This patch adds the ability to use `-mllvm` options in the linker
wrapper when performing bitcode linking or the module compilation.
This is done by passing in the LLVM argument to the clang-linker-wrapper
tool. Inside the linker-wrapper tool we invoke the `CommandLine` parser
solely for forwarding command line options to the `clang-linker-wrapper`
to the LLVM tools that also use the `CommandLine` parser. The actual
arguments to the linker wrapper are parsed using the `Opt` library
instead.
For example, in the following command the `CommandLine` parser will attempt to
parse `abc`, while the `opt` parser takes `-mllvm <arg>` and ignores it so it is
not passed to the linker arguments.
```
clang-linker-wrapper -mllvm -abc -- <linker-args>
```
As far as I can tell this is the easiest way to forward arguments to
LLVM tool invocations. If there is a better way to pass these arguments
(such as through the LTO config) let me know.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D129424
The offload packager embeds the features in the offloading binary when
performing LTO. This had an incorrect interaction with the
`--cuda-feature` option because we weren't deriving the features from
the CUDA toolchain arguments when it was being specified. This patch
fixes this so the features are correctly overrideen when using this
argument.
However, this brings up a question of how best to handle conflicting
target features. The user could compile many libraries with different
features, in this case we do not know which one to pick. This was not
previously a problem when we simply passed the features in from the CUDA
installation at link-link because we just defaulted to whatever was
current on the system.
Reviewed By: ye-luo
Differential Revision: https://reviews.llvm.org/D129393
* Refactor compression namespaces across the project, making way for a possible
introduction of alternatives to zlib compression.
Changes are as follows:
* Relocate the `llvm::zlib` namespace to `llvm::compression::zlib`.
Reviewed By: MaskRay, leonardchan, phosek
Differential Revision: https://reviews.llvm.org/D128953
Summary:
The previous path reworked some handling of temporary files which
exposed some bugs related to capturing local state by reference in the
callback labmda. Squashing this by copying in everything instead. There
was also a problem where the argument name was changed for
`--bitcode-library=` but clang still used `--target-library=`.
Summary:
This patch reworks the command line argument handling in the linker
wrapper from using the LLVM `cl` interface to using the `Option`
interface with TableGen. This has several benefits compared to the old
method.
We use arguments from the linker arguments in the linker
wrapper, such as the libraries and input files, this allows us to
properly parse these. Additionally we can now easily set up aliases to
the linker wrapper arguments and pass them in the linker input directly.
That is, pass an option like `cuda-path=` as `--offload-arg=cuda-path=`
in the linker's inputs. This will allow us to handle offloading
compilation in the linker itself some day. Finally, this is also a much
cleaner interface for passing arguments to the individual device linking
jobs.
If clang modules are not enabled it becomes unnecessary to read the session timestamp file in order
to pass `-fbuild-session-timestamp` to the `cc1` invocation.
Differential Revision: https://reviews.llvm.org/D129030
Add option -fhip-kernel-arg-name to emit kernel argument
name metadata, which is needed for certain HIP applications.
Reviewed by: Artem Belevich, Fangrui Song, Brian Sumner
Differential Revision: https://reviews.llvm.org/D128022
Some code [0] consider that trailing arrays are flexible, whatever their size.
Support for these legacy code has been introduced in
f8f6324983 but it prevents evaluation of
__builtin_object_size and __builtin_dynamic_object_size in some legit cases.
Introduce -fstrict-flex-arrays=<n> to have stricter conformance when it is
desirable.
n = 0: current behavior, any trailing array member is a flexible array. The default.
n = 1: any trailing array member of undefined, 0 or 1 size is a flexible array member
n = 2: any trailing array member of undefined or 0 size is a flexible array member
n = 3: any trailing array member of undefined size is a flexible array member (strict c99 conformance)
Similar patch for gcc discuss here: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836
[0] https://docs.freebsd.org/en/books/developers-handbook/sockets/#sockets-essential-functions
Simplify debug info back to just "limited" or "full" by rolling the ctor
type homing fully into the "limited" debug info.
Also fix a bug I found along the way that was causing ctor type homing
to kick in even when something could be vtable homed (where vtable
homing is stronger/more effective than ctor homing) - fixing at the same
time as it keeps the tests (that were testing only "limited non ctor"
homing and now test ctor homing) passing.
HLSL supports half type.
When enable-16bit-types is not set, half will be treated as float.
When enable-16bit-types is set, half will be treated like real 16bit float type and map to llvm half type.
