forked from OSchip/llvm-project
				
			
		
			
				
	
	
		
			352 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			352 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// \file
 | |
| /// This file implements the construction of a VPlan-based Hierarchical CFG
 | |
| /// (H-CFG) for an incoming IR. This construction comprises the following
 | |
| /// components and steps:
 | |
| //
 | |
| /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
 | |
| /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
 | |
| /// Region) is created to enclose and serve as parent of all the VPBasicBlocks
 | |
| /// in the plain CFG.
 | |
| /// NOTE: At this point, there is a direct correspondence between all the
 | |
| /// VPBasicBlocks created for the initial plain CFG and the incoming
 | |
| /// BasicBlocks. However, this might change in the future.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "VPlanHCFGBuilder.h"
 | |
| #include "LoopVectorizationPlanner.h"
 | |
| #include "llvm/Analysis/LoopIterator.h"
 | |
| 
 | |
| #define DEBUG_TYPE "loop-vectorize"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| // Class that is used to build the plain CFG for the incoming IR.
 | |
| class PlainCFGBuilder {
 | |
| private:
 | |
|   // The outermost loop of the input loop nest considered for vectorization.
 | |
|   Loop *TheLoop;
 | |
| 
 | |
|   // Loop Info analysis.
 | |
|   LoopInfo *LI;
 | |
| 
 | |
|   // Vectorization plan that we are working on.
 | |
|   VPlan &Plan;
 | |
| 
 | |
|   // Output Top Region.
 | |
|   VPRegionBlock *TopRegion = nullptr;
 | |
| 
 | |
|   // Builder of the VPlan instruction-level representation.
 | |
|   VPBuilder VPIRBuilder;
 | |
| 
 | |
|   // NOTE: The following maps are intentionally destroyed after the plain CFG
 | |
|   // construction because subsequent VPlan-to-VPlan transformation may
 | |
|   // invalidate them.
 | |
|   // Map incoming BasicBlocks to their newly-created VPBasicBlocks.
 | |
|   DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
 | |
|   // Map incoming Value definitions to their newly-created VPValues.
 | |
|   DenseMap<Value *, VPValue *> IRDef2VPValue;
 | |
| 
 | |
|   // Hold phi node's that need to be fixed once the plain CFG has been built.
 | |
|   SmallVector<PHINode *, 8> PhisToFix;
 | |
| 
 | |
|   // Utility functions.
 | |
|   void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
 | |
|   void fixPhiNodes();
 | |
|   VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
 | |
|   bool isExternalDef(Value *Val);
 | |
|   VPValue *getOrCreateVPOperand(Value *IRVal);
 | |
|   void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
 | |
| 
 | |
| public:
 | |
|   PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
 | |
|       : TheLoop(Lp), LI(LI), Plan(P) {}
 | |
| 
 | |
|   // Build the plain CFG and return its Top Region.
 | |
|   VPRegionBlock *buildPlainCFG();
 | |
| };
 | |
| } // anonymous namespace
 | |
| 
 | |
| // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
 | |
| // must have no predecessors.
 | |
| void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
 | |
|   SmallVector<VPBlockBase *, 8> VPBBPreds;
 | |
|   // Collect VPBB predecessors.
 | |
|   for (BasicBlock *Pred : predecessors(BB))
 | |
|     VPBBPreds.push_back(getOrCreateVPBB(Pred));
 | |
| 
 | |
|   VPBB->setPredecessors(VPBBPreds);
 | |
| }
 | |
| 
 | |
| // Add operands to VPInstructions representing phi nodes from the input IR.
 | |
| void PlainCFGBuilder::fixPhiNodes() {
 | |
|   for (auto *Phi : PhisToFix) {
 | |
|     assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
 | |
|     VPValue *VPVal = IRDef2VPValue[Phi];
 | |
|     assert(isa<VPInstruction>(VPVal) && "Expected VPInstruction for phi node.");
 | |
|     auto *VPPhi = cast<VPInstruction>(VPVal);
 | |
|     assert(VPPhi->getNumOperands() == 0 &&
 | |
|            "Expected VPInstruction with no operands.");
 | |
| 
 | |
|     for (Value *Op : Phi->operands())
 | |
|       VPPhi->addOperand(getOrCreateVPOperand(Op));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an
 | |
| // existing one if it was already created.
