Similar to the G_*MULO change.
The code for checking if a constant is legal/pre-legalize is shared between
these, and is kind of hairy. So, factor it out into a new function:
`isConstantLegalOrBeforeLegalizer`.
To make the refactoring clean, further refactor `isLegalOrBeforeLegalizer` into
a wrapper for two functions:
- `isPreLegalize`
- `isLegal`
This is a bit easier to read in general.
https://godbolt.org/z/KW7oszP1o
Differential Revision: https://reviews.llvm.org/D118655
Similar to the following combine in `DAGCombiner::visitMULO`:
```
// fold (mulo x, 0) -> 0 + no carry out
if (isNullOrNullSplat(N1))
return CombineTo(N, DAG.getConstant(0, DL, VT),
DAG.getConstant(0, DL, CarryVT));
```
This fixes some generally poor codegen for `*mulo`:
https://godbolt.org/z/eTxYsvz8f
Differential Revision: https://reviews.llvm.org/D118635
This change folds (or (shl x, C0), (lshr y, C1)) to funnel shift iff C0
and C1 are constants where C0 + C1 is the bit-width of the shift
instructions.
Differential Revision: https://reviews.llvm.org/D116529
The GlobalISel combiner currently uses sign extension when manipulating
the LHS constant when combining a sequence of the following sequence of
machine instructions into a single constant:
```
%0:_(s32) = G_CONSTANT i32 <CONSTANT>
%1:_(p0) = G_INTTOPTR %0:_(s32)
%2:_(s64) = G_CONSTANT i64 <CONSTANT>
%3:_(p0) = G_PTR_ADD %1:_, %2:_(s64)
```
This causes an issue when the bit width of the first contant and the
target pointer size are different, as G_INTTOPTR has no sign extension
semantics.
This patch fixes this by capture an arbitrary precision in when matching
the constant, allowing the matching function to correctly zero extend
it.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D116941
Fma combine assumes that MRI.getVRegDef(Reg)->getOperand(0).getReg() = Reg
which is not true when Reg is defined by instruction with multiple defs
e.g. G_UNMERGE_VALUES.
Fix is to keep register and the instruction that defines register in
DefinitionAndSourceRegister and use when needed.
Differential Revision: https://reviews.llvm.org/D117032
Change CombinerHelper::matchBitfieldExtractFromShrAnd to use
getPreferredShiftAmountTy for the shift-amount-like operands of G_UBFX
just like all the other G_[SU]BFX combines do. This better matches the
AMDGPU legality rules for these instructions.
Differential Revision: https://reviews.llvm.org/D116803
1. Fix CombinerHelper::matchBitfieldExtractFromAnd to check legality
with the correct types for the G_UBFX that it builds.
2. Fix AMDGPUTargetLowering::isConstantUnsignedBitfieldExtractLegal to
match the legality rules: result and first operand can be s32 or s64
but the "shift amount" operands are always s32.
3. Add AMDGPU tests where the post-legalizer combiner would create
illegal MIR without the above fixes.
Differential Revision: https://reviews.llvm.org/D116802
Expanding on D109750.
Since `DBG_VALUE` instructions have final register validity determined in
`LDVImpl::handleDebugValue`, there is no apparent reason to immediately prune
unused register operands as their defs are erased. Consequently, this renders
`MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval` moot; gaining a
substantial performance improvement.
The only necessary changes involve making relevant passes consider invalid
DBG_VALUE vregs uses as valid.
Reviewed By: MatzeB
Differential Revision: https://reviews.llvm.org/D112852
This change exposes isBuildVectorConstantSplat() to the llvm namespace
and uses it to implement the constant splat versions of
m_SpecificICst().
CombinerHelper::matchOrShiftToFunnelShift() can now work with vector
types and CombinerHelper::matchMulOBy2()'s match for a constant splat is
simplified.
Differential Revision: https://reviews.llvm.org/D114625
This change folds a basic funnel shift idiom:
- (or (shl x, amt), (lshr y, sub(bw, amt))) -> fshl(x, y, amt)
- (or (shl x, sub(bw, amt)), (lshr y, amt)) -> fshr(x, y, amt)
This also helps in folding to rotate shift if x and y are equal since we
already have a funnel shift to rotate combine.