Also change CXXABI to Microsoft to match dxc behavior.
The mangle name for half is "$f16@" when half is treat as native half type and "$halff@" when treat as float.
In AST, half is still half.
The special thing is done at clang codeGen, when NativeHalfType is false, half will translated into float.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D124790
The target features are necessary for correctly compiling most programs
in LTO mode. Currently, these are derived in clang at link time and
passed as an arguemnt to the linker wrapper. This is problematic because
it requires knowing the required toolchain at link time, which should
not be necessry. Instead, these features should be embedded into the
offloading binary so we can unify them in the linker wrapper for LTO.
This also required changing the offload packager to interpret multiple
arguments as concatenation with a comma. This is so we can still use the
`,` separator for the argument list.
Depends on D127246
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D127686
It was previously reverted by 8406839d19.
---
This flag was introduced by
6818991d71
commit 6818991d71
Author: Ted Kremenek <kremenek@apple.com>
Date: Mon Dec 7 22:06:12 2009 +0000
Add clang-cc option '-analyzer-opt-analyze-nested-blocks' to treat
block literals as an entry point for analyzer checks.
The last reference was removed by this commit:
5c32dfc5fb
commit 5c32dfc5fb
Author: Anna Zaks <ganna@apple.com>
Date: Fri Dec 21 01:19:15 2012 +0000
[analyzer] Add blocks and ObjC messages to the call graph.
This paves the road for constructing a better function dependency graph.
If we analyze a function before the functions it calls and inlines,
there is more opportunity for optimization.
Note, we add call edges to the called methods that correspond to
function definitions (declarations with bodies).
Consequently, we should remove this dead flag.
However, this arises a couple of burning questions.
- Should the `cc1` frontend still accept this flag - to keep
tools/users passing this flag directly to `cc1` (which is unsupported,
unadvertised) working.
- If we should remain backward compatible, how long?
- How can we get rid of deprecated and obsolete flags at some point?
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D126067
I'm trying to remove unused options from the `Analyses.def` file, then
merge the rest of the useful options into the `AnalyzerOptions.def`.
Then make sure one can set these by an `-analyzer-config XXX=YYY` style
flag.
Then surface the `-analyzer-config` to the `clang` frontend;
After all of this, we can pursue the tablegen approach described
https://discourse.llvm.org/t/rfc-tablegen-clang-static-analyzer-engine-options-for-better-documentation/61488
In this patch, I'm proposing flag deprecations.
We should support deprecated analyzer flags for exactly one release. In
this case I'm planning to drop this flag in `clang-16`.
In the clang frontend, now we won't pass this option to the cc1
frontend, rather emit a warning diagnostic reminding the users about
this deprecated flag, which will be turned into error in clang-16.
Unfortunately, I had to remove all the tests referring to this flag,
causing a mass change. I've also added a test for checking this warning.
I've seen that `scan-build` also uses this flag, but I think we should
remove that part only after we turn this into a hard error.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D126215
The option mdefault-visibility-export-mapping is created to allow
mapping default visibility to an explicit shared library export
(e.g. dllexport). Exactly how and if this is manifested is target
dependent (since it depends on how they map dllexport in the IR).
Three values are provided for the option:
* none: the default and behavior without the option, no additional export linkage information is created.
* explicit: add the export for entities with explict default visibility from the source, including RTTI
* all: add the export for all entities with default visibility
This option is useful for targets which do not export symbols as part of
their usual default linkage behaviour (e.g. AIX), such targets
traditionally specified such information in external files (e.g. export
lists), but this mapping allows them to use the visibility information
typically used for this purpose on other (e.g. ELF) platforms.
This relands commit: 8c8a2679a2
with fixes for the compile time and assert problems that were reported
by:
* making shouldMapVisibilityToDLLExport inline and provide an early return
in the case where no mapping is in effect (aka non-AIX platforms)
* don't try to export RTTI types which we will give internal linkage to
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D126340
Command lines with multiple `-arch` arguments expand into multiple entries in the compilation database. However, the file writes are not appending, meaning subsequent writes end up overwriting the previous ones, resulting in garbled output.
This patch fixes that by always appending to the file.
rdar://90165004
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D121997
Previously, omitting unnecessary DWARF unwinds was only done in two
cases:
* For Darwin + aarch64, if no DWARF unwind info is needed for all the
functions in a TU, then the `__eh_frame` section would be omitted
entirely. If any one function needed DWARF unwind, then MC would emit
DWARF unwind entries for all the functions in the TU.