 | |
| VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
 | |
|   auto BlockIt = BB2VPBB.find(BB);
 | |
|   if (BlockIt != BB2VPBB.end())
 | |
|     // Retrieve existing VPBB.
 | |
|     return BlockIt->second;
 | |
| 
 | |
|   // Create new VPBB.
 | |
|   LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n");
 | |
|   VPBasicBlock *VPBB = new VPBasicBlock(BB->getName());
 | |
|   BB2VPBB[BB] = VPBB;
 | |
|   VPBB->setParent(TopRegion);
 | |
|   return VPBB;
 | |
| }
 | |
| 
 | |
| // Return true if \p Val is considered an external definition. An external
 | |
| // definition is either:
 | |
| // 1. A Value that is not an Instruction. This will be refined in the future.
 | |
| // 2. An Instruction that is outside of the CFG snippet represented in VPlan,
 | |
| // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
 | |
| // outermost loop exits.
 | |
| bool PlainCFGBuilder::isExternalDef(Value *Val) {
 | |
|   // All the Values that are not Instructions are considered external
 | |
|   // definitions for now.
 | |
|   Instruction *Inst = dyn_cast<Instruction>(Val);
 | |
|   if (!Inst)
 | |
|     return true;
 | |
| 
 | |
|   BasicBlock *InstParent = Inst->getParent();
 | |
|   assert(InstParent && "Expected instruction parent.");
 | |
| 
 | |
|   // Check whether Instruction definition is in loop PH.
 | |
|   BasicBlock *PH = TheLoop->getLoopPreheader();
 | |
|   assert(PH && "Expected loop pre-header.");
 | |
| 
 | |
|   if (InstParent == PH)
 | |
|     // Instruction definition is in outermost loop PH.
 | |
|     return false;
 | |
| 
 | |
|   // Check whether Instruction definition is in the loop exit.
 | |
|   BasicBlock *Exit = TheLoop->getUniqueExitBlock();
 | |
|   assert(Exit && "Expected loop with single exit.");
 | |
|   if (InstParent == Exit) {
 | |
|     // Instruction definition is in outermost loop exit.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check whether Instruction definition is in loop body.
 | |
|   return !TheLoop->contains(Inst);
 | |
| }
 | |
| 
 | |
| // Create a new VPValue or retrieve an existing one for the Instruction's
 | |
| // operand \p IRVal. This function must only be used to create/retrieve VPValues
 | |
| // for *Instruction's operands* and not to create regular VPInstruction's. For
 | |
| // the latter, please, look at 'createVPInstructionsForVPBB'.
 | |
| VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
 | |
|   auto VPValIt = IRDef2VPValue.find(IRVal);
 | |
|   if (VPValIt != IRDef2VPValue.end())
 | |
|     // Operand has an associated VPInstruction or VPValue that was previously
 | |
|     // created.
 | |
|     return VPValIt->second;
 | |
| 
 | |
|   // Operand doesn't have a previously created VPInstruction/VPValue. This
 | |
|   // means that operand is:
 | |
|   //   A) a definition external to VPlan,
 | |
|   //   B) any other Value without specific representation in VPlan.
 | |
|   // For now, we use VPValue to represent A and B and classify both as external
 | |
|   // definitions. We may introduce specific VPValue subclasses for them in the
 | |
|   // future.
 | |
|   assert(isExternalDef(IRVal) && "Expected external definition as operand.");
 | |
| 
 | |
|   // A and B: Create VPValue and add it to the pool of external definitions and
 | |
|   // to the Value->VPValue map.
 | |
|   VPValue *NewVPVal = new VPValue(IRVal);
 | |
|   Plan.addExternalDef(NewVPVal);
 | |
|   IRDef2VPValue[IRVal] = NewVPVal;
 | |
|   return NewVPVal;
 | |
| }
 | |
| 
 | |
| // Create new VPInstructions in a VPBasicBlock, given its BasicBlock
 | |
| // counterpart. This function must be invoked in RPO so that the operands of a
 | |
| // VPInstruction in \p BB have been visited before (except for Phi nodes).
