Add a version to non-LLVM cmake package so that users needing an exact
version match can use the version parameter to find_package. Also adjust
the find_package(LLVM) to use an exact version match as well.
Reviewed By: arsenm, stellaraccident, mceier
Differential Revision: https://reviews.llvm.org/D138274
Add a version to non-LLVM cmake package so that users needing an exact
version match can use the version parameter to find_package. Also adjust
the find_package(LLVM) to use an exact version match as well.
Reviewed By: arsenm, stellaraccident
Differential Revision: https://reviews.llvm.org/D138274
420d7ccbac introduced BACKEND_PACKAGE_STRING to
replace `PACKAGE_VERSION` (llvm/Config/config.h) to support standalone builds.
This is used in the output of `clang -cc1 -v`.
Since llvm-config.h is available for both standalone and non-standalone builds,
we can just use `LLVM_VERSION_STRING` from llvm-config.h.
clang/cmake/modules/AddClang.cmake uses `VERSION_STRING "${CLANG_VERSION} (${BACKEND_PACKAGE_STRING})"`.
Just simplify it to `"${CLANG_VERSION}"` so that we can remove the CMake
variable BACKEND_PACKAGE_STRING.
Reviewed By: tstellar
Differential Revision: https://reviews.llvm.org/D136660
`LLVM_DISTRIBUTION_COMPONENTS` now influences the llvm binary in the
normal cmake output directory when it is set. This allows for
distribution targets to only include tools they want in the llvm
binary. It must be done this way because only one target can be
associated with a specific output name.
Differential Revision: https://reviews.llvm.org/D131310
A simple sed doing these substitutions:
- `${LLVM_BINARY_DIR}/lib${LLVM_LIBDIR_SUFFIX}\>` -> `${LLVM_LIBRARY_DIR}`
- `${LLVM_BINARY_DIR}/bin\>` -> `${LLVM_TOOLS_BINARY_DIR}`
where `\>` means "word boundary".
The only manual modifications were reverting changes in
- `runtimes/CMakeLists.txt`
because these were "entry points" where we wanted to tread carefully not not introduce a "loop" which would end with an undefined variable being expanded to nothing.
There are some `${LLVM_BINARY_DIR}/lib` without the `${LLVM_LIBDIR_SUFFIX}`, but these refer to the lib subdirectory of the source (`llvm/lib`). That `lib` is automatically appended to make the local `CMAKE_CURRENT_BINARY_DIR` value by `add_subdirectory`; since the directory name in the source tree is fixed without any suffix, the corresponding `CMAKE_CURRENT_BINARY_DIR` will also be. We therefore do not replace it but leave it as-is.
This picks up where D133828 left off, getting the occurrences with*out* `CMAKE_CFG_INTDIR`. But this is difficult to do correctly and so not done in the (retroactively) previous diff.
This hopefully increases readability overall, and also decreases the usages of `LLVM_LIBDIR_SUFFIX`, preparing us for D130586.
Reviewed By: sebastian-ne
Differential Revision: https://reviews.llvm.org/D132316
A simple sed doing these substitutions:
- `${LLVM_BINARY_DIR}/(\$\{CMAKE_CFG_INTDIR}/)?lib(${LLVM_LIBDIR_SUFFIX})?\>` -> `${LLVM_LIBRARY_DIR}`
- `${LLVM_BINARY_DIR}/(\$\{CMAKE_CFG_INTDIR}/)?bin\>` -> `${LLVM_TOOLS_BINARY_DIR}`
where `\>` means "word boundary".
The only manual modifications were reverting changes in
- `compiler-rt/cmake/Modules/CompilerRTUtils.cmake
- `runtimes/CMakeLists.txt`
because these were "entry points" where we wanted to tread carefully not not introduce a "loop" which would end with an undefined variable being expanded to nothing.
This hopefully increases readability overall, and also decreases the usages of `LLVM_LIBDIR_SUFFIX`, preparing us for D130586.
Reviewed By: sebastian-ne
Differential Revision: https://reviews.llvm.org/D132316
We held off on this before as `LLVM_LIBDIR_SUFFIX` conflicted with it.
Now we return this.
`LLVM_LIBDIR_SUFFIX` is kept as a deprecated way to set
`CMAKE_INSTALL_LIBDIR`. The other `*_LIBDIR_SUFFIX` are just removed
entirely.
I imagine this is too potentially-breaking to make LLVM 15. That's fine.
I have a more minimal version of this in the disto (NixOS) patches for
LLVM 15 (like previous versions). This more expansive version I will
test harder after the release is cut.