Differential Revision: https://reviews.llvm.org/D114499
If possible fold fneg into instruction above if users cannot fold mods and we
know it will decrease instruction count.
Follows same logic as SDAG combiner in choosing opportunities to combine.
Differential Revision: https://reviews.llvm.org/D112827
In order to not generate an unnecessary G_CTLZ, I extended the constant folder
in the CSEMIRBuilder to handle G_CTLZ. I also added some extra handing of
vector constants too. It seems we don't have any support for doing constant
folding of vector constants, so the tests show some other useless G_SUB
instructions too.
Differential Revision: https://reviews.llvm.org/D111036
Stop using APInt constructors and methods that were soft-deprecated in
D109483. This fixes all the uses I found in llvm, except for the APInt
unit tests which should still test the deprecated methods.
Differential Revision: https://reviews.llvm.org/D110807
Similar to what SDAG does when it sees a smulo/umulo against 2
(see: `DAGCombiner::visitMULO`)
This pattern is fairly common in Swift code AFAICT.
Here's an example extracted from a Swift testcase:
https://godbolt.org/z/6cT8Mesx7
Differential Revision: https://reviews.llvm.org/D110662
Rework getConstantstVRegValWithLookThrough in order to make it clear if we
are matching integer/float constant only or any constant(default).
Add helper functions that get DefVReg and APInt/APFloat from constant instr
getIConstantVRegValWithLookThrough: integer constant, only G_CONSTANT
getFConstantVRegValWithLookThrough: float constant, only G_FCONSTANT
getAnyConstantVRegValWithLookThrough: either G_CONSTANT or G_FCONSTANT
Rename getConstantVRegVal and getConstantVRegSExtVal to getIConstantVRegVal
and getIConstantVRegSExtVal. These now only match G_CONSTANT as described
in comment.
Relevant matchers now return both DefVReg and APInt/APFloat.
Replace existing uses of getConstantstVRegValWithLookThrough and
getConstantVRegVal with new helper functions. Any constant match is
only required in:
ConstantFoldBinOp: for constant argument that was bit-cast of float to int
getAArch64VectorSplat: AArch64::G_DUP operands can be any constant
amdgpu select for G_BUILD_VECTOR_TRUNC: operands can be any constant
In other places use integer only constant match.
Differential Revision: https://reviews.llvm.org/D104409
The doc comment for isPredecessor says:
Returns true if \p DefMI precedes \p UseMI or they are the same
instruction.
And dominates relies on that behavior for its own:
Returns true if \p DefMI dominates \p UseMI. By definition an
instruction dominates itself.
Make both statements correct by fixing isPredecessor.
Found by inspection.
This renames the primary methods for creating a zero value to `getZero`
instead of `getNullValue` and renames predicates like `isAllOnesValue`
to simply `isAllOnes`. This achieves two things:
1) This starts standardizing predicates across the LLVM codebase,
following (in this case) ConstantInt. The word "Value" doesn't
convey anything of merit, and is missing in some of the other things.
2) Calling an integer "null" doesn't make any sense. The original sin
here is mine and I've regretted it for years. This moves us to calling
it "zero" instead, which is correct!
APInt is widely used and I don't think anyone is keen to take massive source
breakage on anything so core, at least not all in one go. As such, this
doesn't actually delete any entrypoints, it "soft deprecates" them with a
comment.
Included in this patch are changes to a bunch of the codebase, but there are
more. We should normalize SelectionDAG and other APIs as well, which would
make the API change more mechanical.
Differential Revision: https://reviews.llvm.org/D109483
This is a port of a combine which matches a pattern where a wide type scalar
value is stored by several narrow stores. It folds it into a single store or
a BSWAP and a store if the targets supports it.
