If the divisor is even, we can first shift the dividend and divisor
right by the number of trailing zeros. Now the divisor is odd and we
can do the original algorithm to calculate a remainder. Then we shift
that remainder left by the number of trailing zeros and add the bits
that were shifted out of the dividend.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D135541
The first two parameters of addcarry are commutative. We may face a situation where both variant are present in the DAG, in which case we benefit from using just one.
Depends on D57302 and D33587
Reviewed By: RKSimon, chfast
Differential Revision: https://reviews.llvm.org/D57317
The scalar instruction of this is `llvm.trunc`. However the naming of
ISD::VP_TRUNC is already taken by `trunc` of the LLVM IR. Naming this as
`vp.ftrunc` would likely cause confusion with `vp.fptrunc`. So adding
`vp.roundtozero` that will look similar to `vp.roundeven`.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D135233
We can still get a NaN even if none of the operands are NaN,
e.g. from +inf/-inf. D50804 didn't catch that.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D134854
Since SROA chooses promotion based on reaching load / stores of allocas, we may run into scenarios in which we alloca a vector, but promote it to an integer. The result of which is the familiar LoadCombine pattern (i.e. ZEXT, SHL, OR). However, instead of coming directly from distinct loads, the elements to be combined are coming from ExtractVectorElements which stem from a shared load.
This patch identifies such a pattern and combines it into a load.
Change-Id: I0bc06588f11e88a0a975cde1fd71e9143e6c42dd
Fix a crash in the FMA combine added by D132837 and amended by D134810.
In cases where the newly created node could be folded, the combiner
would fail this assertion:
llc: DAGCombiner.cpp:268: void (anonymous namespace)::DAGCombiner::AddToWorklist(llvm::SDNode *): Assertion `N->getOpcode() != ISD::DELETED_NODE && "Deleted Node added to Worklist"' failed.
Differential Revision: https://reviews.llvm.org/D135150
We have a very common pattern of dispatching between BUILD_VECTOR and SPLAT_VECTOR creation repeated in many cases in code. Common the pattern into a utility function.
The code introduced in https://reviews.llvm.org/D130881 has a bug as it may cause a use-after-free error that can be caught by ASAN.
The bug essentially boils down to iterator invalidation of `DenseMap`. The expression `SDEI[To] = I->second;` may cause `SDEI` to grow if `To` is inserted for the very first time. When that happens, all existing iterators to the map are invalidated as their backing storage has been freed. Accessing `I->second` is then invalid and attempts to access freed memory (as `I` is an iterator of `SDEI`).
This patch fixes that quite simply by first making a copy of `I->second`, and then moving into the possibly newly inserted KV of the ` DenseMap`.
No test attached as I am not sure it is practible to test.
Differential revision: https://reviews.llvm.org/D135019
Includes handling of constants with vector type in isKnownNeverNaN.
For AMDGPU results in not making fcanonicalize during legalization
for vector inputs to fmaxnum_ieee and fminnum_ieee. Does not affect
end result since there is a combine that eliminates fcanonicalize.
Differential Revision: https://reviews.llvm.org/D88573
Much like f16 and f32, we shouldn't try to shrink bf16 to smaller fp
constant. The code may not be optimal, but this allows us to legalize
bf16 constants under Arm without errors.
D133866 added the llvm::isNeutralConstant helper to track neutral/passthrough constants
This patch updates foldSelectWithIdentityConstant to use the helper instead of maintaining its own opcode handling
Differential Revision: https://reviews.llvm.org/D134966
Using this helper makes work about neutral elements more easier. Although I only
find one case now, I think it will have more chance to be used since so many
combine works are related to neutral elements.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D133866
In the spirit of D130765 . Get rid of cbranches and/or cmov. Usually shorter, but sometime not, becaus eit's hard to prededict when dependency breaking xor will be introduced.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D134736
In D132837, an existing v_fma combine was extended to regard nested
fma instructions. Originally, the inner FMA was checked for being used
only once. In its current state, this check is missing, which causes
some regressions.