Reviewed By: sebastian-ne, ldionne, #libc, #libc_abi
Differential Revision: https://reviews.llvm.org/D130586
This reverts commit d959324e1e.
The target_include_directories in the clang-fuzzer CMake files
are set to PRIVATE instead of PUBLIC to prevent the clang buildbots
from breaking when symlinking clang into llvm.
The expression evaluator fuzzer itself has been modified to prevent a
bug that occurs when running it without a target.
Firstly, we we make an additional GNUInstallDirs-style variable. With
NixOS, for example, this is crucial as we want those to go in
`${dev}/lib/cmake` not `${out}/lib/cmake` as that would a cmake subdir
of the "regular" libdir, which is installed even when no one needs to do
any development.
Secondly, we make *Config.cmake robust to absolute package install
paths. We for NixOS will in fact be passing them absolute paths to make
the `${dev}` vs `${out}` distinction mentioned above, and the
GNUInstallDirs-style variables are suposed to support absolute paths in
general so it's good practice besides the NixOS use-case.
Thirdly, we make `${project}_INSTALL_PACKAGE_DIR` CACHE PATHs like other
install dirs are.
Reviewed By: sebastian-ne
Differential Revision: https://reviews.llvm.org/D117973
Copying the folder keeps the original permissions by default. This
creates problems when the source folder is read-only, e.g. in a
packaging environment.
Then, the copied folder in the build directory is read-only as well.
Later on, other files are copied into that directory (in the build
tree), failing when the directory is read-only.
Fix that problem by copying the folder without keeping the original
permissions.
Follow-up to D130254.
Differential Revision: https://reviews.llvm.org/D130338
This commit adds a fuzzer for LLDB's expression evaluator.
The fuzzer takes a different approach than the current fuzzers
present, and uses an approach that is currently being used for
clang fuzzers.
Instead of fuzzing the evaluator with randomly mutated
characters, protobufs are used to generate a subset of C++. This
is then converted to valid C++ code and sent to the expression
evaluator. In addition, libprotobuf_mutator is used to mutate
the fuzzer's inputs from valid C++ code to valid C++ code, rather
than mutating from valid code to total nonsense.
Differential revision: https://reviews.llvm.org/D129377
Copying the folder keeps the original permissions by default. This
creates problems when the source folder is read-only, e.g. in a
packaging environment.
Then, the copied folder in the build directory is read-only as well.
Later on, with configure_file, ClangConfig.cmake is copied into that
directory (in the build tree), failing when the directory is read-only.
Fix that problem by copying the folder without keeping the original
permissions.
Differential Revision: https://reviews.llvm.org/D130254
First of all, `LLVM_TOOLS_INSTALL_DIR` put there breaks our NixOS
builds, because `LLVM_TOOLS_INSTALL_DIR` defined the same as
`CMAKE_INSTALL_BINDIR` becomes an *absolute* path, and then when
downstream projects try to install there too this breaks because our
builds always install to fresh directories for isolation's sake.
Second of all, note that `LLVM_TOOLS_INSTALL_DIR` stands out against the
other specially crafted `LLVM_CONFIG_*` variables substituted in
`llvm/cmake/modules/LLVMConfig.cmake.in`.
@beanz added it in d0e1c2a550 to fix a
dangling reference in `AddLLVM`, but I am suspicious of how this
variable doesn't follow the pattern.
Those other ones are carefully made to be build-time vs install-time
variables depending on which `LLVMConfig.cmake` is being generated, are
carefully made relative as appropriate, etc. etc. For my NixOS use-case
they are also fine because they are never used as downstream install
variables, only for reading not writing.
To avoid the problems I face, and restore symmetry, I deleted the
exported and arranged to have many `${project}_TOOLS_INSTALL_DIR`s.
`AddLLVM` now instead expects each project to define its own, and they
do so based on `CMAKE_INSTALL_BINDIR`. `LLVMConfig` still exports
`LLVM_TOOLS_BINARY_DIR` which is the location for the tools defined in
the usual way, matching the other remaining exported variables.
For the `AddLLVM` changes, I tried to copy the existing pattern of
internal vs non-internal or for LLVM vs for downstream function/macro
names, but it would good to confirm I did that correctly.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D117977
When LLVM_TOOL_LLVM_DRIVER_BUILD is On, create symlinks
to llvm instead of creating the executables. Currently
this only works for install and not
install-distribution, the work for the later will be
split up into a second patch.
Differential Revision: https://reviews.llvm.org/D127800
First of all, `LLVM_TOOLS_INSTALL_DIR` put there breaks our NixOS
builds, because `LLVM_TOOLS_INSTALL_DIR` defined the same as
`CMAKE_INSTALL_BINDIR` becomes an *absolute* path, and then when
downstream projects try to install there too this breaks because our
builds always install to fresh directories for isolation's sake.