Assuming little endian target:
i8 *p = ...
i32 val = ...
p[0] = (val >> 0) & 0xFF;
p[1] = (val >> 8) & 0xFF;
p[2] = (val >> 16) & 0xFF;
p[3] = (val >> 24) & 0xFF;
=>
*((i32)p) = val;
On CTMark AArch64 -Os this results in a good amount of savings:
Program before after diff
SPASS 412792 412788 -0.0%
kc 432528 432512 -0.0%
lencod 430112 430096 -0.0%
consumer-typeset 419156 419128 -0.0%
bullet 475840 475752 -0.0%
tramp3d-v4 367760 367628 -0.0%
clamscan 383388 383204 -0.0%
pairlocalalign 249764 249476 -0.1%
7zip-benchmark 570100 568860 -0.2%
sqlite3 287628 286920 -0.2%
Geomean difference -0.1%
Differential Revision: https://reviews.llvm.org/D109419
Legalize G_MEMCPY, G_MEMMOVE, G_MEMSET and G_MEMCPY_INLINE.
Corresponding intrinsics are replaced by a loop that uses loads/stores in
AMDGPULowerIntrinsics pass unless their length is a constant lower then
MemIntrinsicExpandSizeThresholdOpt (default 1024). Any G_MEM* instruction that
reaches legalizer should have a const length argument and should be expanded
into appropriate number of loads + stores.
Differential Revision: https://reviews.llvm.org/D108357
This allows constructing a MemDesc from a MachineMemoryOperand, a pattern that starts to show up more frequently.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D109161
This adds the following combines:
```
x = ... 0 or 1
c = icmp eq x, 1
->
c = x
```
and
```
x = ... 0 or 1
c = icmp ne x, 0
->
c = x
```
When the target's true value for the relevant types is 1.
This showed up in the following situation:
https://godbolt.org/z/M5jKexWTW
SDAG currently supports the `ne` case, but not the `eq` case. This can probably
be further generalized, but I don't feel like thinking that hard right now.
This gives some minor code size improvements across the board on CTMark at
-Os for AArch64. (0.1% for 7zip and pairlocalalign in particular.)
Differential Revision: https://reviews.llvm.org/D109130
The sext_inreg_of_load combine did not have the isLegalOrBeforeLegalizer check,
leading to the generation of potentially illegal G_SEXTLOADs when run after legalization.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D108626
Combine two G_PTR_ADDs, but keep the register bank of the constant.
That way, the combine can be used in post-regbank-select combines.
Introduce two helper methods in CombinerHelper, getRegBank and
setRegBank that get and set an optional register bank to a register.
That way, they can be used before and after register bank selection.
Differential Revision: https://reviews.llvm.org/D103326
This is a fairly common pattern:
```
%mask = G_CONSTANT iN <mask val>
%add = G_ADD %lhs, %rhs
%and = G_AND %add, %mask
```
We have combines to eliminate G_AND with a mask that does nothing.
If we combined the above to this:
```
%mask = G_CONSTANT iN <mask val>
%narrow_lhs = G_TRUNC %lhs
%narrow_rhs = G_TRUNC %rhs
%narrow_add = G_ADD %narrow_lhs, %narrow_rhs
%ext = G_ZEXT %narrow_add
%and = G_AND %ext, %mask
```
We'd be able to take advantage of those combines using the trunc + zext.
For this to work (or be beneficial in the best case)
- The operation we want to narrow then widen must only be used by the G_AND
- The G_TRUNC + G_ZEXT must be free
- Performing the operation at a narrower width must not produce a different
value than performing it at the original width *after masking.*
Example comparison between SDAG + GISel: https://godbolt.org/z/63jzb1Yvj
At -Os for AArch64, this is a 0.2% code size improvement on CTMark/pairlocalign.
Differential Revision: https://reviews.llvm.org/D107929
We should use MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval()
instead of eraseFromParent().
We should probably use that in other places too but fix this issue which
affects clang bootstrap builds for now.
Instructions that produceSameValue produce same values for operands with
same index. matchEqualDefs used to return true for any two values from
different instructions that produce same values. Fix this by checking if
values are defined by operands with the same index.
Differential Revision: https://reviews.llvm.org/D107362
Use it AArch64 post-legal combiner. These don't always get folded because when
the instructions are created the constants are obscured by artifacts.
Differential Revision: https://reviews.llvm.org/D106776
Although this combine checks that there's no load folding barriers between
the loads that it's trying to merge, it was inserting the load at the
MIRBuilder's default insertion point, which is the G_OR use inst.