* For watchOS, MC would omit DWARF unwind on a per-function basis, as
long as compact unwind was available for that function.
This diff makes it so that we omit DWARF unwind on a per-function basis
for Darwin + aarch64 as well. In addition, we introduce the flag
`--emit-dwarf-unwind=` which can toggle between `always`,
`no-compact-unwind` (only emit DWARF when CU cannot be emitted for a
given function), and the target platform `default`. `no-compact-unwind`
is particularly useful for newer x86_64 platforms: we don't want to omit
DWARF unwind for x86_64 in general due to possible backwards compat
issues, but we should make it possible for people to opt into this
behavior if they are only targeting newer platforms.
**Motivation:** I'm working on adding support for `__eh_frame` to LLD,
but I'm concerned that we would suffer a perf hit. Processing compact
unwind is already expensive, and that's a simpler format than EH frames.
Given that MC currently produces one EH frame entry for every compact
unwind entry, I don't think processing them will be cheap. I tried to do
something clever on LLD's end to drop the unnecessary EH frames at parse
time, but this made the code significantly more complex. So I'm looking
at fixing this at the MC level instead.
**Addendum:** It turns out that there was a latent bug in the X86
backend when `OmitDwarfIfHaveCompactUnwind` is naively enabled, which is
not too surprising given that this combination has not been heretofore
used.
For functions that have unwind info that cannot be encoded with CU, MC
would end up dropping both the compact unwind entry (OK; existing
behavior) as well as the DWARF entries (not OK). This diff fixes things
so that we emit the DWARF entry, as well as a CU entry with encoding
`UNWIND_X86_MODE_DWARF` -- this basically tells the unwinder to look for
the DWARF entry. I'm not 100% sure the `UNWIND_X86_MODE_DWARF` CU entry
is necessary, this was the simplest fix. ld64 seems to be able to handle
both the absence and presence of this CU entry. Ultimately ld64 (and
LLD) will synthesize `UNWIND_X86_MODE_DWARF` if it is absent, so there
is no impact to the final binary size.
Reviewed By: davide, lhames
Differential Revision: https://reviews.llvm.org/D122258
This flag was introduced by
6818991d71
commit 6818991d71
Author: Ted Kremenek <kremenek@apple.com>
Date: Mon Dec 7 22:06:12 2009 +0000
Add clang-cc option '-analyzer-opt-analyze-nested-blocks' to treat
block literals as an entry point for analyzer checks.
The last reference was removed by this commit:
5c32dfc5fb
commit 5c32dfc5fb
Author: Anna Zaks <ganna@apple.com>
Date: Fri Dec 21 01:19:15 2012 +0000
[analyzer] Add blocks and ObjC messages to the call graph.
This paves the road for constructing a better function dependency graph.
If we analyze a function before the functions it calls and inlines,
there is more opportunity for optimization.
Note, we add call edges to the called methods that correspond to
function definitions (declarations with bodies).
Consequently, we should remove this dead flag.
However, this arises a couple of burning questions.
- Should the `cc1` frontend still accept this flag - to keep
tools/users passing this flag directly to `cc1` (which is unsupported,
unadvertised) working.
- If we should remain backward compatible, how long?
- How can we get rid of deprecated and obsolete flags at some point?
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D126067
I'm trying to remove unused options from the `Analyses.def` file, then
merge the rest of the useful options into the `AnalyzerOptions.def`.
Then make sure one can set these by an `-analyzer-config XXX=YYY` style
flag.
Then surface the `-analyzer-config` to the `clang` frontend;
After all of this, we can pursue the tablegen approach described
https://discourse.llvm.org/t/rfc-tablegen-clang-static-analyzer-engine-options-for-better-documentation/61488
In this patch, I'm proposing flag deprecations.
We should support deprecated analyzer flags for exactly one release. In
this case I'm planning to drop this flag in `clang-16`.
In the clang frontend, now we won't pass this option to the cc1
frontend, rather emit a warning diagnostic reminding the users about
this deprecated flag, which will be turned into error in clang-16.
Unfortunately, I had to remove all the tests referring to this flag,
causing a mass change. I've also added a test for checking this warning.
I've seen that `scan-build` also uses this flag, but I think we should
remove that part only after we turn this into a hard error.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D126215
CLANG_MODULE_CACHE_PATH can be used to change where clang should
put the module cache, or can be set to "" to disable caching entirely.
