O);
 | |
|   O << " = ";
 | |
| 
 | |
|   switch (getOpcode()) {
 | |
|   case VPInstruction::Not:
 | |
|     O << "not";
 | |
|     break;
 | |
|   case VPInstruction::ICmpULE:
 | |
|     O << "icmp ule";
 | |
|     break;
 | |
|   case VPInstruction::SLPLoad:
 | |
|     O << "combined load";
 | |
|     break;
 | |
|   case VPInstruction::SLPStore:
 | |
|     O << "combined store";
 | |
|     break;
 | |
|   default:
 | |
|     O << Instruction::getOpcodeName(getOpcode());
 | |
|   }
 | |
| 
 | |
|   for (const VPValue *Operand : operands()) {
 | |
|     O << " ";
 | |
|     Operand->printAsOperand(O);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Generate the code inside the body of the vectorized loop. Assumes a single
 | |
| /// LoopVectorBody basic-block was created for this. Introduce additional
 | |
| /// basic-blocks as needed, and fill them all.
 | |
| void VPlan::execute(VPTransformState *State) {
 | |
|   // -1. Check if the backedge taken count is needed, and if so build it.
 | |
|   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
 | |
|     Value *TC = State->TripCount;
 | |
|     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
 | |
|     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
 | |
|                                    "trip.count.minus.1");
 | |
|     Value2VPValue[TCMO] = BackedgeTakenCount;
 | |
|   }
 | |
| 
 | |
|   // 0. Set the reverse mapping from VPValues to Values for code generation.
 | |
|   for (auto &Entry : Value2VPValue)
 | |
|     State->VPValue2Value[Entry.second] = Entry.first;
 | |
| 
 | |
|   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
 | |
|   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
 | |
|   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
 | |
|   BasicBlock *VectorLatchBB = VectorHeaderBB;
 | |
| 
 | |
|   // 1. Make room to generate basic-blocks inside loop body if needed.
 | |
|   VectorLatchBB = VectorHeaderBB->splitBasicBlock(
 | |
|       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
 | |
|   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
 | |
|   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
 | |
|   // Remove the edge between Header and Latch to allow other connections.
 | |
|   // Temporarily terminate with unreachable until CFG is rewired.
 | |
|   // Note: this asserts the generated code's assumption that
 | |
|   // getFirstInsertionPt() can be dereferenced into an Instruction.
 | |
|   VectorHeaderBB->getTerminator()->eraseFromParent();
 | |
|   State->Builder.SetInsertPoint(VectorHeaderBB);
 | |
|   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
 | |
|   State->Builder.SetInsertPoint(Terminator);
 | |
| 
 | |
|   // 2. Generate code in loop body.
 | |
|   State->CFG.PrevVPBB = nullptr;
 | |
|   State->CFG.PrevBB = VectorHeaderBB;
 | |
|   State->CFG.LastBB = VectorLatchBB;
 | |
| 
 | |
|   for (VPBlockBase *Block : depth_first(Entry))
 | |
|     Block->execute(State);
 | |
| 
 | |
|   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
 | |
|   // VPBB's successors.
 | |
|   for (auto VPBB : State->CFG.VPBBsToFix) {
 | |
|     assert(EnableVPlanNativePath &&
 | |
|            "Unexpected VPBBsToFix in non VPlan-native path");
 | |
|     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
 | |
|     assert(BB && "Unexpected null basic block for VPBB");
 | |
| 
 | |
|     unsigned Idx = 0;
 | |
|     auto *BBTerminator = BB->getTerminator();
 | |
| 
 | |
|     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
 | |
|       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
 | |
|       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
 | |
|       ++Idx;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // 3. Merge the temporary latch created with the last basic-block filled.
 | |
|   BasicBlock *LastBB = State->CFG.PrevBB;
 | |
|   // Connect LastBB to VectorLatchBB to facilitate their merge.
 | |
|   assert((EnableVPlanNativePath ||
 | |
|           isa<UnreachableInst>(LastBB->getTerminator())) &&
 | |
|          "Expected InnerLoop VPlan CFG to terminate with unreachable");
 | |
|   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
 | |
|          "Expected VPlan CFG to terminate with branch in NativePath");
 | |
|   LastBB->getTerminator()->eraseFromParent();
 | |
|   BranchInst::Create(VectorLatchBB, LastBB);
 | |
| 
 | |
|   // Merge LastBB with Latch.