In this patch, this check was added.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D134856
D132837 introduced a new DAG combine that used MorphNodeTo to morph an
FMUL into an FMA. It turns out that MorphNodeTo does not properly update
the divergence bit for users of the morphed node, causing an assertion
failure on the new test case:
llc: SelectionDAG.cpp:10486: void llvm::SelectionDAG::VerifyDAGDivergence(): Assertion `calculateDivergence(N) == N->isDivergent() && "Divergence bit inconsistency detected"' failed.
Fixing MorphNodeTo to propagate the divergence bit is tricky because of
the way it is used to select machine instructions, so use getNode and
ReplaceAllUsesOfValueWith instead.
Differential Revision: https://reviews.llvm.org/D134810
On a rv64 without f32 or vector support, this will be passed across
the basic block as an i64. We need use i32 as an intermediate type
with bitcast and anyext/trunc.
Fixes PR58025
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D134758
For gathers which load in 8 and 16 bit data then use that data
as an index, the index can be extended to 32 bits instead of
64 bits
Differential Revision: https://reviews.llvm.org/D130692
Previous commit 8b00b24f85 missed to add `int_ceil` anchor for the
llvm.ceil.* section under LangRef.rst
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D134586
This seems to be beneficial overall, except for midpoint-int.ll .
The X86 backend seems to generate zeroing that are not necesary.
Reviewed By: shchenz
Differential Revision: https://reviews.llvm.org/D131260
Add vp.maxnum and vp.minnum which are vector predicted intrinsics of llvm.maxnum
and llvm.minnum.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D134639
This feature implements support for making entries in the exception section
on XCOFF on the direct assembly path using the ".except" pseudo-op. It also
provides functionality to lower entries (comprised of language and reason
codes) into the exception section through the use of annotation metadata
attached to llvm.ppc.trap/trapd/tw/tdw intrinsics. Integrated assembler
support will be provided in another review. https://reviews.llvm.org/D133030
needs to merge first for LIT tests
Reviewed By: shchenz, RKSimon
Differential Revision: https://reviews.llvm.org/D132146
Promote f16 to f32 and use the f32 libcall.
I deleted rv64zfh-half-intrinsics-strict.ll because it only existed due to this issue breaking rv32.
Differential Revision: https://reviews.llvm.org/D134579
This extends the uniform base transform used with scatter/gather to support one-use vector adds-of-splats with a non-zero base. This has the effect of essentially reassociating an add from vector to scalar domain.
The motivation is to improve the lowering of scatter/gather operations fed by complex geps.
Differential Revision: https://reviews.llvm.org/D134472
RISCV doesn't actually support a scaled form of indexed load and store. We previously handled this by forming the scaled SDNode, and then doing custom legalization during lowering. This patch instead adds a callback via TLI to prevent formation entirely.
This has two effects:
* First, the GEP gets expanded (and used). Instead of the shift being created with an SDLoc of the memory operation, it has the SDLoc of the GEP instruction. This avoids the scheduler perturbing IR order when there's no reason to.
* Second, we fix what appears to be a bug in index calculation with RV32. The rules for GEPs require index calculation be done in particular bitwidth, and it appears the custom legalization code got this wrong for the case where index type exceeds pointer width. (Or at least, I trust the generic GEP lowering to be correct a lot more.)
The DAGCombiner change to handle VPScatter/VPGather is technically separate, but is required to prevent a regression on those intrinsics.
Differential Revision: https://reviews.llvm.org/D134382
The transform to fold an add into the base of a scatter/gather was only checking to see if the LHS was a splat. Included test change indicates that splats are not canonicalized to LHS, and that we need to check both sides.
This patch changes a FADD / FMUL => FMA ISel pattern implemented
in D80801 so that it peeks through more than one FMA.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D132837
I want to default all VP operations to Expand. These 2 were blocking
because VE doesn't support them and the tests were expecting them
to fail a specific way. Using Expand caused them to fail differently.
Seemed better to emulate them using operations that are supported.
@simoll mentioned on Discord that VE has some expansion downstream. Not
sure if its done like this or in the VE target.