Second of all, note that `LLVM_TOOLS_INSTALL_DIR` stands out against the
other specially crafted `LLVM_CONFIG_*` variables substituted in
`llvm/cmake/modules/LLVMConfig.cmake.in`.
@beanz added it in d0e1c2a550 to fix a
dangling reference in `AddLLVM`, but I am suspicious of how this
variable doesn't follow the pattern.
Those other ones are carefully made to be build-time vs install-time
variables depending on which `LLVMConfig.cmake` is being generated, are
carefully made relative as appropriate, etc. etc. For my NixOS use-case
they are also fine because they are never used as downstream install
variables, only for reading not writing.
To avoid the problems I face, and restore symmetry, I deleted the
exported and arranged to have many `${project}_TOOLS_INSTALL_DIR`s.
`AddLLVM` now instead expects each project to define its own, and they
do so based on `CMAKE_INSTALL_BINDIR`. `LLVMConfig` still exports
`LLVM_TOOLS_BINARY_DIR` which is the location for the tools defined in
the usual way, matching the other remaining exported variables.
For the `AddLLVM` changes, I tried to copy the existing pattern of
internal vs non-internal or for LLVM vs for downstream function/macro
names, but it would good to confirm I did that correctly.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D117977
This patch adds an llvm-driver multicall tool that can combine multiple
LLVM-based tools. The build infrastructure is enabled for a tool by
adding the GENERATE_DRIVER option to the add_llvm_executable CMake
call, and changing the tool's main function to a canonicalized
tool_name_main format (i.e. llvm_ar_main, clang_main, etc...).
As currently implemented llvm-driver contains dsymutil, llvm-ar,
llvm-cxxfilt, llvm-objcopy, and clang (if clang is included in the
build).
llvm-driver can be enabled from builds by setting
LLVM_TOOL_LLVM_DRIVER_BUILD=On.
There are several limitations in the current implementation, which can
be addressed in subsequent patches:
(1) the multicall binary cannot currently properly handle
multi-dispatch tools. This means symlinking llvm-ranlib to llvm-driver
will not properly result in llvm-ar's main being called.
(2) the multicall binary cannot be comprised of tools containing
conflicting cl::opt options as the global cl::opt option list cannot
contain duplicates.
These limitations can be addressed in subsequent patches.
Differential revision: https://reviews.llvm.org/D109977
This is the original patch in my GNUInstallDirs series, now last to merge as the final piece!
It arose as a new draft of D28234. I initially did the unorthodox thing of pushing to that when I wasn't the original author, but since I ended up
- Using `GNUInstallDirs`, rather than mimicking it, as the original author was hesitant to do but others requested.
- Converting all the packages, not just LLVM, effecting many more projects than LLVM itself.
I figured it was time to make a new revision.
I have used this patch series (and many back-ports) as the basis of https://github.com/NixOS/nixpkgs/pull/111487 for my distro (NixOS), which was merged last spring (2021). It looked like people were generally on board in D28234, but I make note of this here in case extra motivation is useful.
---
As pointed out in the original issue, a central tension is that LLVM already has some partial support for these sorts of things. Variables like `COMPILER_RT_INSTALL_PATH` have already been dealt with. Variables like `LLVM_LIBDIR_SUFFIX` however, will require further work, so that we may use `CMAKE_INSTALL_LIBDIR`.
These remaining items will be addressed in further patches. What is here is now rote and so we should get it out of the way before dealing more intricately with the remainder.
Reviewed By: #libunwind, #libc, #libc_abi, compnerd
Differential Revision: https://reviews.llvm.org/D99484
This is the original patch in my GNUInstallDirs series, now last to merge as the final piece!
It arose as a new draft of D28234. I initially did the unorthodox thing of pushing to that when I wasn't the original author, but since I ended up
- Using `GNUInstallDirs`, rather than mimicking it, as the original author was hesitant to do but others requested.
- Converting all the packages, not just LLVM, effecting many more projects than LLVM itself.
I figured it was time to make a new revision.
I have used this patch series (and many back-ports) as the basis of https://github.com/NixOS/nixpkgs/pull/111487 for my distro (NixOS), which was merged last spring (2021). It looked like people were generally on board in D28234, but I make note of this here in case extra motivation is useful.
---
As pointed out in the original issue, a central tension is that LLVM already has some partial support for these sorts of things. Variables like `COMPILER_RT_INSTALL_PATH` have already been dealt with. Variables like `LLVM_LIBDIR_SUFFIX` however, will require further work, so that we may use `CMAKE_INSTALL_LIBDIR`.