Differential revision: https://reviews.llvm.org/D126678
This caused assertions, see comment on the code review:
llvm/clang/lib/AST/Decl.cpp:1510:
clang::LinkageInfo clang::LinkageComputer::getLVForDecl(const clang::NamedDecl *, clang::LVComputationKind):
Assertion `D->getCachedLinkage() == LV.getLinkage()' failed.
> The option mdefault-visibility-export-mapping is created to allow
> mapping default visibility to an explicit shared library export
> (e.g. dllexport). Exactly how and if this is manifested is target
> dependent (since it depends on how they map dllexport in the IR).
>
> Three values are provided for the option:
>
> * none: the default and behavior without the option, no additional export linkage information is created.
> * explicit: add the export for entities with explict default visibility from the source, including RTTI
> * all: add the export for all entities with default visibility
>
> This option is useful for targets which do not export symbols as part of
> their usual default linkage behaviour (e.g. AIX), such targets
> traditionally specified such information in external files (e.g. export
> lists), but this mapping allows them to use the visibility information
> typically used for this purpose on other (e.g. ELF) platforms.
>
> Reviewed By: MaskRay
>
> Differential Revision: https://reviews.llvm.org/D126340
This reverts commit 8c8a2679a2.
The option mdefault-visibility-export-mapping is created to allow
mapping default visibility to an explicit shared library export
(e.g. dllexport). Exactly how and if this is manifested is target
dependent (since it depends on how they map dllexport in the IR).
Three values are provided for the option:
* none: the default and behavior without the option, no additional export linkage information is created.
* explicit: add the export for entities with explict default visibility from the source, including RTTI
* all: add the export for all entities with default visibility
This option is useful for targets which do not export symbols as part of
their usual default linkage behaviour (e.g. AIX), such targets
traditionally specified such information in external files (e.g. export
lists), but this mapping allows them to use the visibility information
typically used for this purpose on other (e.g. ELF) platforms.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D126340
This reverts commit a544710cd4.
See discussion in D120540.
This breaks C++ Clang modules on Darwin and also more than a dozen
tests in the LLDB testsuite. I think we need to be more careful to
separate out the enabling of Clang C++ modules and C++20
modules. Either by having -fmodules-ts control the HaveModules flag,
or by adding a way to explicitly turn them off.
Create dxc_D as alias to option D which Define <macro> to <value> (or 1 if <value> omitted).
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D125338
Vector types in hlsl is using clang ext_vector_type.
Declaration of vector types is in builtin header hlsl.h.
hlsl.h will be included by default for hlsl shader.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D125052
Vector types in hlsl is using clang ext_vector_type.
Declaration of vector types is in builtin header hlsl.h.
hlsl.h will be included by default for hlsl shader.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D125052
This patch allows user to use C++20 module by -fcxx-modules. Previously,
we could only use it under -std=c++20. Given that user could use C++20
coroutine standalonel by -fcoroutines-ts. It makes sense to offer an
option to use C++20 modules without enabling C++20.
Reviewed By: iains, MaskRay
Differential Revision: https://reviews.llvm.org/D120540
This patch allows user to use C++20 module by -fcxx-modules. Previously,
we could only use it under -std=c++20. Given that user could use C++20
coroutine standalonel by -fcoroutines-ts. It makes sense to offer an
option to use C++20 modules without enabling C++20.
Reviewed By: iains, MaskRay
Differential Revision: https://reviews.llvm.org/D120540
We use the clang-linker-wrapper to perform device linking of embedded
offloading object files. This is done by generating those jobs inside of
the linker-wrapper itself. This patch adds an argument in Clang and the
linker-wrapper that allows users to forward input to the device linking
phase. This can either be done for every device linker, or for a
specific target triple. We use the `-Xoffload-linker <arg>` and the
`-Xoffload-linker-<triple> <arg>` syntax to accomplish this.
Reviewed By: markdewing, tra
Differential Revision: https://reviews.llvm.org/D126226
For generic targets such as SPIR-V clang sets all OpenCL
extensions/features as supported by default. However
concrete targets are unlikely to support all extensions
features, which creates a problem when such generic SPIR-V
binary is compiled for a specific target later on.
To allow compile time diagnostics for unsupported features
this flag is now being exposed in the clang driver.
Differential Revision: https://reviews.llvm.org/D125243
Support the "-fzero-call-used-regs" option on AArch64. This involves much less
specialized code than the X86 version. Most of the checks can be done with
TableGen.