Reviewed By: frasercrmck, efocht
Differential Revision: https://reviews.llvm.org/D133514
used, and MUL_LOHI is available
Folding into a sra(mul) / srl(mul) into a mulh introduces an extra
multiplication to compute the high half of the multiplication,
while it is more profitable to compute the high and lower halfs with a
single mul_lohi.
Differential Revision: https://reviews.llvm.org/D133768
This patch contains changes necessary to carry physical condition register (SCC) dependencies through the SDNode scheduler. It adds the edge in the SDNodeScheduler dependency graph instead of inserting the SCC copy between each definition and use. This approach lets the scheduler place instructions in an optimal way placing the copy only when the dependency cannot be resolved.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D133593
All in-tree targets pass pointer-sized ConstantSDNodes to the
method. This overload reduced amount of boilerplate code a bit. This
also makes getCALLSEQ_END consistent with getCALLSEQ_START, which
already takes uint64_ts.
Get some load-store forwarding cases for big-endian where a larger store covers
a smaller load, and the offset would be 0 and handled on little-endian but on
big-endian the offset is adjusted to be non-zero. The idea is just to shift the
data to make it look like the offset 0 case.
Differential Revision: https://reviews.llvm.org/D130115
This is the ultimate fallback code if UADDO isn't supported.
If the target uses 0/1 we used one compare, but if the target doesn't
use 0/1 we emitted two compares. Regardless of boolean constants we
should only need to check that the Result is less than one of the
original operands. So we only need one compare.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D133708
For remainder:
If (1 << (Bitwidth / 2)) % Divisor == 1, we can add the high and low halves
together and use a (Bitwidth / 2) urem. If (BitWidth /2) is a legal integer
type, this urem will be expand by DAGCombiner using multiply by magic
constant. We do have to take into account that adding high and low
together can produce a carry, making it a (BitWidth / 2)+1 bit number.
So we need to also add back in the carry from the first addition.
For division:
We can use the above trick to compute the remainder, subtract that
remainder from the dividend, then multiply by the multiplicative
inverse of the Divisor modulo (1 << BitWidth).
This is based on the section "Remainder by Summing Digits" in
Hacker's delight.
The remainder trick is similar to a trick you may have learned for
determining if a decimal number is divisible by 3. You can add all the
digits together and see if the sum is divisible by 3. If you're not sure
if the sum is divisible by 3, you can add its digits together. This
can be repeated until you have a single decimal digit. If that digit
is 3, 6, or 9, then the original number is divisible by 3. This works
because 10 % 3 == 1.
gcc already does this same trick. There are additional tricks gcc
does urem as well as srem, udiv, and sdiv that I plan to add in
future patches.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D130862
Some uses of std::make_pair and the std::pair's first/second members
in the ScheduleDAGRRList.cpp file were replaced with using of the
vector's emplace_back along with structure bindings from C++17.
getNegatedExpression can delete nodes. If the first call to
getNegatedExpression produced a node that the second call also
manages to create, it might get deleted. Use a HandleSDNode to
ensure it has a use to prevent it from being deleted.
Fixes PR57658.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D133602
LLVM contains a helpful function for getting the size of a C-style
array: `llvm::array_lengthof`. This is useful prior to C++17, but not as
helpful for C++17 or later: `std::size` already has support for C-style
arrays.
Change call sites to use `std::size` instead.
Differential Revision: https://reviews.llvm.org/D133429
Propagate PC sections metadata to MachineInstr when FastISel is doing
instruction selection.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D130884
Add a new entry to SDNodeExtraInfo to propagate PCSections through
SelectionDAG.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D130882
During SelectionDAG legalization SDNodes with associated extra info may
be replaced with a new SDNode. Preserve associated extra info on
ReplaceAllUsesWith and remove entries in DeallocateNode.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D130881
For information infrequently attached to SDNodes, it is useful to
provide a way to add this information out-of-line. This is already done
for call-site specific information.
Rename CallSiteDbgInfo to NodeExtraInfo in preparation of adding
additional information not necessarily related to call sites only.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D130880
The main difference is that this preserves intermediate rounding steps,
which the other route doesn't. This aligns bfloat16 more with half
floats, which use this path on most targets.
