Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
Make the copy/move ctors protected and defaulted in the base, make the
derived classes final to avoid exposing any slicing-prone APIs.
Also, while I'm here, simplify the use of buildByrefHelpers by taking
the parameter by value instead of non-const ref. None of the callers
care aobut observing the state after the call.
llvm-svn: 244990
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
The RegionCounter type does a lot of legwork, but most of it is only
meaningful within the implementation of CodeGenPGO. The uses elsewhere
in CodeGen generally just want to increment or read counters, so do
that directly.
llvm-svn: 235664
distinction between the different use-cases. With the previous default
behavior we would occasionally emit empty debug locations in situations
where they actually were strictly required (= on invoke insns).
We now have a choice between defaulting to an empty location or an
artificial location.
Specifically, this fixes a bug caused by a missing debug location when
emitting C++ EH cleanup blocks from within an artificial function, such as
an ObjC destroy helper function.
rdar://problem/19670595
llvm-svn: 228003
Several pieces of code were relying on implicit debug location setting
which usually lead to incorrect line information anyway. So I've fixed
those (in r225955 and r225845) separately which should pave the way for
this commit to be cleanly reapplied.
The reason these implicit dependencies resulted in crashes with this
patch is that the debug location would no longer implicitly leak from
one place to another, but be set back to invalid. Once a call with
no/invalid location was emitted, if that call was ever inlined it could
produce invalid debugloc chains and assert during LLVM's codegen.
There may be further cases of such bugs in this patch - they're hard to
flush out with regression testing, so I'll keep an eye out for reports
and investigate/fix them ASAP if they come up.
Original commit message:
Reapply "DebugInfo: Generalize debug info location handling"
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Recommitted in r224941 and reverted in r224970 after it caused a crash
when building compiler-rt. Looks to be due to this change zeroing out
the debug location when emitting default arguments (which were meant to
inherit their outer expression's location) thus creating call
instructions without locations - these create problems for inlining and
must not be created. That is fixed and tested in this version of the
change.
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 225956
This was previously piggybacking on whatever happened to be the last
location set on CGDebugInfo/DIBuilder, which was wrong (it was often the
current location, such as the 'fn()' call site, not the end of the
block). With my improvements to set/unset the location in a scoped
manner (r225000) this went from a bad quality situation, to a crash.
Fixing this goes part-way to unblocking the recommit of r225000.
It's likely that any call to CodeGenFunction::StartFunction without the
CurEHLocation set represents a similar bug or risk of a bug. Perhaps
there are some callers that know they won't generate EH cleanups, but
I'm not sure.
I considered a generic catch-fix in StartFunction (just fallback to the
GlobalDecl's location) but that seemed like it'd mask bugs where the EH
location shouldn't be the same as the decl's location (& indeed by not
using that stop-gap I found this bug). We'll see how long I can hold out
on the generic catch-all. I might eventually be able to add an assertion
in.
llvm-svn: 225845
This reverts commit r225000, r225021, r225083, r225086, r225090.
The root change (r225000) still has several issues where it's caused
calls to be emitted without debug locations. This causes assertion
failures if/when those calls are inlined.
I'll work up some test cases and fixes before recommitting this.
llvm-svn: 225555
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Recommitted in r224941 and reverted in r224970 after it caused a crash
when building compiler-rt. Looks to be due to this change zeroing out
the debug location when emitting default arguments (which were meant to
inherit their outer expression's location) thus creating call
instructions without locations - these create problems for inlining and
must not be created. That is fixed and tested in this version of the
change.
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 225000
Originally committed in r224385 and reverted in r224441 due to concerns
this change might've introduced a crash. Turns out this change fixes the
crash introduced by one of my earlier more specific location handling
changes (those specific fixes are reverted by this patch, in favor of
the more general solution).
Original commit message:
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 224941
This is a more scalable (fixed in mostly one place, rather than many
places that will need constant improvement/maintenance) solution to
several commits I've made recently to increase source fidelity for
subexpressions.
This resetting had to be done at the DebugLoc level (not the
SourceLocation level) to preserve scoping information (if the resetting
was done with CGDebugInfo::EmitLocation, it would've caused the tail end
of an expression's codegen to end up in a potentially different scope
than the start, even though it was at the same source location). The
drawback to this is that it might leave CGDebugInfo out of sync. Ideally
CGDebugInfo shouldn't have a duplicate sense of the current
SourceLocation, but for now it seems it does... - I don't think I'm
going to tackle removing that just now.
