Unlike it's legacy SSE XMM XORPS version, which measures as being 1-cycle,
this one is certainly a zero-cycle instruction, in addition to both of them
being dependency breaking.
As confirmed by exegesis measurements, and ref docs.
While both the SOG and Agner insist that it is zero-cycle,
i can not confirm that claim. While it clearly breaks the dependency,
i can not come up with a snippet, or measurement approach,
to end up with IPC bigger than 4, which, to me, means that it actually
consumes execution resource of an FP unit for a cycle.
As confirmed by exegesis measurements, and ref docs.
It does actually execute.
While there, bump latency for MULX32rr, that seems to match measurements.
Sometimes disassembler picks _REV variants of instructions
over the plain ones, which in this case exposed an issue
that the _REV variants aren't being modelled as optimizable moves.
I've verified this with llvm-exegesis.
This is not limited to zero registers.
Refs:
AMD SOG 19h, 2.9.4 Zero Cycle Move
The processor is able to execute certain register to register
mov operations with zero cycle delay.
Agner,
22.13 Instructions with no latency
Register-to-register move instructions are resolved at
the register rename stage without using any execution units.
These instructions have zero latency. It is possible to do six such
register renamings per clock cycle, and it is even possible to
rename the same register multiple times in one clock cycle.
I've verified this with llvm-exegesis.
This is not limited to zero registers.
Refs:
AMD SOG 19h, 2.9.4 Zero Cycle Move
The processor is able to execute certain register to register
mov operations with zero cycle delay.
Agner,
22.13 Instructions with no latency
Register-to-register move instructions are resolved at
the register rename stage without using any execution units.
These instructions have zero latency. It is possible to do six such
register renamings per clock cycle, and it is even possible to
rename the same register multiple times in one clock cycle.
Introduce basic schedule model for AMD Zen 3 CPU's, a.k.a `znver3`.
This is fully built from scratch, from llvm-mca measurements
and documented reference materials.
Nothing was copied from `znver2`/`znver1`.
I believe this is in a reasonable state of completion for inclusion,
probably better than D52779 `bdver2` was :)
Namely:
* uops are pretty spot-on (at least what llvm-mca can measure)
{F16422596}
* latency is also pretty spot-on (at least what llvm-mca can measure)
{F16422601}
* throughput is within reason
{F16422607}
I haven't run much benchmarks with this,
however RawSpeed benchmarks says this is beneficial:
{F16603978}
{F16604029}
I'll call out the obvious problems there:
* i didn't really bother with X87 instructions
* i didn't really bother with obviously-microcoded/system instructions
* There are large discrepancy in throughput for `mr` and `rm` instructions.
I'm not really sure if it's a modelling defect that needs to be fixed,
or it's a defect of measurments.
* Pipe distributions are probably bad :)
I can't do much here until AMD allows that to be fixed
by documenting the appropriate counters and updating libpfm
That being said, as @RKSimon notes:
>>! In D94395#2647381, @RKSimon wrote:
> I'll mention again that all the znver* models appear to be very inaccurate wrt SIMD/FPU instructions <...>
so how much worse this could possibly be?!
Things that aren't there:
* Various tunings: zero idioms, etc. That is follow-ups.
Differential Revision: https://reviews.llvm.org/D94395
Early exit from method DispatchStage::isAvailable() if the dispatch group is
already full. Not all instructions declare at least one uOP.
Fixes PR50174.
Instructions on the transcendental unit are executed in parallel to the
normal VALU, so add this as an extra resource.
This doesn't seem to have any effect, but it should be more correct.
Differential Revision: https://reviews.llvm.org/D100123
Used to model structural hazards on FP issue, where some
instructions take up 2 issue slots and others one as well
as similar structural hazards on load issue, where some
instructions take up two load lanes and others one.
Differential Revision: https://reviews.llvm.org/D98977
The tests compare IPC statistics that MCA provides with IPC values
measured on Cortex-A55 hardware. For hardware tests, each snippet is
run in a loop unrolled by 1000, and IPC is measured by linux-perf.