I didn't understand what the difference was between these softening
approaches when I first added bfloat lowerings, would be nice if we only
had one of them.
Based on @pengfei 's D131502
Differential Revision: https://reviews.llvm.org/D133207
For some indices we can simply extract the fixed-length subvector from the
low half of the scalable vector, for example when the index is less than the
minimum number of elements in the low half. For all other cases we can
expand the operation through the stack by storing out the vector and
reloading the fixed-length part we need.
Fixes https://github.com/llvm/llvm-project/issues/55412
Tests added here:
CodeGen/AArch64/sve-extract-fixed-from-scalable-vector.ll
Differential Revision: https://reviews.llvm.org/D117499
Similar to #57402 - we were calling isGuaranteedNotToBeUndefOrPoison on the freeze operand (with Depth = 0), but wasn't accounting for the fact that a later isGuaranteedNotToBeUndefOrPoison assertion will call from the new node (with Depth = 0 as well) - which will then recursively call isGuaranteedNotToBeUndefOrPoison for its operands with Depth = 1
Fixes#57554
The way ComputeNumSignBits was being used was only correct if
OuterBitSize is exactly 2x InnerBitSize. Which is always true,
but not obviously so. Comparing ComputeMaxSignificantBits to
InnerBitSize feels more correct.
We feed the result from the first extractShiftForRotate call into the second, and that result might no longer be a shift op (usually due to constant folding).
NOTE: We REALLY need to stop creating nodes on the fly inside extractShiftForRotate!
Fixes Issue #57474
We were calling isGuaranteedNotToBeUndefOrPoison on operands (with Depth = 0), but wasn't accounting for the fact that a later isGuaranteedNotToBeUndefOrPoison assertion will call from the new node (with Depth = 0 as well) - which will then recursively call isGuaranteedNotToBeUndefOrPoison for its operands with Depth = 1
Fixes#57402
Mostly just modeled after vp.fneg except there is a
"functional instruction" for fneg while fabs is always an
intrinsic.
Reviewed By: fakepaper56
Differential Revision: https://reviews.llvm.org/D132793
This patch replaces calls to greatestCommonDivisor with std::gcd where
both arguments are known to be of unsigned. This means that
std::common_type_t of the two argument types should just be the wider
one of the two.
This patch follows the InstCombine approach of stripping poison generating flags (nsw/nuw from add/sub etc.) to allow us to push a freeze() through the op. Unlike InstCombine it doesn't retain any flags, but we have plenty of DAG folds that do the same thing already. We assert that the newly generated op isGuaranteedNotToBeUndefOrPoison.
Similar to the ValueTracking approach, isGuaranteedNotToBeUndefOrPoison has been updated to confirm that if an op can't create undef/poison and its operands are guaranteed not to be undef/poison - then its not undef/poison. This is just for the generic opcodes - target specific opcodes will need to do this manually just in case they have some special cases.
Differential Revision: https://reviews.llvm.org/D132333
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Relands 67504c9549 with a fix for
32-bit builds.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
Based off Issue #57283 - we need to try harder to ensure we're not creating nodes on-the-fly - so make sure we're just using SelectionDAG for analysis where possible
extractShiftForRotate may fail to return canonicalized shifts due to constant folding or other simplification that can occur in getNode()
Fixes Issue #57283
(ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
Adjust the legality check to avoid the poor codegen on AArch64.
We probably only want to use popcount on this pattern when it
is a single instruction.
fixes#57225
Differential Revision: https://reviews.llvm.org/D132237
musttail should be honored even in the presence of attributes like "disable-tail-calls". SelectionDAG properly handles this.
Update LangRef to explicitly mention that this is the semantics of musttail.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D132193
Following the comment's thread of D117235, I added checks for the widening + splitting case, which also causes a split with one of the resulting vectors to be empty. Due to the same issues described in that same thread, the `fixed-vectors-strided-store.ll` test is missing the widening + splitting case, while the same case in the `strided-vpload.ll` test requires to manually split the loaded vector.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D121784
Extends findMoreOptimalIndexType to allow ISD::BUILD_VECTOR based
indices to be truncated when such truncation is lossless. This can
enable the use of 32bit gather/scatter indices thus making it less
likely to have to split a gather/scatter in two.