Reviewed By: nickdesaulniers, MaskRay
Differential Revision: https://reviews.llvm.org/D124836
The previous patches allowed us to create a static library containing
all the device code. This patch uses that library to perform the device
runtime linking late when performing LTO. This in addition to
simplifying the libraries, allows us to transparently handle the runtime
library as-needed without needing Clang to manually pass the necessary
library in the linker wrapper job.
Depends on D125315
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D125333
We use globals to configure debugging at compile-time for the device
runtime. Because these are only used by the OpenMP runtime we shouldn't
define them if we aren't using the device runtime. When a user passes in
'-nogpulib' this indicates that we are not using the device runtime, so
we should check for the precense of this flag and not emit these globals
if used.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D125314
OpenMP uses several wrapper hearders to provide the definitions of
needed symbols contained in the host. However, some users may use the
`-nostdinc` option to override these definitions themselves. The OpenMP
wrapper headers are stored in the same location as the clang install. If
the user passes `-nostdinc` then this include directory is never looked
at by default which means that including these wrappers will always
fail. These headers should instead be included manually if they are
needed with a `-nostdinc` build.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D125265
When Clang generates the path prefix (i.e. the path of the directory
where the file is) when generating FILE, __builtin_FILE(), and
std::source_location, Clang uses the platform-specific path separator
character of the build environment where Clang _itself_ is built. This
leads to inconsistencies in Chrome builds where Clang running on
non-Windows environments uses the forward slash (/) path separator
while Clang running on Windows builds uses the backslash (\) path
separator. To fix this, we add a flag -ffile-reproducible (and its
inverse, -fno-file-reproducible) to have Clang use the target's
platform-specific file separator character.
Additionally, the existing flags -fmacro-prefix-map and
-ffile-prefix-map now both imply -ffile-reproducible. This can be
overriden by setting -fno-file-reproducible.
[0]: https://crbug.com/1310767
Differential revision: https://reviews.llvm.org/D122766
Create dxc_D as alias to option D which Define <macro> to <value> (or 1 if <value> omitted).
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D125338
In order to do offloading compilation we need to embed files into the
host and create fatbainaries. Clang uses a special binary format to
bundle several files along with their metadata into a single binary
image. This is currently performed using the `-fembed-offload-binary`
option. However this is not very extensibile since it requires changing
the command flag every time we want to add something and makes optional
arguments difficult. This patch introduces a new tool called
`clang-offload-packager` that behaves similarly to CUDA's `fatbinary`.
This tool takes several input files with metadata and embeds it into a
single image that can then be embedded in the host.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D125165
The changes made in D123460 generalized the code generation for OpenMP's
offloading entries. We can use the same scheme to register globals for
CUDA code. This patch adds the code generation to create these
offloading entries when compiling using the new offloading driver mode.
The offloading entries are simple structs that contain the information
necessary to register the global. The struct used is as follows:
```
Type struct __tgt_offload_entry {
void *addr; // Pointer to the offload entry info.
// (function or global)
char *name; // Name of the function or global.
size_t size; // Size of the entry info (0 if it a function).
int32_t flags;
int32_t reserved;
};
```
Currently CUDA handles RDC code generation by deferring the registration
of globals in the current TU to a callback function containing the
modules ID. Later all the module IDs will be used to register all of the
globals at once. Rather than mimic this, offloading entries allow us to
mimic the way OpenMP registers globals. That is, we create a simple
global struct for each device global to be registered. These are placed
at a special section `cuda_offloading_entires`. Because this section is
a valid C-identifier, the linker will profide a `__start` and `__stop`
pointer that we can use to iterate and register all globals at runtime.
the registration requires a flag variable to indicate which registration
function to use. I have assigned the flags somewhat arbitrarily, but
these use the following values.
Kernel: 0
Variable: 0
Managed: 1
Surface: 2
Texture: 3
Depends on D120272
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D123471
Summary:
We use the `--offload-new-driver` option to enable offload code
embedding. The check for when to do this was flawed and was enabling it
too early in the case of OpenMP, causing a segfault when dereferencing
the offloading toolchain.
Currently we require the `-fopenmp-targets=` option to specify the
triple to use for the offloading toolchains, and the `-Xopenmp-target=`
option to specify architectures to a specific toolchain. The changes
made in D124721 allowed us to use `--offload-arch=` to specify multiple
target architectures. However, this can become combersome with many
different architectures. This patch introduces functinality that
attempts to deduce the target triple and architectures from the
offloading action. Currently we will deduce known GPU architectures when
only `-fopenmp` is specified.