Several tests do not match the hardware: the skewed ALU is not
supported, LDR seem to be missing a forwarding path.
Differential Revision: https://reviews.llvm.org/D98174
Instructions that have more uops than the processor's IssueWidth are
issued in multiple cycles.
The patch fixes PR49712.
Differential Revision: https://reviews.llvm.org/D99339
This is a follow-up for:
D98604 [MCA] Ensure that writes occur in-order
When instructions are aligned by the order of writes, they retire
in-order naturally. There is no need for an RCU, so it is disabled.
Differential Revision: https://reviews.llvm.org/D98628
Coyp SchedRW from pseudos to real instructions so that llvm-mca has
access to it. This is NFC for normal compiler codegen, which schedules
pseudos not real instructions.
Add an llvm-mca test for some high latency double-precision instructions
as a smoke test.
Differential Revision: https://reviews.llvm.org/D99187
Before this patch, register writes were always invalidated by the
RegisterFile at instruction commit stage. So,
the RegisterFile was often losing the knowledge about the `execute
cycle` of writes already committed. While this was not problematic
for non-delayed reads, this was sometimes leading to inaccurate read
latency computations in the presence of negative read-advance cycles.
This patch fixes the issue by changing how the RegisterFile component
internally keeps track of the `execute cycle` information of each
write. On every instruction executed, the RegisterFile gets notified
by the RetireStage, so that it can internally record the execute
cycle of each executed write.
The `execute cycle` information is stored within WriteRef itself, and
it is not invalidated when the write is committed.
This patch adds a pipeline to support in-order CPUs such as ARM
Cortex-A55.
In-order pipeline implements a simplified version of Dispatch,
Scheduler and Execute stages as a single stage. Entry and Retire
stages are common for both in-order and out-of-order pipelines.
Differential Revision: https://reviews.llvm.org/D94928
On z/OS, the following error message is not matched correctly in lit tests.
```
EDC5129I No such file or directory.
```
This patch uses a lit config substitution to check for platform specific error messages.
Reviewed By: muiez, jhenderson
Differential Revision: https://reviews.llvm.org/D95246
On z/OS, the following error message is not matched correctly in lit tests. This patch updates the CHECK expression to match successfully.
```
EDC5129I No such file or directory.
```
Reviewed By: muiez
Differential Revision: https://reviews.llvm.org/D94239
The old CPU model only had MLA->MLA forwarding. I added some missing
MUL->MLA read advances and a missing absolute diff accumulator read
advance according to the Cortex A57 Software Optimization Guide.
The patch improves performance in EEMBC rgbyiqv2 by about 6%-7% and
spec2006/milc by 8% (repeated runs on multiple devices), causes no
significant regressions (none in SPEC).
Differential Revision: https://reviews.llvm.org/D92296
These properties aren't additive. They are closer to ReadOnly and
WriteOnly. The default is ReadWrite. ReadMem cancels the write property and
WriteMem cancels the read property. Combining them leaves neither.
This patch checks that when we process WriteMem, the Mod flag is
still set. And for ReadMem we check that the Ref flag set still set.
I've updated 2 target intrinsics that were combining these properties.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D93571
These instructions read their inputs from fixed registers rather
than using a modrm byte. We shouldn't require the user to list them
when parsing assembly. This matches the GNU assembler.
This patch adds InstAliases so we can accept either form. It also
changes the printing code to use the form without registers. This
will change the behavior of llvm-objdump, but should be consistent
with binutils objdump. This also matches what we already do in LLVM for
clzero and monitorx which also used fixed registers.
I need to add and improve tests before this can be commited. The
disassembler tests exist, but weren't checking the fixed register
so they pass before and after this change.
Fixes https://github.com/ClangBuiltLinux/linux/issues/1216
Differential Revision: https://reviews.llvm.org/D93524
The model was committed in 4b8ade837e
but not yet enabled to allow for a few fix ups. This adds a few
of these fixes, and also a LLVM MCA test to check most instructions.
While I do have plans to look into some more tuning, it's time to
enable this as it better than using the A53 schedule.
Differential Revision: https://reviews.llvm.org/D88017