Depends on D125194
Differential Revision: https://reviews.llvm.org/D130533
This is a potentially better alternative to D131452 that also
should avoid the infinite loop bug from:
issue #56403
This is again a minimal fix to reduce merging pain for the
release. But if this makes sense, then we might want to guard
all of the RTLIB generation (and other libcalls?) with a
similar name check.
Differential Revision: https://reviews.llvm.org/D131521
There are two different senses in which a block can be "address-taken".
There can be a BlockAddress involved, which means we need to map the
IR-level value to some specific block of machine code. Or there can be
constructs inside a function which involve using the address of a basic
block to implement certain kinds of control flow.
Mixing these together causes a problem: if target-specific passes are
marking random blocks "address-taken", if we have a BlockAddress, we
can't actually tell which MachineBasicBlock corresponds to the
BlockAddress.
So split this into two separate bits: one for BlockAddress, and one for
the machine-specific bits.
Discovered while trying to sort out related stuff on D102817.
Differential Revision: https://reviews.llvm.org/D124697
This is a followup to D131350, which caused another problem for i64
types being split into i32 on i32 targets. This patch tries to make sure
that either Illegal types are OK, or that the element types of a
buildvector are legal and bigger than or equal to the size of the
original elements.
Differential Revision: https://reviews.llvm.org/D131883
This patch really just extends D39946 towards stores as well as loads.
While the patch is in SelectionDAGBuilder, it only applies to AVR (the
only target that supports unaligned atomic operations).
Differential Revision: https://reviews.llvm.org/D128483
The outer signext_inreg is redundant in the following:
Fold (signext_inreg (extract_subvector (zext|anyext|sext iN_value to _) _) from iN)
-> (extract_subvector (signext iN_value to iM))
Tests are precommitted and clone those by analogy from the AND case in
the same file. Add a negative test to check extension width is handled
correctly.
This patch supersedes D130700.
Differential Revision: https://reviews.llvm.org/D131503
These are guaranteed not to create undef/poison (although they may pass through) - the associated ISD::VALUETYPE node is also guaranteed never to generate poison
SimplifyMultipleUseDemandedBits shouldn't be creating general nodes like this - although we allow bitcasts, even general constant folding is avoided.
Removing it causes a number of regressions that need addressing first, but I've added a TODO for now.
This patch makes the variants of `mm*_cast*` intel intrinsics that use `shufflevector(freeze(poison), ..)` emit efficient assembly.
(These intrinsics are planned to use `shufflevector(freeze(poison), ..)` after shufflevector's semantics update; relevant thread: D103874)
To do so, this patch
1. Updates `LowerAVXCONCAT_VECTORS` in X86ISelLowering.cpp to recognize `FREEZE(UNDEF)` operand of `CONCAT_VECTOR` in addition to `UNDEF`
2. Updates X86InstrVecCompiler.td to recognize `insert_subvector` of `FREEZE(UNDEF)` vector as its first operand.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D130339
canCreateUndefOrPoison currently only handles unary ops, but we intend to change that soon - this more closely matches the pushFreezeToPreventPoisonFromPropagating behaviour where the freeze is pushed up to a single operand value, as long as all others are guaranteed not to be poison/undef.
However, pushFreezeToPreventPoisonFromPropagating would freeze all uses of the value - whilst this variant requires the frozen value to be only used in the op - we can look at generalize multiple uses later if the need arises.
Currently fcopysign for VLS vectors lowers through NEON even when the
vector width is wider than a NEON vector, causing bad codegen as the
vectors are split. This patch causes SVE to be used for these vectors
instead, giving much better codegen on wide VLS vectors.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D128642
This patch adds basic support for a DAG variant of the canCreateUndefOrPoison call and updates DAGCombiner::visitFREEZE to use it, further Opcodes (including target specific Opcodes) can be handled when we have test coverage.
So far, I've left visitFREEZE to just use this for unary nodes (which currently means the existing BITCAST/FREEZE cases) - later patches will add other unary opcodes (with test coverage) and we can also refactor visitFREEZE to support a general number of operands like we do in InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating.