This required a bit of a hack to cache the deduced architectures,
without this we would've just thrown an error when we tried to look up
the architecture again when generating the job. Normally we require the
user to manually specify the toolchain arguments, but here they would
confict unless we overrode them.
Depends on: D124721
Reviewed By: saiislam
Differential Revision: https://reviews.llvm.org/D125050
fcgl option will make compilation stop after clang codeGen and output the llvm ir.
It is added to check clang codeGen output for HLSL.
It will be translated into -S -emit-llvm and -disable-llvm-passes.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D124983
If clang is passed "-include foo.h", it will rewrite to "-include-pch foo.h.pch"
before passing it to cc1, if foo.h.pch exists.
Existence is checked, but validity is not. This is probably a reasonable
assumption for the compiler itself, but not for clang-based tools where the
actual compiler may be a different version of clang, or even GCC.
In the end, we lose our -include, we gain a -include-pch that can't be used,
and the file often fails to parse.
I would like to turn this off for all non-clang invocations (i.e.
createInvocationFromCommandLine), but we have explicit tests of this behavior
for libclang and I can't work out the implications of changing it.
Instead this patch:
- makes it optional in the driver, default on (no change)
- makes it optional in createInvocationFromCommandLine, default on (no change)
- changes driver to do IO through the VFS so it can be tested
- tests the option
- turns the option off in clangd where the problem was reported
Subsequent patches should make libclang opt in explicitly and flip the default
for all other tools. It's probably also time to extract an options struct
for createInvocationFromCommandLine.
Fixes https://github.com/clangd/clangd/issues/856
Fixes https://github.com/clangd/vscode-clangd/issues/324
Differential Revision: https://reviews.llvm.org/D124970
Due to a think-o, it was only being accepted as a -cc1 flag. This adds
the proper forwarding from the driver to the frontend and adds test
coverage for the option.
The DXIL validator version option(/validator-version) decide the validator version when compile hlsl.
The format is major.minor like 1.0.
In normal case, the value of validator version should be got from DXIL validator. Before we got DXIL validator ready for llvm/main, DXIL validator version option is added first to set validator version.
It will affect code generation for DXIL, so it is treated as a code gen option.
A new member std::string DxilValidatorVersion is added to clang::CodeGenOptions.
Then CGHLSLRuntime is added to clang::CodeGenModule.
It is used to translate clang::CodeGenOptions::DxilValidatorVersion into a ModuleFlag under key "dx.valver" at end of clang code generation.
Reviewed By: beanz
Differential Revision: https://reviews.llvm.org/D123884
When the denormal-fp-math option is used, this should set the
denormal handling mode for all floating point types. However,
currently 32-bit float types can ignore this setting as there is a
variant of the option, denormal-fp-math-f32, specifically for that type
which takes priority when checking the mode based on type and remains
at the default of IEEE. From the description, denormal-fp-math would
be expected to set the mode for floats unless overridden by the f32
variant, and code in the front end only emits the f32 option if it is
different to the general one, so setting just denormal-fp-math should
be valid.
This patch changes the denormal-fp-math option to also set the f32
mode. If denormal-fp-math-f32 is also specified, this is then
overridden as expected, but if it is absent floats will be set to the
mode specified by the former option, rather than remain on the default.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D122589
This patch adds the basic support for the clang driver to compile and link CUDA
using the new offloading driver. This requires handling the CUDA offloading kind
and embedding the generated files into the host. This will allow us to link
OpenMP code with CUDA code in the linker wrapper. More support will be required
to create functional CUDA / HIP binaries using this method.
Depends on D120270 D120271 D120934
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D120272
In preparation for allowing other offloading kinds to use the new driver
a new opt-in flag `-foffload-new-driver` is added. This is distinct from
the existing `-fopenmp-new-driver` because OpenMP will soon use the new
driver by default while the others should not.
Reviewed By: yaxunl, tra
Differential Revision: https://reviews.llvm.org/D123325
In preparation for accepting other offloading kinds with the new driver,
this patch makes the way we handle offloading actions more generic. A
new field to get the associated device action's toolchain is used rather
than manually iterating a list. This makes building the arguments easier
and makes sure that we doin't rely on any implicit ordering.
Reviewed By: yaxunl
Differential Revision: https://reviews.llvm.org/D123313
This is a followup to D120158 which added an 'h' suffix to the
backend handling.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D124551
Summary:
We provide the `-f(no-)openmp-new-driver` option to allow users to use
the old or new driver. Previously this wasn't handled in the expected
way and only `-fno-openmp-new-driver` was checked. This patch fixes that
by using the `hasFlag` method as is standard.