 | |
|   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
 | |
|   (void)Merged;
 | |
|   assert(Merged && "Could not merge last basic block with latch.");
 | |
|   VectorLatchBB = LastBB;
 | |
| 
 | |
|   // We do not attempt to preserve DT for outer loop vectorization currently.
 | |
|   if (!EnableVPlanNativePath)
 | |
|     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB);
 | |
| }
 | |
| 
 | |
| void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
 | |
|                                 BasicBlock *LoopLatchBB) {
 | |
|   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
 | |
|   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
 | |
|   DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB);
 | |
|   // The vector body may be more than a single basic-block by this point.
 | |
|   // Update the dominator tree information inside the vector body by propagating
 | |
|   // it from header to latch, expecting only triangular control-flow, if any.
 | |
|   BasicBlock *PostDomSucc = nullptr;
 | |
|   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
 | |
|     // Get the list of successors of this block.
 | |
|     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
 | |
|     assert(Succs.size() <= 2 &&
 | |
|            "Basic block in vector loop has more than 2 successors.");
 | |
|     PostDomSucc = Succs[0];
 | |
|     if (Succs.size() == 1) {
 | |
|       assert(PostDomSucc->getSinglePredecessor() &&
 | |
|              "PostDom successor has more than one predecessor.");
 | |
|       DT->addNewBlock(PostDomSucc, BB);
 | |
|       continue;
 | |
|     }
 | |
|     BasicBlock *InterimSucc = Succs[1];
 | |
|     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
 | |
|       PostDomSucc = Succs[1];
 | |
|       InterimSucc = Succs[0];
 | |
|     }
 | |
|     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
 | |
|            "One successor of a basic block does not lead to the other.");
 | |
|     assert(InterimSucc->getSinglePredecessor() &&
 | |
|            "Interim successor has more than one predecessor.");
 | |
|     assert(pred_size(PostDomSucc) == 2 &&
 | |
|            "PostDom successor has more than two predecessors.");
 | |
|     DT->addNewBlock(InterimSucc, BB);
 | |
|     DT->addNewBlock(PostDomSucc, BB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
 | |
|   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
 | |
|          Twine(getOrCreateBID(Block));
 | |
| }
 | |
| 
 | |
| const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
 | |
|   const std::string &Name = Block->getName();
 | |
|   if (!Name.empty())
 | |
|     return Name;
 | |
|   return "VPB" + Twine(getOrCreateBID(Block));
 | |
| }
 | |
| 
 | |
| void VPlanPrinter::dump() {
 | |
|   Depth = 1;
 | |
|   bumpIndent(0);
 | |
|   OS << "digraph VPlan {\n";
 | |
|   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
 | |
|   if (!Plan.getName().empty())
 | |
|     OS << "\\n" << DOT::EscapeString(Plan.getName());
 | |
|   if (!Plan.Value2VPValue.empty() || Plan.BackedgeTakenCount) {
 | |
|     OS << ", where:";
 | |
|     if (Plan.BackedgeTakenCount)
 | |
|       OS << "\\n"
 | |
|          << *Plan.getOrCreateBackedgeTakenCount() << " := BackedgeTakenCount";
 | |
|     for (auto Entry : Plan.Value2VPValue) {
 | |
|       OS << "\\n" << *Entry.second;
 | |
|       OS << DOT::EscapeString(" := ");
 | |
|       Entry.first->printAsOperand(OS, false);
 | |
|     }
 | |
|   }
 | |
|   OS << "\"]\n";
 | |
|   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
 | |
|   OS << "edge [fontname=Courier, fontsize=30]\n";
 | |
|   OS << "compound=true\n";
 | |
| 
 | |
|   for (VPBlockBase *Block : depth_first(Plan.getEntry()))
 | |
|     dumpBlock(Block);
 | |
| 
 | |
|   OS << "}\n";
 | |
| }
 | |
| 
 | |
| void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
 | |
|   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
 | |
|     dumpBasicBlock(BasicBlock);
 | |
|   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
 | |
|     dumpRegion(Region);
 | |
|   else
 | |
|     llvm_unreachable("Unsupported kind of VPBlock.");
 | |
| }
 | |
| 
 | |
| void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
 | |
|                             bool Hidden, const Twine &Label) {
 | |
|   // Due to "dot" we print an edge between two regions as an edge between the
 | |
|   // exit basic block and the entry basic of the respective regions.