I expect this'll probably cause some more buildbot fallout & I'll
investigate that as it comes up.
Also these sort of improvements might be starting to show a weakness/bug
in LLVM's line table handling: we don't correctly emit is_stmt for
statements, we just put it on every line table entry. This means one
statement split over multiple lines appears as multiple 'statements' and
two statements on one line (without column info) are treated as one
statement.
I don't think we have any IR representation of statements that would
help us distinguish these cases and identify the beginning of each
statement - so that might be something we need to add (possibly to the
lexical scope chain - a scope for each statement). This does cause some
problems for GDB and possibly other DWARF consumers.
llvm-svn: 224385
The logic for lowering profiling counters has been moved to an LLVM
pass. Emit the intrinsics rather than duplicating the whole pass in
clang.
llvm-svn: 223683
Richard rejected my Sema change to interpret an integer literal zero in
a varargs context as a null pointer, so -Wsentinel sees an integer
literal zero and fires off a warning. Only CodeGen currently knows that
it promotes integer literal zeroes in this context to pointer size on
Windows. I didn't want to teach -Wsentinel about that compatibility
hack. Therefore, I'm migrating to C++11 nullptr.
llvm-svn: 223079
When emitting nested block definitions, the insert-at-point variant of
DIBuilder::insertDeclare() could be called with the insertion point set
to the end-of-BasicBlock sentinel, causing the parent pointer of the
CallInst to be set to the intentionally bogus value of the sentinel.
Fixed by conditionally invoking the correct version of insertDeclare().
rdar://problem/19034882
llvm-svn: 222487
Add driver and frontend support for the GCC -Wframe-larger-than=bytes warning.
This is the first GCC-compatible backend diagnostic built around LLVM's
reporting feature.
This commit adds infrastructure to perform reverse lookup from mangled names
emitted after LLVM IR generation. We use that to resolve precise locations and
originating AST functions, lambdas or block declarations to produce seamless
codegen-guided diagnostics.
An associated change, StringMap now maintains unique mangled name strings
instead of allocating copies. This is a net memory saving in C++ and a small
hit for C where we no longer reuse IdentifierInfo storage, pending further
optimisation.
llvm-svn: 210293
The only remaining user didn't actually use the non-dynamic storage facility
this class provides.
The std::string is transitional and likely to be StringRefized shortly.
llvm-svn: 210058
ensure that querying the first declaration for its most recent declaration
checks for redeclarations from the imported module.
This works as follows:
* The 'most recent' pointer on a canonical declaration grows a pointer to the
external AST source and a generation number (space- and time-optimized for
the case where there is no external source).
* Each time the 'most recent' pointer is queried, if it has an external source,
we check whether it's up to date, and update it if not.
* The ancillary data stored on the canonical declaration is allocated lazily
to avoid filling it in for declarations that end up being non-canonical.
We'll still perform a redundant (ASTContext) allocation if someone asks for
the most recent declaration from a decl before setPreviousDecl is called,
but such cases are probably all bugs, and are now easy to find.
Some finessing is still in order here -- in particular, we use a very general
mechanism for handling the DefinitionData pointer on CXXRecordData, and a more
targeted approach would be more compact.
Also, the MayHaveOutOfDateDef mechanism should now be expunged, since it was
addressing only a corner of the full problem space here. That's not covered
by this patch.
Early performance benchmarks show that this makes no measurable difference to
Clang performance without modules enabled (and fixes a major correctness issue
with modules enabled). I'll revert if a full performance comparison shows any
problems.
llvm-svn: 209046
are not associated with any source lines.
Previously, if the Location of a Decl was empty, EmitFunctionStart would
just keep using CurLoc, which would sometimes be correct (e.g., thunks)
but in other cases would just point to a hilariously random location.
This patch fixes this by completely eliminating all uses of CurLoc from
EmitFunctionStart and rather have clients explicitly pass in a
SourceLocation for the function header and the function body.
rdar://problem/14985269
llvm-svn: 205999
In instrumentation-based profiling, we need a set of data structures to
represent the counters. Previously, these were built up during static
initialization. Now, they're shoved into a specially-named section so
that they show up as an array.