 | |
| void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
 | |
|                                                   BasicBlock *BB) {
 | |
|   VPIRBuilder.setInsertPoint(VPBB);
 | |
|   for (Instruction &InstRef : *BB) {
 | |
|     Instruction *Inst = &InstRef;
 | |
| 
 | |
|     // There shouldn't be any VPValue for Inst at this point. Otherwise, we
 | |
|     // visited Inst when we shouldn't, breaking the RPO traversal order.
 | |
|     assert(!IRDef2VPValue.count(Inst) &&
 | |
|            "Instruction shouldn't have been visited.");
 | |
| 
 | |
|     if (auto *Br = dyn_cast<BranchInst>(Inst)) {
 | |
|       // Branch instruction is not explicitly represented in VPlan but we need
 | |
|       // to represent its condition bit when it's conditional.
 | |
|       if (Br->isConditional())
 | |
|         getOrCreateVPOperand(Br->getCondition());
 | |
| 
 | |
|       // Skip the rest of the Instruction processing for Branch instructions.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     VPInstruction *NewVPInst;
 | |
|     if (auto *Phi = dyn_cast<PHINode>(Inst)) {
 | |
|       // Phi node's operands may have not been visited at this point. We create
 | |
|       // an empty VPInstruction that we will fix once the whole plain CFG has
 | |
|       // been built.
 | |
|       NewVPInst = cast<VPInstruction>(VPIRBuilder.createNaryOp(
 | |
|           Inst->getOpcode(), {} /*No operands*/, Inst));
 | |
|       PhisToFix.push_back(Phi);
 | |
|     } else {
 | |
|       // Translate LLVM-IR operands into VPValue operands and set them in the
 | |
|       // new VPInstruction.
 | |
|       SmallVector<VPValue *, 4> VPOperands;
 | |
|       for (Value *Op : Inst->operands())
 | |
|         VPOperands.push_back(getOrCreateVPOperand(Op));
 | |
| 
 | |
|       // Build VPInstruction for any arbitraty Instruction without specific
 | |
|       // representation in VPlan.
 | |
|       NewVPInst = cast<VPInstruction>(
 | |
|           VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
 | |
|     }
 | |
| 
 | |
|     IRDef2VPValue[Inst] = NewVPInst;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Main interface to build the plain CFG.
 | |
| VPRegionBlock *PlainCFGBuilder::buildPlainCFG() {
 | |
|   // 1. Create the Top Region. It will be the parent of all VPBBs.
 | |
|   TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/);
 | |
| 
 | |
|   // 2. Scan the body of the loop in a topological order to visit each basic
 | |
|   // block after having visited its predecessor basic blocks. Create a VPBB for
 | |
|   // each BB and link it to its successor and predecessor VPBBs. Note that
 | |
|   // predecessors must be set in the same order as they are in the incomming IR.
 | |
|   // Otherwise, there might be problems with existing phi nodes and algorithm
 | |
|   // based on predecessors traversal.
 | |
| 
 | |
|   // Loop PH needs to be explicitly visited since it's not taken into account by
 | |
|   // LoopBlocksDFS.
 | |
|   BasicBlock *PreheaderBB = TheLoop->getLoopPreheader();
 | |
|   assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
 | |
|          "Unexpected loop preheader");
 | |
|   VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB);
 | |
|   createVPInstructionsForVPBB(PreheaderVPBB, PreheaderBB);
 | |
|   // Create empty VPBB for Loop H so that we can link PH->H.
 | |
|   VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader());
 | |
|   // Preheader's predecessors will be set during the loop RPO traversal below.
 | |
|   PreheaderVPBB->setOneSuccessor(HeaderVPBB);
 | |
| 
 | |
|   LoopBlocksRPO RPO(TheLoop);
 | |
|   RPO.perform(LI);
 | |
| 
 | |
|   for (BasicBlock *BB : RPO) {
 | |
|     // Create or retrieve the VPBasicBlock for this BB and create its
 | |
|     // VPInstructions.
 | |
|     VPBasicBlock *VPBB = getOrCreateVPBB(BB);
 | |
|     createVPInstructionsForVPBB(VPBB, BB);
 | |
| 
 | |
|     // Set VPBB successors. We create empty VPBBs for successors if they don't
 | |
|     // exist already. Recipes will be created when the successor is visited
 | |
|     // during the RPO traversal.