Commit 5c90eca added some analyzer option checking, but a typo meant
it was redundantly checking PS4 and not adding checking for PS5.
With the test corrected, it identified the necessary driver updates,
added in this commit.
When the -fdirectives-only option is used together with -E, the preprocessor
output reflects evaluation of if/then/else directives.
Thus it preserves macros that are still live after such processing.
This output can be consumed by a second compilation to produce a header unit.
We automatically invoke this (with -E) when we know that the job produces a
header unit so that the preprocessed output reflects the macros that will be
defined when the binary HU is emitted.
Differential Revision: https://reviews.llvm.org/D121591
This patch extends cc1as to export the build version load command with
LC_VERSION_MIN_MACOSX.
This is especially important for Mac Catalyst as Mac Catalyst uses
the MacOS's compiler rt built-ins.
Differential Revision: https://reviews.llvm.org/D121868
This adds file types and handling for three input types, representing a C++20
header unit source:
1. When provided with a complete pathname for the header.
2. For a header to be looked up (by the frontend) in the user search paths
3. For a header to be looked up in the system search paths.
We also add a pre-processed file type (although that is a single type, regardless
of the original input type).
These types may be specified with -xc++-{user,system,header-unit}-header xxxx.
These types allow us to disambiguate header unit jobs from PCH ones, and thus
we handle these differently from other header jobs in two ways:
1. The job construction is altered to build a C++20 header unit (rather than a
PCH file, as would be the case for other headers).
2. When the type is "user" or "system" we defer checking for the file until the
front end is run, since we need to look up the header in the relevant paths
which are not known at this point.
Differential Revision: https://reviews.llvm.org/D121588
Previously an opt-in flag `-fopenmp-new-driver` was used to enable the
new offloading driver. After passing tests for a few months it should be
sufficiently mature to flip the switch and make it the default. The new
offloading driver is now enabled if there is OpenMP and OpenMP
offloading present and the new `-fno-openmp-new-driver` is not present.
The new offloading driver has three main benefits over the old method:
- Static library support
- Device-side LTO
- Unified clang driver stages
Depends on D122683
Differential Revision: https://reviews.llvm.org/D122831
The previous patch introduced the offloading binary format so we can
store some metada along with the binary image. This patch introduces
using this inside the linker wrapper and Clang instead of the previous
method that embedded the metadata in the section name.
Differential Revision: https://reviews.llvm.org/D122683
This adds a PS5-specific ToolChain subclass, which defines some basic
PS5 driver behavior. Future patches will add more target-specific
driver behavior.
The current cc1 CLANG_ENABLE_OPAQUE_POINTERS=on default difference is not ideal
in that people contribute %clang_cc1 tests may assume the default ON behavior,
which will cause failures on systems set to OFF.
cc1 option default dependent on CMake options should be used prudently
(generally avoided). We prefer to limit target differences to Driver.
Change the CLANG_ENABLE_OPAQUE_POINTERS_INTERNAL mechanism introduced in D123122
to use a driver default instead. This is similar to the mechanism used for the
-flegacy-pass-manager transition to new PM transition.
Reviewed By: #opaque-pointers, rsmith, aeubanks
Differential Revision: https://reviews.llvm.org/D123744
This removes the -flegacy-pass-manager and
-fno-experimental-new-pass-manager options, and the corresponding
support code in BackendUtil. The -fno-legacy-pass-manager and
-fexperimental-new-pass-manager options are retained as no-ops.
Differential Revision: https://reviews.llvm.org/D123609
The Randstruct feature is a compile-time hardening technique that
randomizes the field layout for designated structures of a code base.
Admittedly, this is mostly useful for closed-source releases of code,
since the randomization seed would need to be available for public and
open source applications.
Why implement it? This patch set enhances Clang’s feature parity with
that of GCC which already has the Randstruct feature. It's used by the
Linux kernel in certain structures to help thwart attacks that depend on
structure layouts in memory.