These remaining items will be addressed in further patches. What is here is now rote and so we should get it out of the way before dealing more intricately with the remainder.
Reviewed By: #libunwind, #libc, #libc_abi, compnerd
Differential Revision: https://reviews.llvm.org/D99484
LLVM has a documented mechanism for passing configuration information to
an out of tree project using CMake. See
https://llvm.org/docs/CMake.html#embedding-llvm-in-your-project.
Similar logic applies to "standalone" builds of other sub-projects
within LLVM that depend on each other. For example, a standalone build
of Flang will use this mechanism to acquire Clang's configuration.
Currently, the relevant CMake modules for Clang will only be copied into
the installation directory. This means that in order to configure a
standalone build of Flang, one has to first build and then install
Clang. This is not required for LLVM nor for MLIR - other sub-projects
that Flang depends on (i.e. the CMake modules for LLVM and MLIR are
available in the build dir, so installation is not needed).
This change removes the need for installing Clang in order to access its
configuration. It makes sure that the required CMake modules are copied
into the build directory. This will make Clang behave consistently with
LLVM and MLIR in this respect. It will also simplify building Flang as
standalone sub-project.
Differential Revision: https://reviews.llvm.org/D116731
See the docs in the new function for details.
I think I found every instance of this copy pasted code. Polly could
also use it, but currently does something different, so I will save the
behavior change for a future revision.
We get the shared, non-installed CMake modules following the pattern
established in D116472.
It might be good to have LLD and Flang also use this, but that would be
a functional change and so I leave it as future work.
Reviewed By: beanz, lebedev.ri
Differential Revision: https://reviews.llvm.org/D116521
This reverts commit 6d7b3d6b3a.
Breaks running cmake with `-DCLANG_ENABLE_STATIC_ANALYZER=OFF`
without turning off CLANG_TIDY_ENABLE_STATIC_ANALYZER.
See comments on https://reviews.llvm.org/D109611 for details.
Since https://reviews.llvm.org/D87118, the StaticAnalyzer directory is
added unconditionally. In theory this should not cause the static analyzer
sources to be built unless they are referenced by another target. However,
the clang-cpp target (defined in clang/tools/clang-shlib) uses the
CLANG_STATIC_LIBS global property to determine which libraries need to
be included. To solve this issue, this patch avoids adding libraries to
that property if EXCLUDE_FROM_ALL is set.
In case something like this comes up again: `cmake --graphviz=targets.dot`
is quite useful to see why a target is included as part of `ninja all`.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D109611
LLVM's build system contains support for configuring a distribution, but
it can often be useful to be able to configure multiple distributions
(e.g. if you want separate distributions for the tools and the
libraries). Add this support to the build system, along with
documentation and usage examples.
Reviewed By: phosek
Differential Revision: https://reviews.llvm.org/D89177
This makes sure that AddClang.cmake is installed alongside other Clang
CMake modules. This mirrors LLVM and MLIR in this respect and is
required when building the new Flang driver out of tree (as it depends
on Clang and includes AddClang.cmake).
Reviewed By: bogner
Differential Revision: https://reviews.llvm.org/D94533
If a client code wants to consume clang libraries, it needs to know
CLANG_LINK_CLANG_DYLIB value in order to decide whether to use the DYLIB or
individual components.
Differential Revision: https://reviews.llvm.org/D82291
f8990feb12 enabled installing PIC version of both libclang.a and
libclang.so when LIBCLANG_BUILD_STATIC is ON. But it broke the no-PIC
build when LLVM_ENABLE_PIC=OFF with the following error:
```
CMake Error at
/b/s/w/ir/cache/builder/src/third_party/llvm/clang/tools/libclang/CMakeLists.txt:123
(target_compile_definitions):
target_compile_definitions called with non-compilable target type
```
This is because as the code loops through ${name} and ${name}_static, it
introduced a side effect, which is adding an empty libclang_static to
targets. Later target_compile_definitions is called on libclang_static.
That function requires that target must have been created by a command
such as add_executable() or add_library(), so it crashed.
The solution is to not naively loop through both libclang and
libclang_static, but only the ones that are actually added by
llvm_add_library(). Here's the library build type to library target name
mapping:
| SHARED only | libclang |
| STATIC only | libclang |
| SHARED and STATIC | libclang and libclang_static |
So only when SHARED and STATIC are both set should we loop through two
targets. Explicitly parse the STATIC argument and set the list
accordingly.