 | |
|   const VPBlockBase *Tail = From->getExitBasicBlock();
 | |
|   const VPBlockBase *Head = To->getEntryBasicBlock();
 | |
|   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
 | |
|   OS << " [ label=\"" << Label << '\"';
 | |
|   if (Tail != From)
 | |
|     OS << " ltail=" << getUID(From);
 | |
|   if (Head != To)
 | |
|     OS << " lhead=" << getUID(To);
 | |
|   if (Hidden)
 | |
|     OS << "; splines=none";
 | |
|   OS << "]\n";
 | |
| }
 | |
| 
 | |
| void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
 | |
|   auto &Successors = Block->getSuccessors();
 | |
|   if (Successors.size() == 1)
 | |
|     drawEdge(Block, Successors.front(), false, "");
 | |
|   else if (Successors.size() == 2) {
 | |
|     drawEdge(Block, Successors.front(), false, "T");
 | |
|     drawEdge(Block, Successors.back(), false, "F");
 | |
|   } else {
 | |
|     unsigned SuccessorNumber = 0;
 | |
|     for (auto *Successor : Successors)
 | |
|       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
 | |
|   OS << Indent << getUID(BasicBlock) << " [label =\n";
 | |
|   bumpIndent(1);
 | |
|   OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
 | |
|   bumpIndent(1);
 | |
|   for (const VPRecipeBase &Recipe : *BasicBlock)
 | |
|     Recipe.print(OS, Indent);
 | |
| 
 | |
|   // Dump the condition bit.
 | |
|   const VPValue *CBV = BasicBlock->getCondBit();
 | |
|   if (CBV) {
 | |
|     OS << " +\n" << Indent << " \"CondBit: ";
 | |
|     if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
 | |
|       CBI->printAsOperand(OS);
 | |
|       OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
 | |
|     } else {
 | |
|       CBV->printAsOperand(OS);
 | |
|       OS << "\"";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bumpIndent(-2);
 | |
|   OS << "\n" << Indent << "]\n";
 | |
|   dumpEdges(BasicBlock);
 | |
| }
 | |
| 
 | |
| void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
 | |
|   OS << Indent << "subgraph " << getUID(Region) << " {\n";
 | |
|   bumpIndent(1);
 | |
|   OS << Indent << "fontname=Courier\n"
 | |
|      << Indent << "label=\""
 | |
|      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
 | |
|      << DOT::EscapeString(Region->getName()) << "\"\n";
 | |
|   // Dump the blocks of the region.
 | |
|   assert(Region->getEntry() && "Region contains no inner blocks.");
 | |
|   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
 | |
|     dumpBlock(Block);
 | |
|   bumpIndent(-1);
 | |
|   OS << Indent << "}\n";
 | |
|   dumpEdges(Region);
 | |
| }
 | |
| 
 | |
| void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) {
 | |
|   std::string IngredientString;
 | |
|   raw_string_ostream RSO(IngredientString);
 | |
|   if (auto *Inst = dyn_cast<Instruction>(V)) {
 | |
|     if (!Inst->getType()->isVoidTy()) {
 | |
|       Inst->printAsOperand(RSO, false);
 | |
|       RSO << " = ";
 | |
|     }
 | |
|     RSO << Inst->getOpcodeName() << " ";
 | |
|     unsigned E = Inst->getNumOperands();
 | |
|     if (E > 0) {
 | |
|       Inst->getOperand(0)->printAsOperand(RSO, false);
 | |
|       for (unsigned I = 1; I < E; ++I)
 | |
|         Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
 | |
|     }
 | |
|   } else // !Inst
 | |
|     V->printAsOperand(RSO, false);
 | |
|   RSO.flush();
 | |
|   O << DOT::EscapeString(IngredientString);
 | |
| }
 | |
| 
 | |
| void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent) const {
 | |
|   O << " +\n" << Indent << "\"WIDEN\\l\"";
 | |
|   for (auto &Instr : make_range(Begin, End))
 | |
|     O << " +\n" << Indent << "\"  " << VPlanIngredient(&Instr) << "\\l\"";
 | |
| }
 | |
| 
 | |
| void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O,
 | |
|                                           const Twine &Indent) const {
 | |
|   O << " +\n" << Indent << "\"WIDEN-INDUCTION";
 | |
|   if (Trunc) {
 | |
|     O << "\\l\"";
 | |
|     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
 | |
|     O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc) << "\\l\"";
 | |
|   } else
 | |
|     O << " " << VPlanIngredient(IV) << "\\l\"";
 | |
| }
 | |
| 
 | |
| void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent) const {
 | |
|   O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\"";
 | |
| }
 | |
| 
 | |
| void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent) const {
 | |
|   O << " +\n" << Indent << "\"BLEND ";
 | |
|   Phi->printAsOperand(O, false);
 | |
|   O << " =";
 | |
|   if (!User) {
 | |
|     // Not a User of any mask: not really blending, this is a
 | |
|     // single-predecessor phi.