 | |
|     Instruction *TI = BB->getTerminator();
 | |
|     assert(TI && "Terminator expected.");
 | |
|     unsigned NumSuccs = TI->getNumSuccessors();
 | |
| 
 | |
|     if (NumSuccs == 1) {
 | |
|       VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0));
 | |
|       assert(SuccVPBB && "VPBB Successor not found.");
 | |
|       VPBB->setOneSuccessor(SuccVPBB);
 | |
|     } else if (NumSuccs == 2) {
 | |
|       VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0));
 | |
|       assert(SuccVPBB0 && "Successor 0 not found.");
 | |
|       VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1));
 | |
|       assert(SuccVPBB1 && "Successor 1 not found.");
 | |
| 
 | |
|       // Get VPBB's condition bit.
 | |
|       assert(isa<BranchInst>(TI) && "Unsupported terminator!");
 | |
|       auto *Br = cast<BranchInst>(TI);
 | |
|       Value *BrCond = Br->getCondition();
 | |
|       // Look up the branch condition to get the corresponding VPValue
 | |
|       // representing the condition bit in VPlan (which may be in another VPBB).
 | |
|       assert(IRDef2VPValue.count(BrCond) &&
 | |
|              "Missing condition bit in IRDef2VPValue!");
 | |
|       VPValue *VPCondBit = IRDef2VPValue[BrCond];
 | |
| 
 | |
|       // Link successors using condition bit.
 | |
|       VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1, VPCondBit);
 | |
|     } else
 | |
|       llvm_unreachable("Number of successors not supported.");
 | |
| 
 | |
|     // Set VPBB predecessors in the same order as they are in the incoming BB.
 | |
|     setVPBBPredsFromBB(VPBB, BB);
 | |
|   }
 | |
| 
 | |
|   // 3. Process outermost loop exit. We created an empty VPBB for the loop
 | |
|   // single exit BB during the RPO traversal of the loop body but Instructions
 | |
|   // weren't visited because it's not part of the the loop.
 | |
|   BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
 | |
|   assert(LoopExitBB && "Loops with multiple exits are not supported.");
 | |
|   VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB];
 | |
|   createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB);
 | |
|   // Loop exit was already set as successor of the loop exiting BB.
 | |
|   // We only set its predecessor VPBB now.
 | |
|   setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB);
 | |
| 
 | |
|   // 4. The whole CFG has been built at this point so all the input Values must
 | |
|   // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
 | |
|   // VPlan operands.
 | |
|   fixPhiNodes();
 | |
| 
 | |
|   // 5. Final Top Region setup. Set outermost loop pre-header and single exit as
 | |
|   // Top Region entry and exit.
 | |
|   TopRegion->setEntry(PreheaderVPBB);
 | |
|   TopRegion->setExit(LoopExitVPBB);
 | |
|   return TopRegion;
 | |
| }
 | |
| 
 | |
| VPRegionBlock *VPlanHCFGBuilder::buildPlainCFG() {
 | |
|   PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
 | |
|   return PCFGBuilder.buildPlainCFG();
 | |
| }
 | |
| 
 | |
| // Public interface to build a H-CFG.
 | |
| void VPlanHCFGBuilder::buildHierarchicalCFG() {
 | |
|   // Build Top Region enclosing the plain CFG and set it as VPlan entry.
 | |
|   VPRegionBlock *TopRegion = buildPlainCFG();
 | |
|   Plan.setEntry(TopRegion);
 | |
|   LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
 | |
| 
 | |
|   Verifier.verifyHierarchicalCFG(TopRegion);
 | |
| 
 | |
|   // Compute plain CFG dom tree for VPLInfo.
 | |
|   VPDomTree.recalculate(*TopRegion);
 | |
|   LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
 | |
|              VPDomTree.print(dbgs()));
 | |
| 
 | |
|   // Compute VPLInfo and keep it in Plan.
 | |
|   VPLoopInfo &VPLInfo = Plan.getVPLoopInfo();
 | |
|   VPLInfo.analyze(VPDomTree);
 | |
|   LLVM_DEBUG(dbgs() << "VPLoop Info After buildPlainCFG:\n";
 | |
|              VPLInfo.print(dbgs()));
 | |
| }
 |