Reviewed By: smeenai
Differential Revision: https://reviews.llvm.org/D79059
This broke builds configured with
$ cmake -GNinja -DCMAKE_BUILD_TYPE=Release '-DLLVM_ENABLE_PROJECTS=clang' '-DLLVM_TARGETS_TO_BUILD=X86' -DLLVM_ENABLE_PIC=OFF ../llvm
CMake Error at
/b/s/w/ir/cache/builder/src/third_party/llvm/clang/tools/libclang/CMakeLists.txt:123
(target_compile_definitions):
target_compile_definitions called with non-compilable target type
This reverts commit f8990feb12.
When LIBCLANG_BUILD_STATIC=ON and LLVM_ENABLE_PIC=ON, PIC version of
libclang.a and libclang.so are built as expected. However libclang.a is
not installed. Looking at the macro llvm_add_library(), when both SHARED
and STATIC are set, it renames the static library to ${name}_static and
then adds it to targets. But when add_clang_library() calls install, it
only checks if ${name} is in targets.
To work around this issue, loop through both ${name} and ${name}_static
and install both of them if they're in targets. This is still correct if
only shared or static library is built. In those cases, only ${name} is
added to targets and cmake install will generate the right install
script depending on the library's type.
Test Plan:
cmake with LIBCLANG_BUILD_STATIC=ON and then ninja install, from master
and this diff. Compare the result directory trees. Confirm that only
difference is the added libclang.a.
Differential Revision: https://reviews.llvm.org/D78534
Previously, the tablegen() cmake command, which defines custom
commands for running tablegen, included several hardcoded paths. This
becomes unwieldy as there are more users for which these paths are
insufficient. For most targets, cmake uses include_directories() and
the INCLUDE_DIRECTORIES directory property to specify include paths.
This change picks up the INCLUDE_DIRECTORIES property and adds it
to the include path used when running tablegen. As a side effect, this
allows us to remove several hard coded paths to tablegen that are redundant
with specified include_directories().
I haven't removed the hardcoded path to CMAKE_CURRENT_SOURCE_DIR, which
seems generically useful. There are several users in clang which apparently
don't have the current directory as an include_directories(). This could
be considered separately.
The new version of this path uses list APPEND rather than list TRANSFORM,
in order to be compatible with cmake 3.4.3. If we update to cmake 3.12 then
we can use list TRANSFORM instead.
Differential Revision: https://reviews.llvm.org/D77156
Previously, the tablegen() cmake command, which defines custom
commands for running tablegen, included several hardcoded paths. This
becomes unwieldy as there are more users for which these paths are
insufficient. For most targets, cmake uses include_directories() and
the INCLUDE_DIRECTORIES directory property to specify include paths.
This change picks up the INCLUDE_DIRECTORIES property and adds it
to the include path used when running tablegen. As a side effect, this
allows us to remove several hard coded paths to tablegen that are redundant
with specified include_directories().
I haven't removed the hardcoded path to CMAKE_CURRENT_SOURCE_DIR, which
seems generically useful. There are several users in clang which apparently
don't have the current directory as an include_directories(). This could
be considered separately.
Differential Revision: https://reviews.llvm.org/D77156
Undoes some of the effects of r360946 when using the Xcode CMake
generator---it doesn't handle object libraries correctly at all.
Attempts to still honor BUILD_SHARED_LIBS for Xcode, but I didn't
actually test it. Should have no effect on non-Xcode generators.
https://reviews.llvm.org/D68430
llvm-svn: 373769
Summary:
This will simplify the macros by allowing us to remove the hard-coded
list of libraries that should be installed when
LLVM_INSTALL_TOOLCHAIN_ONLY is enabled.
Reviewers: beanz, smeenai
Reviewed By: beanz
Subscribers: aheejin, mehdi_amini, mgorny, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64580
llvm-svn: 365902
Summary: This file was moved to llvm in D54978, r356929, but the old
file was never removed.
Reviewed By: beanz
Tags: #clang
Differential Revision: https://reviews.llvm.org/D62343
llvm-svn: 361663
llvm_add_library ignores `BUILD_SHARED_LIBS` `STATIC` is explicitly specified. This restores the `BUILD_SHARED_LIBS` behavior to the clang build.
llvm-svn: 361271
Summary:
This patch adds a libClang_shared library on *nix systems which exports the entire C++ API. In order to support this on Windows we should really refactor llvm-shlib and share code between the two.
This also uses a slightly different method for generating the shared library, which I should back-port to llvm-shlib. Instead of linking the static archives and passing linker flags to force loading the whole libraries, this patch creates object libraries for every library (which has no cost in the build system), and link the object libraries.
llvm-svn: 360985