This patch extends VP-based sinking to also sink VPScalarStepsRecipe.
This takes us a step closer towards retiring the IR based sinking.
The main change is extending VPScalarIVStepsRecipe::execute to support
executing in a replicate-region.
Depends on D133758.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D133760
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This reverts commit bf15f1e489.
The updated version fixes a crash by checking the induction kind instead
of the opcode; for integer inductions, the step is always added, but the
opcode might not be set.
When we sort entries for attempting to reorder scalars, need to use
actual vectorization factor, not the number of scalars. Otherwise the
compiler crashes, if the scalars has to be reordered.
Differential Revision: https://reviews.llvm.org/D138819
Compare a relative speed of misaligned accesses before and
after vectorization, not just check the new instruction is
not going to be slower.
Since no target now returns anything but 0 or 1 for Fast
argument of the allowsMisalignedMemoryAccesses this is still NFCI.
The subsequent patch will tune actual vaues of Fast on AMDGPU.
Differential Revision: https://reviews.llvm.org/D124218
This patch splits off the logic to transform the canonical IV to a
a value for an induction with a different start and step. This
transformation only needs to be done once (independent of VF/UF) and
enables sinking of VPScalarIVStepsRecipe as follow-up.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D133758
If left unchecked, the SLPVecrtorizer can move loads/stores below a stackrestore. The move can cause issues if the loads/stores have pointer operands from `alloca`s that are reset by the stackrestores. This patch adds the dependency check.
The check is conservative, in that it does not check if the pointer operands of the loads/stores are actually from `alloca`s that may be reset. We did not observe any SPECCPU2017 performance degradation so this simple fix seems sufficient.
The test could have been added to `llvm/test/Transforms/SLPVectorizer/X86/stacksave-dependence.ll`, but that test has not been updated to use opaque pointers. I am not inclined to add tests that still use typed pointers, or to refactor `llvm/test/Transforms/SLPVectorizer/X86/stacksave-dependence.ll` to use opaque pointers in this patch. If desired, I will open a different patch to refactor and consolidate the tests.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D138585
StoredValues only has entries for members of the interleave group. If
there are gaps, then using the index i here will either access a wrong
entry or be out-of-bounds.
Instead use a dedicated index that only gets incremented for members of
the interleave group.
Fixes#59090.
This reverts a change to exclude scalarizeBinopOrCmp in VectorCombine for
scalable vectors which caused poor scalable Binop codegen.
Differential Revision: https://reviews.llvm.org/D138545
This follows 87debdadaf to further eliminate wasting time
calling helper functions only to early return to the main
run loop.
Once again, this results in significant savings based on
experimental data:
https://llvm-compile-time-tracker.com/compare.php?from=01023bfcd33f922ed8c934ce563e54abe8bfe246&to=3dce4f70b73e48ccb045decb634c185e6b4c67d5&stat=instructions:u
This is NFCI other than making the pass faster. The total
cost of VectorCombine runs in an -O3 build appears to be
well under 0.1% of compile-time now, so there's not much
left to do AFAICT.
There's a TODO about making the code cleaner, but it
probably doesn't change timing much. I didn't include those
changes here because it requires updating much more code.
The option was added with https://reviews.llvm.org/D102496,
and currently the name is accurate, but I am hoping to add
a load transform that is not a scalarization. See issue #17113.
extractelements.
If the resulting type is going to be scalarized, no need to adjust the
cost of removed extractelement and insert/extract subvector costs.
Otherwise, the compiler can crash because of the wrong type sizes.
Minor refactoring in LoopVectorizationCostModel::calculateRegisterUsage.
Also adding some FIXME:s related to what appears to be some short
comings related to how the register usage is calculated.
Differential Revision: https://reviews.llvm.org/D138342
Need to count the reduced values, vectorized in the tree but not in the top node. Such scalars still must be extracted out of the vector node instead of the original scalar.
A target can return if a misaligned access is 'fast' as defined
by the target or not. In reality there can be different levels
of 'fast' and 'slow'. This patch changes the boolean 'Fast'
argument of the allowsMisalignedMemoryAccesses family of functions
to an unsigned representing its speed.
A target can still define it as it wants and the direct translation
of the current code uses 0 and 1 for current false and true. This
makes the change an NFC.
Subsequent patch will start using an actual value of speed in
the load/store vectorizer to compare if a vectorized access going
to be not just fast, but not slower than before.
Differential Revision: https://reviews.llvm.org/D124217
Update comment to reflect current code, which also allows for
VPScalarIVStepsRecipes to be uniform.
Suggested by @Ayal during review of D136068, thanks!
The existing code already unconditionally dereferences RepR, so
cast_or_null can be replaced by just cast.
Suggested by @Ayal during review of D136068, thanks!
The return value of getDef is guaranteed to be a VPRecipeBase and all
users can also accept a VPRecipeBase *. Most users actually case to
VPRecipeBase or a specific recipe before using it, so this change
removes a number of redundant casts.
Also rename it to getDefiningRecipe to make the name a bit clearer.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D136068
If same instruction is reduced several times, but in one graph is part
of buildvector sequence and in another it is vectorized, we may loose
information that it was part of buildvector and must be extracted from
later vectorized value.
If the graph is only the buildvector node without main operation, need
to inherit insrtpoint from the redution instruction. Otherwise the
compiler crashes trying to insert instruction at the entry block.
Need to use advanced check for the same vectorized node to avoid
possible compiler crash. We may have 2 similar nodes (vector one and
gather) after graph nodes rotation, need to do extra checks for the
exact match.
The Assignment Tracking debug-info feature is outlined in this RFC:
https://discourse.llvm.org/t/
rfc-assignment-tracking-a-better-way-of-specifying-variable-locations-in-ir
The SLP-Vectorizer can merge a set of scalar stores into a single vectorized
store. Merge DIAssignID intrinsics from the scalar stores onto the new
vectorized store.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D133320
This adapts/copies code from the existing fold that allows
widening of load scalar+insert. It can help in IR because
it removes a shuffle, and the backend can already narrow
loads if that is profitable in codegen.
We might be able to consolidate more of the logic, but
handling this basic pattern should be enough to make a small
difference on one of the motivating examples from issue #17113.
The final goal of combining loads on those patterns is not
solved though.
Differential Revision: https://reviews.llvm.org/D137341
Gather nodes are vectorized as simply vector of the scalars instead of
relying on the actual node. It leads to the fact that in some cases
we may miss incorrect transformation (non-matching set of scalars is
just ended as a gather node instead of possible vector/gather node).
Better to rely on the actual nodes, it allows to improve stability and
better detect missed cases.
Differential Revision: https://reviews.llvm.org/D135174
Need to check if the insertelement mask size is reached during cost analysis to avoid compiler crash.
Differential Revision: https://reviews.llvm.org/D137639
This was done as a test for D137302 and it makes sense to push these changes
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D137493