As a consequence of the reorganizing symbols, instrumentation data
structures for linkonce functions are now correctly coalesced.
This is the first step in a larger project to minimize runtime overhead
and dependencies in instrumentation-based profilng. The larger picture
includes removing all initialization overhead and making the dependency
on libc optional.
<rdar://problem/15943240>
llvm-svn: 204080
This fixes PR15768, where the sret parameter and the 'this' parameter
are in the wrong order.
Instance methods compiled by MSVC never return records in registers,
they always return indirectly through an sret pointer. That sret
pointer always comes after the 'this' parameter, for both __cdecl and
__thiscall methods.
Unfortunately, the same is true for other calling conventions, so we'll
have to change the overall approach here relatively soon.
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D2664
llvm-svn: 200587
A return type is the declared or deduced part of the function type specified in
the declaration.
A result type is the (potentially adjusted) type of the value of an expression
that calls the function.
Rule of thumb:
* Declarations have return types and parameters.
* Expressions have result types and arguments.
llvm-svn: 200082
CodeGenFunction is run on only one function - a new object is made for
each new function. I would add an assertion/flag to this effect, but
there's an exception: ObjC properties involve emitting helper functions
that are all emitted by the same CodeGenFunction object, so such a check
is not possible/correct.
llvm-svn: 189277
inspired by CodegenFunction::LexicalScope.
- NoLocation temporarily turns off debug locations altogether.
This is useful for emitting instructions that should be
counted towards the function prologue.
- BuiltinLocation temporarily switches to an artificial debug location
that has a valid scope, but no line information. This is useful when
emitting compiler-generated helper functions that have no source
location associated with them.
llvm-svn: 186552
a lambda.
Bug #1 is that CGF's CurFuncDecl was "stuck" at lambda invocation
functions. Fix that by generally improving getNonClosureContext
to look through lambdas and captured statements but only report
code contexts, which is generally what's wanted. Audit uses of
CurFuncDecl and getNonClosureAncestor for correctness.
Bug #2 is that lambdas weren't specially mapping 'self' when inside
an ObjC method. Fix that by removing the requirement for that
and using the normal EmitDeclRefLValue path in LoadObjCSelf.
rdar://13800041
llvm-svn: 181000
http://lab.llvm.org:8011/builders/clang-x86_64-darwin10-gdb went back green
before it processed the reverted 178663, so it could not have been the culprit.
Revert "Revert 178663."
This reverts commit 4f8a3eb2ce5d4ba422483439e20c8cbb4d953a41.
llvm-svn: 178682
For variables and functions clang used to store two storage classes. The one
"as written" in the code and a patched one, which, for example, propagates
static to the following decls.
This apparently is from the days clang lacked linkage computation. It is now
redundant and this patch removes it.
llvm-svn: 178663
* Store the .block_descriptor (instead of self) in the alloca so we
can guarantee that all captured variables are available at -O0.
* Add the missing OpDeref for the alloca.
rdar://problem/12767564
llvm-svn: 178361
calls and declarations.
LLVM has a default CC determined by the target triple. This is
not always the actual default CC for the ABI we've been asked to
target, and so we sometimes find ourselves annotating all user
functions with an explicit calling convention. Since these
calling conventions usually agree for the simple set of argument
types passed to most runtime functions, using the LLVM-default CC
in principle has no effect. However, the LLVM optimizer goes
into histrionics if it sees this kind of formal CC mismatch,
since it has no concept of CC compatibility. Therefore, if this
module happens to define the "runtime" function, or got LTO'ed
with such a definition, we can miscompile; so it's quite
important to get this right.
Defining runtime functions locally is quite common in embedded
applications.
llvm-svn: 176286
We were previously hard-coding a particular field index. This was
fine before (because we were obviously guaranteed the presence
of a copy/dispose member) except for (1) alignment padding and
(2) future extensions adding extra members to the header, such
as the extended-layout pointer.
Note that we only introduce the extended-layout pointer in the
presence of structs. (We also seem to be introducing it even
in the presence of an all-non-object layout, but that's a
different potential issue.)
llvm-svn: 173122
__strong __block variables, perform objc_storeStrong on
source and destination instead of direct move. This
is done with -O0 and to improve some analysis.