 | |
|     O << " ";
 | |
|     Phi->getIncomingValue(0)->printAsOperand(O, false);
 | |
|   } else {
 | |
|     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
 | |
|       O << " ";
 | |
|       Phi->getIncomingValue(I)->printAsOperand(O, false);
 | |
|       O << "/";
 | |
|       User->getOperand(I)->printAsOperand(O);
 | |
|     }
 | |
|   }
 | |
|   O << "\\l\"";
 | |
| }
 | |
| 
 | |
| void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent) const {
 | |
|   O << " +\n"
 | |
|     << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ")
 | |
|     << VPlanIngredient(Ingredient);
 | |
|   if (AlsoPack)
 | |
|     O << " (S->V)";
 | |
|   O << "\\l\"";
 | |
| }
 | |
| 
 | |
| void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent) const {
 | |
|   O << " +\n"
 | |
|     << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst)
 | |
|     << "\\l\"";
 | |
| }
 | |
| 
 | |
| void VPWidenMemoryInstructionRecipe::print(raw_ostream &O,
 | |
|                                            const Twine &Indent) const {
 | |
|   O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr);
 | |
|   if (User) {
 | |
|     O << ", ";
 | |
|     User->getOperand(0)->printAsOperand(O);
 | |
|   }
 | |
|   O << "\\l\"";
 | |
| }
 | |
| 
 | |
| template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
 | |
| 
 | |
| void VPValue::replaceAllUsesWith(VPValue *New) {
 | |
|   for (VPUser *User : users())
 | |
|     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
 | |
|       if (User->getOperand(I) == this)
 | |
|         User->setOperand(I, New);
 | |
| }
 | |
| 
 | |
| void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
 | |
|                                           Old2NewTy &Old2New,
 | |
|                                           InterleavedAccessInfo &IAI) {
 | |
|   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
 | |
|   for (VPBlockBase *Base : RPOT) {
 | |
|     visitBlock(Base, Old2New, IAI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
 | |
|                                          InterleavedAccessInfo &IAI) {
 | |
|   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
 | |
|     for (VPRecipeBase &VPI : *VPBB) {
 | |
|       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
 | |
|       auto *VPInst = cast<VPInstruction>(&VPI);
 | |
|       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
 | |
|       auto *IG = IAI.getInterleaveGroup(Inst);
 | |
|       if (!IG)
 | |
|         continue;
 | |
| 
 | |
|       auto NewIGIter = Old2New.find(IG);
 | |
|       if (NewIGIter == Old2New.end())
 | |
|         Old2New[IG] = new InterleaveGroup<VPInstruction>(
 | |
|             IG->getFactor(), IG->isReverse(), IG->getAlignment());
 | |
| 
 | |
|       if (Inst == IG->getInsertPos())
 | |
|         Old2New[IG]->setInsertPos(VPInst);
 | |
| 
 | |
|       InterleaveGroupMap[VPInst] = Old2New[IG];
 | |
|       InterleaveGroupMap[VPInst]->insertMember(
 | |
|           VPInst, IG->getIndex(Inst),
 | |
|           IG->isReverse() ? (-1) * int(IG->getFactor()) : IG->getFactor());
 | |
|     }
 | |
|   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
 | |
|     visitRegion(Region, Old2New, IAI);
 | |
|   else
 | |
|     llvm_unreachable("Unsupported kind of VPBlock.");
 | |
| }
 | |
| 
 | |
| VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
 | |
|                                                  InterleavedAccessInfo &IAI) {
 | |
|   Old2NewTy Old2New;
 | |
|   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
 | |
| }
 |