This was causing a miscompile in the test suite's
SingleSource/Regression/C/gcc-c-torture/execute/GCC-C-execute-bswap-2
Differential Revision: https://reviews.llvm.org/D106251
This adds some level of type safety, allows helper functions to be added for
specific opcodes for free, and also allows us to succinctly check for class
membership with the usual dyn_cast/isa/cast functions.
To start off with, add variants for the different load/store operations with some
places using it.
Differential Revision: https://reviews.llvm.org/D105751
We're trying to match a few pointer computation patterns here for
re-association opportunities.
1) Isolating a constant operand to be on the RHS, e.g.:
G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
2) Folding two constants in each sub-tree as long as such folding
doesn't break a legal addressing mode.
G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
AArch64 code size improvements on CTMark with -Os:
Program before after diff
pairlocalalign 251048 251044 -0.0%
consumer-typeset 421820 421812 -0.0%
kc 431348 431320 -0.0%
SPASS 413404 413300 -0.0%
clamscan 384396 384220 -0.0%
tramp3d-v4 370640 370412 -0.1%
lencod 432096 431772 -0.1%
bullet 479400 478796 -0.1%
sqlite3 288504 288072 -0.1%
7zip-benchmark 573796 570768 -0.5%
Geomean difference -0.1%
Differential Revision: https://reviews.llvm.org/D105069
This enables proper lowering of non-byte sized loads. We still aren't
faithfully preserving memory types everywhere, so the legality checks
still only consider the size.
Adds legalizer, register bank select, and instruction
select support for G_SBFX and G_UBFX. These opcodes generate
scalar or vector ALU bitfield extract instructions for
AMDGPU. The instructions allow both constant or register
values for the offset and width operands.
The 32-bit scalar version is expanded to a sequence that
combines the offset and width into a single register.
There are no 64-bit vgpr bitfield extract instructions, so the
operations are expanded to a sequence of instructions that
implement the operation. If the width is a constant,
then the 32-bit bitfield extract instructions are used.
Moved the AArch64 specific code for creating G_SBFX to
CombinerHelper.cpp so that it can be used by other targets.
Only bitfield extracts with constant offset and width values
are handled currently.
Differential Revision: https://reviews.llvm.org/D100149
Since this method can apply to cmpxchg operations, make sure it's clear
what value we're actually retrieving. This will help ensure we don't
accidentally ignore the failure ordering of cmpxchg in the future.
We could potentially introduce a getOrdering() method on AtomicSDNode
that asserts the operation isn't cmpxchg, but not sure that's
worthwhile.
Differential Revision: https://reviews.llvm.org/D103338
Use existing KnownBits helpers from KnownBits.h to simplify G_ICMPs.
E.g.
x == x -> true
x != x -> false
load(x) > 1 -> true (when the load is known to be greater than 1)
And so on.
Differential Revision: https://reviews.llvm.org/D102542
GCC warning:
```
/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp: In member function ‘bool llvm::CombinerHelper::matchFunnelShiftToRotate(llvm::MachineInstr&)’:
/llvm-project/llvm/lib/CodeGen/GlobalISel/CombinerHelper.cpp:3882:35: warning: ?: using integer constants in boolean context, the expression will always evaluate to ‘true’ [-Wint-in-bool-context]
3882 | Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
Basically a port of isBitfieldExtractOpFromSExtInReg in AArch64ISelDAGToDAG.
This is only done post-legalization for now. Once the legalizer knows how to
decompose these back into shifts, this requirement can probably be removed.
Differential Revision: https://reviews.llvm.org/D99230
Currently needsStackRealignment returns false if canRealignStack returns false.
This means that the behavior of needsStackRealignment does not correspond to
it's name and description; a function might need stack realignment, but if it
is not possible then this function returns false. Furthermore,
needsStackRealignment is not virtual and therefore some backends have made use
of canRealignStack to indicate whether a function needs stack realignment.