// rdar://12530881
llvm-svn: 171555
The line information was changed when emitting debug information for all the
DeclRefExprs and we should change it back to get ready for PopClenupBlocks
called from FinishFunction.
rdar://11562117
llvm-svn: 171493
We were emitting calls to blocks as if all arguments were
required --- i.e. with signature (A,B,C,D,...) rather than
(A,B,...). This patch fixes that and accounts for the
implicit block-context argument as a required argument.
In addition, this patch changes the function type under which
we call unprototyped functions on platforms like x86-64 that
guarantee compatibility of variadic functions with unprototyped
function types; previously we would always call such functions
under the LLVM type T (...)*, but now we will call them under
the type T (A,B,C,D,...)*. This last change should have no
material effect except for making the type conventions more
explicit; it was a side-effect of the most convenient implementation.
llvm-svn: 169588
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
in deciding a copy/dispose field is needed in a byref structure
and when generating the copy/dispose helpers. In certain
cases, these fields were being added but no copy/dispose was
being generated. This was uncovered in ARC, but not in MRR.
// rdar://12759433
llvm-svn: 168825
Separate out the notions of 'has a trivial special member' and 'has a
non-trivial special member', and use them appropriately. These are not
opposites of one another (there might be no special member, or in C++11 there
might be a trivial one and a non-trivial one). The CXXRecordDecl predicates
continue to produce incorrect results, but do so in fewer cases now, and
they document the cases where they might be wrong.
No functionality changes are intended here (they will come when the predicates
start producing the right answers...).
llvm-svn: 168119
generation for captured block variables in arc mode. This includes
inlined version of the meta-data when it can be done. It also includes
severat tests. This is wip. // rdar://12184410.
llvm-svn: 167241
combination of a load+objc_release; this is generally better
for tools that try to track why values are retained and
released. Also use objc_storeStrong when copying a block
(again, only at -O0), which requires us to do a preliminary
store of null in order to compensate for objc_storeStrong's
assign semantics.
llvm-svn: 166085
if (CGM.getModuleDebugInfo())
DebugInfo = CGM.getModuleDebugInfo()
into a call:
maybeInitializeDebugInfo();
This is a simplification for a possible future fix of PR13942.
llvm-svn: 166019
in the ABI arrangement, and leave a hook behind so that we can easily
tweak CCs on platforms that use different CCs by default for C++
instance methods.
llvm-svn: 159894
literal helper functions. All helper functions (global
and locals) use block_invoke as their prefix. Local literal
helper names are prefixed by their enclosing mangled function
names. Blocks in non-local initializers (e.g. a global variable
or a C++11 field) are prefixed by their mangled variable name.
The descriminator number added to end of the name starts off
with blank (for first block) and _<N> (for the N+2-th block).
llvm-svn: 159206
It reduces the amount of emitted debug information:
1) DIEs in .debug_info have types DW_TAG_compile_unit, DW_TAG_subprogram,
DW_TAG_inlined_subroutine (for opt builds) and DW_TAG_lexical_block only.
2) .debug_str contains only function names.
3) No debug data for types/namespaces/variables is emitted.
4) The data in .debug_line is enough to produce valid stack traces with
function names and line numbers.
Reviewed by Eric Christopher.
llvm-svn: 156160
more aligned than the block header but also contains something
smaller than the block-header alignment but not exactly half
the difference between the large alignment and the header
alignment. Got that?
I'm really not sure what I was thinking with the buggy computation
here, but the fix is pretty obvious.
llvm-svn: 155662
jump into these scopes, and the cleanup-entering code sometimes wants
to do some operations first (e.g. a GEP), which can leave us with
unparented IR.
llvm-svn: 154684
This was caused by the code deciding the number of fields in the byref structure using a different test to the part of the code creating the GEPs into said structure.
llvm-svn: 154013
track whether the referenced declaration comes from an enclosing
local context. I'm amenable to suggestions about the exact meaning
of this bit.
llvm-svn: 152491
Note that this transformation has a substantial semantic effect outside of ARC: it gives the converted lambda lifetime semantics similar to a block literal. With ARC, the effect is much less obvious because the lifetime of blocks is already managed.
llvm-svn: 151797
optional argument passed through the variadic ellipsis)
potentially affects how we need to lower it. Propagate
this information down to the various getFunctionInfo(...)
overloads on CodeGenTypes. Furthermore, rename those
overloads to clarify their distinct purposes, and make
sure we're calling the right one in the right place.