This patch set is a from-scratch reimplementation of the Randstruct
feature that was originally ported to GCC. The patches for the GCC
implementation can be found here:
https://www.openwall.com/lists/kernel-hardening/2017/04/06/14
Link: https://lists.llvm.org/pipermail/cfe-dev/2019-March/061607.html
Co-authored-by: Cole Nixon <nixontcole@gmail.com>
Co-authored-by: Connor Kuehl <cipkuehl@gmail.com>
Co-authored-by: James Foster <jafosterja@gmail.com>
Co-authored-by: Jeff Takahashi <jeffrey.takahashi@gmail.com>
Co-authored-by: Jordan Cantrell <jordan.cantrell@mail.com>
Co-authored-by: Nikk Forbus <nicholas.forbus@gmail.com>
Co-authored-by: Tim Pugh <nwtpugh@gmail.com>
Co-authored-by: Bill Wendling <isanbard@gmail.com>
Signed-off-by: Bill Wendling <isanbard@gmail.com>
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D121556
This reverts commit 3f0587d0c6.
Not all tests pass after a few rounds of fixes.
I spot one failure that std::shuffle (potentially different results with
different STL implementations) was misused and replaced it with llvm::shuffle,
but there appears to be another failure in a Windows build.
The latest failure is reported on https://reviews.llvm.org/D121556#3440383
The Randstruct feature is a compile-time hardening technique that
randomizes the field layout for designated structures of a code base.
Admittedly, this is mostly useful for closed-source releases of code,
since the randomization seed would need to be available for public and
open source applications.
Why implement it? This patch set enhances Clang’s feature parity with
that of GCC which already has the Randstruct feature. It's used by the
Linux kernel in certain structures to help thwart attacks that depend on
structure layouts in memory.
This patch set is a from-scratch reimplementation of the Randstruct
feature that was originally ported to GCC. The patches for the GCC
implementation can be found here:
https://www.openwall.com/lists/kernel-hardening/2017/04/06/14
Link: https://lists.llvm.org/pipermail/cfe-dev/2019-March/061607.html
Co-authored-by: Cole Nixon <nixontcole@gmail.com>
Co-authored-by: Connor Kuehl <cipkuehl@gmail.com>
Co-authored-by: James Foster <jafosterja@gmail.com>
Co-authored-by: Jeff Takahashi <jeffrey.takahashi@gmail.com>
Co-authored-by: Jordan Cantrell <jordan.cantrell@mail.com>
Co-authored-by: Nikk Forbus <nicholas.forbus@gmail.com>
Co-authored-by: Tim Pugh <nwtpugh@gmail.com>
Co-authored-by: Bill Wendling <isanbard@gmail.com>
Signed-off-by: Bill Wendling <isanbard@gmail.com>
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D121556
Add CSKY target toolchains to support csky in linux and elf environment.
It can leverage the basic universal Linux toolchain for linux environment, and only add some compile or link parameters.
For elf environment, add a CSKYToolChain to support compile and link.
Also add some parameters into basic codebase of clang driver.
Differential Revision: https://reviews.llvm.org/D121445
Currently, clang-offload-bundler has -inputs and -outputs options that accept
values with comma as the delimiter. This causes issues with file paths
containing commas, which are valid file paths on Linux.
This add two new options -input and -output, which accept one single file,
and allow multiple instances. This allows arbitrary file paths. The old
-inputs and -outputs options will be kept for backward compatibility, but
are not allowed to be used with -input and -output options for simplicity.
In the future, -inputs and -outputs options will be phasing out.
RFC: https://discourse.llvm.org/t/rfc-adding-input-and-output-options-to-clang-offload-bundler/60049
Patch by: Siu Chi Chan
Reviewed by: Yaxun Liu
Differential Revision: https://reviews.llvm.org/D120662
While -g[no-]simple-template-names is a driver option, the fancier
-gsimple-template-names={simple,mangled} option is cc1-only, so code
to handle it in the driver is dead.
Differential Revision: https://reviews.llvm.org/D122503
Adds `--product-name=` flag to the clang driver. This gets forwarded to
cc1 only when we are performing a ExtractAPI Action. This is used to
populate the `name` field of the module object in the generated SymbolGraph.
Differential Revision: https://reviews.llvm.org/D122141
clang -extract-api should accept multiple headers and forward them to a
single CC1 instance. This change introduces a new ExtractAPIJobAction.
Currently API Extraction is done during the Precompile phase as this is
the current phase that matches the requirements the most. Adding a new
phase would need to change some logic in how phases are scheduled. If
the headers scheduled for API extraction are of different types the
driver emits a diagnostic.
Differential Revision: https://reviews.llvm.org/D121936
The NVPTX toolchain uses target features to determine the PTX version to
use. However this isn't exposed externally like most other toolchain
specific target features are. Add this functionaliy in preparation for
using it in for OpenMP offloading.
Reviewed By: jdoerfert, tra
Differential Revision: https://reviews.llvm.org/D122089