I'm not aware of any vector test freeze coverage so the DemandedElts (and the Depth) args are not being used yet - but they are in place. Similarly we will be able to handle poison generating SDNodeFlags as and when it becomes an issue.
Part of the work for D106675 / PR50468
Differential Revision: https://reviews.llvm.org/D130646
This patch emits table lookup in expandCTTZ.
Context -
https://reviews.llvm.org/D113291 transforms set of IR instructions to
cttz intrinsic but there are some targets which does not support CTTZ or
CTLZ. Hence, I generate a table lookup in TargetLowering::expandCTTZ().
Differential Revision: https://reviews.llvm.org/D128911
FoldConstantArithmetic can fold constant vectors hidden behind bitcasts (e.g. vXi64 -> v2Xi32 on 32-bit platforms), but currently bails if either vector contains undef elements. These undefs can often occur due to SimplifyDemandedBits/VectorElts calls recognising that the upper bits are often unnecessary (e.g. funnel-shift/rotate implicit-modulo and AND masks).
This patch adds a basic 'FoldValueWithUndef' handler that will attempt to constant fold if one or both of the ops are undef - so far this just handles the AND and MUL cases where we always fold to zero.
The RISCV codegen increase is interesting - it looks like the BUILD_VECTOR lowering was loading a constant pool entry but now (with all elements defined constant) it can materialize the constant instead?
Differential Revision: https://reviews.llvm.org/D130839
D129150 added a combine from shuffles to And that creates a BUILD_VECTOR
of constant elements. We need to ensure that the elements are of a legal
type, to prevent asserts during lowering.
Fixes#56970.
Differential Revision: https://reviews.llvm.org/D131350
The function `handleDebugValue` has custom logic to handle certain kinds
constants, namely integers, floats and null pointers. However, it does
not handle constant pointers created from IntToPtr ConstantExpressions.
This patch addresses the issue by replacing the Constant with its
integer operand.
A similar bug was addressed for GlobalISel in D130642.
Reviewed By: aprantl, #debug-info
Differential Revision: https://reviews.llvm.org/D130908
This patch ensures consistency in the construction of FP_ROUND nodes
such that they always use ISD::TargetConstant instead of ISD::Constant.
This additionally fixes a bug in the AArch64 SVE backend where patterns
were matching against TargetConstant nodes and sometimes failing when
passed a Constant node.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D130370
matchRotateSub is given shift amounts that will already have stripped any/zero-extend nodes from - so make sure those values are wide enough to take a mask.
Eliminate an AND by redefining an anyext|sext|zext.
(and (extract_subvector (anyext|sext|zext v) _) iN_mask)
=> (extract_subvector (zeroext_iN v))
Differential Revision: https://reviews.llvm.org/D130782
This belongs to a series of patches which try to solve the thread
identification problem in coroutines. See
https://discourse.llvm.org/t/address-thread-identification-problems-with-coroutine/62015
for a full background.
The problem consists of two concrete problems: TLS variable and readnone
functions. This patch tries to convert the TLS problem to readnone
problem by converting the access of TLS variable to an intrinsic which
is marked as readnone.
The readnone problem would be addressed in following patches.
Reviewed By: nikic, jyknight, nhaehnle, ychen
Differential Revision: https://reviews.llvm.org/D125291
Add a method for the various cases where we need to concatenate 2 KnownBits together (BUILD_PAIR and SHIFT_PARTS in particular) - uses the existing APInt::concat 'HiBits.concat(LoBits)' convention
Differential Revision: https://reviews.llvm.org/D130557
GetDemandedBits is mainly a wrapper around SimplifyMultipleUseDemandedBits now, and is only used by DAGCombiner::visitSTORE so I've moved all remaining functionality there.
visitSTORE was making use of this to 'simplify' constants for a trunc-store. Just removing this code left to a mixture of regressions and gains - it came down to whether a target preferred a sign or zero extended constant for materialization/truncation. I've just moved the code over for now, but a next step would be to move this to targetShrinkDemandedConstant, but some targets that override the method expect a basic binop, and might react badly to a store node.....