This has a nice side-effect of making it easier to construct
a function type, since the 'variadic' bit is no longer
separable.
This shouldn't really change anything for our existing
platforms, with one minor exception --- we should now call
variadic ObjC methods with the ... in the "right place"
(see the test case), which I guess matters for anyone
running GNUStep on MIPS. Mostly it's just a substantial
clean-up.
llvm-svn: 150788
APValue::Array and APValue::MemberPointer. All APValue values can now be emitted
as constants.
Add new CGCXXABI entry point for emitting an APValue MemberPointer. The other
entrypoints dealing with constant member pointers are no longer necessary and
will be removed in a later change.
Switch codegen from using EvaluateAsRValue/EvaluateAsLValue to
VarDecl::evaluateValue. This performs caching and deals with the nasty cases in
C++11 where a non-const object's initializer can refer indirectly to
previously-initialized fields within the same object.
Building the intermediate APValue object incurs a measurable performance hit on
pathological testcases with huge initializer lists, so we continue to build IR
directly from the Expr nodes for array and record types outside of C++11.
llvm-svn: 148178
need to provide a 'dominating IP' which is guaranteed to
dominate the (de)activation point but which cannot be avoided
along any execution path from the (de)activation point to
the push-point of the cleanup. Using the entry block is
bad mojo.
llvm-svn: 144276
full-expression. Naturally they're inactive before we enter
the block literal expression. This restores the intended
behavior that blocks belong to their enclosing scope.
There's a useful -O0 / compile-time optimization that we're
missing here with activating cleanups following straight-line
code from their inactive beginnings.
llvm-svn: 144268
block-typed __block variables using objc_retainBlock
and objc_dispose. Previously we were using
_Block_object_assign and _Block_object_destroy
with BLOCK_BYREF_CALLER, which causes the runtime
to completely ignore the retain and release.
In most cases this doesn't cause catastrophe
because the retain/release are balanced and
because the block in the variable was copied
upon assignment there. However, the stack
copy of the variable will be released when
it goes out of scope, which is a problem if
that value was released due to an assignment
to the heap copy. Similarly, a leak can occur
if the variable is assigned after the copy to
the heap.
llvm-svn: 144162
Start handling debug line and scope information better:
Migrate most of the location setting within the larger API in CGDebugInfo and
update a lot of callers.
Remove the existing file/scope change machinery in UpdateLineDirectiveRegion
and replace it with DILexicalBlockFile usage.
Finishes off the rest of rdar://10246360
after fixing a few bugs that were exposed in gdb testsuite testing.
llvm-svn: 141893
Migrate most of the location setting within the larger API in CGDebugInfo and
update a lot of callers.
Remove the existing file/scope change machinery in UpdateLineDirectiveRegion
and replace it with DILexicalBlockFile usage.
Finishes off the rest of rdar://10246360
llvm-svn: 141732
language options. Use that .def file to declare the LangOptions class
and initialize all of its members, eliminating a source of annoying
initialization bugs.
AST serialization changes are next up.
llvm-svn: 139605
feature akin to the ARC runtime checks. Removes a terrible hack where
IR gen needed to find the declarations of those symbols in the translation
unit.
llvm-svn: 139404
ConvertType on InitListExprs as they are being converted. This is
needed for a forthcoming patch, and improves the IR generated anyway
(see additional type names in testcases).
This patch also converts a bunch of std::vector's in CGObjCMac to use
C arrays. There are a ton more that should be converted as well.
llvm-svn: 133413
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
__block object copy/dispose helpers for C++ objects with those for
different variables with completely different semantics simply because
they happen to both be no more aligned than a pointer.
Found by inspection.
Also, internalize most of the helper generation logic within CGBlocks.cpp,
and refactor it to fit my peculiar aesthetic sense.
llvm-svn: 128618
simplify the logic of initializing function parameters so that we don't need
both a variable declaration and a type in FunctionArgList. This also means
that we need to propagate the CGFunctionInfo down in a lot of places rather
than recalculating it from the FAL. There's more we can do to eliminate
redundancy here, and I've left FIXMEs behind to do it.
llvm-svn: 127314
invocation function into the debug info. Rather than faking up a class,
which is tricky because of the custom layout we do, we just emit a struct
directly from the layout information we've already got.