This patch attempts to clarify the situation by separating them and introducing
new names:
- shouldRealignStack - true if there is any reason the stack should be
realigned
- canRealignStack - true if we are still able to realign the stack (e.g. we
can still reserve/have reserved a frame pointer)
- hasStackRealignment = shouldRealignStack && canRealignStack (not target
customisable)
Targets can now override shouldRealignStack to indicate that stack realignment
is required.
This change will make it easier in a future change to handle the case where we
need to realign the stack but can't do so (for example when the register
allocator creates an aligned spill after the frame pointer has been
eliminated).
Differential Revision: https://reviews.llvm.org/D98716
Change-Id: Ib9a4d21728bf9d08a545b4365418d3ffe1af4d87
It is good to have a combined `divrem` instruction when the
`div` and `rem` are computed from identical input operands.
Some targets can lower them through a single expansion that
computes both division and remainder. It effectively reduces
the number of instructions than individually expanding them.
Reviewed By: arsenm, paquette
Differential Revision: https://reviews.llvm.org/D96013
If every element is extracted from a G_BUILD_VECTOR, pass through the source
registers. This is different to the extract(build_vector) combine because this
one tolerates multiple users as long as they're exhaustive.
Differential Revision: https://reviews.llvm.org/D97890
This combine tries to do inter-block hoisting of extends of G_PHIs, into the
originating blocks of the phi's incoming value. The idea is to expose further
optimization opportunities that are normally obscured by the PHI.
Some basic heuristics, and a target hook for AArch64 is added, to allow tuning.
E.g. if the extend is used by a G_PTR_ADD, it doesn't perform this combine
since it may be folded into the addressing mode during selection.
There are very minor code size improvements on AArch64 -Os, but the real benefit
is that it unlocks optimizations like AArch64 conditional compares on some
benchmarks.
Differential Revision: https://reviews.llvm.org/D95703
The builder was using the extend user as the insertion point, which meant that
we were incorrectly "moving" the load from its original position, and therefore
could violate memory operation ordering.
If the G_BR + G_BRCOND in this combine use the same MBB, then it will infinite
loop. Don't allow that to happen.
Differential Revision: https://reviews.llvm.org/D95895
This is a restricted version of the combine in `DAGCombiner::MatchLoadCombine`.
(See D27861)
This tries to recognize patterns like below (assuming a little-endian target):
```
s8* x = ...
s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
->
s32 val = *((i32)a)
s8* x = ...
s32 val = a[3] | (a[2] << 8) | (a[1] << 16) | (a[0] << 24)
->
s32 val = BSWAP(*((s32)a))
```
(This patch also handles the big-endian target case as well, in which the first
example above has a BSWAP, and the second example above does not.)
To recognize the pattern, this searches from the last G_OR in the expression
tree.
E.g.
```
Reg Reg
\ /
OR_1 Reg
\ /
OR_2
\ Reg
.. /
Root
```
Each non-OR register in the tree is put in a list. Each register in the list is
then checked to see if it's an appropriate load + shift logic.
If every register is a load + potentially a shift, the combine checks if those
loads + shifts, when OR'd together, are equivalent to a wide load (possibly with
a BSWAP.)
To simplify things, this patch
(1) Only handles G_ZEXTLOADs (which appear to be the common case)
(2) Only works in a single MachineBasicBlock
(3) Only handles G_SHL as the bit twiddling to stick the small load into a
specific location
An IR example of this is here: https://godbolt.org/z/4sP9Pj (lifted from
test/CodeGen/AArch64/load-combine.ll)
At -Os on AArch64, this is a 0.5% code size improvement for CTMark/sqlite3,
and a 0.4% improvement for CTMark/7zip-benchmark.
Also fix a bug in `isPredecessor` which caused it to fail whenever `DefMI` was
the first instruction in the block.
Differential Revision: https://reviews.llvm.org/D94350
Returning int64_t was arbitrarily limiting for wide integer types, and
the functions should handle the full generality of the IR.
Also changes the full form which returns the originally defined
vreg. Add another wrapper for the common case of just immediately
converting to int64_t (arguably this would be useful for the full
return value case as well).
One possible issue with this change is some of the existing uses did
break without conversion to getConstantVRegSExtVal, and it's possible
some without adequate test coverage are now broken.