Also, don't emit an unnecessarily parameter alloca for this "variable".
llvm-svn: 126255
Nobody ever gave me a clear reason for why we were doing this, and
now it's apparently causing serious problems, so if *not* having this
causes problems, we get to solve them the right way this time.
llvm-svn: 125627
- Have CGM precompute a number of commonly-used types
- Have CGF copy that during initialization instead of recomputing them
- Use TBAA info when initializing a parameter variable
- Refactor the scalar ++/-- code
llvm-svn: 125562
- BlockDeclRefExprs always store VarDecls
- BDREs no longer store copy expressions
- BlockDecls now store a list of captured variables, information about
how they're captured, and a copy expression if necessary
With that in hand, change IR generation to use the captures data in
blocks instead of walking the block independently.
Additionally, optimize block layout by emitting fields in descending
alignment order, with a heuristic for filling in words when alignment
of the end of the block header is insufficient for the most aligned
field.
llvm-svn: 125005
process, perform a number of refactorings:
- Move MiscNameMangler member functions to MangleContext
- Remove GlobalDecl dependency from MangleContext
- Make MangleContext abstract and move Itanium/Microsoft functionality
to their own classes/files
- Implement ASTContext::createMangleContext and have CodeGen use it
No (intended) functionality change.
llvm-svn: 123386
the declaration-specifiers and on the declarator itself are moved
to the appropriate declarator chunk. This permits a greatly
simplified model for how to apply these attributes, as well as
allowing a much more efficient query for the GC attribute.
Now all qualifier queries follow the same basic strategy of
"local qualifiers, local qualifiers on the canonical type,
then look through arrays". This can be easily optimized by
changing the canonical qualified-array-type representation.
Do not process type attributes as decl attributes on declarations
with declarators.
When computing the type of a block, synthesize a prototype
function declarator chunk if the decl-spec type was not a
function. This simplifies the logic for building block signatures.
Change the logic which inserts an objc_read_weak on a block
literal to only fire if the block has a __weak __block variable,
rather than if the return type of the block is __weak qualified,
which is not actually a sensible thing to ask.
llvm-svn: 122871
store it on the expression node. Also store an "object kind",
which distinguishes ordinary "addressed" l-values (like
variable references and pointer dereferences) and bitfield,
@property, and vector-component l-values.
Currently we're not using these for much, but I aim to switch
pretty much everything calculating l-valueness over to them.
For now they shouldn't necessarily be trusted.
llvm-svn: 119685
slot. The easiest way to do that was to bundle up the information
we care about for aggregate slots into a new structure which demands
that its creators at least consider the question.
I could probably be convinced that the ObjC 'needs GC' bit should
be rolled into this structure.
Implement generalized copy elision. The main obstacle here is that
IR-generation must be much more careful about making sure that exactly
llvm-svn: 113962
information when imported variable is used
more than once. Originally though to be a bug in importing
block varibles. Fixes radar 8417746.
llvm-svn: 113675
whether to use objc_msgSend_fpret; the choice is target dependent, not Obj-C ABI
dependent.
- <rdar://problem/8139758> arm objc _objc_msgSend_fpret bug
llvm-svn: 108379
self-host. Hopefully these results hold up on different platforms.
I tried to keep the GNU ObjC runtime happy, but it's hard for me to test.
Reimplement how clang generates IR for exceptions. Instead of creating new
invoke destinations which sequentially chain to the previous destination,
push a more semantic representation of *why* we need the cleanup/catch/filter
behavior, then collect that information into a single landing pad upon request.
Also reorganizes how normal cleanups (i.e. cleanups triggered by non-exceptional
control flow) are generated, since it's actually fairly closely tied in with
the former. Remove the need to track which cleanup scope a block is associated
with.
Document a lot of previously poorly-understood (by me, at least) behavior.
The new framework implements the Horrible Hack (tm), which requires every
landing pad to have a catch-all so that inlining will work. Clang no longer
requires the Horrible Hack just to make exceptions flow correctly within
a function, however. The HH is an unfortunate requirement of LLVM's EH IR.
llvm-svn: 107631
have CGF create and make accessible standard int32,int64 and
intptr types. This fixes a ton of 80 column violations
introduced by LLVMContextification and cleans up stuff a lot.
llvm-svn: 106977